WO2023077341A1 - 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质 - Google Patents

无人机的返航方法、装置、无人机、遥控设备、系统及存储介质 Download PDF

Info

Publication number
WO2023077341A1
WO2023077341A1 PCT/CN2021/128566 CN2021128566W WO2023077341A1 WO 2023077341 A1 WO2023077341 A1 WO 2023077341A1 CN 2021128566 W CN2021128566 W CN 2021128566W WO 2023077341 A1 WO2023077341 A1 WO 2023077341A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
uav
remote control
flight
control device
Prior art date
Application number
PCT/CN2021/128566
Other languages
English (en)
French (fr)
Inventor
陆泽早
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180101588.8A priority Critical patent/CN117836737A/zh
Priority to PCT/CN2021/128566 priority patent/WO2023077341A1/zh
Publication of WO2023077341A1 publication Critical patent/WO2023077341A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, in particular, to a return method and device for unmanned aerial vehicles, unmanned aerial vehicles, remote control equipment, systems and storage media.
  • UAV unmanned aerial vehicle
  • An unmanned aerial vehicle is an unmanned aircraft operated by radio-controlled equipment and self-contained program controls, or operated entirely or intermittently autonomously by an on-board computer.
  • UAVs are widely used in aerial photography, agricultural plant protection, micro selfies, express transportation, disaster relief, observing wild animals, monitoring infectious diseases, surveying and mapping, news reports, power inspections, disaster relief, film and television shooting and other scenarios.
  • the UAV After completing the flight mission, the UAV can return to the flight under the control of the user, or automatically return to the flight under certain conditions. Among them, the safety of the return of the UAV has always been a concern of the industry.
  • one of the purposes of the present application is to provide a method and device for returning a drone, a drone, a remote control device, a system, and a storage medium.
  • the embodiment of the present application provides a method for returning a UAV, and the method is applied to a UAV, including:
  • the return route is sent to the remote control device in real time, so that the remote control device displays the return route on a display interface.
  • the embodiment of the present application provides a method for returning to the UAV, and the method is applied to the remote control device of the UAV, including:
  • the return path is obtained by real-time planning of the UAV during flight;
  • the return route is displayed on the display interface of the remote control device.
  • the embodiment of the present application provides a return-to-home device for a drone, including:
  • processors one or more processors
  • the one or more processors execute the executable instructions, they are individually or collectively configured to execute the returning method as described in the first aspect.
  • the embodiment of the present application provides a drone, including:
  • a power system arranged in the fuselage, for providing power for the unmanned aerial vehicle
  • the embodiment of the present application provides a remote control device, including:
  • processors one or more processors
  • the one or more processors execute the executable instructions, they are individually or collectively configured to execute the returning method as described in the second aspect.
  • the embodiment of the present application provides a flight system, including the UAV described in the fourth aspect and the remote control device described in the fifth aspect; the remote control device and the UAV can be communicatively connected.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, the first aspect or the second aspect is implemented. the method described.
  • the method for returning a UAV realizes that the UAV plans a return path in real time during flight and sends the return path to the remote control device for display in real time, so that the user can know the plan of the UAV in time
  • the return path even when the UAV and the remote control device lose contact, the remote control device can also display the return path received before the loss of contact, which is conducive to improving the return safety of the UAV.
  • Fig. 1 is a schematic diagram of an unmanned aerial system provided by an embodiment of the present application
  • FIGS. 1 and Figure 3 are different schematic diagrams of the remote control device provided by the embodiment of the present application.
  • Fig. 4 is a schematic flow chart of the return method of the drone provided by the embodiment of the present application.
  • FIG. 5 is a schematic display of a return route provided by an embodiment of the present application.
  • FIG. 6A and Figure 6B are different schematic diagrams of the grid map provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the historical flight trajectory and its surrounding obstacle information provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of a UAV flying obliquely and descending provided by the embodiment of the present application.
  • FIG. 9 is a schematic display of another return route provided by the embodiment of the present application.
  • Figure 10A, Figure 10B and Figure 10C are different display schematic diagrams when there is a difference between the real-time position provided by the embodiment of the present application and the starting point of the return route;
  • Fig. 11 is a schematic structural diagram of a return-to-home device provided in an embodiment of the present application.
  • the embodiment of the present application is optimized for the return of the unmanned aerial vehicle (UAV), so as to realize the real-time planning of the return route during the flight of the UAV and send the return route to the remote control device for display in real time.
  • UAV unmanned aerial vehicle
  • the unmanned aerial vehicle may be a rotorcraft, for example, a multi-rotor unmanned aerial vehicle propelled by a plurality of propulsion devices through the air, the embodiments of the present application are not limited thereto, the unmanned aerial vehicle Other types of drones are also possible.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application.
  • a rotor drone is taken as an example for illustration.
  • the unmanned aerial system 100 may include a drone 110 , a display device 130 and a remote control device 140 .
  • the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, a frame and a pan-tilt 120 carried on the frame.
  • the drone 110 can communicate wirelessly with the remote control device 140 and the display device 130 .
  • the UAV 110 can be an agricultural UAV or an industrial application UAV, and there is a need for cyclic operations.
  • the frame may include the fuselage and undercarriage (also known as landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the UAV 110 when it lands.
  • the power system 150 may include one or more electronic governors (abbreviated as ESCs) 151, one or more propellers 153 and one or more motors 152 corresponding to the one or more propellers 153, wherein the motors 152 are connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the machine arm of the UAV 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160, and provide driving according to the driving signal Current is supplied to the motor 152 to control the speed of the motor 152 .
  • ESCs electronic governors
  • the motor 152 is used to drive the propeller to rotate, so as to provide power for the flight of the UAV 110 , and the power enables the UAV 110 to realize movement of one or more degrees of freedom.
  • drone 110 may rotate about one or more axes of rotation.
  • the rotation axis may include a roll axis (Roll), a yaw axis (Yaw) and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 can be a brushless motor or a brushed motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162 .
  • the sensing system 162 is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the UAV 110 , for example, the flight of the UAV 110 can be controlled according to the attitude information measured by the sensing system 162 . It should be understood that the flight controller 161 can control the UAV 110 according to pre-programmed instructions, or can control the UAV 110 by responding to one or more remote control signals from the remote control device 140 .
  • the gimbal 120 may include a motor 122 .
  • the pan-tilt is used to carry the photographing device 123 .
  • the flight controller 161 can control the movement of the gimbal 120 through the motor 122 .
  • the pan-tilt 120 may further include a controller for controlling the movement of the pan-tilt 120 by controlling the motor 122 .
  • the gimbal 120 may be independent of the UAV 110 or be a part of the UAV 110 .
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the gimbal can be located on top of the drone or on the bottom of the drone.
  • the photographing device 123 can be, for example, a camera or a video camera or other equipment for capturing images.
  • the photographing device 123 can communicate with the flight controller and take pictures under the control of the flight controller.
  • the photographing device 123 in this embodiment includes at least a photosensitive element, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) sensor or a charge-coupled device (Charge-coupled Device, CCD) sensor. It can be understood that the photographing device 123 can also be directly fixed on the UAV 110, so that the pan-tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD charge-coupled Device
  • the display device 130 is located at the ground end of the UAV 100 , can communicate with the UAV 110 wirelessly, and can be used to display the attitude information of the UAV 110 .
  • the image captured by the capturing device 123 may also be displayed on the display device 130 .
  • the display device 130 may be an independent device, or may be integrated in the remote control device 140 .
  • the remote control device 140 is located at the ground end of the unmanned aerial system 100 , and can communicate with the UAV 110 in a wireless manner for remote control of the UAV 110 .
  • the display device 130 and the remote control device 140 are two independent devices, for example, the display device 130 is a mobile terminal (such as a mobile phone, a tablet computer, etc.), as shown in FIG. Remote control with two joysticks.
  • the display device 130 can also be integrated in the remote control device 140, for example, FIG. Related program products, so that the mobile phone with a touch screen can display the picture taken by the drone based on the shooting device and receive the user's touch operation on the drone).
  • FIG. 4 shows a schematic flow chart of a UAV return method, which can be applied to UAVs , for example, the method is performed by the flight controller of the unmanned aerial vehicle shown in Figure 1, and the method includes:
  • step S101 during the flight of the UAV, a return path of the UAV from the current position to the return point is planned in real time.
  • step S102 the return route is sent to the remote control device in real time, so that the remote control device displays the return route on a display interface.
  • the UAV plans the return path in real time during the flight and sends the return path to the remote control device for display in real time, so that the user can keep abreast of the return path planned by the UAV.
  • the remote control device can also display the return path received before the loss, which is beneficial to improve the return safety of the UAV.
  • the UAV can start real-time planning of the UAV from the current position to the return route when the preset conditions are met.
  • the preset conditions include after the UAV takes off, before the UAV is triggered to return, the distance between the UAV and the return point is greater than the preset distance, or the The flight time of the drone exceeds the preset duration, etc., but is not limited to this, and can be set according to actual application scenarios.
  • the UAV starts to plan the return path of the UAV from the current position to the return point in real time .
  • the return point may be a take-off point, or a return position additionally set by the user.
  • the UAV if the UAV triggers the return when the distance between the UAV and the home point is less than the preset distance, the UAV will land directly, so that the UAV will land when the distance between the UAV and the home point is greater than the preset distance.
  • the real-time planning of the return path can reduce the amount of calculation.
  • the UAV starts to plan the return path of the UAV from the current position to the home point in real time, and then stops planning the return path after the return trigger, or After the return is triggered, the return path is adjusted in real time.
  • the UAV is equipped with a sensor that can be used for obstacle avoidance. When the sensor is operating normally, the return path is adjusted in real time according to the detection data of the sensor. To improve return efficiency and return safety.
  • the UAV The real-time planning of the return route can be understood as: the UAV plans the return route at a certain frequency, and the frequency is determined according to the time required for the UAV to plan the return route each time. Exemplarily, assuming that the time required for the UAV to plan the return path is 10s, the UAV plans the return path at a frequency of 6 times per minute.
  • the UAV After the UAV plans to obtain the return route, it can send the return route to the remote control device in real time, wherein the sending frequency of the return route sent by the UAV can be greater than or equal to that of the planned return route of the UAV.
  • the planning frequency of the route When the sending frequency is greater than the planned frequency, if the UAV has not yet planned the return route, the last planned historical return route may be sent to the remote control device. When the frequency of the two is the same, the UAV sends the latest planned return path each time.
  • the embodiment of the present application does not impose any limitation on the sending form of the return route, and specific settings may be made according to actual application scenarios.
  • the return route sent by the UAV includes at least position information of return route points on the return route, and may further include speed information and/or orientation information of the return route points and the like.
  • the return route sent by the UAV may also include a polynomial trajectory corresponding to the return route.
