WO2023097556A1 - 一种电机的控制方法、装置、无人飞行器及存储介质 - Google Patents

一种电机的控制方法、装置、无人飞行器及存储介质 Download PDF

Info

Publication number
WO2023097556A1
WO2023097556A1 PCT/CN2021/134775 CN2021134775W WO2023097556A1 WO 2023097556 A1 WO2023097556 A1 WO 2023097556A1 CN 2021134775 W CN2021134775 W CN 2021134775W WO 2023097556 A1 WO2023097556 A1 WO 2023097556A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
unmanned aerial
aerial vehicle
motor
detection result
Prior art date
Application number
PCT/CN2021/134775
Other languages
English (en)
French (fr)
Inventor
刘利剑
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/134775 priority Critical patent/WO2023097556A1/zh
Publication of WO2023097556A1 publication Critical patent/WO2023097556A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular to a motor control method and device, an unmanned aerial vehicle and a storage medium.
  • unmanned aerial vehicles With the development of intelligent unmanned aerial vehicles, unmanned aerial vehicles are widely used in various industries. But at the same time, safety accidents caused by unmanned aerial vehicles are not uncommon, and there are still potential safety hazards in the use of unmanned aerial vehicles. While developing unmanned aerial technology, it is necessary to pay attention to a series of problems caused by potential safety hazards and actively seek solutions.
  • one of the purposes of this application is to provide a motor control method, device, unmanned aerial vehicle and storage medium, so as to eliminate some potential safety hazards existing in the use of unmanned aerial vehicles.
  • a motor control method including:
  • a motor control device including:
  • memory for storing processor-executable program instructions
  • an unmanned aerial vehicle including a motor, a propeller, and the motor control device described in the second aspect above.
  • a computer program product including a computer program, and when the computer program is executed by a processor, the steps described in the first aspect above are implemented.
  • a machine-readable storage medium is provided, and several computer instructions are stored on the machine-readable storage medium, and the steps described in the above-mentioned first aspect are performed when the computer instructions are executed.
  • a motor control method, device, unmanned aerial vehicle and storage medium provided by the present application when responding to a control command of the motor, according to the first obstacle used to indicate whether there is a first obstacle within the first preset range of the unmanned aerial vehicle
  • a detection result is used to determine whether to control the rotation of the propeller through the motor. Before the propeller rotates, the influence factors of the surrounding obstacles are fully considered, thereby eliminating the safety hazards caused by the surrounding obstacles when the unmanned aerial vehicle takes off.
  • Fig. 1 is a flow chart of a method for controlling a motor according to an embodiment of the present application.
  • Fig. 2 is a flow chart of a motor control method according to another embodiment of the present application.
  • Fig. 3(a) is a schematic diagram showing the arm in an unfolded state according to an embodiment of the present application.
  • Fig. 3(b) is a schematic diagram showing the arm in a folded state according to an embodiment of the present application.
  • Fig. 4 is a flowchart of a method for controlling a motor according to another embodiment of the present application.
  • Fig. 5 is a flow chart of a method for controlling a motor according to another embodiment of the present application.
  • Fig. 6 is a flow chart of a motor control method according to another embodiment of the present application.
  • Fig. 7 is a flow chart of a method for controlling a motor according to another embodiment of the present application.
  • Fig. 8 is a flow chart of a motor control method according to another embodiment of the present application.
  • Fig. 9 is a flowchart of a motor control method according to another embodiment of the present application.
  • Fig. 10 is a flowchart of a motor control method according to another embodiment of the present application.
  • Fig. 11 is a flowchart of a motor control method according to another embodiment of the present application.
  • Fig. 12 is a flowchart of a motor control method according to another embodiment of the present application.
  • Fig. 13 is a flowchart of a motor control method according to another embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a motor control device according to an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present application.
  • unmanned aerial vehicles With the development of intelligent unmanned aerial vehicles, unmanned aerial vehicles are widely used in various industries. But at the same time, safety accidents caused by unmanned aerial vehicles are not uncommon, and there are still potential safety hazards in the use of unmanned aerial vehicles. While developing unmanned aerial technology, it is necessary to pay attention to a series of problems caused by potential safety hazards and actively seek solutions.
  • the take-off of UAV usually goes through two stages of propeller raising and take-off.
  • the user inputs motor control instructions to the UAV through the remote control terminal that communicates with the UAV.
  • the propeller is controlled to start rotating and enters the propeller start stage.
  • the user can start the motor of the unmanned aerial vehicle by operating the two joysticks of the remote control with a figure-of-eight lever.
  • the propeller starts to rotate.
  • the rotational speed of the propeller can be increased, thereby generating lift to allow the unmanned aerial vehicle to start to rise and enter the take-off stage.
  • the take-off point (home point) of the UAV is usually set on the ground. In some scenarios, if the home point is far away from the user, the user may not be able to clearly judge whether there are obstacles near the UAV, especially in a crowded environment. During a medium takeoff, the high-speed rotating propeller may cause personal hazards to people within close range. At the same time, if the high-speed rotating propeller collides with an obstacle, it will also cause certain damage to the UAV.
  • Step 110 Obtain a first detection result indicating whether there is a first obstacle within a first preset range of the unmanned aerial vehicle, wherein the unmanned aerial vehicle is provided with a motor and a propeller, and the motor is used to drive the the propeller turns;
  • Step 120 In response to a control command of the motor, determine whether to control the rotation of the propeller through the motor based on the first detection result.
  • the first preset range can be flexibly configured according to needs. As an example, it can be an area divided by a preset radius with the center point of the unmanned aerial vehicle as the center, or an area divided by other methods. The embodiment does not limit this.
  • the first obstacle can be any person, animal or thing.
  • the control command of the motor can be output to the unmanned aerial vehicle by the user through the remote control terminal communicating with the unmanned aerial vehicle.
  • the control command of the motor can also be automatically output by the program when the flight task start time set by the preset automatic flight program arrives.
  • the control command of the motor may include one or more of a start command and a rotation command. When the motor receives the start command, the motor starts and powers up. When the motor receives a rotation command, the motor starts to rotate, and as the rotation speed increases, the propeller can be controlled to rotate.
  • the motor can be controlled by at least one of two commands to control the rotation of the propeller.
  • the motor controls the rotation of the propeller.
  • the rotation of the propeller is not controlled by the motor.
  • the said not using the motor to control the rotation of the propeller may mean that the motor is not started so that the propeller does not rotate; it may also be that the motor does not rotate so that the propeller does not rotate.
  • a method for controlling a motor provided in the present application can be applied in a scene where an unmanned aerial vehicle propels up. Before the unmanned aerial vehicle raises its propellers, it first acquires a first detection result indicating whether there is a first obstacle in the first preset range. In response to the control instruction of the motor, it is determined whether to control the rotation of the propeller through the motor according to the first detection result. In this way, the influencing factors of the surrounding obstacles are fully considered before the unmanned aerial vehicle takes off, thereby eliminating the potential safety hazards caused by the surrounding obstacles when the unmanned aerial vehicle takes off.
  • a method for controlling a motor provided in the present application may be applied in the scenario of restarting the motor after the motor is stalled.
  • the UAV may lose its flight power and then fall.
  • the UAV can be re-controlled by restarting the motor in situ.
  • an unmanned aerial vehicle falls or is in other uncontrollable motion states, there may be obstacles in its surrounding space environment, for example, it may encounter obstacles such as tree branches when falling. If you directly restart the motor at this time to restore the flight power of the UAV, the risk of damage to the UAV will be greatly increased.
  • the first detection result indicating whether there is a first obstacle in the first preset range can be obtained first.
  • a motor control method provided in the present application may also be applied in a test scenario of motor performance of an unmanned aerial vehicle.
  • the performance of the motor can be tested before the unmanned aerial vehicle leaves the factory.
  • the first detection result indicating whether there is a first obstacle in the first preset range may be acquired first.
  • the unmanned aerial vehicle is also equipped with a first sensor.
  • the first preset range of the unmanned aerial vehicle can also be detected based on the first sensor carried by the unmanned aerial vehicle. Whether there is the first obstacle inside.
  • the first sensor may be realized in various ways according to actual needs, such as a visual sensor, a distance sensor, a laser radar, a millimeter wave radar, and the like.
  • the UAV is equipped with the first sensor, and by obtaining the data collected by the first sensor, it can be accurately detected whether there is a first obstacle within the first preset range of the UAV.
  • the first detection result may also be determined by detecting whether there is an obstacle in the first area by a sensor disposed in or near the first area. The sensors in or near the first area send detection results to the unmanned aerial vehicle, so that the unmanned aerial vehicle obtains the first detection result.
  • the first sensor may include one or more of a visual sensor and a distance sensor.
  • the vision sensor may include a camera for realizing obstacle avoidance function, and may also include a camera for capturing images and displaying a real-time view to the user.
  • the vision sensor may be a binocular camera, and the binocular vision principle may be used to calculate the distance from the object to the camera according to the parallax of the object in the binocular camera.
  • the vision sensor can also be a monocular camera, which can collect multiple images at different positions through the camera, and use the changes of the same object in multiple images to determine the distance from the object to the camera.
  • the distance sensor can include a time of flight (Time of Flight, TOF) sensor, etc., that is, the distance between the object and the sensor is measured by the time required for the emitted light to bounce off the object and return to the TOF sensor.
  • TOF Time of Flight
  • the image data collected by the vision sensor and the distance information collected by the distance sensor are used to comprehensively detect whether there is a first obstacle within the first preset range. Specifically, after the visual sensor or the distance sensor measures the distance between the object and the sensor, it judges whether the measured distance is within the first preset range, and if so, it indicates that there is a first obstacle in the first preset range; if the If the measured distance is outside the first preset range, it means that there is no first obstacle within the first preset range.
  • the first sensor may include a first touch sensor and/or a first photosensitive sensor.
  • a first touch sensor and/or a first photosensitive sensor may be provided at one or more positions of the fuselage, propeller, and arm of the unmanned aerial vehicle.
  • the first touch sensor and/or the first photosensitive sensor at the corresponding position will generate detection data, so that it can be judged that there is a first obstacle within the first preset range of the unmanned aerial vehicle.
  • the propeller is not controlled by the motor to rotate.
  • the influence factors of surrounding obstacles are fully considered before controlling the rotation of the propeller, which prevents the surrounding people/ Objects bring danger, and at the same time avoid damage to the unmanned aerial vehicle due to collision between the propeller and the obstacle. This eliminates potential safety hazards in different scenarios such as unmanned aerial vehicles taking off.
  • the motor control method provided by the present application further includes steps as shown in FIG. 2:
  • Step 210 Obtain the body state of the UAV
  • Step 220 Determine whether to control the rotation of the propeller through the motor based on the first detection result and the body state.
