WO2023060467A1 - 无人机的返航方法、装置、无人机及存储介质 - Google Patents

无人机的返航方法、装置、无人机及存储介质 Download PDF

Info

Publication number
WO2023060467A1
WO2023060467A1 PCT/CN2021/123457 CN2021123457W WO2023060467A1 WO 2023060467 A1 WO2023060467 A1 WO 2023060467A1 CN 2021123457 W CN2021123457 W CN 2021123457W WO 2023060467 A1 WO2023060467 A1 WO 2023060467A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
uav
sensor
strategy
obstacle avoidance
Prior art date
Application number
PCT/CN2021/123457
Other languages
English (en)
French (fr)
Inventor
赵力尧
吴宇豪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180101549.8A priority Critical patent/CN117836736A/zh
Priority to PCT/CN2021/123457 priority patent/WO2023060467A1/zh
Publication of WO2023060467A1 publication Critical patent/WO2023060467A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, relates to a return method and device for an unmanned aerial vehicle, an unmanned aerial vehicle and a storage medium.
  • UAV unmanned aerial vehicle
  • An unmanned aerial vehicle is an unmanned aircraft operated by radio-controlled equipment and self-contained program controls, or operated entirely or intermittently autonomously by an on-board computer.
  • UAVs are widely used in aerial photography, agricultural plant protection, micro selfies, express transportation, disaster relief, observing wild animals, monitoring infectious diseases, surveying and mapping, news reports, power inspections, disaster relief, film and television shooting and other scenarios.
  • the return strategy in related technologies usually allows the UAV to return at a higher return height to ensure flight safety. , but it takes more power and time to ascend to a higher return altitude, the return efficiency is low, and in order to ensure that there is enough power to return safely, the power (or duration) of the normal operation of the UAV will also vary. Reduced, reducing the user experience.
  • one of the purposes of the present application is to provide a method and device for returning a UAV, a UAV and a storage medium.
  • the embodiment of the present application provides a method for returning a drone, including:
  • the return path of the UAV is determined based on the first return strategy
  • the return path of the drone is determined based on the second return strategy
  • the first return strategy includes controlling the UAV to fly to a return altitude; the second return strategy includes determining the return path of the UAV based on the detection data of the sensor.
  • the embodiment of the present application provides a method for returning a drone.
  • the drone is provided with a visual sensor, including:
  • the first return strategy includes controlling the UAV to fly to a return altitude; the second return strategy includes determining the return path of the UAV based on the detection data of the visual sensor.
  • the embodiment of the present application provides a return-to-home device for a drone, including:
  • processors one or more processors
  • the one or more processors execute the executable instructions, they are individually or collectively configured to execute the method described in the first aspect or the second aspect.
  • the embodiment of the present application provides a drone, including:
  • a power system arranged in the fuselage, for providing power for the unmanned aerial vehicle
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, the first aspect or the second aspect is implemented. the method described.
  • the method of returning to the UAV provided by the embodiment of the present application provides two returning strategies.
  • the second returning strategy is used, and the UAV does not need to fly to the returning method. height, but based on the detection data of the sensor for obstacle-avoidance return, which is beneficial to shorten the return path, save power consumption, and improve return efficiency;
  • the aircraft flies to the return altitude to ensure the flight safety of the UAV, and the two return strategies are combined to achieve both return efficiency and safety of the UAV.
  • FIG. 1 is a schematic diagram of the architecture of an unmanned aerial system provided by an embodiment of the present application
  • FIG. 2 is a schematic flow diagram of a method for returning a drone provided by an embodiment of the present application
  • Fig. 3 is a schematic flow chart of detecting whether a visual sensor is invalid according to an embodiment of the present application
  • Fig. 4 is a schematic flow chart of another UAV return method provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of prompt information output provided by an embodiment of the present application.
  • FIG. 6 is another schematic diagram related to the output of prompt information provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a return-to-home device for a drone provided by an embodiment of the present application.
  • the embodiment of the present application is optimized for the return of the unmanned aerial vehicle (UAV), so as to take into account the efficiency and safety of the return of the UAV during the return process.
  • UAV unmanned aerial vehicle
  • the unmanned aerial vehicle may be a rotorcraft, for example, a multi-rotor unmanned aerial vehicle propelled by a plurality of propulsion devices through the air, the embodiments of the present application are not limited thereto, the unmanned aerial vehicle Other types of drones are also possible.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial system according to an embodiment of the present application.