  • the remote control terminal After the remote control terminal receives the return route, it can display the return route on the display interface; in one example, as shown in Figure 5, the return route 200 can correspond to the current environment of the drone.
  • the map is superimposed and displayed; in another example, the return route can also be superimposed and displayed with the real-time picture taken by the drone; in another example, the return route and the map corresponding to the current environment of the drone and the three-dimensional model obtained by performing three-dimensional reconstruction on the current environment of the drone are superimposed and displayed; it can be understood that this embodiment does not impose any restrictions on the display method of the return route in the remote control device, and it can be based on actual applications.
  • the scene is set up in detail.
  • the remote control device can respond to the UAV return trigger, and display the return path on the display interface, and the user can keep abreast of the UAV's return path through the displayed return path.
  • the return situation is conducive to improving the safety of the return flight of the UAV.
  • the remote control device can respond to the UAV return trigger and display the latest received return route on the display interface.
  • the remote controller can also display the subsequent updated return path on the display interface.
  • the conditions for triggering the return of the UAV include: the user actively triggers the return of the UAV, the remaining power of the UAV is lower than the low battery return threshold, or the UAV loses contact with the remote control device.
  • the loss of communication between the UAV and the remote control device may include loss of communication signals and/or loss of image transmission signals between the UAV and the remote control device.
  • the UAV is equipped with a sensor that can be used for obstacle avoidance. If the sensor is operating normally, the UAV can plan the return path from the current position to the return point in real time according to the detection data of the sensor. , then the UAV can avoid obstacles during the return process according to the return path, so as to achieve a safe return.
  • the sensors used for obstacle avoidance include but are not limited to visual sensors, laser lightning, millimeter wave radar or ultrasonic radar, etc.
  • the detection data of one of the sensors can be selected according to the actual application scenario for return path planning, or The detection data of at least two sensors are fused to plan the return path.
  • the conditions for the normal operation of the sensor include: the internal components of the sensor operate normally, and external factors have little influence on the sensor so that the sensor can collect detection data meeting preset requirements.
  • the conditions for the normal operation of the vision sensor include: the brightness of the environment where the drone is located satisfies the working conditions of the vision sensor.
  • the conditions for the normal operation of the lidar may include: the UAV is in an environment without haze or sandstorm.
  • the grid map when planning the return route, it is considered that the grid map is conducive to planning the shortest return route, but the grid map may include some grids in an unknown state, so only based on the grid
  • the UAV determines the grid map and road network map of the environment where the UAV is located according to the detection data of the sensor, and then according to the grid map and the The road network map plans the return path of the UAV from the current position to the return point in real time; wherein, the grid map includes a plurality of grids, and each grid corresponds to a first cost coefficient, and the first The cost coefficient represents the safety risk passing through the grid;
  • the road network map includes a plurality of edges, and each edge corresponds to a second cost coefficient, and the second cost coefficient represents the safety risk passing through the edge.
  • the grid map and the road network map are combined to plan the return path, and the multiple edges in the road network map are predetermined safer trajectories (for example, it can be the UAV or other UAVs in the historical time period. Flying within), based on the road network map, it is beneficial to evaluate the safety of the planned return path. Based on the grid map, the shortest return path from the current position to the return point can be planned. Combining the two makes the planned return path of the drone The route takes both return efficiency and return safety into consideration.
  • the grid map in addition to being determined according to the detection data of the sensor, can also be determined in combination with at least one of the following data: the terrain of the environment where the drone is located Elevation maps, no-fly zone maps, or grid maps of the environment acquired by other drones, etc., thereby helping to improve the accuracy of the grid map.
  • the first cost coefficient corresponding to the grid can be determined according to at least one of the following information: the occupancy probability of the grid, whether the grid belongs to a no-fly zone, the positioning accuracy of the position of the grid or communication quality and more. The larger the first cost coefficient, the higher the safety risk of the UAV passing the grid, and the UAV should avoid this type of grid during path planning.
  • Figure 6A shows the grid map generated according to the detection data of the sensor, if determined according to the no-fly zone map Where one or more grids in the grid map are located in a no-fly zone, the occupancy probability of the one or more grids can be increased, such as shown in FIG. 6B based on the no-fly zone.
  • the grid map generated by the fly zone map and the detection data of the sensor so that the grid belonging to the no-fly zone can be avoided during the subsequent return route planning, and the accuracy of the return route planning can be improved.
  • the road network map includes a plurality of road network nodes and edges connecting each road network node; the road network nodes include three-dimensional position information; the edge includes the distance between two road network nodes connected by the edge
  • the second cost coefficient may be determined according to information such as positioning accuracy and/or communication quality corresponding to the flight route. The larger the second cost coefficient, the higher the safety risk of the UAV passing the edge, and the UAV should carefully select the flight route corresponding to the edge when performing path planning.
  • FIG. 7 shows the historical flight trajectory 300 of the drone and the obstacle information around the historical flight trajectory, wherein the obstacle information around the historical flight trajectory can be based on the The detection data of the sensor when the UAV is flying along the historical flight trajectory is determined.
  • the thin lines around the historical flight trajectory in FIG. 7 represent the distance between the historical flight trajectory and obstacles.
  • At least part of the road network map can be determined based on the historical flight trajectory of the UAV and the detection data of the sensor when the UAV is flying along the historical flight trajectory.
  • the historical flight trajectory of the drone and the obstacle information around the historical flight trajectory are obtained for storage and participation in map construction, relative to the global map (such as a complete map of the environment where the drone is located)
  • the local map such as the map within the preset range of the UAV, such as the cube-shaped local grid map shown in Figure 7
  • Relevant information such as obstacle information, etc.
  • part of the road network map can also be determined based on the preset safe flight route of the environment where the drone is located.
  • the preset safe flight route may be the historical flight trajectory of other drones, or may be a pre-planned flight route based on detection data collected by other detection tools.
  • the UAV in the process of using the grid map and the road network map to plan the return route, can perform a search based on the grid map and the road network map. Path search, obtain the return route, and then optimize the return route in the road network map based on the sampling method.
  • the sampling-based method on the basis of the return route planned by the search-based method, the sampling-based method further The return path is fine-tuned to obtain a refined return path with a smaller total cost, so that the planned return path takes into account return efficiency and return safety.
  • the searched nodes include the grid in the grid map and the road network nodes in the road network map; when searching for the adjacent nodes of the node, the adjacent nodes include The adjacent grid of the node in the global grid map and the road network nodes within the preset radius of the node in the global road network map.
  • the return path and the nodes and edges of the global road network map can be added to the tree structure of RRT, and the RRT*-Smart algorithm is used to optimize the return path, starting from the leaf nodes , constantly looking for whether it can be directly connected to the parent node without obstacles. If you connect directly to one layer, there will be one more straight line and one less curve.
  • this embodiment does not impose any limitation on the specific manners of the search-based method and the sampling-based solution, which can be selected according to actual application scenarios.
  • the search-based method such as A* algorithm or LPA* algorithm, etc.
  • the sampling-based method such as RRT algorithm, RRT* algorithm or RRT-smart algorithm.
  • f(n ) is the comprehensive priority of node n.
  • g(n) is the cost of node n from the origin (i.e. the current position of the drone).
  • h(n) is the estimated cost of node n from the end point (ie, the home point), which is the heuristic function of the A* algorithm.
  • the node with the smallest f(n) value (highest priority) is selected from the priority queue each time as the next node to be traversed.
  • A* uses the open_set collection to represent the nodes to be traversed and the close_set collection to represent the nodes to be traversed.
  • both the parent and the node are road network nodes in the road network map, and there is an edge between the two road network nodes in the road network map, the movement cost is the cost of the corresponding edge in the road network map ( That is, the second cost coefficient), otherwise use the grid map to calculate the movement cost between two nodes, the boundary of the grid will naturally divide the straight line between the two nodes into multiple line segments, each line segment is in a grid, and Each grid has its own first cost coefficient, so the moving cost of each line segment is the length of the line segment * the first cost coefficient of the grid; then add node m to open_set.
  • the UAV when the sensor for obstacle avoidance is in normal operation, plans a return route according to the detection data of the sensor.
  • the UAV responds to the return trigger and executes the return route according to the return route.
  • the first control instruction is used to Control the nose orientation, left and right flight, or flight height.
  • the control instructions for changing the pose imposed by the user are superimposed during the return process according to the planned return path, it may cause the UAV to fly. It is impossible to return to an extreme position or may hit an obstacle.
  • the UAV may not respond to the first control instruction sent by the remote control device, that is to say, when no one is The user cannot adjust the flight direction, pose, etc. of the UAV during the process of returning the UAV according to the return path.
  • the UAV While the UAV is performing the return process according to the return path, although the user cannot adjust the flight direction or posture of the UAV, the UAV can respond to the control information sent by the remote control device.
  • the flight speed second control instruction is to adjust the flight speed of the drone, that is, the user can control the flight speed of the drone through the remote control device.
  • the remote control device has two joysticks for manipulating the UAV, and the user can control all Describe the drone’s nose orientation, left and right flight (such as right translation flight, left translation flight, etc.), flight height or flight speed, etc., the remote control device can generate flight control information sent to the drone based on the user’s operation on the remote control Instructions to control the pose and/or speed of the UAV.
  • the remote control device can generate flight control information sent to the drone based on the user’s operation on the remote control Instructions to control the pose and/or speed of the UAV.
  • the control instructions about changing the pose imposed by the user are superimposed during the return process according to the planned return path, It may cause the drone to fly to an extreme position and cannot return home or may hit obstacles. Therefore, during the return process, the user can operate the joystick to control the flight speed of the drone on the return path, but cannot control the nose Orientation, left and right flight or flight height, so as to ensure the safety of the drone's return flight.
  • the user can increase the flight speed of the drone by pulling up the joystick, or pull down the joystick to reduce the flight speed of the drone.
  • the operation generates a second control command to control the flight speed of the drone.
  • the preset speed indicates the flight speed corresponding to the maximum range, and the flight speed is greater than the preset speed or less than the preset speed.
  • the first instruction information can also be sent to the remote control device so that the The remote control device displays a prompt message on the increase in power consumption on the display interface to remind the user to avoid the failure of the UAV to return home in the case of low battery return.
  • the speed difference threshold may be specifically set according to an actual application scenario, which is not limited in this embodiment.
  • the prompt information includes but not limited to visual information or auditory information.
  • the drone can be planned in real time according to the distance between the current position of the drone and the return point.
  • the return path of the UAV from the current position to the return point may be based on a straight line return path between the current position of the drone and the return point.
  • the sensor for obstacle avoidance may fail due to internal factors, such as aging, wear or damage of the internal components of the sensor for obstacle avoidance; or, the sensor for obstacle avoidance may be caused by external Failure due to the influence of factors, for example, the sensor used for obstacle avoidance fails to collect detection data that meets the preset requirements due to the influence of the external environment, and the preset requirement indicates that the detection data collected by the sensor can effectively prevent obstacles object detection.