  • the start-up condition of the motor may also include the body state of the UAV. That is to say, whether there are obstacles around the unmanned aerial vehicle and the state of the unmanned aerial vehicle itself are combined to comprehensively judge whether to control the rotation of the propeller through the motor.
  • the rotation of the propeller is controlled by the motor;
  • the rotation of the propeller is not controlled by the motor. That is to say, the following two conditions need to be met at the same time for starting the motor: 1. There is no first obstacle within the first preset range; 2. The unmanned aerial vehicle meets the preset flight conditions. When any one or more conditions are not satisfied, the control motor is not started, so that the propeller does not rotate.
  • An unmanned aerial vehicle consists of multiple parts, and each part can have one or more than one state.
  • the tripod of an unmanned aerial vehicle can have an unfolded state and a retracted state; the arm of an unmanned aerial vehicle can have an unfolded state and a folded state, etc. wait.
  • the above airframe state can be characterized by the state of the UAV components. When the UAV is flying, each component has its own corresponding state. In the case that each component is in a corresponding state that satisfies the take-off of the UAV, restarting the motor to allow the UAV to take off can ensure the normal operation of each component.
  • the UAV in some embodiments can be designed with foldable arms.
  • the UAV 300 includes a fuselage 310, an arm 320, an arm 330, and a propeller 340, and of course other required hardware devices such as cameras and sensors may also be included.
  • the arms 320 and 330 are switchable between a folded state and an unfolded state.
  • the machine arm 320 and the machine arm 330 are in the unfolded state when the UAV is working, and as shown in Figure 3(b), the machine arm 320 and the machine arm 330 are in the folded state when the UAV is stored. state.
  • the state of the body may include whether each arm of the UAV is in a normal unfolded state, and the preset flight condition may be that each arm of the UAV is in a normal unfolded state.
  • the above step 210 to obtain the body state of the UAV may include steps as shown in Figure 4:
  • Step 410 Obtain a second detection result indicating whether each arm of the UAV is in a normal unfolded state
  • Step 420 If the second detection result indicates that each of the arms is in a normal unfolded state, then determine that the state of the body indicates that the UAV meets the preset flight condition;
  • Step 430 If the second detection result indicates that at least one of the arms is in an abnormally deployed state, then determine that the state of the body indicates that the UAV does not meet the preset flight conditions.
  • a second sensor is mounted on a predetermined arm of the UAV.
  • the predetermined arms may be all the arms on the unmanned aerial vehicle, and may also be part of the arms.
  • the two arms 320 are equipped with second sensors 350 respectively, while the other two arms 330 are not equipped with second sensors 350 .
  • it may also be detected based on the second sensor disposed on a predetermined arm of the UAV whether each arm of the UAV is in a normal unfolded state.
  • the second sensor may include a positioning sensor, such as a sensor based on real-time differential (Real Time Kinematic, RTK) technology positioning, that is, an RTK sensor.
  • RTK Real Time Kinematic
  • the second sensor may be disposed at the end of the arm, that is, the end away from the fuselage.
  • the above-mentioned detection of whether each arm of the unmanned aerial vehicle is in a normal unfolded state based on the second sensor arranged on the predetermined arm of the unmanned aerial vehicle may include steps as shown in Figure 5:
  • Step 510 Obtain the position information detected by the positioning sensor to determine the distance information between different arms;
  • Step 520 Determine whether each of the arms is in a normal unfolded state according to the distance information between different arms.
  • the positioning sensor can determine the position information of the machine arm where it is located.
  • the position information of the two machine arms can be determined respectively according to the positioning sensors on the two machine arms, and then the distance between the two machine arms can be determined according to the position information of the two machine arms.
  • the normal deployment state and abnormal deployment state of the arms can be characterized by whether the difference between the distance between the two arms and the calibration distance is less than a preset threshold, that is, the distance between the two arms and Whether the calibration distance is basically the same.
  • the calibration distance refers to the distance between the two arms when they are normally extended. If the difference between the distance between the two arms and the calibrated distance is less than the preset threshold, the arm is in the normal unfolded state; if the difference between the distance between the two arms and the calibrated distance is greater than the preset threshold, the machine The arm is not properly extended.
  • the above calibration distance is related to the installation position of the positioning sensor on the arm.
  • Positioning sensors are installed at different positions on the arm, and the corresponding calibration distances are also different. For example, if the positioning sensor is installed at the end of the arm, the corresponding calibration distance will be greater than the corresponding calibration distance installed near the fuselage.
  • the normal deployment state and the abnormal deployment state of the arms may also be characterized by whether the distance between the two arms is within a preset range. If the distance between the two arms is within the preset range, the arms are in the normal unfolded state; if the distance between the two arms is outside the preset range, the arms are in the abnormal unfolded state;
  • the second sensor may also include a limit switch provided at the rotating structure of the machine arm.
  • the arm of the UAV can be folded relative to the fuselage or folded into at least two sections through the rotating structure. Only when the arm is fully extended can the limit switch be properly closed. Therefore, the on-off state of the limit switch can be obtained to determine whether each arm is in a normal unfolded state. When the limit switch is in the closed state, it is determined that the arm is in a normal unfolded state; otherwise, it is determined that the arm is in an abnormal unfolded state.
  • the UAV may collide with people/animals/objects due to improper operation of the pilot or loss of control of the UAV.
  • the propeller of the UAV may be damaged by the impact of the object, or the propeller rotating at high speed may touch people/animals and cause injury.
  • the propellers of unmanned aerial vehicles are generally equipped with protective covers. Therefore, in other embodiments, the state of the airframe may also include whether the propellers are provided with protective covers, and the preset flight condition may be that each propeller is provided with protective covers. In this way, the above step 210 to obtain the body state of the UAV may include steps as shown in Figure 6:
  • Step 610 Obtain a third detection result indicating whether each propeller is provided with a protective cover
  • Step 620 If the third detection result indicates that each of the propellers is equipped with a protective cover, then determine that the state of the body indicates that the UAV satisfies a preset flight condition;
  • Step 630 If the third detection result indicates that at least one of the propellers is not provided with a protective cover or at least one of the protective covers is not installed in place, then determine that the state of the airframe indicates that the UAV does not meet the preset flight conditions.
  • the motor or the arm of the UAV is further equipped with a third sensor. In this way, before obtaining the third detection result in step 610, it is also possible to detect whether each propeller is provided with a protective cover based on the motor or the third sensor mounted on the arm of the UAV.
  • the third sensor may include a second touch sensor and/or a second photosensitive sensor.
  • the second touch sensor and the first touch sensor described above may be the same sensor, or may be touch sensors installed at different positions.
  • the second photosensitive sensor and the first photosensitive sensor described above may be the same sensor, or may be photosensitive sensors installed at different positions.
  • the rotation of the propeller is not controlled by the motor.
  • a warning message indicating that the rotation of the propeller is abnormal may be output.
  • the warning information may include one or more of text information, sound information or light source information.
  • the output method of the warning information may include: sending out an alarm sound through a loudspeaker carried by the UAV; flashing a warning through a light source carried by the UAV, wherein the light source can be a visible light source, such as a heading light or a supplementary light carried on the UAV light; send instruction information to the control terminal connected with the unmanned aerial vehicle, so that the control terminal outputs the warning information indicating the abnormal rotation of the propeller, for example, the warning information of the abnormal rotation of the propeller can be displayed on the display interface of the control terminal, or in the control program A pop-up warning in the middle of the screen, or a vibration warning from the control terminal or a warning sound from the speaker.
  • control terminal can be a ground control terminal that can be operated by the user, such as a remote controller, a mobile phone installed with UAV flight control software, a personal computer (Personal Computer, PC), a tablet computer, or a wearable device and the like.
  • the output mode of the alarm information may be any one or a combination of the above modes.
  • the alarm information may also carry information on the cause of the abnormal rotation.
  • the reason for the abnormal rotation of the propeller may include that there is a first obstacle within the first preset range of the UAV, at least one arm of the UAV is in an abnormally unfolded state, or the UAV One or more of at least one propeller is not provided with a shroud or at least one shroud is not in place. In this way, the reason for the abnormal rotation of the propeller can be carried in the warning information, and the warning information can be output.
  • warning messages such as "obstacles nearby”, “touching objects at the fuselage/propeller”, “protective cover is not installed or not installed in place” are broadcasted through the speaker on the unmanned aerial vehicle or displayed on the display interface of the control terminal .
  • the take-off of UAV usually includes two stages of propeller raising and take-off.
  • the motor starts to drive the propeller to start rotating, which is the propeller start stage.
  • Increase the speed of the motor to increase the speed of the propeller to generate lift and let the unmanned aerial vehicle rise.
  • the above embodiment provides that before the motor is started, that is, before entering the propulsion stage, the influence of obstacles around the unmanned aerial vehicle and the state of the unmanned aerial vehicle body on the propulsion stage can be considered. That is to say, the unmanned aerial vehicle and/or the surrounding environment only enter the propulsion stage by controlling the rotation of the propeller through the motor when the conditions for propeller propulsion are met.
  • the motor control method provided by the present application may further include steps as shown in FIG. 7:
  • Step 710 In the case that the rotation of the propeller is controlled by the motor and the UAV is currently in the state of propulsion, in response to the control instruction of increasing the motor speed, obtain the information used to indicate whether the UAV is The fourth detection result meeting the preset take-off condition;
  • Step 720 Determine whether to increase the rotation speed of the motor based on the fourth detection result to control the working state of the UAV, the working state includes a propeller-up state and a take-off state.
  • the rotation speed of the motor is increased to control the unmanned aerial vehicle to enter the take-off state; and/or when the fourth detection result indicates that there is no
  • the current rotational speed of the motor is maintained to control the unmanned aerial vehicle to maintain the propulsion state. In this way, the unmanned aerial vehicle enters the take-off state only when the preset take-off conditions are satisfied, and remains in the propeller-raised state if it is not satisfied.
  • the rotational speed of the propeller gradually increases accordingly. Compared with the propulsion phase, due to the higher rotational speed, the damage caused by the propeller rotation during the take-off phase will be greater.
  • the motor Before entering the propulsion stage, if there is no first obstacle within the first preset range, the motor can be started to enter the propulsion stage. But before entering the take-off phase, it can be considered that there are no obstacles in a larger range before entering the take-off phase. In this way, the above step 710 to obtain the fourth detection result may include steps as shown in FIG. 8:
  • Step 810 Obtain a detection result indicating whether there is a second obstacle within a second preset range of the UAV, wherein the second preset range is larger than the first preset range;