  • a rotor drone is taken as an example for illustration.
  • the unmanned aerial system 100 may include a drone 110 , a display device 130 and a remote control device 140 .
  • the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, a frame and a pan-tilt 120 carried on the frame.
  • the drone 110 can communicate wirelessly with the remote control device 140 and the display device 130 .
  • the UAV 110 can be an agricultural UAV or an industrial application UAV, and there is a need for cyclic operations.
  • the frame may include the fuselage and undercarriage (also known as landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage and is used for supporting the UAV 110 when it lands.
  • the power system 150 may include one or more electronic governors (abbreviated as ESCs) 151, one or more propellers 153 and one or more motors 152 corresponding to the one or more propellers 153, wherein the motors 152 are connected to Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the machine arm of the UAV 110; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160, and provide driving according to the driving signal Current is supplied to the motor 152 to control the speed of the motor 152 .
  • ESCs electronic governors
  • the motor 152 is used to drive the propeller to rotate, so as to provide power for the flight of the UAV 110 , and the power enables the UAV 110 to realize movement of one or more degrees of freedom.
  • drone 110 may rotate about one or more axes of rotation.
  • the rotation axis may include a roll axis (Roll), a yaw axis (Yaw) and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 can be a brushless motor or a brushed motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162 .
  • the sensing system 162 is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the UAV 110 , for example, the flight of the UAV 110 can be controlled according to the attitude information measured by the sensing system 162 . It should be understood that the flight controller 161 can control the UAV 110 according to pre-programmed instructions, or can control the UAV 110 by responding to one or more remote control signals from the remote control device 140 .
  • the gimbal 120 may include a motor 122 .
  • the pan-tilt is used to carry the photographing device 123 .
  • the flight controller 161 can control the movement of the gimbal 120 through the motor 122 .
  • the pan-tilt 120 may further include a controller for controlling the movement of the pan-tilt 120 by controlling the motor 122 .
  • the gimbal 120 may be independent of the UAV 110 or be a part of the UAV 110 .
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the gimbal can be located on top of the drone or on the bottom of the drone.
  • the photographing device 123 can be, for example, a camera or a video camera or other equipment for capturing images.
  • the photographing device 123 can communicate with the flight controller and take pictures under the control of the flight controller.
  • the photographing device 123 in this embodiment includes at least a photosensitive element, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) sensor or a charge-coupled device (Charge-coupled Device, CCD) sensor. It can be understood that the camera device 123 can also be directly fixed on the drone 110, so that the pan-tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD charge-coupled Device
  • the display device 130 is located at the ground end of the UAV 100 , can communicate with the UAV 110 wirelessly, and can be used to display the attitude information of the UAV 110 .
  • the image captured by the capturing device 123 may also be displayed on the display device 130 .
  • the display device 130 may be an independent device, or may be integrated in the remote control device 140 .
  • the remote control device 140 is located at the ground end of the unmanned aerial system 100 , and can communicate with the UAV 110 in a wireless manner for remote control of the UAV 110 .
  • the return-to-home efficiency is low and the power required for the return-to-home increase may lead to a decrease in the power (or duration) of the normal operation of the UAV.
  • the embodiment of the application provides a return method of the UAV, and the return method can be executed by the return device of the UAV.
  • the return-to-home device may be the flight controller in the embodiment in FIG. 1 .
  • Fig. 2 shows a schematic flow chart of a method for returning a drone, and the method includes:
  • step S201 it is detected whether the sensor used for obstacle avoidance fails.
  • step S202 if the sensor used for obstacle avoidance fails, the return path of the UAV is determined based on the first return strategy.
  • step S203 if the sensor used for obstacle avoidance operates normally, determine the return path of the UAV based on the second return strategy; wherein, the first return strategy includes controlling the UAV to fly to the return altitude; The second return strategy includes determining a return path of the UAV based on the detection data of the sensor.
  • two return-to-home strategies are provided.
  • the UAV When the sensor used for obstacle avoidance operates normally, the UAV does not need to fly to the return-to-home altitude, but performs obstacle-avoidance return based on the detection data of the sensor. Thereby, it is beneficial to shorten the return path, save power consumption, and improve return efficiency; in the case of failure of the sensor used for obstacle avoidance, the UAV flies to the return altitude to ensure the flight safety of the UAV, and integrates two return strategies Realize both return efficiency and return safety of drones.