  • the sensors used for obstacle avoidance include visual sensors, laser radars, etc. The visual sensors may fail if the brightness of the external environment does not meet the preset working conditions, and the laser radar may fail due to being in environments such as smog and sandstorms.
  • the return path includes flying straight above the home point at the current height of the UAV.
  • the altitude of the current position of the drone is lower than the altitude of the return point, returning at the current altitude may hit an obstacle or be blocked by an obstacle and out of control, in order to further improve the drone's Return security
  • the distance between the current position of the UAV and the return point is less than the distance threshold
  • the height of the current position of the UAV is lower than the height of the return point
  • the altitude and the preset safety altitude difference determine the return altitude of the UAV, the return path includes the UAV flying to the return altitude, and flying straight above the return point at the return altitude, the preset The safety altitude difference can provide altitude error compensation, further reducing the probability of the UAV encountering obstacles; when the height of the current position of the UAV is higher than the height of the return point, the return path includes The current
  • a relatively high return altitude sufficient to avoid most obstacles can be set in advance, and the return altitude can be It can also be set by the user before the UAV leaves the factory.
  • the return path includes the UAV flying to the preset return altitude, and flying straight above the return point at the preset return altitude, so as to ensure that there is no The return flight safety of man-machine.
  • the distance threshold may be specifically set according to an actual application scenario, which is not limited in this embodiment.
  • the distance threshold is 50 meters
  • the drone rises vertically to the return altitude set by the user Start the return flight. If the current altitude is greater than the set return altitude, it indicates that the current altitude is safe enough, and you can return to the current altitude.
  • the distance between the current position of the UAV and the return point is less than 50 meters, the UAV returns at the current altitude, or the distance between the current position of the UAV and the return point can be Return to the altitude determined by the difference between them.
  • the UAV can The historical flight trajectory of the drone is used to plan the return path of the drone from the current position to the home point in real time, thereby ensuring the safety of the drone's return.
  • the sensor used for obstacle avoidance includes a visual sensor, then when the brightness of the current environment does not meet the working conditions of the visual sensor, the UAV can plan the return flight in real time according to the historical flight trajectory of the UAV path to realize the return to the original route.
  • the return path planned according to the historical flight trajectory of the drone is not the shortest path, resulting in the battery life of the drone loss. Then in the case of failure of the sensor used for obstacle avoidance, the UAV can fly a certain distance along the historical flight path and then return in a straight line, then a part of the return path can be planned according to the historical flight path, and the The other part of the return path can be planned according to the distance between the location of the UAV and the return point, so as to improve the return efficiency of the UAV and reduce the return loss.
  • a part of the return path can be planned according to the historical flight trajectory, and the Another part of the return path can be planned according to the distance between the position of the UAV and the return point.
  • the UAV will fly in the direction of the return direction along the historical flight track in the reverse direction. distance, and then enter a straight-line return.
  • the return path includes flying straight to the return point at the current height of the drone. above; if the distance between the position of the UAV and the home point is greater than or equal to the distance threshold, the return path includes the UAV flying to the home altitude, and flying straight above the home point at the home altitude.
  • At least two return-to-home modes can be set based on whether the sensor used for obstacle avoidance fails or not.
  • the first return-to-home mode indicates that when the sensor used for obstacle avoidance operates normally, The detection data of the sensor plans the safe and shortest return path in real time, which is conducive to saving power consumption and improving return efficiency.
  • the second return mode indicates that in the case of failure of the sensor used for obstacle avoidance, the UAV plans the return path according to the distance between the UAV from the current position to the return point and/or the historical flight trajectory, and the return is guaranteed safety.
  • the UAV can select different return modes based on whether the sensor used for obstacle avoidance fails or not, and integrates two return strategies to achieve both return efficiency and return safety of the UAV.
  • the UAV in the process of the UAV returning home, when the UAV flies to the vicinity of the returning home point, in order to save power consumption and return time consumption, the UAV can descend while returning home, that is, fly obliquely to the return point.
  • the position of the UAV is at a preset distance from the home point, or the line between the home point and the position of the UAV satisfies the preset slope and starts directly.
  • oblique flight please refer to the oblique flight trajectory 400 shown in FIG. 8 .
  • the UAV may collide with the obstacle during the oblique flight.
  • the UAV can determine the UAV’s position according to the detection data of the sensor when the sensor used for obstacle avoidance is operating normally.
  • the timing of oblique flight and descent as shown in Figure 8, when the UAV flies near the return point, if it is determined based on the detection data of the sensor that there is an obstacle between the current position and the return point, it is not suitable for oblique flight and descent, then continue Fly along the planned path until it is determined according to the detection data of the sensor that there is no obstacle affecting the oblique flight and descent of the UAV between the current position of the UAV and the home point, then the oblique flight and descent of the UAV can be determined Timing and oblique flight descend to the home point, as shown in the oblique flight trajectory 500 shown in Figure 8, the oblique flight and descent timing determined based on the detection data of the sensor ensures that the UAV will not collide with obstacles when it is ob
  • the drone may not be able to plan If the return route from the current position to the return point cannot be planned, the UAV can send the second instruction information to the remote control device, so that the remote control device will display that the return route cannot be displayed on the display interface. Execute automatic return and suggest manual return prompt information, so as to ensure the safety of the drone's return.
  • the prompt information includes but not limited to visual information or auditory information.
  • the drone in the process of the user controlling the flight of the drone through the remote control device, can obtain the flight control instruction sent by the remote control device, and then determine the prediction of the drone according to the flight control instruction Flight path, real-time planning of the return path of the UAV from the waypoint on the predicted flight path to the return point, if the return path from the waypoint on the predicted flight path to the return point cannot be planned, send The second indication information, so that the remote control device displays a prompt message on the display interface that the automatic return may not be performed and a manual return is recommended.
  • the prompt information includes but not limited to visual information or auditory information.
  • the information of the surrounding environment can be obtained in real time for path planning, so the user can be reminded in time that the current operation may cause the failure to return.
  • the user can be prompted so that the user can reserve sufficient time to manually control the UAV to return home.
  • the drone also sends its own real-time location to the remote control device, so that the remote control device displays the real-time location on the display interface, so that the user can keep abreast of the location of the drone. location.
  • the UAV plans the return path in real time with the first frequency and sends it to the remote control device, and obtains the real-time position of the UAV with the second frequency and sends it to the remote control device; usually, the return path planning If the required time is longer, the second frequency is greater than the first frequency.
  • the embodiment of the present application also provides a method for returning a UAV, the method is applied to a remote control device of a UAV, including:
  • step S201 the return path from the current position of the UAV to the home point sent by the UAV in real time is received; the return path is planned in real time by the UAV during flight.
  • step S202 the return route is displayed on a display interface of the remote control device.
  • the displaying the return route on the display interface includes: displaying the return route on the display interface in response to the UAV return trigger.
  • the remote control device can respond to the UAV return trigger and display the latest received return route on the display interface.
  • the remote controller can also display the subsequent updated return path on the display interface.
  • the conditions for triggering the return of the UAV include: the user actively triggers the return of the UAV, the remaining power of the UAV is lower than the low battery return threshold, or the UAV loses contact with the remote control device.
  • the return path can be displayed on the remote control device when the UAV returns, so that the user can know the UAV's return situation in time based on the return path when the UAV returns, even if the UAV and the remote control device fail.
  • the remote control device can also display the return path received before losing contact, which is conducive to improving the return safety of the UAV.
  • the UAV is equipped with a sensor that can be used for obstacle avoidance; the return path is planned in real time according to the detection data of the sensor when the sensor is in normal operation; the method It also includes: sending the first control instruction and/or the second control instruction to the UAV during the process of returning the UAV; or not sending the first control instruction to the UAV ;
  • the first control instruction is used to control the nose orientation, left and right flight or flight height;
  • the second control instruction is used to control the flight speed.
  • This embodiment takes into account the complexity of the flight environment. If the control instructions for changing the pose imposed by the user are superimposed during the return process according to the planned return path, it may cause the UAV to fly to an extreme position and cannot return or may collide.
  • the UAV does not want to send the first control command, that is, the user operation can control the flight speed of the UAV on the return path, but cannot control the nose orientation, left and right flight or flight Altitude, so as to ensure the safety of the drone's return flight.
  • the method further includes: receiving first indication information sent by the drone, and outputting prompt information of increased power consumption according to the first indication information; wherein, the first indication information is the drone’s sent by the computer when the difference between the speed indicated by the second control command and the preset speed is greater than the speed difference threshold.
  • the prompt information includes but not limited to visual information or auditory information.
  • the drone plans the return route with a first frequency; the method further includes: receiving the real-time position of the drone sent by the drone with a second frequency; wherein, The second frequency is greater than the first frequency.
  • the remote control device may have the following display schemes:
  • the remote control device may only display the latest received real-time position
  • the return route between the home point and the return route (the dotted line in FIG. 10A ) is not displayed for the return route between the latest received real-time position and the starting point of the return route, so that the user can keep abreast of the unmanned The actual return of the aircraft.
  • the latest received real-time position is approximately on the latest received return route may include the following situations: the latest received real-time position is on the latest received return route, or the latest received real-time position is in the near the latest received return path and the distance between the two is not greater than the preset deviation distance.
  • the remote control device can obtain and display a line segment 600 associated with the two; the line segment includes a connection line or a historical flight track between the two.
  • the line segment associating the two includes: a line segment between the latest received real-time position and a way point on the latest received return route that is closest to the latest received real-time position.
  • the line segment 600 that associates the two may be The connection line between the latest received real-time position and the starting point of the latest received return route 200; please refer to FIG. Historical flight trajectories between the origins of the return flight path 200 .
  • the line segment 600 of the two associations may be displayed in different styles, such as in different colors, different The line thickness and different line styles are displayed.
  • the method further includes: receiving second instruction information sent by the UAV, and outputting prompt information indicating that automatic return may not be possible and suggesting manual return according to the second instruction information; the second The instruction information is sent by the UAV when the return route cannot be planned.
  • the prompt information includes but not limited to visual information or auditory information.
  • the embodiment of the present application also provides a drone return device 30, including:
  • processors 31 one or more processors 31;
  • a memory 32 for storing executable instructions of the processor 31
  • processors 31 execute the executable instructions, they are individually or collectively configured to execute the above-mentioned returning method.
  • the processor 31 executes the executable instructions included in the memory 32, and the processor 31 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 32 stores executable instructions of the return method, and the memory 32 may include at least one type of storage medium, and the storage medium includes a flash memory, a hard disk, a multimedia card, a card memory (for example, SD or DX memory, etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory, Magnetic Disk, Optical Disk etc. Also, the device may cooperate with a web storage which performs a storage function of the memory through a network connection.