  • Step 820 If there is no second obstacle within the second preset range, then determine that the UAV satisfies the preset take-off condition;
  • Step 830 If there is a second obstacle within the second preset range, determine that the UAV does not meet the preset take-off condition.
  • the fourth detection result may include a detection result of whether there is a second obstacle within a second preset range of the UAV, and the preset take-off condition may include that there is no second obstacle within the second preset range.
  • the first sensor may be used to detect whether there is a second obstacle in the second preset range.
  • the unmanned aerial vehicle starts the motor when there is no first obstacle in the preset first range, enters the propulsion stage, and there is no second obstacle in the second preset range that is larger than the first preset range Increase the propeller speed and control the UAV to enter the take-off state. It ensures that the unmanned aerial vehicle takes off without the intervention of obstacles, and eliminates the safety hazards caused by obstacles.
  • the above step 710 to obtain the fourth detection result may include steps as shown in Figure 9:
  • Step 910 Obtain a detection result indicating whether the communication between the UAV and the control terminal is abnormal
  • Step 920 If the communication is normal, then determine that the UAV meets the preset take-off conditions;
  • Step 930 If the communication is abnormal, determine that the UAV does not meet the preset take-off condition.
  • the fourth detection result may include whether the communication between the UAV and the control terminal is abnormal, and the preset take-off condition may include that the communication between the UAV and the control terminal is normal.
  • the detection result indicating whether the communication between the UAV and the control terminal is abnormal can be obtained through the steps shown in Figure 10:
  • Step 1010 Obtain the communication data interacted between the UAV and the control terminal;
  • Step 1020 Determine whether the communication between the UAV and the control terminal is abnormal based on the communication data.
  • the communication data may be periodically exchanged data packets.
  • the delay, packet loss rate, jitter rate, etc. of the communication link established between the UAV and the control terminal can be determined based on the communication data. These parameters can be used to determine whether the communication between the UAV and the control terminal is normal. Specifically, parameters such as time delay, packet loss rate, and jitter rate of the communication link can be used to evaluate whether the communication link is normal according to the schemes recorded in the related art, and the present application will not expand the description here.
  • the flight environment will affect the flight process of the UAV.
  • high temperature weather can easily cause the temperature of the motor of the UAV to be too high, and even melt some parts and cables; when the wind speed is too high, it may affect the UAV. flight stability; in high-humidity environments, water vapor may penetrate into the interior of the UAV, corroding internal electronic components and so on. Therefore, in some embodiments, the unmanned aerial vehicle needs to consider weather factors before taking off, so that the above step 710 to obtain the fourth detection result may include steps as shown in Figure 11:
  • Step 1110 Obtain a detection result indicating whether the environment of the UAV satisfies a preset environmental condition
  • Step 1120 If the environment of the UAV satisfies the preset environmental condition, then determine that the UAV meets the preset take-off condition;
  • Step 1130 If the environment of the UAV does not meet the preset environmental condition, determine that the UAV does not meet the preset take-off condition.
  • the fourth detection result may include a detection result of whether the environment of the UAV satisfies a preset environmental condition, and the preset take-off condition may include that the environment of the UAV satisfies a preset environmental condition.
  • the unmanned aerial vehicle can query the terrain parameters of the location through the network, or query the terrain parameters of the location through the control terminal communicating with the unmanned aerial vehicle, and determine whether there are mountains, hills, tall buildings near the take-off point and within the flight range and other terrain obstacles.
  • the unmanned aerial vehicle can also obtain the weather information of the location, such as temperature, wind speed, humidity, etc., through the sensors on board. It is also possible to use the communication network to obtain the weather information of the location, for example, to query the local temperature, wind speed, humidity, etc.
  • unmanned aerial vehicles may have different preset environmental conditions, and the preset environmental conditions may include environmental parameter conditions such as temperature range, maximum wind speed, and maximum humidity.
  • the speed of the propeller is increased to control the unmanned aerial vehicle to enter the take-off state, which can avoid the loss of the unmanned aerial vehicle and the loss of components due to take-off in unsuitable weather conditions. damage, etc. occurs.
  • the user may cause the UAV to fly into the no-fly zone due to ignorance of the division of the no-fly zone.
  • No-fly areas can include regulatory restricted areas, such as prisons and nuclear plants; restricted-fly areas, such as areas temporarily divided due to emergencies such as fires and large-scale activities; and clearance protection areas, such as airports.
  • the above step 710 to obtain the fourth detection result may include steps as shown in Figure 12:
  • Step 1210 Obtain a detection result indicating whether the UAV is in a no-fly area
  • Step 1220 If the UAV is not in a no-fly area, then determine that the UAV meets the preset take-off conditions;
  • Step 1230 If the UAV is in a no-fly area, then determine that the UAV does not satisfy the preset take-off condition.
  • the fourth detection result may include the detection result of whether the UAV is in a no-fly zone, and the preset take-off condition may include that the UAV is not in a no-fly zone.
  • the speed of the propeller is increased to control the unmanned aerial vehicle to enter the take-off state, which can prevent the unmanned aerial vehicle from taking off in the no-fly area and causing interference to other routes.
  • the above embodiment records that when the fourth detection result indicates that the unmanned aerial vehicle satisfies the preset take-off condition, the rotational speed of the motor is increased to control the unmanned aerial vehicle to enter the take-off state.
  • the fourth detection result may be the detection result of whether there is a second obstacle within the second preset range of the unmanned aerial vehicle, the detection result of whether the communication between the unmanned aerial vehicle and the control terminal is abnormal, the environment of the unmanned aerial vehicle The detection results of whether the preset environmental conditions are met, and the detection results of whether the UAV is in a no-fly area.
  • the fourth detection result can be one or more of the above-mentioned multiple detection results. In this way, when the unmanned aerial vehicle meets the preset take-off conditions, it will enter the take-off state, and if it is not satisfied, it will remain in the propeller state, thereby eliminating Safety hazards during takeoff.
  • the present application also provides a motor control method, which is applied in the take-off scene of an unmanned aerial vehicle, the unmanned aerial vehicle is provided with a motor and a propeller, and the motor is used to drive the propeller to rotate; the method includes The steps shown in Figure 13:
  • Step 1310 Detect whether there is a first obstacle within the first preset range of the UAV based on the first sensor carried by the UAV;
  • the first sensor includes one or more of a visual sensor, a distance sensor, a first touch sensor, and a first photosensitive sensor.
  • Step 1320 Detect whether each arm is in a normal unfolded state based on the second sensor provided on the predetermined arm of the UAV;
  • the second sensor includes one or more of a positioning sensor and a limit switch provided at the rotating structure of the arm.
  • Step 1330 Detect whether each propeller is provided with a protective cover based on the third sensor mounted on the motor or the arm of the UAV;
  • the third sensor includes one or more of the second touch sensor or the second photosensitive sensor.
  • Step 1341 Control the rotation of the propeller through the motor in response to the control command of the motor;
  • Step 1342 Control the rotation of the propeller without using the motor, and output an alarm message indicating that the rotation of the propeller is abnormal.
  • the output method of the warning information includes: sending out an alarm sound through the loudspeaker carried by the UAV; performing a flash warning through the light source carried by the UAV; sending instruction information to a control terminal communicatively connected with the UAV , so that the control terminal outputs one or more of the warning messages indicating abnormal rotation of the propeller.
  • step 1350 is executed.
  • Step 1350 Detect whether there is a second obstacle within the second preset range of the UAV
  • step 1360 If yes, go to step 1360; if not, go to step 1392.
  • the second preset range is greater than the first preset range.
  • Step 1360 Detect whether the communication between the UAV and the control terminal is abnormal
  • step 1370 If yes, go to step 1370; if not, go to step 1392.
  • Step 1370 Detect whether the environment of the UAV satisfies the preset environmental conditions
  • step 1380 If yes, go to step 1380; if not, go to step 1392.
  • Step 1380 Detect whether the UAV is in a no-fly zone
  • step 1391 If yes, go to step 1391; if not, go to step 1392.
  • Step 1391 Responding to the control command to increase the motor speed, increase the motor speed to control the UAV to enter the take-off state.
  • Step 1392 Maintain the current rotation speed of the motor, so as to control the UAV to maintain the propulsion state.
  • step 1310, step 1320, and step 1330 are not executed sequentially, and the above three steps may be executed simultaneously. In some embodiments, one or more of steps 1310-1330 may also be selected to be performed.
  • Step 1350 , step 1360 , step 1370 and step 1380 are not executed sequentially, and the above four steps may be executed simultaneously. In some embodiments, one or more of steps 1350-1380 may also be selected to be performed.
  • the state of the body may be detected first to determine whether the unmanned aerial vehicle satisfies preset flight conditions, and then whether there is a first obstacle within the first preset range is detected. In this way, when the state of the body indicates that the unmanned aerial vehicle does not meet the preset flight conditions, the propeller rotation is directly controlled without the motor, and there is no need to call related sensors to detect obstacles, thereby saving the power consumption of the unmanned aerial vehicle .
  • the control method of a kind of motor provided by this application before entering the stage of propulsion, first detects whether there are obstacles around the unmanned aerial vehicle, whether each arm is in a normal unfolded state, and whether each propeller is equipped with a protective cover, thereby eliminating unnecessary The potential safety hazards caused by the collision with obstacles or the fuselage of the manned aircraft during the propulsion stage. And before entering the take-off phase, it is detected whether the unmanned aerial vehicle meets the take-off conditions, thereby eliminating potential safety hazards of the unmanned aerial vehicle during the take-off phase.
  • the present application also provides a schematic structural diagram of a motor control device as shown in FIG. 14 .
  • the motor control device includes a processor, an internal bus, a network interface, a memory, and a non-volatile memory, and of course may also include hardware required by other services.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it, so as to realize the motor control method described in any of the above embodiments.
  • the present application also provides a structural schematic diagram of an unmanned aerial vehicle as shown in FIG. 15 .
  • the UAV includes motors, propellers, and motor control devices as shown in FIG. 14 .
  • the motor control device includes a processor, an internal bus, a network interface, a memory and a non-volatile memory, and of course may include other hardware required by the business.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it, so as to realize the motor control method described in any of the above embodiments.
  • the present application also provides a computer program product, including a computer program, which can be used to execute the motor described in any of the above embodiments when the computer program is executed by a processor. control method.
  • the present application also provides a computer storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, it can be used to execute the method described in any of the above embodiments.
  • a motor control method is described in any of the above embodiments.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种电机的控制方法、装置、无人飞行器及存储介质,所述方法包括:获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,其中,所述无人飞行器设有电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;响应于所述电机的控制指令,基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动。在响应电机的控制指令时,根据用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,来确定是否通过电机来控制螺旋桨的转动。在控制螺旋桨转动前充分考虑了周围障碍物的影响因素,从而消除了无人飞行器在起飞时因周围存在障碍物而带来的安全隐患。