  • the UAV can detect in real time whether the sensor used for obstacle avoidance fails; or, in response to the return trigger of the UAV, the UAV detects Whether the sensor used for obstacle avoidance fails, so that it is convenient to use different return strategies to determine the return path of the UAV according to the state of the sensor (failure state/normal operation state), so as to take into account the return efficiency and return of the UAV safety.
  • the sensors used for obstacle avoidance include but are not limited to visual sensors, lidar, millimeter-wave radar or ultrasonic sensors, etc., and the detection data of one of the sensors can be selected according to the actual application scenario for obstacle detection, or fusion
  • the detection data of at least two sensors is used for obstacle detection, so that the UAV can decide whether to avoid obstacles based on the obstacle detection results.
  • the senor for obstacle avoidance may fail due to internal factors, such as aging, wear or damage of the internal components of the sensor for obstacle avoidance, and in this case, the UAV If a valid signal cannot be received from the sensor, it can be determined that a fault may have occurred inside the sensor.
  • the sensor for obstacle avoidance may fail due to external factors.
  • the sensor for obstacle avoidance fails to collect detection data that meets preset requirements due to external environmental influences. Assume that it is required to indicate that the detection data collected by the sensor can perform effective obstacle detection.
  • the visual sensor is more sensitive to the brightness of the environment. For example, in a dark environment, the detection data collected by the visual sensor cannot be used for effective obstacle detection. In the event of an obstacle detection error, that is, the detection data does not meet the preset requirements, and the visual sensor is in a failure state in this case.
  • the lidar as an example of the sensor used for obstacle avoidance
  • environments such as haze and sandstorms have a greater impact on the lidar, and the laser pulses emitted by the lidar are difficult to penetrate fog, smoke or dust.
  • the echo signal collected by the lidar is weak, and effective obstacle detection cannot be performed, and obstacle detection errors may occur, that is, the detection data does not meet the preset requirements. In case of failure.
  • taking the sensor used for obstacle avoidance as an example of a visual sensor if the sensor itself is not faulty, it may be determined whether the visual sensor fails according to the brightness of the environment.
  • the ambient light brightness of the environment where the UAV is located can be detected, and if the ambient light brightness is lower than a preset threshold, it indicates that the detection data collected by the visual sensor may not be effective. Obstacle detection, it is determined that the visual sensor is invalid; if the ambient light brightness is higher than or equal to the preset threshold, it indicates that the detection data collected by the visual sensor can perform effective obstacle detection, then it is determined that the visual The sensor is functioning normally.
  • the preset threshold may be specifically set according to an actual application scenario, which is not limited in this embodiment.
  • the sensor itself For the detection of the brightness of the ambient light, if the sensor itself is not faulty, it can be based on the number of photons received by the photosensitive elements in one or more of the vision sensors, and/or one or more of the vision sensors.
  • the pixel value of the pixel in the image collected by the sensor is used to determine the brightness of the ambient light.
  • the number of photons is positively correlated with the brightness of the ambient light, that is, the more the number of photons, the greater the brightness of the ambient light.
  • the pixel value of the pixel is positively correlated with the brightness of the ambient light.
  • the pixel value of the pixel is represented by a gray value, and a higher gray value indicates a higher brightness of the ambient light.
  • the ambient light brightness may be determined according to any one of the number of photons and the pixel value of the pixel in the image, or the ambient light brightness may be jointly determined according to both. There are no restrictions, and specific settings can be made based on actual application scenarios.
  • the exposure amounts indicated by the different exposure parameters are different, and the different exposure parameters may be at least one or more of the following: different exposure durations, different amounts of incoming light, or different sensitivity.
  • N is an integer greater than 0, and the exposure indicated by the N exposure parameters are different, for example, the exposure indicated by the first, second, ..., N exposure parameters gradually increases
  • the UAV determines the number of photons received by the photosensitive element in the visual sensor under the first, second, ..., N exposure parameters, and then determines the environment according to the statistical results of the number of N photons
  • the brightness of the environment may be determined according to statistical results such as an average value, a median value, a maximum value, or a minimum value of the number of N photons.
  • the number of N photons is combined for effective statistics, which can effectively eliminate the influence of individual errors and improve the detection accuracy of the ambient light brightness.
  • the sunrise time and sunset time of the day where the drone is located can be determined; if the current time is between the sunrise time and the sunset time, it is in daytime In the environment, the ambient light brightness is generally large, and it can be determined that the visual sensor is operating normally; if the current time is before sunrise or after sunset, that is, in a dark environment, and the ambient light brightness is very small, it can be determined that the visual sensor invalidated.