  • the memory 32 may be an internal storage unit of the return-to-home device 30, such as a hard disk or memory of the return-to-home device 30.
  • Storage device 32 also can be the external memory device of returning home device 30, such as the plug-in type hard disk that is equipped on returning home device 30, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) and so on. Further, the memory 32 may also include both an internal storage unit of the return-to-home device 30 and an external storage device. The memory 32 is used to store executable instructions and other programs and data required by the return-to-home device 30 . The memory 32 can also be used to temporarily store data that has been output or will be output.
  • Various implementations described herein can be implemented using a computer readable medium such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented by using Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGA Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein.
  • an embodiment such as a procedure or a function may be implemented with a separate software module that allows at least one function or operation to be performed.
  • the software codes can be implemented by a software application (or program
  • the embodiment of the present application also provides a drone, including:
  • a power system arranged in the fuselage, for providing power for the unmanned aerial vehicle
  • the return-to-home device 30 as shown in FIG. 11 is arranged in the fuselage.
  • the return-to-home device 30 may be the flight controller in the embodiment shown in FIG. 1 .
  • the embodiment of the present application also provides a remote control device, including:
  • processors one or more processors
  • the one or more processors execute the executable instructions, they are individually or jointly configured to execute the above-mentioned returning method.
  • the embodiment of the present application also provides a flight system, including the above-mentioned drone and the above-mentioned remote control device; the remote control device and the drone can be communicatively connected.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which are executable by a processor of an apparatus to perform the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium enabling the terminal to execute the above method when instructions in the storage medium are executed by a processor of the terminal.

Abstract

一种无人机的返航方法、装置、无人机、遥控设备、系统及存储介质,方法包括:在无人机飞行过程中,实时规划无人机从当前位置到返航点的返航路径(S101);将返航路径实时发送给遥控设备,以使遥控设备在显示界面显示返航路径(S102)。可实现无人机在飞行过程中实时规划返航路径并将返航路径实时发送给遥控设备显示,以便用户及时了解无人机规划的返航路径,即使在无人机与遥控设备失联的情况下,遥控设备也可以基于失联之前接收到的返航路径进行显示,有利于提高无人机的返航安全性。

Description

无人机的返航方法、装置、无人机、遥控设备、系统及存储介质 技术领域
本申请涉及无人机技术领域,具体而言,涉及一种无人机的返航方法、装置、无人机、遥控设备、系统及存储介质。
背景技术
无人机(UAV)是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由机载计算机完全地或间歇地自主地操作。无人机广泛应用于在航拍、农业植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄等场景。
无人机在执行完飞行任务之后,可以在用户的控制下返航,或者在特定条件下自动返航,其中,无人机的返航安全性一直是业界关注的问题。
发明内容
有鉴于此,本申请的目的之一是提供一种无人机的返航方法、装置、无人机、遥控设备、系统及存储介质。
第一方面,本申请实施例提供了一种无人机的返航方法,所述方法应用于无人机,包括:
在无人机飞行过程中,实时规划所述无人机从当前位置到返航点的返航路径;
将所述返航路径实时发送给遥控设备,以使所述遥控设备在显示界面显示所述返航路径。
第二方面,本申请实施例提供了一种无人机的返航方法,所述方法应用于无人机的遥控设备,包括:
接收所述无人机实时发送的从所述无人机当前位置到返航点的返航路径;所述返航路径由所述无人机在飞行过程中实时规划得到;
在所述遥控设备的显示界面显示所述返航路径。
第三方面,本申请实施例提供了一种无人机的返航装置,包括:
一个或多个处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行如第一方面所述的返航方法。
第四方面,本申请实施例提供了一种无人机,包括:
机身;
动力系统,设于所述机身中,用于为所述无人机提供动力;
以及,设于所述机身中的如第三方面所述的返航装置。
第五方面,本申请实施例提供了一种遥控设备,包括:
用于存储可执行指令的存储器;
一个或多个处理器;
其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行如第二方面所述的返航方法。
第六方面,本申请实施例提供了一种飞行系统,包括第四方面所述的无人机和第五方面所述的遥控设备;所述遥控设备和所述无人机能够通信连接。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如第一方面或第二方面所述的方法。
本申请实施例所提供的一种无人机的返航方法,实现无人机在飞行过程中实时规划返航路径并将所述返航路径实时发送给遥控设备显示,以便用户及时了解无人机规划的返航路径,即使在无人机与遥控设备失联的情况下,遥控设备也可以基于失联之前接收到的返航路径进行显示,有利于提高无人机的返航安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行系统的示意图;
图2和图3是本申请实施例提供的遥控设备的不同示意图;
图4是本申请实施例提供的无人机的返航方法的流程示意图;
图5是本申请实施例提供的一种返航路径的显示示意图;
图6A和图6B是本申请实施例提供的栅格地图的不同示意图;
图7是本申请实施例提供的历史飞行轨迹及其周围障碍物信息的示意图;
图8是本申请实施例提供的无人机斜飞下降的示意图;
图9是本申请实施例提供的另一种返航路径的显示示意图;
图10A、图10B和图10C是本申请实施例提供的实时位置与返航路径的起点存在差异时的不同显示示意图;
图11是本申请实施例提供的一种返航装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例针对于无人机(UAV)的返航进行优化,实现在无人机飞行过程中实时规划返航路径并将所述返航路径实时发送给遥控设备显示。
其中,对于本领域技术人员将会显而易见的是,可以不受限制地使用任何类型的无人机,本申请的实施例可以应用于各种类型的无人机。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本申请的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本申请的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人飞行系统100可以包括无人机110、显示设备130和遥控设备140。其中,无人机110可以包括动力系统150、飞行控制系统160、机架和承载在机架上的云台120。无人机110可以与遥控设备140和显示设备130进行无线通信。无人机110可以是农业无人机或行业应用无人机,有循环作业的需求。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接, 用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人机110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自遥控设备140的一个或多个遥控信号对无人机110进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,拍摄装置123也可直接固定于无人机110上,从而云台120可以 省略。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示拍摄装置123拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在遥控设备140中。
遥控设备140位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
示例性的,显示设备130和遥控设备140分别为独立的两个设备,例如所述显示设备130为移动终端(如手机、平板电脑等),如图2所示,所述遥控设备140为具有两个摇杆的遥控器。示例性的,所述显示设备130也可以集成在遥控设备140中,比如图3示出了设置有显示屏幕且具有摇杆的遥控器,或者移动终端(以手机为例,例如可以在手机安装相关程序产品,从而可以通过具有触控屏幕的手机显示无人机基于拍摄装置拍摄的画面并接收用户针对于无人机的触控操作)。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