Description

一种电机的控制方法、装置、无人飞行器及存储介质 技术领域
本申请涉及无人飞行器技术领域,尤其涉及一种电机的控制方法、装置、无人飞行器及存储介质。
背景技术
随着无人飞行器智能化的发展,无人飞行器广泛应用于各行各业。但与此同时由无人飞行器引发的安全事故也屡见不鲜,无人飞行器在使用过程中仍然存在安全隐患。在发展无人飞行技术的同时,需要重视安全隐患带来的一系列问题以及积极寻求解决措施。
发明内容
有鉴于此,本申请的目的之一是提供一种电机的控制方法、装置、无人飞行器及存储介质,以消除无人飞行器在使用时存在的部分安全隐患。
为了达到上述技术效果,本发明实施例公开了如下技术方案:
第一方面,提供了一种电机的控制方法,包括:
获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,其中,所述无人飞行器设有所述电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;
响应于所述电机的控制指令,基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动。
第二方面,提供了一种电机控制装置,包括:
处理器;
用于存储处理器可执行程序指令的存储器;
所述处理器执行所述可执行程序指令时实现以下操作:
获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的 第一检测结果,其中,所述无人飞行器设有所述电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;
响应于所述电机的控制指令,基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨转动。
第三方面,提供了一种无人飞行器,包括电机、螺旋桨以及上述第二方面所述的电机控制装置。
第四方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的步骤。
第五方面,提供了一种机器可读存储介质,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时执行如上述第一方面所述的步骤。
本申请提供的一种电机的控制方法、装置、无人飞行器及存储介质,在响应电机的控制指令时,根据用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,来确定是否通过电机控制螺旋桨的转动。在螺旋桨转动前充分考虑了周围障碍物的影响因素,从而消除了无人飞行器在起飞时因周围存在障碍物而带来的安全隐患。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请根据一实施例示出的一种电机的控制方法的流程图。
图2是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图3(a)是本申请根据一实施例示出的机臂处于展开状态的示意图。
图3(b)是本申请根据一实施例示出的机臂处于折叠状态的示意图。
图4是本申请根据另一实施例示出的一种电机的控制方法的流程 图。
图5是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图6是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图7是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图8是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图9是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图10是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图11是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图12是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图13是本申请根据另一实施例示出的一种电机的控制方法的流程图。
图14是本申请根据一实施例示出的一种电机控制装置的结构示意图。
图15是本申请根据一实施例示出的一种无人飞行器的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着无人飞行器智能化的发展,无人飞行器广泛应用于各行各业。但与此同时由无人飞行器引发的安全事故也屡见不鲜,无人飞行器在使用过程中仍然存在安全隐患。在发展无人飞行技术的同时,需要重视安全隐患带来的一系列问题以及积极寻求解决措施。
无人飞行器的起飞通常经过起桨与起飞两个阶段。用户通过与无人飞行器通信的遥控终端,向无人飞行器输入电机的控制指令。响应于该指令电机启动并转动,控制螺旋桨开始转动,进入起桨阶段。例如,用户可以通过对遥控器的两个摇杆进行内八字掰杆的操作来启动无人飞行器的电机,此时,螺旋桨开始转动。此后,通过增大电机的转速,可以提高螺旋桨的转速,进而产生升力让无人飞行器开始上升,进入起飞阶段。
无人飞行器的起飞点(home点)通常设置在地面,在一些场景中,若home点距离用户较远,那么用户可能无法清晰判断无人飞行器附近是否有障碍物,尤其是在人多的环境中起飞时,高速转动的螺旋桨可能会对近距离范围内的人造成人身危害。同时若高速转动的螺旋桨与障碍物发生碰撞,还会给无人飞行器带来一定的损伤。
如此,为了消除无人飞行器在起飞时存在的安全隐患,本申请提供了一种电机的控制方法,包括如图1所示的步骤:
步骤110:获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,其中,所述无人飞行器设有电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;
步骤120:响应于所述电机的控制指令,基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动。
其中,第一预设范围可以根据需要灵活配置,作为例子,可以是以无人飞行器中心点为圆心,按照预设半径所划分出来的一个区域,还可以是按照其他方式所划分的区域,本实施例对此不进行限定。第一障碍物可以是任何的人、动物或物。电机的控制指令可以由用户通过与无人飞行器通信的遥控终端,向无人飞行器输出。电机的控制指令还可以在预设的自 动飞行程序所设置的飞行任务启动时间到达时,由程序自动输出。电机的控制指令可以包括启动指令和转动指令中的一种或多种。当电机接收到启动指令时,电机启动并上电。当电机接收到转动指令时,电机开始转动,并随着转动速度增高,可以控制螺旋桨转动。可以通过两个指令中的至少一种来控制电机而控制螺旋桨的转动。
在一些实施例中,在第一检测结果指示第一预设范围内不存在第一障碍物的情况下,通过电机控制螺旋桨的转动。在另一些实施例中,在第一检测结果指示第一预设范围内存在第一障碍物的情况下,不通过电机控制螺旋桨的转动。其中,所述不通过电机控制螺旋桨的转动,可以是电机不启动,以使螺旋桨不转动;也可以是电机不转动,以使螺旋桨不转动。
在一些实施例中,本申请提供的一种电机的控制方法可以应用在无人飞行器起桨的场景中。无人飞行器在起桨前,先获取指示第一预设范围是否存在第一障碍物的第一检测结果。响应于电机的控制指令,再根据第一检测结果来确定是否通过电机控制螺旋桨的转动。如此,在无人飞行器起桨前充分考虑了周围障碍物的影响因素,从而消除了无人飞行器在起飞时因周围存在障碍物而带来的安全隐患。
在一些实施例中,本申请提供的一种电机的控制方法可以应用在电机堵转后重启电机的场景中。无人飞行器在飞行过程中,若电机堵转,无人飞行器可能会失去飞行动力继而坠落。当电机堵转时,可以通过原地重启电机来重新控制无人飞行器。然而,无人飞行器在坠落或处于其他不可控的运动状态时,其周围的空间环境可能会存在障碍物,例如在坠落时会碰到树枝等障碍物。若此时直接重启电机来恢复无人飞行器的飞行动力,那么会大大提高无人机受损的风险。因此当电机堵转需要重启电机前,可以先获取指示第一预设范围是否存在第一障碍物的第一检测结果。响应于电机的控制指令,再根据第一检测结果来确定是否通过电机控制螺旋桨的转动。如此在电机重新启动并转动前充分考虑了周围障碍物的影响因素,从而消除了恢复无人飞行器的飞行动力时因周围存在障碍物而带来的安全隐患。
在一些实施例中,本申请提供的一种电机的控制方法还可以应用在无人飞行器的电机性能的测试场景中。无人飞行器在出厂前可以对电机的 性能进行测试,为了避免在无人飞行器周围存在人或物的情况下也启动并转动电机,造成无人机损伤或检测员伤害,在电机性能的测试过程中,可以先获取指示第一预设范围是否存在第一障碍物的第一检测结果。响应于电机的控制指令,再根据第一检测结果来确定是否通过电机控制螺旋桨的转动。如此在电机启动并转动前充分考虑了周围障碍物的影响因素,从而消除了测试过程中因周围存在障碍物而带来的安全隐患。
在一些实施例中,无人飞行器还搭载有第一传感器,如此,在步骤110的获取第一检测结果之前,还可以基于无人飞行器搭载的第一传感器检测无人飞行器的第一预设范围内是否存在第一障碍物。其中,第一传感器根据实际需要可以有多种实现方式,例如视觉传感器、距离传感器、激光雷达、毫米波雷达等等。在无人机搭载上第一传感器,通过获取第一传感器采集的数据,可以准确地检测出无人飞行器的第一预设范围内是否存在第一障碍物。当然,除了以通过无人飞行器搭载的第一传感器检测第一预设范围内是否存在第一障碍物的方式来获取第一检测结果以外,还可以接收与无人飞行器通信的控制终端发送的第一检测结果。又或者,第一检测结果还可以通过设置在第一区域内或附近的传感器检测第一区域是否存在障碍物来确定。第一区域内或附近的传感器将检测结果发送至无人飞行器,以使无人飞行器获得第一检测结果。
在一些实施例中,第一传感器可以包括视觉传感器、距离传感器中的一种或多种。其中,视觉传感器可以包括用于实现避障功能的相机,也可以包括用于捕获图像并向用户展示实时取景的相机。视觉传感器可以是双目相机,可以采用双目视觉原理根据物体在双目相机中的视差计算物体到相机的距离。视觉传感器还可以是单目相机,可以通过相机在不同位置采集多个图像,利用同一物体在多个图像中的变化来确定物体到相机的距离。距离传感器可以包括飞行时间(Time of Flight,TOF)传感器等等,即通过发射光经过物体反弹并返回到TOF传感器所需的时间,来测量物体与传感器之间的距离。
如此,可以通过视觉传感器采集的图像数据检测第一预设范围内是否存在第一障碍物;或者通过距离传感器采集的距离信息检测第一预设范围内是否存在第一障碍物;又或者可以结合视觉传感器采集的图像数据以 及距离传感器采集的距离信息来综合检测第一预设范围内是否存在第一障碍物。具体地,视觉传感器或距离传感器在测量物体与传感器之间距离后,判断所测量的距离是否在第一预设范围内,若是,则说明第一预设范围内存在第一障碍物;若所测量的距离在第一预设范围外,则说明第一预设范围内不存在第一障碍物。