  • the location of the UAV can be determined according to the data collected by the satellite positioning device installed in the UAV.
  • the current date can be obtained by the UAV from an external device.
  • the UAV can communicate with a remote control terminal, and the remote control terminal can send relevant time information (such as information containing the current date) to the UAV. Said drone.
  • the storage medium of the UAV may pre-store the correspondence between the combination of position information and date information and the sunrise and sunset times, and the sunrise time and sunset time of the day where the UAV is located are based on the time of the UAV.
  • the current location and the current date are determined from the corresponding relationship.
  • the visual sensor considering that still using the visual sensor for ambient light detection in the dark environment will cause a waste of resources, and in the daytime environment, the visual sensor will also fail, such as in a cloudy scene The low brightness of the ambient light may cause the detection data collected by the visual sensor to fail to meet the preset requirements. Therefore, the above two implementation methods can be considered as a combination, as shown in FIG. 3 , which shows the process of detecting whether the visual sensor fails.
  • step S301 detect whether the visual sensor is internally faulty; for example, an inquiry command may be sent to the visual sensor, and the If there is no fault inside the visual sensor, it is determined that the internal fault of the visual sensor is not received within a preset period of time if no response from the sensor is received. If yes, execute step S302; if not, execute step S303.
  • step S302 it is determined that the visual sensor is invalid.
  • step S303 according to the location of the drone and the current date, the sunrise time and sunset time of the day where the drone is located are determined.
  • step S304 it is judged whether the current time is between sunrise time and sunset time; if yes, step S305 is executed; if not, that is, the current time is before sunrise time or after sunset time, step S302 is executed.
  • step S305 the ambient light brightness of the environment where the drone is located is detected, and it is judged whether the ambient light brightness is lower than a preset threshold, if yes, execute step S302, and if not, execute step S306.
  • step S306 it is determined that the vision sensor is operating normally.
  • the visual sensor if there is no fault inside the visual sensor, it is necessary to further detect the ambient light brightness in the daytime environment in order to accurately determine whether the visual sensor is invalid due to the influence of the external environment. If it fails due to environmental influence, there is no need to further detect the brightness of the environment, which is conducive to saving detection resources. Combining the sunrise and sunset time of the day and the real-time detection results of the visual sensor can effectively detect whether the visual sensor is invalid, which not only ensures the detection accuracy but also realizes the detection. Rational use of resources.
  • the sensor used for obstacle avoidance is lidar as an example.
  • the lidar itself is not faulty, it may be determined whether the lidar is invalid according to whether the current environment is a haze environment, a sandstorm environment, or the like. For example, if the lidar itself is not faulty, if the current environment is a haze environment, it is determined that the lidar is invalid; otherwise, it is determined that the lidar is operating normally.
  • the drone is further provided with a visual sensor, and the haze environment can be identified through images collected by the visual sensor.
  • the haze environment may be determined by the weather forecast data obtained directly or indirectly by the UAV from a preset weather platform.
  • the storage medium of the UAV pre-stores the failure reference data of the laser radar, for example, the failure reference data may be collected by the laser radar in a haze environment, a sandstorm environment, etc.
  • the UAV can determine whether the lidar is invalid according to the difference between the detection data of the lidar and the failure reference data. For example, if the detection data of the lidar is the same or has a small difference with the failure reference data, it is determined that the lidar is invalid; otherwise, it is determined that the lidar is operating normally.
  • failure reference data of the millimeter-wave radar is pre-stored in the storage medium of the drone.
  • the UAV can determine whether the millimeter wave radar is invalid according to the difference between the detection data of the millimeter wave radar and the failure reference data. For example, if the detection data of the millimeter-wave radar is the same as or has a small difference with the failure reference data, it is determined that the millimeter-wave radar is invalid; otherwise, it is determined that the millimeter-wave radar is operating normally.
  • failure reference data of the ultrasonic sensor is pre-stored in the storage medium of the drone.
  • ultrasonic waves may undergo multiple reflections or projections, and the detection effect of the ultrasonic sensor is poor, so the failure reference data may be collected by the ultrasonic radar in a relatively cluttered environment .
  • the UAV can determine whether the ultrasonic sensor is invalid according to the difference between the detection data of the ultrasonic sensor and the failure reference data. If the detection data of the ultrasonic sensor is the same or has a small difference with the failure reference data, it is determined that the ultrasonic sensor is invalid; otherwise, it is determined that the ultrasonic sensor is operating normally.