无人机可以在用户的控制下返航,或者在特定条件下自动返航,请参阅图4,图4示出了一种无人机的返航方法的流程示意图,所述方法可以应用于无人机,例如所述方法由图1所示的无人机的飞行控制器来执行,所述方法包括:
在步骤S101中,在无人机飞行过程中,实时规划所述无人机从当前位置到返航点的返航路径。
在步骤S102中,将所述返航路径实时发送给遥控设备,以使所述遥控设备在显示界面显示所述返航路径。
在本实施例中,实现无人机在飞行过程中实时规划返航路径并将所述返航路径实时发送给遥控设备显示,以便用户及时了解无人机规划的返航路径,即使在无人机与遥控设备失联的情况下,遥控设备也可以基于失联之前接收到的返航路径进行显示,有利于提高无人机的返航安全性。
在一些实施例中,这里对于所述无人机规划所述返航路径的开始时机进行说明:所述无人机可以在满足预设条件下,开始实时规划所述无人机从当前位置到返航点的返航路径,比如所述预设条件包括所述无人机起飞之后、所述无人机在返航触发之前、所述无人机与返航点之间的距离大于预设距离、或者所述无人机的飞行时间超过预设时长等等,但不限于此,可依据实际应用场景进行具体设置。
示例性的,以返航点为起飞点为例,在所述无人机飞离起飞点超过5米之后,所述无人机开始实时规划所述无人机从当前位置到返航点的返航路径。其中,所述返航点可以是起飞点,也可以是用户另外设置的返航位置。在一些实施例中,若无人机在与返航点之间的距离小于预设距离时触发返航,无人机会直接降落,如此,在无人机与返航点之间的距离大于预设距离进行返航路径的实时规划,可以减小计算量。
示例性的,在所述无人机起飞之后,所述无人机开始实时规划所述无人机从当前位置到返航点的返航路径,然后在返航触发之后停止规划所述返航路径,或者在返航触发之后实时调整所述返航路径,比如所述无人机安装有能够用于避障的传感器,在所述传感器正常运行的情况下,根据所述传感器的探测数据实时调整所述返航路径,以提高返航效率和返航安全性。
其中,考虑到随着飞行距离的增加或者飞行环境较为复杂(比如障碍物较多)等等原因,所述无人机每次规划所述返航路径需要耗费一定的时长,则所述无人机实时规划返航路径可以理解为:所述无人机以一定频率规划所述返航路径,所述频率根据所述无人机每次规划返航路径所需的时长确定。示例性的,假设所述无人机规划所述返航路径所需的时长为10s,则所述无人机以每分钟6次的频率规划所述返航路径。
所述无人机在规划得到所述返航路径之后,可以将所述返航路径实时发送给遥控设备,其中,所述无人机发送返航路径的发送频率可以大于或等于所述无人机规划返航路径的规划频率。当发送频率大于规划频率时,若当前所述无人机还未规划出所述返航路径,可以将上一次规划的历史返航路径发送遥控设备。当两者频率相同时,则无人机每次发送的均为最新规划出的返航路径。
可以理解的是,本申请实施例对于所述返航路径的发送形式不做任何限制,可依据实际应用场景进行具体设置。示例性的,所述无人机发送的返航路径至少包括所述返航路径上的返航路径点的位置信息,进一步地,还可以包括所述返航路径点的速度信息和/或朝向信息等等。示例性的,所述无人机发送的返航路径也可以包括所述返航路径对应的多项式轨迹。
所述遥控终端在接收到所述返航路径之后,可以在显示界面显示所述返航路径;在一个例子中,如图5所示,所述返航路径200可以与所述无人机当前环境对应的地图叠加显示;在另一个例子中,所述返航路径也可以与所述无人机实时拍摄的画面叠加显示;在又一个例子中,所述返航路径、所述无人机当前环境对应的地图和对所述无人机当前环境进行三维重建获得的三维模型三者叠加显示;可以理解的是,本实施例对于所述返航路径在遥控设备中的显示方式不做任何限制,可依据实际应用场景进 行具体设置。
示例性的,在无人机将要返航时,所述遥控设备可以响应于所述无人机返航触发,在显示界面显示所述返航路径,则用户可以通过显示的返航路径及时了解无人机的返航情况,有利于提高无人机的返航安全性。
其中,由于无人机是实时规划返航路径并实时发送给遥控设备的,遥控设备可以响应于无人机返航触发,在显示界面显示最新接收到的返航路径。此外,在返航的过程中,遥控器也可以在显示界面上显示后续更新的返航路径。
其中,所述无人机返航触发的条件包括:用户主动触发无人机返航、所述无人机的剩余电量低于低电量返航阈值、或者所述无人机与所述遥控设备失联。其中,所述无人机与所述遥控设备失联可以包括无人机和遥控设备失去通讯信号和/或图传信号丢失。在用户触发无人机返航、所述无人机的剩余电量低于低电量返航阈值触发返航、或者无人机与遥控设备失联触发返航的情况下,无人机可以按照所述返航路径执行返航。
在一些实施例中,所述无人机安装有能够用于避障的传感器,若所述传感器正常运行,无人机可以根据所述传感器的探测数据实时规划从当前位置到返航点的返航路径,则所述无人机在按照所述返航路径执行返航的过程中可以避开障碍物,以实现安全返航。
示例性的,所述用于避障的传感器包括但不限于视觉传感器、激光雷电、毫米波雷达或者超声波雷达等,可以根据实际应用场景选择使用其中一种传感器的探测数据进行返航路径规划,或者融合至少两种传感器的探测数据进行返航路径规划。所述传感器正常运行的条件包括:所述传感器内部器件正常运行,且外部因素对于所述传感器影响较小以使得所述传感器可以采集满足预设要求的探测数据。比如在所述视觉传感器内部器件无损的情况下,所述视觉传感器正常运行的条件包括:所述无人机所处环境的亮度满足所述视觉传感器的工作条件。又比如在激光雷达内部器件无损的情况下,考虑到雾霾、沙尘暴等环境对于激光雷达的影响较大,激光雷达所发射的激光脉冲难以穿透雾、烟或者灰尘等细小物体,导致所述激光雷达采集到的回波信号较弱,则所述激光雷达正常运行的条件可以包括:所述无人机处于非雾霾、非沙尘暴等环境中。
在一些可能的实施方式中,在进行所述返航路径规划时,考虑到栅格地图有利于规划出最短返航路径,但是栅格地图中可能包括有部分处于未知状态的栅格,因此仅基于栅格地图规划出的返航路径不够安全,则所述无人机根据所述传感器的探测数据 确定所述无人机所处环境的栅格地图和路网地图,然后根据所述栅格地图和所述路网地图实时规划所述无人机从当前位置到返航点的返航路径;其中,所述栅格地图中包括多个栅格,每个栅格对应有第一代价系数,所述第一代价系数表征经过所述栅格的安全风险;所述路网地图中包括多条边,每条边对应有第二代价系数,所述第二代价系数表征经过所述边的安全风险。本实施例中结合栅格地图和路网地图进行返航路径规划,路网地图中的多条边为预先确定的较为安全的轨迹(比如可以是本无人机或者其他无人机在历史时间段内飞过的),则基于路网地图有利于评估规划的返航路径的安全性,基于栅格地图能够规划出当前位置到返航点的最短返航路径,综合两者使得无人机规划出的返航路径兼顾了返航效率和返航安全性。
示例性的,为了提高栅格地图的准确性,所述栅格地图除了根据所述传感器的探测数据确定之后,还可以结合以下至少一种数据进行确定:所述无人机所处环境的地形高程图、禁飞区地图、或者其他无人机获取的该环境的栅格地图等,从而有利于提高所述栅格地图的准确性。其中,所述栅格对应的第一代价系数可以根据以下至少一种信息确定:所述栅格的占据概率、所述栅格是否属于禁飞区、所述栅格所处位置的定位精度或者通信质量等等。所述第一代价系数越大,表明无人机经过所述栅格的安全风险越高,则无人机在进行路径规划时应避开该类栅格。
在一个例子中,以所述栅格地图的确定结合所述禁飞区地图为例,图6A示出了根据所述传感器的探测数据生成的栅格地图,如果根据所述禁飞区地图确定所述栅格地图中的其中一个或多个栅格所处位置属于禁飞区,则可以增大所述其中一个或多个栅格的占据概率,比如如图6B示出了基于所述禁飞区地图和所述传感器的探测数据生成的栅格地图,以便后续在进行返航路径规划时可以避开属于禁飞区的栅格,提高返航路径规划的准确性。
示例性的,所述路网地图包括多个路网节点以及连接各个路网节点的边;所述路网节点包括三维位置信息;所述边包括该条边连接的两个路网节点之间的飞行路线、飞行参数(如速度信息、位姿信息,所述飞行路线的耗时等)和第二代价系数;所述第二代价系数表征经过所述边的安全风险。其中,所述第二代价系数可以根据所述飞行路线对应的定位精度和/或通信质量等信息确定。所述第二代价系数越大,表明无人机经过所述边的安全风险越高,则无人机在进行路径规划时应谨慎选择所述边对应的飞行路线。
在一个例子中,请参阅图7,示出了所述无人机的历史飞行轨迹300以及所述历史飞行轨迹周围的障碍物信息,其中,所述历史飞行轨迹周围的障碍物信息可以根据所述传感器在所述无人机沿所述历史飞行轨迹飞行时的探测数据确定,比如图7中历史飞行轨迹周围的细线表示历史飞行轨迹与障碍物之间的距离。至少部分路网地图可以基于所述无人机 的历史飞行轨迹和所述传感器在所述无人机沿所述历史飞行轨迹飞行时的探测数据确定得到。本实施例中,获取所述无人机的历史飞行轨迹以及所述历史飞行轨迹周围的障碍物信进行存储以及参与地图构建,相对于全局地图(例如无人机所处环境的完整地图)而言所需存储或者运算的数据量有所减少,相对于局部地图(例如在无人机预设范围内的地图,比如如图7所示的立方体形状的局部栅格地图)而言其包括的相关信息(如障碍物信息等)更加全面,因此可以提高地图构建的准确性。
为了提高确定的路网地图的准确性,部分路网地图还可以基于所述无人机所处环境的预设安全飞行航线确定。所述预设安全飞行航线可以是其他无人机的历史飞行轨迹,或者可以是基于其他探测工具采集的探测数据预先规划的飞行航线。
在一示例性的实施例中,在利用栅格地图和路网地图进行返航路径规划的过程中,所述无人机可以基于搜索的方法在所述栅格地图和所述路网地图中进行路径搜索,获取所述返航路径,进而基于采样的方法在所述路网地图中优化所述返航路径,本实施例在基于搜索的方法规划出的返航路径的基础上,进一步基于采样的方法对返航路径进行微调,以获取总代价更小的精细化返航路径,从而使得规划的返航路径兼顾返航效率与返航安全性。
其中,在进行路径搜索的过程中,搜索的节点包括所述栅格地图中的栅格和所述路网地图中的路网节点;在搜索所述节点的邻近节点时,所述邻近节点包括所述节点在全局栅格地图中的邻接栅格和所述全局路网地图中处于所述节点的预设半径内的路网节点。在优化所述返航路径的过程中,可以将所述返航路径以及全局路网地图的节点与边,加入到RRT的树形结构中,使用RRT*-Smart算法进行返航路径优化,从叶子节点开始,不断寻找能否无障碍地直接连接到父节点,如果直接往前连一层就多一条直线,少一段曲线。
可以理解的是,本实施例对于所述基于搜索的方法和所述基于采样的方案的具体方式不做任何限制,可以根据实际应用场景进行具体选择。例如所述基于搜索的方法如A*算法或者LPA*算法等,例如所述基于采样的方法如RRT算法、RRT*算法或者RRT-smart算法等。
在一个例子中,以所述基于搜索的方法为A*算法为例,A*算法通过函数f(n)=g(n)+h(n)来计算每个节点的优先级,f(n)是节点n的综合优先级,当选择下一个要遍历的节点时,我们总会选取综合优先级最高(值最小)的节点。g(n)是节点n距离起点(即无人机当前位置)的代价。h(n)是节点n距离终点(即返航点)的预计代价,这也就是A*算法的启发函数。A*算法在运算过程中,每次从优先队列中选取f(n)值最小(优先级最高)的节点作为下一个待遍历的节点。A*使用open_set集合来表示待遍历的节点和使用close_set集合来表示待遍历的节点。
可以使用A*算法在所述栅格地图和所述路网地图中进行路径搜索,获取所述返航路径:初始化open_set和close_set;然后将起点加入open_set中,并设置f(n)=g(n)+h(n),其中,起点的g(n)为0,h(n)为起点到终点的启发式代价,例如h(n)可以根据两点间的欧式距离与代价系数的乘积确定;如果open_set不为空,则从open_set中选取f(n)的值最小的节点n:如果节点n为终点,则:从终点开始逐步追踪parent节点,一直达到起点;返回找到的结果路径,算法结束;如果节点n不是终点,则:将节点n从open_set中删除,并加入close_set中;遍历节点n所有的邻近节点,节点n所有的邻近节点包括所述节点在全局栅格地图中的邻接栅格和所述全局路网地图中处于所述节点的预设半径内的路网节点:如果邻近节点m在close_set中,则:跳过,选取下一个邻近节点;如果邻近节点m也不在open_set中,则:设置节点m的parent为节点n;计算节点m的f(m)=g(m)+h(m),例如该节点的g(m)=parent节点的g值+parent节点到该节点的移动代价,如果parent与该节点都是路网地图中的路网节点,且路网地图中这两个路网节点之间有边,则移动代价为路网地图中对应边的代价(即第二代价系数),否则使用栅格地图计算两个节点间的移动代价,栅格的边界将两节点间的直线自然切分为多条线段,每条线段都在一个栅格中,而每个栅格都有自己的第一代价系数,因此每条线段的移动代价为该线段的长度*该栅格的第一代价系数;然后将节点m加入open_set中。