在另一些实施例中,第一传感器可以包括第一触摸传感器和/或第一光敏传感器。如此,可以通过第一触摸传感器和/或第一光敏传感器的检测数据确定第一预设范围内是否存在第一障碍物。例如,可以在无人飞行器的机身、螺旋桨、机臂等位置中的一处或多出设置有第一触摸传感器和/或第一光敏传感器,当有人/物接触无人飞行器时,例如有小孩子因好奇上前触摸无人飞行器,则相应位置的第一触摸传感器和/或第一光敏传感器会产生检测数据,从而可以判断无人飞行器的第一预设范围内存在第一障碍物,进而不通过电机控制螺旋桨转动。
上文记载的实施例,在控制螺旋桨转动前充分考了周围障碍物的影响因素,防止了无人飞行器附近有障碍物的情况下控制电机转动来驱使螺旋桨转动时,可能会对周围的人/物带来危险,同时也避免了螺旋桨与障碍物碰撞而损坏无人飞行器。如此消除了无人飞行器在起飞等不同场景的安全隐患。
在一些实施例中,本申请提供的电机的控制方法还包括如图2所示的步骤:
步骤210:获取所述无人飞行器的机体状态;
步骤220:基于所述第一检测结果以及所述机体状态确定是否通过所述电机控制所述螺旋桨的转动。
电机的启动条件除了用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果之外,还可以包括无人飞行器的机体状态。也即结合了无人飞行器周围是否存在障碍物以及无人飞行器自身的机体状态,来综合判断是否通过电机控制螺旋桨的转动。
在一些实施例中,在第一检测结果指示第一预设范围内不存在第一障碍物以及机体状态指示无人飞行器满足预设飞行条件的情况下,通过述 电机控制螺旋桨的转动;在第一检测结果指示第一预设范围内存在第一障碍物或机体状态指示无人飞行器不满足预设飞行条件的情况下,不通过电机控制螺旋桨的转动。也就是说,电机启动需要同时满足以下两个条件:1、在第一预设范围内不存在第一障碍物;2、无人飞行器满足预设飞行条件。当任意一个或一个以上的条件不满足时,则控制电机不启动,以使螺旋桨不转动。
无人飞行器包括多个部件,每个部件可以有一个或一个以上的状态,例如,无人飞行器的脚架可以有展开状态和收缩状态;无人飞行器的机臂可以有展开状态和折叠状态等等。上述机体状态可以用无人机部件所处的状态表征。在无人飞行器飞行时,每个部件有各自对应的状态。在各部件处于相应的满足无人机起飞的状态的情况下,再启动电机让无人飞行器起飞,可以保证各部件正常工作。
如在一些场景中,为了无人飞行器携带的便携性,以及节约收纳空间,在一些实施例中的无人飞行器可以设计为机臂可折叠的形式。如图3(a)-(b)所示,无人飞行器300包括机身310、机臂320、机臂330以及螺旋桨340,当然还可以包括如摄像装置、传感器等其他所需的硬件设备。机臂320和机臂330能够在折叠状态和展开状态之间切换。如图3(a)所示,机臂320和机臂330在无人飞行器工作时处于展开状态,如图3(b)所示,机臂320和机臂330在无人飞行器收纳时处于折叠状态。
在一些场景中,若无人飞行器的机臂在折叠状态下通过电机控制螺旋桨转动,那么螺旋桨在转动过程中会与机身、机臂等部位发生碰撞,导致发生碰撞的部位产生不同程度的损伤。因此,在一些实施例中,上述机体状态可以包括无人飞行器的各机臂是否处于正常展开状态,上述预设飞行条件可以是各机臂均处于正常展开状态。如此,上述步骤210获取无人飞行器的机体状态,可以包括如图4所示的步骤:
步骤410:获取用于指示所述无人飞行器的各机臂是否处于正常展开状态的第二检测结果;
步骤420:若所述第二检测结果指示各所述机臂处于正常展开状态,则确定所述机体状态指示所述无人飞行器满足所述预设飞行条件;
步骤430:若所述第二检测结果指示至少一个所述机臂处于非正常 展开状态,则确定所述机体状态指示所述无人飞行器不满足所述预设飞行条件。
在一些实施例中,无人飞行器的预定机臂上还搭载有第二传感器。其中,预定机臂可以是无人飞行器上的所有机臂,也可以是部分机臂。如图3(a)-(b)所示,两个机臂320上分别搭载有第二传感器350,而另外两个机臂330则没有搭载第二传感器350。如此,在步骤410获取第二检测结果之前,还可以基于设置在无人飞行器的预定机臂上的第二传感器检测无人飞行器的各机臂是否处于正常展开状态。
在一些实施例中,第二传感器可以包括定位传感器,例如基于实时差分(Real Time Kinematic,RTK)技术定位的传感器,即RTK传感器。在一些实施例中,第二传感器可以设置在机臂的末端,即远离机身的一端。
如此,上述基于设置在无人飞行器的预定机臂上的第二传感器检测无人飞行器的各机臂是否处于正常展开状态,可以包括如图5所示的步骤:
步骤510:获取所述定位传感器探测到的位置信息以确定不同机臂之间的距离信息;
步骤520:根据不同机臂之间的距离信息确定各所述机臂是否处于正常展开状态。
定位传感器可以确定所在机臂的位置信息,根据两个机臂上的定位传感器可以分别确定两个机臂的位置信息,然后根据两个机臂的位置信息可以确定两个机臂的距离。
在一些实施例中,机臂的正常展开状态和非正常展开状态可以利用两个机臂之间的距离与标定距离的差值是否小于预设阈值表征,即两个机臂之间的距离与标定距离是否基本一致。标定距离是指两个机臂正常展开时的距离。若两个机臂之间的距离与标定距离的差值小于预设阈值,则机臂处于正常展开状态;若两个机臂之间的距离与标定距离的差值大于预设阈值,则机臂处于非正常展开状态。
值得注意的是,上述标定距离与定位传感器在机臂上的安装位置相关。定位传感器安装在机臂上的不同位置,对应的标定距离大小也不同。例如定位传感器若安装在机臂的末端,对应的标定距离会大于安装在靠近 机身附近对应的标定距离。
在另一些实施例中,机臂的正常展开状态和非正常展开状态还可以利用两个机臂之间的距离是否在预设范围内表征。若两个机臂之间的距离在预设范围内,则机臂处于正常展开状态;若两个机臂之间的距离在预设范围外,则机臂处于非正常展开状态;
在另一些实施例中,第二传感器还可以包括设于机臂的转动结构处的限位开关。无人飞行器的机臂通过该转动结构可以相对于机身折叠或折叠成至少两段。只有当机臂展开到位的情况下,限位开关才能正确闭合。因此,可以获取该限位开关的启闭状态以确定各机臂是否处于正常展开状态。当限位开关处于闭合状态时,确定机臂处于正常展开状态;否则,确定机臂处于非正常展开状态。
上文记载的实施例,在控制螺旋桨转动前检测无人飞行器的各机臂是否处于正常展开状态,在各机臂处于正常展开状态时才通过电机控制螺旋桨转动。从而避免了机臂在折叠状态下启动电机驱使螺旋桨转动时,螺旋桨与机身等部件发生碰撞导致无人飞行器部件的损坏。如此消除了无人飞行器在起飞等场景中的安全隐患。
在一些场景中,因飞手操作不当或无人飞行器失控时,无人飞行器可能会与人/动物/物发生碰撞。碰撞时无人飞行器的螺旋桨可能会受到物体的冲击而损坏,又或者高速转动的螺旋桨可能会触碰到人/动物而造成伤害。为了避免上述情况,无人飞行器的螺旋桨一般会安装有保护罩。因此,在另一些实施例中,机体状态还可以包括螺旋桨是否设有保护罩,预设飞行条件可以是各螺旋桨均设有保护罩。如此,上述步骤210获取无人飞行器的机体状态,可以包括如图6所示的步骤:
步骤610:获取用于指示各所述螺旋桨是否设有保护罩的第三检测结果;
步骤620:若所述第三检测结果指示各所述螺旋桨设有保护罩,则确定所述机体状态指示所述无人飞行器满足预设飞行条件;
步骤630:若所述第三检测结果指示至少一个所述螺旋桨未设有保护罩或至少一个所述保护罩未安装到位,则确定所述机体状态指示所述无 人飞行器不满足所述预设飞行条件。
在一些实施例中,无人飞行器的电机或者机臂上还搭载有第三传感器。如此,在步骤610获取第三检测结果之前,还可以基于电机或无人飞行器的机臂上搭载的第三传感器检测各螺旋桨是否设有保护罩。
在一些实施例中,第三传感器可以包括第二触摸传感器和/或第二光敏传感器。如此,可以通过第二触摸传感器和/或第二光敏传感器的检测数据确定各螺旋桨是否设有保护罩。其中,第二触摸传感器与上文记载的第一触摸传感器可以是同一个传感器,也可以是安装在不同位置的触摸传感器。第二光敏传感器与上文记载的第一光敏传感器可以是同一个传感器,也可以是安装在不同位置的光敏传感器。当螺旋桨设有保护罩和/或保护罩安装到位时,第二触摸传感器和/或第二光敏传感器可以产生相应的检测数据。
上文记载的实施例,在控制螺旋桨转动前检测无人飞行器的螺旋桨是否设有保护罩,在各螺旋桨均设有保护罩时才启动电机,只要有一个螺旋桨未设有保护罩或保护罩未安装到位都不会启动电机。从而避免了无人飞行器在飞行过程中,因螺旋桨与人/物碰撞导致螺旋桨的损伤以及造成的人身伤害。
基于上述任一实施例,若不满足电机的启动条件,不通过电机控制螺旋桨的转动。在不通过电机控制螺旋桨的转动的情况下,可以输出指示螺旋桨转动异常的告警信息。告警信息可以包括文字信息、声音信息或光源信息中的一种或多种。告警信息的输出方式可以包括:通过无人飞行器搭载的扬声器发出警报声;通过无人飞行器搭载的光源进行闪光警告,其中该光源可以是可见光光源,例如无人飞行器上搭载的航向灯或补光灯;向与无人飞行器通信连接的控制终端发送指示信息,以使控制终端输出指示螺旋桨转动异常的告警信息,例如可以在控制终端的显示界面上显示螺旋桨转动异常的告警信息,或者在控制程序中进行弹窗警告,又或者控制终端进行震动警告或扬声器发出警告音。其中,控制终端可以是可供用户操作的地面控制终端,例如为遥控器,安装有无人飞行器飞行控制软件的手机、个人电脑(Personal Computer,PC)、平板电脑、或可穿戴设备等等。告警信息的输出方式可以是以上方式的任意一种或多种的组合。
此外,告警信息除了携带指示螺旋桨转动异常的信息以外,还可以携带转动异常原因的信息。基于上文任一实施例,螺旋桨转动异常的原因可以包括在无人飞行器的第一预设范围内存在第一障碍物、无人飞行器的至少一个机臂处于非正常展开状态、或无人飞行器的至少一个螺旋桨未设有保护罩或至少一个保护罩未安装到位中的一种或多种。如此,可以在告警信息中携带螺旋桨转动异常的原因,并输出告警信息。例如,通过无人飞行器搭载的扬声器播报或在控制终端的显示界面显示“附近有障碍物”、“机身/螺旋桨处有触碰物”、“保护罩未安装或未安装到位”等告警信息。
如上文所述,无人飞行器的起飞通常包括起桨与起飞两个阶段。电机启动,驱使螺旋桨开始转动是起桨阶段。增大电机转速,驱使螺旋桨转速增大从而产生升力让无人飞行器上升是起飞阶段。上述实施例给出电机启动前,即进入起桨阶段前,可以考虑无人飞行器周围障碍物以及无人飞行器机体状态对起桨阶段的影响。也即无人飞行器和/或周围环境在满足起桨条件的情况下,才通过电机控制螺旋桨的转动进入起桨阶段。在一些实施例中在进入起桨阶段后,增大电机的转速进入起飞阶段前,还可以考虑无人飞行器和/或周围环境是否满足起飞条件。如此,基于上述任一实施例,本申请提供的电机的控制方法还可以包括如图7所示的步骤:
步骤710:在通过所述电机控制所述螺旋桨的转动且所述无人飞行器当前处于起桨状态的情况下,响应增大所述电机转速的控制指令,获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果;
步骤720:基于所述第四检测结果确定是否增大所述电机的转速,以控制所述无人飞行器的工作状态,所述工作状态包括起桨状态和起飞状态。
在一些实施例中,在第四检测结果指示无人飞行器满足预设的起飞条件的情况下,增大电机的转速,以控制无人飞行器进入起飞状态;和/或在第四检测结果指示无人飞行器不满足预设的起飞条件的情况下,保持电机的当前转速,以控制所述无人飞行器保持在起桨状态。如此,在无人飞行器满足预设的起飞条件时,才进入起飞状态,若不满足则保持在起桨状态。