  • the return path of the drone may be determined based on the first return strategy
  • the The first return strategy includes controlling the UAV to fly to the return altitude, that is, the first return strategy instructs the UAV to fly to the return altitude during the return process, and to return at the return altitude.
  • the return path may be a straight return path, and the return path indicates that the UAV first flies to the return altitude when returning, then flies above the return point at the return altitude, and finally returns from the return altitude to the return altitude. point above to land to the home point.
  • the return-to-home altitude may be a reference return-to-home altitude preset according to the actual application scenario of the UAV, for example, the return-to-home altitude is determined by the developer according to the UAV when the UAV leaves the factory. Some possible flight scenarios are pre-set.
  • the return-to-home altitude can also be set by the user, and before the drone takes off, prompt information for setting the return-to-home altitude can be output to prompt the user to set the return-to-home altitude in the first return-to-home strategy, For example, if the prompt information for setting the return altitude is displayed on the remote control terminal communicating with the drone, the user can flexibly set the return altitude according to the flight scene where the drone is located.
  • the user can respond to the failure of the sensor for obstacle avoidance, Output the prompt information for setting the return altitude; or output the prompt information for setting the return altitude when it is detected that the sensor used for obstacle avoidance is about to fail due to external factors, thereby helping to reduce the user's operation steps.
  • the obstacle avoidance sensor is operating normally or it is predicted that the obstacle avoidance sensor can continue to operate normally, the user does not need to set the return altitude, which is beneficial to reduce the user's operation steps and improve the user experience.
  • the situation that the sensor used for obstacle avoidance is about to fail due to external factors is exemplified.
  • the visual sensor it can be determined whether the visual sensor is about to fail according to time information, such as the unmanned If the drone takes off 10 minutes before sunset, it may happen that the drone returns when it is dark, and the visual sensor fails;
  • the lidar as an example, the lidar can be determined according to the weather information. Whether it is about to fail, for example, if the drone performs a flight mission on the mountain in the morning, it may encounter foggy weather and the lidar will fail.
  • the lidar by effectively predicting whether the sensor used for obstacle avoidance will fail in the future, so that the user can set the altitude, it can effectively ensure the safety of the return flight of the drone.
  • the returning altitude may also be determined according to the difference between the altitude of the UAV at the time of returning and the height of the returning point, so as to ensure the safety of returning the UAV.
  • the current height of the UAV and the height of the return point are acquired, and if the current height of the UAV is lower than the height of the return point, it can be based on the The difference between the height of the return point and the preset safe height determines the return height of the drone.
  • the difference between the return altitude of the UAV and the current altitude is greater than or equal to the sum of the difference between the altitude of the return point and the current altitude and the preset safety altitude difference.
  • the preset safe height difference can provide height error compensation.
  • the first returning strategy includes controlling the UAV to return at the current altitude.
  • the first return strategy includes, if the distance between the UAV and the return point is less than a certain distance threshold, fly above the return point at the current altitude; if the distance between the UAV and the return point is greater than a certain distance threshold, control without The man-machine flies to the return altitude, and flies above the return point at the return altitude. Even if the sensor used for obstacle avoidance fails, in most scenarios, there are fewer obstacles around the home point. When the distance between the drone and the home point is relatively close, it is safer to return at the current altitude, which can avoid The waste of power caused by the unnecessary elevation of the drone.
  • the return path of the drone may be determined based on the second return strategy
  • the The second return strategy includes determining the return path of the UAV based on the detection data of the sensor, and the second return strategy indicates that the UAV can be planned according to the distribution of obstacles detected by the sensor
  • the return path, the distribution of the obstacles is determined according to the detection data of the sensor.
  • the shortest return path of the UAV can be planned according to the distribution of obstacles detected by the sensor in the historical time period, and during the return process of the UAV according to the shortest return path, according to The distribution of obstacles observed by the sensor in real time adjusts the shortest return path, so that the UAV performs the return mission according to the adjusted shortest return path.
  • the UAV in response to the return trigger of the UAV, in the event that the sensor used for obstacle avoidance fails, the UAV performs the return mission with the return path determined by the first return strategy, and at the same time can Output the first prompt information, the first prompt information is used to prompt the user that obstacle avoidance fails, and the UAV returns with the first return strategy, such as the first prompt information is "Obstacle avoidance failure, UAV will rise High to return altitude".