在一些实施例中,在所述用于避障的传感器正常运行的情况下,所述无人机根据所述传感器的探测数据规划出返航路径。所述无人机响应于返航触发,按照所述返航路径执行返航,则这个过程中,如果所述无人机接收到所述遥控设备发送的第一控制指令,所述第一控制指令用于控制机头朝向,左右飞行或者飞行高度,考虑到飞行环境的复杂性,在按照规划的返航路径返航的过程中如果叠加用户施加的有关于改变位姿的控制指令,可能会导致无人机飞到极端位置无法返航或者可能撞到障碍物,因此,为了保证无人机的返航安全性,所述无人机可以不响应所述遥控设备发送的第一控制指令,即是说,在无人机按照返航路径返航的过程中用户无法对无人机的飞行方向、位姿等进行调整。
而在所述无人机按照所述返航路径执行返航的过程中,用户虽然无法调整无人机的飞行方向或者位姿,但所述无人机可以响应于所述遥控设备发送的用于控制飞行速度第二控制指令,调整所述无人机的飞行速度,即用户可以通过遥控设备对无人机的飞行速度进行控制。
示例性的,如图2以及图3所示,所述遥控设备具有用于操纵所述无人机的2个摇杆,在无人机执行飞行任务的过程中,用户可以通过摇杆控制所述无人机机头朝向、左右飞行(如向右平移飞行、向左平移飞行等)、飞行高度或者飞行速度等等,遥控设备可以基于 用户对遥控的操作生成发送给无人机的飞行控制指令,以控制所述无人机的位姿和/或速度等。而在所述无人机按照所述返航路径执行返航的过程中,考虑到飞行环境的复杂性,在按照规划的返航路径返航的过程中如果叠加用户施加的有关于改变位姿的控制指令,可能会导致无人机飞到极端位置无法返航或者可能撞到障碍物,因此在执行返航的过程中,用户操作摇杆可以控制无人机在返航路径上的飞行速度,但不可以控制机头朝向,左右飞行或者飞行高度,从而保证无人机返航的安全性。
在控制所述无人机的飞行速度时,例如用户可以通过上拉摇杆以提高无人机的飞行速度,或者下拉摇杆以降低无人机的飞行速度,遥控设备基于用户对摇杆的操作生成第二控制指令以控制无人机的飞行速度。
另外,考虑到无人机在按照所述返航路径执行返航时通常会按照预设速度返航,所述预设速度指示航程最大时对应的飞行速度,而飞行速度大于该预设速度或者小于该预设速度均会加快无人机的电量损耗,则如果所述第二控制指令指示的速度与预设速度的差值大于速度差值阈值,也可以向遥控设备发送第一指示信息以使得所述遥控设备在显示界面显示电量损耗增加的提示信息,以对用户进行提醒,避免在低电量返航情况下无人机返航失败。其中,所述速度差值阈值可依据实际应用场景进行具体设置,本实施例对此不做任何限制。所述提示信息包括但不限于视觉信息或者听觉信息。
在一些实施例中,如果无人机在飞行过程中,如果用于避障的传感器失效,则可以根据所述无人机的当前位置和所述返航点之间的距离实时规划所述无人机从当前位置到返航点的返航路径,例如所述返航路径可以是基于所述无人机的当前位置和所述返航点之间的直线返航路径。其中,所述用于避障的传感器可能因内部因素而失效,比如所述用于避障的传感器的内部器件老化、磨损或者损坏而失效;或者,所述用于避障的传感器可能因外部因素影响而失效,比如所述用于避障的传感器因外部环境影响导致无法采集到满足预设要求的探测数据而失效,所述预设要求指示所述传感器采集的探测数据能够进行有效的障碍物检测。比如所述用于避障的传感器包括视觉传感器、激光雷达等,视觉传感器可能会外部环境的亮度不满足预设工作条件而失效,激光雷达可能因处于雾霾、沙尘暴等环境中而失效。
示例性的,若所述无人机的当前位置和返航点之间的距离小于距离阈值,所述返航路径包括以所述无人机的当前高度直线飞行到返航点上方。进一步地,考虑到所述无人机的当前位置的高度低于返航点的高度的情况下,以当前高度返航可能会撞到障碍物或者被障碍物遮挡失控,则为了进一步提高无人机的返航安全性,在所述无人机的当前位置和返航点之间的距离小于距离阈值的情况下,当所述无人机的当前位置的高度低于返航点的高度, 根据所述返航点的高度和预设的安全高度差确定所述无人机的返航高度,所述返航路径包括所述无人机飞行至返航高度,并以返航高度直线飞行到返航点上方,所述预设的安全高度差可以提供高度误差补偿,进一步降低无人机遇到障碍物的概率;当所述无人机的当前位置的高度高于返航点的高度,所述返航路径包括以所述无人机的当前高度直线飞行到返航点上方,从而保证了无人机的返航安全性。
示例性的,若所述无人机的当前位置和返航点之间的距离大于或等于所述距离阈值,可以预先设置一个足够避开大部分障碍物的比较高的返航高度,该返航高度可以由用户设置也可以在无人机出厂前设置,所述返航路径包括所述无人机飞行至预设的返航高度,并以所述预设的返航高度直线飞行到返航点上方,从而保证无人机的返航安全性。
可以理解的是,所述距离阈值可依据实际应用场景进行具体设置,本实施例对此不做任何限制。在一个例子中,比如所述距离阈值为50米,在所述无人机的当前位置和返航点之间的距离大于或等于50米时,无人机垂直上升到用户设定的返航高度后开始返航。如果当前高度大于设定的返航高度,表明当前高度足够安全,则可以以当前高度返航。在所述无人机的当前位置和返航点之间的距离小于50米时,所述无人机以当前高度返航,或者可以根据所述无人机的当前位置的高度与返航点的高度之间的差异确定的返航高度进行返航。
在一些实施例中,如果无人机在飞行过程中,用于避障的传感器失效,考虑到无人机飞过的历史飞行轨迹具有足够的安全性,则无人机可以根据所述无人机的历史飞行轨迹实时规划所述无人机从当前位置到返航点的返航路径,从而保证无人机的返航安全性。示例性的,所述用于避障的传感器包括视觉传感器,则在当前环境的亮度不满足视觉传感器的工作条件时,所述无人机可以根据所述无人机的历史飞行轨迹实时规划返航路径,实现原路返航。
在一些实施例中,考虑到有些情况下无人机的历史飞行轨迹较为曲折,导致根据所述无人机的历史飞行轨迹规划的返航路径并不是最短路径,从而造成所述无人机的电量损耗。则在用于避障的传感器失效的情况下,所述无人机可以沿着历史飞行轨迹飞行一段距离之后直线返航,则所述返航路径的其中一部分可以根据所述历史飞行轨迹规划,并且所述返航路径的另外一部分可以根据所述无人机所处位置与返航点之间的距离进行规划,从而有利于提高无人机的返航效率,降低返航损耗。
在一个例子中,在用于避障的传感器失效的情况下,比如当前环境的亮度不满足视觉传感器的工作条件时,所述返航路径的其中一部分可以根据所述历史飞行轨迹规划,并且所述返航路径的另外一部分可以根据所述无人机所处位置与返航点之间的距离进行规划, 所述无人机在执行返航的过程中,朝向返航方向沿着历史飞行轨迹反向飞行预设距离,然后进入直线返航,在进行直线返航时,若无人机所处位置与返航点之间的距离小于距离阈值,所述返航路径包括以所述无人机的当前高度直线飞行到返航点上方;若无人机所处位置与返航点之间的距离大于或等于所述距离阈值,所述返航路径包括所述无人机飞行至返航高度,并以返航高度直线飞行到返航点上方。
在一些实施例中,可以基于用于避障的传感器失效与否设置至少两种返航模式,第一返航模式指示在用于避障的传感器正常运行的情况下,所述无人机基于所述传感器的探测数据实时规划安全且最短的返航路径,有利于节省电量损耗,提高返航效率。第二返航模式指示在用于避障的传感器失效的情况下,所述无人机根据所述无人机从当前位置到返航点之间的距离和/或历史飞行轨迹规划返航路径,保证返航安全性。所述无人机可以基于用于避障的传感器失效与否选择不同的返航模式进行返航,综合两种返航策略实现兼顾无人机的返航效率和返航安全性。
在一些实施例中,在所述无人机执行返航的过程中,当无人机飞行至返航点附近时,为了节省电量消耗与返航耗时,无人机可以边返航变下降,即斜飞至所述返航点。请参阅图8,相关技术中通常无人机所处位置距离所述返航点预设距离、或者返航点与所述无人机所处位置之间的连线满足预设斜率的情况下直接开始斜飞,请参阅图8所示的斜飞轨迹400,在存在障碍物的情况下,可能导致无人机在斜飞的过程中与障碍物发生碰撞。因此,为了避免无人机在斜飞的过程中与障碍物发生碰撞,在用于避障的传感器正常运行的情况下,无人机可以根据所述传感器的探测数据确定所述无人机的斜飞下降时机,如图8所示,当无人机飞行至返航点附近时,如果基于所述传感器的探测数据确定当前位置与返航点之间存在障碍物,不适合斜飞下降,则继续沿着规划路径飞行,直到根据所述传感器的探测数据确定无人机当前位置和返航点之间不存在影响无人机斜飞下降的障碍物,则可以确定所述无人机的斜飞下降时机并斜飞下降至返航点,如图8所示的斜飞轨迹500,基于所述传感器的探测数据确定的斜飞下降时机保证了无人机在斜飞时不会与障碍物发生碰撞,从而有利于保证无人机的返航安全性。
在一些实施例中,在无人机执行飞行任务的过程中,在无人机所处环境障碍物众多、或者无人机与障碍物离得比较近的情况下,无人机可能无法规划出从当前位置到返航点的返航路径,若无法规划出从当前位置到返航点的返航路径,无人机可以向所述遥控设备发送第二指示信息,以使得所述遥控设备在显示界面显示无法执行自动返航并建议手动返航的提示信息,从而保证无人机的返航安全性。所述提示信息包括但不限于视觉信息或者听觉信息。
示例性的,在用户通过遥控设备控制无人机飞行的过程中,所述无人机可以获取所述遥控设备发送的飞行控制指令,然后根据所述飞行控制指令确定所述无人机的预测飞行路径,实时规划所述无人机从预测飞行路径上的路径点到返航点的返航路径,若无法规划出从预测飞行路径上的路径点到返航点的返航路径,向所述遥控设备发送第二指示信息,以使得所述遥控设备在显示界面显示可能无法执行自动返航并建议手动返航的提示信息。所述提示信息包括但不限于视觉信息或者听觉信息。本实施例中,可以实时获取周围环境的信息进行路径规划,因此可以及时提醒用户当前操作可能导致无法返航,例如比较厉害的飞手可以在稠密环境中控制无人机飞行,但基于无人机的飞行安全考虑在该稠密环境中无法安全自动返航,因此可以提示用户以便用户预留充足的时间手动控制无人机返航。
在一些实施例中,所述无人机还将自身的实时位置发送给所述遥控设备,以便所述遥控设备在显示界面上显示所述实时位置,从而让用户及时了解所述无人机所处位置。示例性的,无人机以第一频率实时规划返航路径并发送给所述遥控设备,以第二频率获取无人机的实时位置并发送给所述遥控设备;通常情况下,返航路径规划所需的时长较长,则所述第二频率大于所述第一频率。
相应地,请参阅图9,本申请实施例还提供了一种无人机的返航方法,所述方法应用于无人机的遥控设备,包括:
在步骤S201中,接收所述无人机实时发送的从所述无人机当前位置到返航点的返航路径;所述返航路径由所述无人机在飞行过程中实时规划得到。
在步骤S202中,在所述遥控设备的显示界面显示所述返航路径。
在一些实施例中,所述在显示界面显示所述返航路径,包括:响应于所述无人机返航触发,在显示界面显示所述返航路径。
其中,由于无人机是实时规划返航路径并实时发送给遥控设备的,遥控设备可以响应于无人机返航触发,在显示界面显示最新接收到的返航路径。此外,在返航的过程中,遥控器也可以在显示界面上显示后续更新的返航路径。
其中,所述无人机返航触发的条件包括:用户主动触发无人机返航、所述无人机的剩余电量低于低电量返航阈值、或者所述无人机与所述遥控设备失联。本实施例中,在无人机返航时能够在遥控设备上显示返航路径,以便用户可以在无人机返航时基于返航路径及时了解无人机的返航情况,即使在无人机与遥控设备失联的情况下,遥控设备也可以基于失联之前接收到的返航路径进行显示,有利于提高无人机的返航安全性。
在一些实施例中,所述无人机安装有能够用于避障的传感器;所述返航路径是在所述 传感器正常运行的情况下,根据所述传感器的探测数据实时规划的;所述方法还包括:在所述无人机执行返航的过程中,向所述无人机发送第一控制指令和/或第二控制指令;或者,不向所述无人机发送所述第一控制指令;所述第一控制指令用于控制机头朝向,左右飞行或者飞行高度;所述第二控制指令用于控制飞行速度。本实施例考虑到飞行环境的复杂性,在按照规划的返航路径返航的过程中如果叠加用户施加的有关于改变位姿的控制指令,可能会导致无人机飞到极端位置无法返航或者可能撞到障碍物,因此在执行返航的过程中,不想无人机发送第一控制指令,即用户操作可以控制无人机在返航路径上的飞行速度,但不可以控制机头朝向,左右飞行或者飞行高度,从而保证无人机返航的安全性。