在一些情景中,伴随着无人飞行器进入起飞阶段,螺旋桨的转速相 应地逐渐增大,与起桨阶段相比,由于转速更高,起飞阶段螺旋桨旋转所波及的伤害会更大。在进入起桨阶段前,若第一预设范围内不存在第一障碍物,可以启动电机进入起桨阶段。但在进入起飞阶段前,可以考虑在一个更大的范围内不存在障碍物的情况在进入起飞阶段。如此,上述步骤710获取第四检测结果,可以包括如图8所示的步骤:
步骤810:获取用于指示所述无人飞行器的第二预设范围内是否存在第二障碍物的检测结果,其中,所述第二预设范围大于所述第一预设范围;
步骤820:若所述第二预设范围内不存在第二障碍物,则确定所述无人飞行器满足所述预设的起飞条件;
步骤830:若所述第二预设范围内存在第二障碍物,则确定所述无人飞行器不满足所述预设的起飞条件。
第四检测结果可以包括无人飞行器的第二预设范围内是否存在第二障碍物的检测结果,预设的起飞条件可以包括第二预设范围内不存在第二障碍物。
在一些实施例中,可以利用上述第一传感器检测第二预设范围是否存在第二障碍物。
如此,无人飞行器在预设第一范围内没有第一障碍物的情况下启动电机,进入起桨阶段,在比第一预设范围大的第二预设范围内没有第二障碍物的情况下增大螺旋桨转速,控制无人飞行器进入起飞状态。确保了无人飞行器在没有障碍物干预的情况下起飞,消除了因障碍物带来的安全隐患。
在一些实施例中,为了保证无人飞行器与控制终端持续通信,避免因通信中断而导致丢机,上述步骤710获取第四检测结果,可以包括如图9所示的步骤:
步骤910:获取用于指示所述无人飞行器与控制终端之间的通信是否异常的检测结果;
步骤920:若所述通信正常,则确定所述无人飞行器满足所述预设的起飞条件;
步骤930:若所述通信异常,则确定所述无人飞行器不满足所述预设的起飞条件。
第四检测结果可以包括无人飞行器与控制终端之间的通信是否异常的检测结果,预设的起飞条件可以包括无人飞行器与控制终端之间的通信正常。
在一些实施例中,指示所述无人飞行器与控制终端之间的通信是否异常的检测结果可以通过如图10所示的步骤获取:
步骤1010:获取所述无人飞行器与控制终端之间交互的通信数据;
步骤1020:基于所述通信数据确定所述无人飞行器与所述控制终端之间的通信是否异常。
在一些实施例中,通信数据可以是周期性交互的数据包。
在一些实施例中,可以基于通信数据确定无人飞行器与控制终端之间所建立的通信链路的时延、丢包率、抖动率等等。利用这些参数可以确定无人飞行器与控制终端之间的通信是否正常。具体地,可以根据相关技术中所记载的方案来利用通信链路的时延、丢包率、抖动率等参数评估通信链路是否正常,本申请在此不展开说明。
如此,无人飞行器在与控制终端之间的通信正常的情况下,增大螺旋桨转速,控制无人飞行器进入起飞状态,确保了无人飞行器与控制终端的持续通信,避免因通信中断而导致丢机。
在一些场景中,飞行环境会影响无人飞行器的飞行过程,例如高温天气容易导致无人飞行器的电机的温度过高,甚至融化一些零部件和线缆;风速过高时可能会影响无人飞行器的飞行稳定性;湿度高的环境下则水汽可能会渗入无人飞行器的内部,腐蚀内部电子元器件等等。因此在一些实施例中,无人飞行器在起飞前需要考虑天气因素,如此,上述步骤710获取第四检测结果,可以包括如图11所示的步骤:
步骤1110:获取用于指示所述无人飞行器的所处环境是否满足预设环境条件的检测结果;
步骤1120:若所述无人飞行器的所处环境满足所述预设环境条件,则确定所述无人飞行器满足所述预设的起飞条件;
步骤1130:若所述无人飞行器的所处环境不满足所述预设环境条件,则确定所述无人飞行器不满足所述预设的起飞条件。
第四检测结果可以包括无人飞行器的所处环境是否满足预设环境条件的检测结果,预设的起飞条件可以包括无人飞行器的所处环境满足预设环境条件。
在一些实施例中,可以通过获取无人飞行器所处位置的地形信息和/或天气信息,以确定无人飞行器所处环境是否满足预设环境条件。例如,无人飞行器可以通过联网查询所处位置的地形参数,也可以通过与无人飞行器通信的控制终端查询所处位置的地形参数,确定起飞点附近以及飞行范围内是否存在山地、丘陵、高楼等地形障碍。此外,无人飞行器还可以通过搭载的传感器获取所处位置的天气信息,例如温度、风速、湿度等。还可以利用通信网络获取所处位置的天气信息,例如通过联网查询当地的气温、风速、湿度等,又或者通过与无人飞行器通信的控制终端查询所处位置的天气信息。此外,不同类型的无人飞行器的预设环境条件可以不同,预设环境条件可以包括温度范围、最大风速、最高湿度等环境参数条件。
如此,无人飞行器在所处环境满足预设环境条件的情况下,增大螺旋桨转速,控制无人飞行器进入起飞状态,可以避免因在不适宜天气条件下起飞导致无人飞行器丢机、零器件损坏等情况发生。
在一些场景中,用户由于不了解禁飞区域的划分,可能使无人飞行器飞入禁飞区域。禁飞区域可以包括法规限制区,如监狱、核工厂等;限飞区,如因火灾、大型活动等突发情况临时划分的区域;以及净空保护区,如机场等。为了避免无人飞行器进入禁飞区域,在一些实施例中,上述步骤710获取第四检测结果,可以包括如图12所示的步骤:
步骤1210:获取用于指示所述无人飞行器是否处于禁飞区域的检测结果;
步骤1220:若所述无人飞行器未处于禁飞区域,则确定所述无人飞行器满足所述预设的起飞条件;
步骤1230:若所述无人飞行器处于禁飞区域,则确定所述无人飞行器不满足所述预设的起飞条件。
第四检测结果可以包括无人飞行器是否处于禁飞区域的检测结果,预设的起飞条件可以包括无人飞行器未处于禁飞区域。
如此,无人飞行器在未处于禁飞区域的情况下,增大螺旋桨转速,控制无人飞行器进入起飞状态,可以避免无人飞行器在禁飞区域中起飞,造成对其他航线干扰等。
上文实施例记载了在第四检测结果指示无人飞行器满足预设的起飞条件的情况下,增大电机转速,控制无人飞行器进入起飞状态。其中第四检测结果可以是无人飞行器的第二预设范围内是否存在第二障碍物的检测结果、无人飞行器与控制终端之间的通信是否异常的检测结果、无人飞行器的所处环境是否满足预设环境条件的检测结果、无人飞行器是否处于禁飞区域的检测结果。第四检测结果可以是上述多种检测结果中的一种或多种,如此,在无人飞行器满足预设的起飞条件时,才进入起飞状态,若不满足则保持在起桨状态,从而消除起飞阶段的安全隐患。
此外,本申请还提供了一种电机的控制方法,应用于无人飞行器的起飞场景中,所述无人飞行器设有电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;所述方法包括如图13所示的步骤:
步骤1310:基于所述无人飞行器搭载的第一传感器检测所述无人飞行器的第一预设范围内是否存在第一障碍物;
若是,则执行步骤1320;若否,则执行步骤1342。其中,第一传感器包括视觉传感器、距离传感器、第一触摸传感器、第一光敏传感器中的一种或多种。
步骤1320:基于设置在所述无人飞行器的预定机臂上的第二传感器检测各机臂是否处于正常展开状态;
若是,则执行步骤1330;若否,则执行步骤1342。其中,所述第二传感器包括定位传感器、设于所述机臂的转动结构处的限位开关中的一种或多种。
步骤1330:基于所述电机或所述无人飞行器的机臂上搭载的第三传感器检测各所述螺旋桨是否设有保护罩;
若是,则执行步骤1341;若否,则执行步骤1342。其中,所述第三 传感器包括第二触摸传感器、或第二光敏传感器中的一种或多种。
步骤1341:响应于所述电机的控制指令,通过所述电机控制所述螺旋桨的转动;
步骤1342:不通过所述电机控制螺旋桨转动,并输出指示所述螺旋桨转动异常的告警信息。
其中,告警信息的输出方式包括:通过所述无人飞行器搭载的扬声器发出警报声;通过所述无人飞行器搭载的光源进行闪光警告;向与所述无人飞行器通信连接的控制终端发送指示信息,以使所述控制终端输出指示螺旋桨转动异常的告警信息中的一种或多种。
在通过电机控制螺旋桨转动且无人飞行器当前处于起桨状态的情况下,执行步骤1350。
步骤1350:检测所述无人飞行器的第二预设范围内是否存在第二障碍物;
若是,则执行步骤1360;若否,则执行步骤1392。其中,第二预设范围大于第一预设范围。
步骤1360:检测所述无人飞行器与控制终端之间的通信是否异常;
若是,则执行步骤1370;若否,则执行步骤1392。
步骤1370:检测所述无人飞行器的所处环境是否满足预设环境条件;
若是,则执行步骤1380;若否,则执行步骤1392。
步骤1380:检测所述无人飞行器是否处于禁飞区域;
若是,则执行步骤1391;若否,则执行步骤1392。
步骤1391:响应增大所述电机转速的控制指令,增大所述电机的转速,以控制所述无人飞行器进入所述起飞状态。
步骤1392:保持所述电机的当前转速,以控制所述无人飞行器保持在所述起桨状态。
其中,步骤1310、步骤1320与步骤1330之间没有执行先后顺序,可以同时执行上述三个步骤。在一些实施例中,也可以选择执行步骤 1310-1330中的一个过多个步骤。
步骤1350、步骤1360、步骤1370与步骤1380之间没有执行先后顺序,可以同时执行上述四个步骤。在一些实施例中,也可以选择执行步骤1350-1380中的一个过多个步骤。
在一些实施例中,可以先检测机体状态以判断无人飞行器是否满足预设飞行条件,再检测第一预设范围内是否存在第一障碍物。如此,当机体状态指示无人飞行器不满足预设飞行条件的情况下,则直接不通过电机控制螺旋桨转动,而无需再调用相关的传感器来进行障碍物的检测,从而节省无人飞行器的用电。
本申请提供的一种电机的控制方法,在进入起桨阶段前,先检测无人飞行器周围是否存在障碍物,各机臂是否处于正常展开状态,各螺旋桨是否安装有保护罩,从而消除了无人飞行器在起桨阶段因与障碍物或机身碰撞带来的安全隐患。且在进入起飞阶段前,检测了无人飞行器是否满足起飞条件,从而消除了无人飞行器在起飞阶段潜在的安全隐患。
基于上述任意实施例所述的一种电机的控制方法,本申请还提供了如图14所示的一种电机控制装置的结构示意图。如图14,在硬件层面,该电机控制装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述任意实施例所述的一种电机的控制方法。
基于上述任意实施例所述的一种电机的控制方法,本申请还提供了如图15所示的一种无人飞行器的结构示意图。如图15,在硬件层面,该无人飞行器包括电机、螺旋桨以及如图14所示的电机控制装置。电机控制装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述任意实施例所述的一种电机的控制方法。
基于上述任意实施例所述的一种电机的控制方法,本申请还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时可用于执行上述任意实施例所述的一种电机的控制方法。
基于上述任意实施例所述的一种电机的控制方法,本申请还提供了一种计算机存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时可用于执行上述任意实施例所述的一种电机的控制方法。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (29)