  • the UAV executes the return mission with the return path determined by the second return strategy, and can output the second prompt information at the same time , the second prompt information is used to remind the user that the UAV uses the second return strategy to avoid obstacles. Describe the return of the UAV.
  • the UAV executes the return mission with the return path determined by the second return strategy, and the UAV performs the return mission with the second return strategy.
  • Two return strategy During the return process, the UAV can detect in real time whether the sensor for obstacle avoidance fails, and if the sensor for obstacle avoidance fails, switch from the second return strategy to the first return strategy Strategy, the UAV performs the return mission with the return path determined by the first return strategy, so as to ensure the flight safety of the UAV, and at the same time, in order to facilitate the user to understand the return situation of the UAV, the UAV After switching from the second return strategy to the first return strategy, switching prompt information may be output, the switching prompt information is used to remind the user that obstacle avoidance fails, and the UAV returns with the first return strategy.
  • the UAV in the event that the sensor used for obstacle avoidance fails, can perform a return mission through the return path determined by the first return strategy, and the UAV can use the first return strategy A return strategy During the return process, the UAV can detect in real time whether the sensor for obstacle avoidance returns to normal operation. If it is detected that the sensor for obstacle avoidance returns to normal operation, considering that in this return situation If the UAV cannot effectively determine whether the sensor for obstacle avoidance can continue to operate normally, then in order to ensure the flight safety of the UAV, the UAV still uses the return method determined by the first return strategy. The path performs a return mission, and during the return process, the UAV can be controlled to avoid obstacles based on the detection data collected by the sensor for obstacle avoidance, so as to improve the flight safety of the UAV.
  • FIG. 4 shows the flow of another UAV return method Schematic diagram, the method includes:
  • step S401 the ambient light brightness of the environment where the drone is located is detected.
  • step S402 if the ambient light brightness is lower than a preset threshold, a return path of the UAV is determined based on a first return strategy.
  • step 403 if the ambient light brightness is higher than or equal to the preset threshold, the return path of the UAV is determined based on the second return strategy; wherein, the first return strategy includes controlling the UAV The UAV flies to the return altitude; the second return strategy includes determining the return path of the UAV based on the detection data of the visual sensor.
  • the visual sensor it can be determined whether the visual sensor is invalid according to the ambient light brightness.
  • the ambient light brightness is low, the visual sensor cannot collect detection data that meets the preset requirements, resulting in an error in the obstacle detection result.
  • the return path of the UAV can be determined based on the first return strategy, the UAV flies to the return altitude to ensure the flight safety of the UAV, and the visual sensor can
  • the detection data that meets the preset requirements is collected for effective obstacle detection, so the return path of the UAV can be determined based on the second return strategy, and the obstacle avoidance return is performed based on the detection data of the sensor, which is beneficial to Shorten the return path, save power consumption, and improve return efficiency; integrate two return strategies to achieve both return efficiency and return safety of the UAV.
  • the ambient light brightness is determined according to the number of photons received by the photosensitive elements in one or more of the visual sensors, and/or the pixel values of pixels in the images collected by one or more of the visual sensors .
  • the ambient light brightness is based on the statistical results of the number of photons received by the photosensitive element and/or the pixel values of pixels in the image collected by the visual sensor under a plurality of different exposure parameters. The statistical results are determined. In this embodiment, multiple collection results are combined for effective statistics, which can effectively eliminate the influence of individual errors and improve the detection accuracy of the ambient light brightness.
  • the detecting the ambient light brightness of the environment where the drone is located includes: determining the sunrise of the day where the drone is located according to the location of the drone and the current date time and sunset time; if the current time is between sunrise time and sunset time, detect the ambient light brightness of the environment where the drone is located. Further, the method further includes: if the current time is before sunrise or after sunset, determining the return path of the UAV based on the first return strategy. In this embodiment, if there is no fault inside the visual sensor, it is necessary to further detect the ambient light brightness in the daytime environment in order to accurately determine whether the visual sensor is invalid due to the influence of the external environment.
  • the storage medium of the UAV pre-stores the correspondence between the combination of position information and date information and the sunrise and sunset times; the sunrise time and sunset time of the day where the UAV is located The location and current date of the drone are determined from the correspondence.
  • it also includes: in response to the return trigger of the UAV, outputting a first prompt message when the ambient light brightness is lower than a preset threshold, and/or outputting a first prompt message when the ambient light brightness is higher than or In the case of being equal to the preset threshold, the second prompt information is output; wherein, the first prompt information is used to prompt the user to fail to avoid obstacles, and the UAV returns with the first return strategy; the second prompt information uses The user is prompted to return the UAV with the second return strategy to avoid obstacles.