在一些实施例中,还包括:接收所述无人机发送的第一指示信息,根据所述第一指示信息输出电量损耗增加的提示信息;其中,所述第一指示信息是所述无人机在所述第二控制指令指示的速度与预设速度的差值大于速度差值阈值的情况下发送的。所述提示信息包括但不限于视觉信息或者听觉信息。
在一些实施例中,所述无人机以第一频率规划所述返航路径;所述方法还包括:接收所述无人机以第二频率发送的所述无人机的实时位置;其中,所述第二频率大于所述第一频率。
其中,在所述第二频率大于所述第一频率的情况下,可能存在所述无人机最新的实时位置不是最新的返航路径的起点的情况。针对于该情况所述遥控设备可以有如下几种显示方案:
请参阅图10A,若最新接收的实时位置大致处于在最新接收的返航路径上,表明无人机可能已经沿着返航路径飞了一段距离,所述遥控设备可以只显示所述最新接收的实时位置与返航点之间的返航路径,对于所述最新接收的实时位置与返航路径的起点之间的返航路径(图10A中的虚线部分)则不进行显示,从而可以让用户及时了解所述无人机的实际返航情况。其中,所述最新接收的实时位置大致处于在最新接收的返航路径上可以包括以下情况:所述最新接收的实时位置处于所述最新接收的返航路径上,或者所述最新接收的实时位置处于所述最新接收的返航路径附近且两者的距离不大于预设偏离距离。
若最新接收的实时位置偏离最新接收的返航路径,则所述遥控设备可以获取关联两者的线段600并显示所述线段600;所述线段包括两者之间的连线或者历史飞行轨迹。示例性的,在最新接收的实时位置与最新接收的返航路径两者之间的距离大于所述预设偏离距离的情况下,确定最新接收的实时位置偏离最新接收的返航路径。示例性的,所述关联两者的线段包括:所述最新接收的实时位置与所述最新接收的返航路径上距离所述最新接收的实时位置最近的路径点之间的线段。在一个例子中,如果所述最新接收的返航路径上距 离所述最新接收的实时位置最近的路径点为所述返航路径的起点,请参阅图10B,所述关联两者的线段600可以是所述最新接收的实时位置与所述最新接收的返航路径200的起点之间的连线;请参阅图10C,所述关联两者的线段600可以是所述最新接收的实时位置与所述最新接收的返航路径200的起点之间的历史飞行轨迹。
示例性地,为了区分所述关联两者的线段600与所述返航路径200,所述关联两者的线段600与所述返航路径200可以以不同的样式进行显示,如以不同的颜色,不同的线条粗细,不同的线条样式进行显示。
在一些实施例中,所述方法还包括:接收所述无人机发送的第二指示信息,根据所述第二指示信息输出可能无法执行自动返航并建议手动返航的提示信息;所述第二指示信息是所述无人机在无法规划出所述返航路径的情况下发送的。所述提示信息包括但不限于视觉信息或者听觉信息。
其中,关于遥控设备中的相关之处也可参见无人机侧的说明即可。可以理解的是,以上实施方式中的各种技术特征可以任意进行组合,只要特征之间的组合不存在冲突或矛盾,则上述实施方式中的各种技术特征的任意进行组合也属于本说明书公开的范围。
相应的,请参阅图11,本申请实施例还提供了一种无人机的返航装置30,包括:
一个或多个处理器31;
用于存储所述处理器31的可执行指令的存储器32;
其中,所述一个或多个处理器31执行所述可执行指令时,被单独地或共同地配置成执行上述的返航方法。
所述处理器31执行所述存储器32中包括的可执行指令,所述处理器31可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器32存储返航方法的可执行指令,所述存储器32可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储 器32可以是返航装置30的内部存储单元,例如返航装置30的硬盘或内存。存储器32也可以是返航装置30的外部存储设备,例如返航装置30上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器32还可以既包括返航装置30的内部存储单元也包括外部存储设备。存储器32用于存储可执行指令以及返航装置30所需的其他程序和数据。存储器32还可以用于暂时地存储已经输出或者将要输出的数据。
这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
上述设备中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
相应的,本申请实施例还提供了一种无人机,包括:
机身;
动力系统,设于所述机身中,用于为所述无人机提供动力;
以及,设于所述机身中的如图11所述的返航装置30。
示例性的,所述返航装置30可以是图1所述实施例中的飞行控制器。
相应的,本申请实施例还提供了一种遥控设备,包括:
用于存储可执行指令的存储器;
一个或多个处理器;
其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行上述的返航方法。
相应的,请参阅图1,本申请实施例还提供了一种飞行系统,包括上述的无人机和上述的遥控设备;所述遥控设备和所述无人机能够通信连接。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行上述方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (34)

  1. 一种无人机的返航方法,其特征在于,所述方法应用于无人机,包括:
    在无人机飞行过程中,实时规划所述无人机从当前位置到返航点的返航路径;
    将所述返航路径实时发送给遥控设备,以使所述遥控设备在显示界面显示所述返航路径。
  2. 根据权利要求1所述的方法,其特征在于,
    所述遥控设备用于响应于所述无人机返航触发,在显示界面显示所述返航路径。
  3. 根据权利要求2所述的方法,其特征在于,所述无人机返航触发的条件包括:
    用户主动触发无人机返航、所述无人机的剩余电量低于低电量返航阈值、或者所述无人机与所述遥控设备失联。
  4. 根据权利要求1所述的方法,其特征在于,所述无人机安装有能够用于避障的传感器,所述实时规划所述无人机从当前位置到返航点的返航路径,包括:
    若所述传感器正常运行,根据所述传感器的探测数据实时规划所述无人机从当前位置到返航点的返航路径,以使得所述无人机在执行返航的过程中避开障碍物。
  5. 根据权利要求4所述的方法,其特征在于,所述能够用于避障的传感器包括视觉传感器,所述传感器正常运行包括:所述无人机所处环境的亮度满足所述视觉传感器的工作条件。
  6. 根据权利要求4所述的方法,其特征在于,还包括:
    在所述无人机执行返航的过程中,不响应所述遥控设备发送的第一控制指令,所述第一控制指令用于控制机头朝向,左右飞行或者飞行高度。
  7. 根据权利要求4所述的方法,其特征在于,还包括:
    在所述无人机执行返航的过程中,响应所述遥控设备发送的用于控制飞行速度的第二控制指令,若所述第二控制指令指示的速度与预设速度的差值大于速度差值阈值,向遥控设备发送第一指示信息以使得所述遥控设备输出电量损耗增加的提示信息;其中,所述预设速度指示航程最大时所述无人机对应的飞行速度。
  8. 根据权利要求4所述的方法,其特征在于,所述根据所述传感器的探测数据实时规划所述无人机从当前位置到返航点的返航路径,包括:
    根据所述传感器的探测数据确定所述无人机所处环境的栅格地图和路网地图;
    根据所述栅格地图和所述路网地图实时规划所述无人机从当前位置到返航点的返航路径;
    其中,所述栅格地图中包括多个栅格,每个栅格对应有第一代价系数,所述第一 代价系数表征经过所述栅格的安全风险,所述路网地图中包括多条边,每条边对应有第二代价系数,所述第二代价系数表征经过所述边的安全风险。
  9. 根据权利要求8所述的方法,其特征在于,至少部分所述路网地图基于所述无人机的历史飞行轨迹和所述传感器在所述无人机沿所述历史飞行轨迹飞行时采集的探测数据确定得到。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述栅格地图和所述路网地图实时规划所述无人机从当前位置到返航点的返航路径,包括:
    基于搜索的方法在所述栅格地图和所述路网地图中进行路径搜索,获取所述返航路径;
    基于采样的方法在所述路网地图中优化所述返航路径。
  11. 根据权利要求4-10任一项所述的方法,其特征在于,所述实时规划所述无人机从当前位置到返航点的返航路径,包括:
    若所述传感器失效,根据所述无人机的当前位置和所述返航点之间的距离实时规划所述无人机从当前位置到返航点的返航路径。
  12. 根据权利要求11所述的方法,其特征在于,
    若所述无人机的当前位置和返航点之间的距离小于距离阈值,所述返航路径包括以所述无人机的当前高度直线飞行到返航点上方;
    若所述无人机的当前位置和返航点之间的距离大于或等于所述距离阈值,所述返航路径包括所述无人机飞行至返航高度,并以返航高度直线飞行到返航点上方。
  13. 根据权利要求4-10任一项所述的方法,其特征在于,所述实时规划所述无人机从当前位置到返航点的返航路径,包括:
    若所述传感器失效,根据所述无人机的历史飞行轨迹实时规划所述无人机从当前位置到返航点的返航路径。
  14. 根据权利要求1所述的方法,其特征在于,所述返航路径以第一频率实时规划得到并发送给所述遥控设备;所述方法还包括:
    以第二频率将所述无人机的实时位置发送给所述遥控设备,以使所述遥控设备在显示界面上显示所述实时位置;其中,所述第二频率大于所述第一频率。
  15. 根据权利要求1或4所述的方法,其特征在于,还包括:
    在所述无人机执行返航的过程中,当飞行至所述返航点附近,根据所述传感器的探测数据确定所述无人机的斜飞下降时机。
  16. 根据权利要求1所述的方法,其特征在于,还包括:
    若无法规划出从当前位置到返航点的返航路径,向所述遥控设备发送第二指示信息,以使得所述遥控设备输出可能无法执行自动返航并建议手动返航的提示信息。
  17. 根据权利要求1所述的方法,其特征在于,还包括:
    获取所述遥控设备发送的飞行控制指令;
    根据所述飞行控制指令确定所述无人机的预测飞行路径;
    实时规划所述无人机从预测飞行路径上的路径点到返航点的返航路径;
    若无法规划出从预测飞行路径上的路径点到返航点的返航路径,向所述遥控设备发送第二指示信息,以使得所述遥控设备输出可能无法执行自动返航并建议手动返航的提示信息。
  18. 根据权利要求1所述的方法,其特征在于,所述在无人机飞行过程中,实时规划所述无人机从当前位置到返航点的返航路径,包括:
    所述无人机起飞之后,实时规划所述无人机从当前位置到返航点的返航路径;
    或者所述无人机返航触发之前,实时规划所述无人机从当前位置到返航点的返航路径;
    或者若所述无人机与返航点的距离大于距离阈值,实时规划所述无人机从当前位置到返航点的返航路径。
  19. 一种无人机的返航方法,其特征在于,所述方法应用于无人机的遥控设备,包括:
    接收所述无人机实时发送的从所述无人机当前位置到返航点的返航路径;所述返航路径由所述无人机在飞行过程中实时规划得到;
    在所述遥控设备的显示界面显示所述返航路径。
  20. 根据权利要求19所述的方法,其特征在于,所述在所述遥控设备的显示界面显示所述返航路径,包括:
    响应于所述无人机返航触发,在显示界面显示所述返航路径。
  21. 根据权利要求19所述的方法,其特征在于,所述无人机返航触发的条件包括:
    用户主动触发无人机返航、所述无人机的剩余电量低于低电量返航阈值、或者所述无人机与所述遥控设备失联。
  22. 根据权利要求19所述的方法,其特征在于,所述无人机安装有能够用于避障的传感器;所述返航路径是在所述传感器正常运行的情况下,根据所述传感器的探测数据实时规划的;
    所述方法还包括:
    在所述无人机执行返航的过程中,向所述无人机发送第一控制指令和/或第二控制指令;或者,不向所述无人机发送所述第一控制指令;所述第一控制指令用于控制机头朝向,左右飞行或者飞行高度;所述第二控制指令用于控制飞行速度。
  23. 根据权利要求22所述的方法,其特征在于,还包括:
    接收所述无人机发送的第一指示信息,根据所述第一指示信息输出电量损耗增加的提示信息;其中,所述第一指示信息是所述无人机在所述第二控制指令指示的速度与预设速度的差值大于速度差值阈值的情况下发送的。