  1. 一种电机的控制方法,其特征在于,包括:
    获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果,其中,所述无人飞行器设有所述电机和螺旋桨,所述电机用于驱动所述螺旋桨转动;
    响应于所述电机的控制指令,基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动,包括:
    在所述第一检测结果指示所述第一预设范围内不存在第一障碍物的情况下,通过所述电机控制所述螺旋桨的转动;和/或,
    在所述第一检测结果指示所述第一预设范围内存在第一障碍物的情况下,不通过所述电机控制所述螺旋桨的转动。
  3. 根据权利要求1所述的方法,其特征在于,在所述获取用于指示无人飞行器的第一预设范围内是否存在第一障碍物的第一检测结果之前,所述方法还包括:
    基于所述无人飞行器搭载的第一传感器检测所述无人飞行器的第一预设范围内是否存在第一障碍物。
  4. 根据权利要求3所述的方法,其特征在于,所述第一传感器包括视觉传感器、距离传感器中的至少一种;
    所述基于所述无人飞行器搭载的第一传感器检测所述无人飞行器的第一预设范围内是否存在第一障碍物,包括以下至少一种方式:
    通过所述视觉传感器采集的图像数据检测所述第一预设范围内是否存在第一障碍物;
    通过所述距离传感器采集的距离信息检测所述第一预设范围内是否存在第一障碍物。
  5. 根据权利要求3所述的方法,其特征在于,所述第一传感器包括第一触摸传感器和/或第一光敏传感器;
    所述基于所述无人飞行器搭载的第一传感器检测所述无人飞行器的第一预设范围内是否存在第一障碍物,包括:
    通过所述第一触摸传感器和/或所述第一光敏传感器的检测数据确定 所述第一预设范围内是否存在第一障碍物。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述无人飞行器的机体状态;
    所述基于所述第一检测结果确定是否通过所述电机控制所述螺旋桨的转动,包括:
    基于所述第一检测结果以及所述机体状态确定是否通过所述电机控制所述螺旋桨的转动。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述第一检测结果以及所述机体状态确定是否通过所述电机控制所述螺旋桨的转动,包括:
    在所述第一检测结果指示所述第一预设范围内不存在第一障碍物以及所述机体状态指示所述无人飞行器满足预设飞行条件的情况下,通过所述电机控制所述螺旋桨的转动;
    在所述第一检测结果指示所述第一预设范围内存在第一障碍物或所述机体状态指示所述无人飞行器不满足所述预设飞行条件的情况下,不通过所述电机控制所述螺旋桨的转动。
  8. 根据权利要求7所述的方法,其特征在于,所述获取所述无人飞行器的机体状态,包括:
    获取用于指示所述无人飞行器的各机臂是否处于正常展开状态的第二检测结果;
    若所述第二检测结果指示各所述机臂处于正常展开状态,则确定所述机体状态指示所述无人飞行器满足所述预设飞行条件;
    若所述第二检测结果指示至少一个所述机臂处于非正常展开状态,则确定所述机体状态指示所述无人飞行器不满足所述预设飞行条件。
  9. 根据权利要求8所述的方法,其特征在于,在所述获取用于指示所述无人飞行器的各机臂是否处于正常展开状态的第二检测结果之前,所述方法还包括:
    基于设置在所述无人飞行器的预定机臂上的第二传感器检测所述无人飞行器的各机臂是否处于正常展开状态。
  10. 根据权利要求9所述的方法,其特征在于,所述第二传感器为定位传感器;
    所述基于设置在所述无人飞行器的预定机臂上的第二传感器检测所述无人飞行器的各机臂是否处于正常展开状态,包括:
    获取所述定位传感器探测到的位置信息以确定不同机臂之间的距离信息;
    根据不同机臂之间的距离信息确定各所述机臂是否处于正常展开状态。
  11. 根据权利要求10所述的方法,其特征在于,所述第二传感器包括设于所述机臂的转动结构处的限位开关,所述机臂通过所述转动结构能够相对于机身折叠或折叠成至少两段;
    所述基于设置在所述无人飞行器的预定机臂上的第二传感器检测所述无人飞行器的各机臂是否处于正常展开状态,包括:
    获取所述限位开关的启闭状态以确定各所述机臂是否处于正常展开状态。
  12. 根据权利要求7所述的方法,其特征在于,所述获取所述无人飞行器的机体状态,包括:
    获取用于指示各所述螺旋桨是否设有保护罩的第三检测结果;
    若所述第三检测结果指示各所述螺旋桨设有保护罩,则确定所述机体状态指示所述无人飞行器满足预设飞行条件;
    若所述第三检测结果指示至少一个所述螺旋桨未设有保护罩或至少一个所述保护罩未安装到位,则确定所述机体状态指示所述无人飞行器不满足所述预设飞行条件。
  13. 根据权利要求12所述的方法,其特征在于,在所述获取用于指示各所述螺旋桨是否设有保护罩的第三检测结果之前,所述方法还包括:
    基于所述电机或所述无人飞行器的机臂上搭载的第三传感器检测各所述螺旋桨是否设有所述保护罩。
  14. 根据权利要求13所述的方法,其特征在于,所述第三传感器包括第二触摸传感器和/或第二光敏传感器;
    所述基于所述电机或所述无人飞行器的机臂上搭载的第三传感器检测各所述螺旋桨是否设有所述保护罩,包括:
    通过所述第二触摸传感器和/或所述第二光敏传感器的检测数据确定各所述螺旋桨是否设有所述保护罩。
  15. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在不通过所述电机控制所述螺旋桨的转动的情况下,输出指示所述螺旋桨转动异常的告警信息。
  16. 根据权利要求15所述的方法,其特征在于,所述输出指示所述螺旋桨转动异常的告警信息,包括以下至少一种:
    通过所述无人飞行器搭载的扬声器发出警报声;
    通过所述无人飞行器搭载的光源进行闪光警告;
    向与所述无人飞行器通信连接的控制终端发送指示信息,以使所述控制终端输出指示所述螺旋桨转动异常的告警信息。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在通过所述电机控制所述螺旋桨的转动且所述无人飞行器当前处于起桨状态的情况下,响应增大所述电机转速的控制指令,获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果;以及
    基于所述第四检测结果确定是否增大所述电机的转速,以控制所述无人飞行器的工作状态,所述工作状态包括所述起桨状态和起飞状态。
  18. 根据权利要求17所述的方法,其特征在于,所述基于所述第四检测结果确定是否增大所述电机的转速,以控制所述无人飞行器的工作状态,包括:
    在所述第四检测结果指示所述无人飞行器满足所述预设的起飞条件的情况下,增大所述电机的转速,以控制所述无人飞行器进入所述起飞状态;和/或,
    在所述第四检测结果指示所述无人飞行器不满足所述预设的起飞条件的情况下,保持所述电机的当前转速,以控制所述无人飞行器保持在所述起桨状态。
  19. 根据权利要求17所述的方法,其特征在于,所述获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果,包括:
    获取用于指示所述无人飞行器的第二预设范围内是否存在第二障碍物的检测结果,其中,所述第二预设范围大于所述第一预设范围;
    若所述第二预设范围内不存在第二障碍物,则确定所述无人飞行器满足所述预设的起飞条件;
    若所述第二预设范围内存在第二障碍物,则确定所述无人飞行器不满 足所述预设的起飞条件。
  20. 根据权利要求17所述的方法,其特征在于,所述获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果,包括:
    获取用于指示所述无人飞行器与控制终端之间的通信是否异常的检测结果;
    若所述通信正常,则确定所述无人飞行器满足所述预设的起飞条件;
    若所述通信异常,则确定所述无人飞行器不满足所述预设的起飞条件。
  21. 根据权利要求20所述的方法,其特征在于,所述获取用于指示所述无人飞行器与控制终端之间的通信是否异常的检测结果,包括:
    获取所述无人飞行器与控制终端之间交互的通信数据;
    基于所述通信数据确定所述无人飞行器与所述控制终端之间的通信是否异常。
  22. 根据权利要求21所述的方法,其特征在于,所述通信数据为周期性交互的数据包。
  23. 根据权利要求17所述的方法,其特征在于,所述获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果,包括:
    获取用于指示所述无人飞行器的所处环境是否满足预设环境条件的检测结果;
    若所述无人飞行器的所处环境满足所述预设环境条件,则确定所述无人飞行器满足所述预设的起飞条件;
    若所述无人飞行器的所处环境不满足所述预设环境条件,则确定所述无人飞行器不满足所述预设的起飞条件。
  24. 根据权利要求23所述的方法,其特征在于,所述获取用于指示所述无人飞行器所处环境是否满足预设环境条件的检测结果,包括:
    获取所述无人飞行器所处位置的地形信息和/或天气信息,以确定所述无人飞行器的所处环境是否满足预设环境条件。
  25. 根据权利要求17所述的方法,其特征在于,所述获取用于指示所述无人飞行器是否满足预设的起飞条件的第四检测结果,包括:
    获取用于指示所述无人飞行器是否处于禁飞区域的检测结果;
    若所述无人飞行器未处于禁飞区域,则确定所述无人飞行器满足所述预设的起飞条件;
    若所述无人飞行器处于禁飞区域,则确定所述无人飞行器不满足所述预设的起飞条件。
  26. 一种电机控制装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行程序指令的存储器;
    其中,所述处理器调用所述可执行指令时实现权利要求1-25任一所述方法的操作。
  27. 一种无人飞行器,其特征在于,包括电机、螺旋桨以及权利要求26所述的电机控制装置。
  28. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-25任一所述方法的步骤。
  29. 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被执行时执行权利要求1-25任一所述的方法。
PCT/CN2021/134775 2021-12-01 2021-12-01 一种电机的控制方法、装置、无人飞行器及存储介质 WO2023097556A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134775 WO2023097556A1 (zh) 2021-12-01 2021-12-01 一种电机的控制方法、装置、无人飞行器及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134775 WO2023097556A1 (zh) 2021-12-01 2021-12-01 一种电机的控制方法、装置、无人飞行器及存储介质