  • the output of prompt information can enable the user to understand the return situation of the drone.
  • it also includes: during the return process of the UAV using the second return strategy, if the ambient light brightness is lower than a preset threshold, switching from the second return strategy to the first return strategy A return strategy to ensure the flight safety of the unmanned aerial vehicle. Further, after the switch from the second return-to-home strategy to the first return-to-home strategy, switch prompt information is output; wherein, the switch prompt information is used to remind the user that obstacle avoidance fails, and the UAV uses the first return-to-home strategy.
  • a return-to-home strategy returns, which is convenient for users to understand the return situation of the drone.
  • the method further includes: during the return process of the UAV using the first return strategy, if it is detected that the brightness of the ambient light has increased to be higher than or equal to the preset threshold, in the During the return process of the UAV using the first return strategy, the UAV is controlled to avoid obstacles based on the detection data of the visual sensor, thereby improving the flight safety of the UAV.
  • the method further includes: before the UAV takes off, outputting prompt information for setting a return altitude, so as to prompt the user to set the return altitude in the first return strategy.
  • the prompt information for setting the return altitude is output when any of the following conditions are met: the visual sensor failure, the ambient light brightness is lower than a preset threshold, and the take-off time of the drone Before sunrise time or after sunset time, or the take-off time of the drone is within a preset time range before sunset time.
  • the preset time range is determined according to the preset maximum flight duration of the drone, for example, the preset time range is within 30 minutes before sunset time.
  • the return altitude is determined according to the difference between the altitude of the UAV at the time of return and the altitude of the return point.
  • the UAV takes off during the day (that is, between sunrise time and sunset time) and returns during the day, when it detects that the current ambient light brightness is higher than Or equal to the preset threshold, determine the return path of the UAV based on the second return strategy, and output second prompt information to prompt the user that the UAV returns with the second return strategy in an obstacle-avoiding manner.
  • the UAV switches from the second return strategy to the first return strategy, the UAV flies to the return altitude, and outputs switching prompt information to prompt the user to fail to avoid obstacles, and the UAV uses the first Return to home strategy Return to home.
  • the UAV takes off within a preset time range before sunset time, such as taking off within 30 minutes before sunset time, then output a prompt to set the return altitude information to prompt the user to set the return altitude in the first return strategy.
  • the prompt information for setting the return altitude is, for example, "this sortie may encounter insufficient light and cause obstacle avoidance failure. Please set the return altitude in advance”.
  • the UAV return trigger if the UAV returns before sunset time, the UAV returns with the second return strategy, and outputs second prompt information to prompt the user that the UAV returns with the second return strategy.
  • Strategic obstacle avoidance return if the return is after sunset time, the UAV performs the return mission based on the return path determined by the first return strategy, the UAV flies to the return altitude set by the user, and outputs the The first prompt message is to prompt the user that obstacle avoidance fails, and the UAV returns with the first return strategy.
  • the UAV considering that there may be insufficient light for a period of time after sunrise time, if the UAV is after sunset time to after sunrise time of the next day take off within the preset time range, then output the prompt information for setting the return altitude to prompt the user to set the return altitude in the first return strategy.
  • the embodiment of the present application also provides a drone return device 60, including:
  • memory 62 for storing executable instructions
  • processors 61 one or more processors 61;
  • processors 61 when the one or more processors 61 execute the executable instructions, they are individually or collectively configured to perform any one of the methods described above.
  • the processor 61 executes the executable instructions included in the memory 62, and the processor 61 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor) Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 62 stores the executable instructions of the return method of the unmanned aerial vehicle, and the memory 62 can include at least one type of storage medium, and the storage medium includes flash memory, hard disk, multimedia card, card type memory (for example, SD or DX memory etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory , Disk, CD, etc. Also, the device may cooperate with a web storage which performs a storage function of the memory through a network connection.
  • the memory 62 may be an internal storage unit, such as a hard disk or a memory.
  • the memory 62 can also be an external storage device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) and the like. Further, the memory 62 may also include both an internal storage unit and an external storage device. The memory 62 can also be used to temporarily store data that has been output or will be output.
  • an external storage device such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) and the like.
  • the memory 62 may also include both an internal storage unit and an external storage device.
  • the memory 62 can also be used to temporarily store data that has been output or will be output.