  24. 根据权利要求19所述的方法,其特征在于,所述无人机以第一频率规划所述返航路径;
    所述方法还包括:
    接收所述无人机以第二频率发送的所述无人机的实时位置;其中,所述第二频率大于所述第一频率。
  25. 根据权利要求24所述的方法,其特征在于,还包括:
    若最新接收的实时位置大致处于在最新接收的返航路径上,显示所述最新接收的实时位置与返航点之间的返航路径。
  26. 根据权利要求24所述的方法,其特征在于,还包括:
    若最新接收的实时位置偏离最新接收的返航路径,获取关联两者的线段并显示所述线段;其中,所述线段包括两者之间的连线或者历史飞行轨迹。
  27. 根据权利要求26所述的方法,其特征在于,所述关联两者的线段包括:
    所述最新接收的实时位置与所述最新接收的返航路径上距离所述最新接收的实时位置最近的路径点之间的线段。
  28. 根据权利要求26所述的方法,其特征在于,所述返航路径和所述线段以不同的显示样式区别显示。
  29. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    接收所述无人机发送的第二指示信息,根据所述第二指示信息输出可能无法执行自动返航并建议手动返航的提示信息;所述第二指示信息是所述无人机在无法规划出所述返航路径的情况下发送的。
  30. 一种无人机的返航装置,其特征在于,包括:
    一个或多个处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行如权利要求1至18任意一项所述的返航方法。
  31. 一种无人机,其特征在于,包括:
    机身;
    动力系统,设于所述机身中,用于为所述无人机提供动力;
    以及,设于所述机身中的如权利要求30所述的返航装置。
  32. 一种遥控设备,其特征在于,包括:
    用于存储可执行指令的存储器;
    一个或多个处理器;
    其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行如权利要求19至29任意一项所述的返航方法。
  33. 一种飞行系统,其特征在于,包括如权利要求31所述的无人机和如权利要求32所述的遥控设备;所述遥控设备和所述无人机能够通信连接。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如权利要求1至29任一项所述的方法。
PCT/CN2021/128566 2021-11-04 2021-11-04 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质 WO2023077341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101588.8A CN117836737A (zh) 2021-11-04 2021-11-04 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质
PCT/CN2021/128566 WO2023077341A1 (zh) 2021-11-04 2021-11-04 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128566 WO2023077341A1 (zh) 2021-11-04 2021-11-04 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2023077341A1 true WO2023077341A1 (zh) 2023-05-11

Family

ID=86240532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128566 WO2023077341A1 (zh) 2021-11-04 2021-11-04 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117836737A (zh)
WO (1) WO2023077341A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116483128A (zh) * 2023-06-19 2023-07-25 湖南林科达信息科技有限公司 一种无人机多任务载荷装置转换方法及系统
CN116736747A (zh) * 2023-08-15 2023-09-12 陕西德鑫智能科技有限公司 一种无人机应急处理方法及装置
CN116994153A (zh) * 2023-08-22 2023-11-03 中国科学院空天信息创新研究院 遥感卫星真实性检验系统
CN117631690A (zh) * 2024-01-25 2024-03-01 国网江西省电力有限公司电力科学研究院 基于迭代适应点算法的配电网巡检航线规划方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321085A (ja) * 1999-05-13 2000-11-24 Japan Radio Co Ltd 車載用経路誘導装置及びその経路誘導方法
CN105867423A (zh) * 2016-06-08 2016-08-17 杨珊珊 无人飞行器返航方法、返航系统及其无人飞行器
CN107291099A (zh) * 2017-07-06 2017-10-24 杨顺伟 无人机返航方法及装置
CN207328431U (zh) * 2017-11-03 2018-05-08 李青松 一种纯电动专用车用无人驾驶系统
CN113296544A (zh) * 2021-07-27 2021-08-24 北京远度互联科技有限公司 无人机返航路径规划方法、无人机、电子设备及计算机可读存储介质
CN113296545A (zh) * 2021-07-27 2021-08-24 北京远度互联科技有限公司 无人机返航路径规划方法、无人机、电子设备及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321085A (ja) * 1999-05-13 2000-11-24 Japan Radio Co Ltd 車載用経路誘導装置及びその経路誘導方法
CN105867423A (zh) * 2016-06-08 2016-08-17 杨珊珊 无人飞行器返航方法、返航系统及其无人飞行器
CN107291099A (zh) * 2017-07-06 2017-10-24 杨顺伟 无人机返航方法及装置
CN207328431U (zh) * 2017-11-03 2018-05-08 李青松 一种纯电动专用车用无人驾驶系统
CN113296544A (zh) * 2021-07-27 2021-08-24 北京远度互联科技有限公司 无人机返航路径规划方法、无人机、电子设备及计算机可读存储介质
CN113296545A (zh) * 2021-07-27 2021-08-24 北京远度互联科技有限公司 无人机返航路径规划方法、无人机、电子设备及计算机可读存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116483128A (zh) * 2023-06-19 2023-07-25 湖南林科达信息科技有限公司 一种无人机多任务载荷装置转换方法及系统
CN116483128B (zh) * 2023-06-19 2023-10-27 湖南林科达信息科技有限公司 一种无人机多任务载荷装置转换方法及系统
CN116736747A (zh) * 2023-08-15 2023-09-12 陕西德鑫智能科技有限公司 一种无人机应急处理方法及装置
CN116736747B (zh) * 2023-08-15 2023-11-14 陕西德鑫智能科技有限公司 一种无人机应急处理方法及装置
CN116994153A (zh) * 2023-08-22 2023-11-03 中国科学院空天信息创新研究院 遥感卫星真实性检验系统
CN116994153B (zh) * 2023-08-22 2024-02-06 中国科学院空天信息创新研究院 遥感卫星真实性检验系统
CN117631690A (zh) * 2024-01-25 2024-03-01 国网江西省电力有限公司电力科学研究院 基于迭代适应点算法的配电网巡检航线规划方法及系统

Also Published As

Publication number Publication date
CN117836737A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2023077341A1 (zh) 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质
US11776413B2 (en) Aerial vehicle flight control method and device thereof
US20230195112A1 (en) Flight path determination
US11914369B2 (en) Multi-sensor environmental mapping
CN110062919B (zh) 递送车辆的放下地点规划
US10403161B1 (en) Interface for accessing airspace data
CN102582826B (zh) 一种四旋翼无人飞行器的驾驶方法和系统
US8626361B2 (en) System and methods for unmanned aerial vehicle navigation
JP2020098567A (ja) 適応検知・回避システム
US20170073070A1 (en) Amphibious vertical takeoff and landing unmanned device with artificial intelligence (AI) and method and system for managing a crisis environment and controlling one or more targets
US10739792B2 (en) Trajectory control of a vehicle
US20210034052A1 (en) Information processing device, instruction method for prompting information, program, and recording medium
JP2019028712A (ja) 飛行体の誘導方法、誘導装置、及び誘導システム
US20190283872A1 (en) Medivac drone 1000
JP2021061005A (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
WO2021237462A1 (zh) 无人飞行器的限高方法、装置、无人飞行器及存储介质
CN111684384B (zh) 一种无人机的飞行控制方法、设备及无人机
CN110799922A (zh) 拍摄控制方法和无人机
JPWO2021070274A1 (ja) 処理システム、無人航空機、及び飛行経路決定方法
CN110832420A (zh) 无人机的控制方法、装置和无人机
WO2023060467A1 (zh) 无人机的返航方法、装置、无人机及存储介质
WO2023181253A1 (ja) 運航管理システム、運航管理方法、および記録媒体
US20240019866A1 (en) Aerial vehicle control method and apparatus, aerial vehicle, and storage medium
WO2024009447A1 (ja) 飛行制御システム、及び飛行制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962859

Country of ref document: EP

Kind code of ref document: A1