Publications (1)

Publication Number Publication Date
WO2023097556A1 true WO2023097556A1 (zh) 2023-06-08

Family

ID=86611181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134775 WO2023097556A1 (zh) 2021-12-01 2021-12-01 一种电机的控制方法、装置、无人飞行器及存储介质

Country Status (1)

Country Link
WO (1) WO2023097556A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137960A (zh) * 2015-07-24 2015-12-09 余江 一种小型多旋翼式无人飞行设备及其自检方法
CN106249753A (zh) * 2016-09-05 2016-12-21 广州极飞科技有限公司 对无人机进行控制的方法、控制装置及无人机
CN206218241U (zh) * 2016-11-04 2017-06-06 重庆零度智控智能科技有限公司 无人机
JP2019084948A (ja) * 2017-11-07 2019-06-06 中国電力株式会社 無人飛行体の制御方法、及び無人飛行体
CN112068601A (zh) * 2020-10-20 2020-12-11 北京卫通新科测控技术有限公司 一种用于固定翼无人机的导航控制系统
CN113064447A (zh) * 2021-03-19 2021-07-02 深圳市道通智能航空技术股份有限公司 安全检测方法、装置、系统、无人飞行器及其控制设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137960A (zh) * 2015-07-24 2015-12-09 余江 一种小型多旋翼式无人飞行设备及其自检方法
CN106249753A (zh) * 2016-09-05 2016-12-21 广州极飞科技有限公司 对无人机进行控制的方法、控制装置及无人机
CN206218241U (zh) * 2016-11-04 2017-06-06 重庆零度智控智能科技有限公司 无人机
JP2019084948A (ja) * 2017-11-07 2019-06-06 中国電力株式会社 無人飛行体の制御方法、及び無人飛行体
CN112068601A (zh) * 2020-10-20 2020-12-11 北京卫通新科测控技术有限公司 一种用于固定翼无人机的导航控制系统
CN113064447A (zh) * 2021-03-19 2021-07-02 深圳市道通智能航空技术股份有限公司 安全检测方法、装置、系统、无人飞行器及其控制设备

Similar Documents

Publication Publication Date Title
WO2018218516A1 (zh) 无人机返航路径规划方法及装置
EP3640921B1 (en) Adaptive sense and avoid system
US11919637B2 (en) Automatic return method, apparatus and unmanned aerial vehicle
US20170336805A1 (en) Method an apparatus for controlling unmanned aerial vehicle to land on landing platform
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
JP6835871B2 (ja) 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体
US10717528B1 (en) Automatic flying delivery drone in precalculated flight routes and method for delivering merchandises
WO2020143576A1 (zh) 调整机载雷达的主探测方向的方法、装置和无人机
KR101581258B1 (ko) 비행로봇을 이용한 조수 퇴치 시스템 및 그 방법
JP6943684B2 (ja) 通信中継方法、中継飛行体、プログラム及び記録媒体
US20220223058A1 (en) Drone station, arrangement, method of operating a drone station, and computer readable memory
WO2023077341A1 (zh) 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质
WO2021139461A1 (zh) 无人机严重低电保护方法及无人机
US20220100208A1 (en) Autonomous Multifunctional Aerial Drone
CN105739519A (zh) 无人机激光避障系统
WO2020082364A1 (zh) 无人机的控制方法、装置、无人机及计算机可读存储介质
JP2019175163A (ja) 収容設備管理装置
US20210034052A1 (en) Information processing device, instruction method for prompting information, program, and recording medium
JP2019049874A (ja) 飛行管理装置、飛行装置、及び飛行管理方法
WO2023097556A1 (zh) 一种电机的控制方法、装置、无人飞行器及存储介质
TWI587899B (zh) UAV system
TWI675680B (zh) 無人機滅火裝置及滅火方法
KR20210037487A (ko) 충돌 방지 드론 제어 시스템
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
KR102246896B1 (ko) 도로터널의 유지 관리용 소화전함

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965993

Country of ref document: EP

Kind code of ref document: A1