  • processor 61 when the processor 61 executes the executable instructions, it is individually or jointly configured to:
  • the return path of the UAV is determined based on the first return strategy
  • the return path of the drone is determined based on the second return strategy
  • the first return strategy includes controlling the UAV to fly to a return altitude; the second return strategy includes determining the return path of the UAV based on the detection data of the sensor.
  • the processor 61 is also configured to: in response to the return trigger of the UAV, output the first prompt information when the sensor used for obstacle avoidance fails, and/or output the first prompt message when the sensor used for obstacle avoidance is normal In the case of running, the second prompt information is output; wherein, the first prompt information is used to prompt the user to avoid obstacles, and the UAV returns with the first return strategy; the second prompt information is used to prompt the user that the The UAV uses the second return strategy to avoid obstacles and return.
  • the processor 61 is further configured to: switch from the second return strategy to The first return strategy.
  • the processor 61 is further configured to: output switching prompt information; wherein, the switching prompt information is used to prompt the user to avoid If the fault fails, the UAV returns with the first return strategy.
  • the processor 61 is further configured to: during the return process of the UAV using the first return strategy, if it is detected that the sensor for obstacle avoidance resumes normal operation, During the return process of the UAV using the first return strategy, the UAV is controlled to avoid obstacles based on the detection data collected by the sensor for obstacle avoidance.
  • the processor 61 is further configured to: before the drone takes off, output prompt information for setting a return altitude, so as to prompt the user to set the return altitude in the first return strategy.
  • the processor 61 is further configured to: in response to the failure of the sensor for obstacle avoidance, output prompt information for setting the return altitude; or if it is detected that the sensor for obstacle avoidance is affected by external factors, it will Invalid, output a prompt message to set the return altitude.
  • the return altitude is determined according to the difference between the altitude of the UAV at the time of return and the altitude of the return point.
  • the failure of the sensor used for obstacle avoidance includes: the failure of the sensor due to aging, wear or damage of internal components, and/or the failure of the sensor due to failure to collect detection data meeting preset requirements .
  • the sensor used for obstacle avoidance includes at least one of the following: vision sensor, laser radar, millimeter wave radar or ultrasonic sensor.
  • the senor for obstacle avoidance includes a vision sensor.
  • the processor 61 is further configured to: determine whether the vision sensor is invalid according to the ambient light brightness of the current environment.
  • the processor 61 is also configured to: detect the ambient light brightness of the environment where the drone is located; if the ambient light brightness is lower than a preset threshold, determine that the visual sensor is invalid; if the environment If the light brightness is higher than or equal to the preset threshold, it is determined that the vision sensor is operating normally.
  • the ambient light brightness is determined according to the number of photons received by photosensitive elements in one or more of the visual sensors, and/or pixel values of pixels in images collected by one or more of the visual sensors.
  • the ambient light brightness is based on statistical results of the number of photons received by the photosensitive element under a plurality of different exposure parameters by the visual sensor and/or pixel values of pixels in the image collected by the visual sensor The statistical results are confirmed.
  • the processor 61 is further configured to: determine the sunrise time and sunset time of the day where the drone is located according to the location of the drone and the current date; Between time and sunset time, it is determined that the vision sensor is running normally; if the current time is before sunrise time or after sunset time, it is determined that the vision sensor is invalid.
  • the processor 61 is also configured to: if the current time is between sunrise time and sunset time, detect the ambient light brightness of the environment where the drone is located; if the ambient light brightness is lower than the preset threshold, determining that the visual sensor is invalid; if the ambient light brightness is higher than or equal to the preset threshold, determining that the visual sensor is operating normally.
  • the storage medium of the UAV pre-stores the correspondence between the combination of location information and date information and the sunrise and sunset times; the sunrise time and sunset time of the day where the UAV is located The location of the man-machine and the current date are determined from the correspondence.
  • the sensor used for obstacle avoidance includes laser radar.
  • the processor 61 is further configured to: if the current environment is a haze environment, determine that the lidar is invalid; otherwise, determine that the lidar is in normal operation.
  • the drone is provided with a visual sensor, and the haze environment is recognized through images collected by the visual sensor.
  • the sensors used for obstacle avoidance include laser radar, millimeter wave radar and/or ultrasonic sensor; the storage medium of the drone is pre-stored with the laser radar, the millimeter wave radar and/or the Failure reference data for ultrasonic sensors.
  • the processor 61 is further configured to: determine the laser radar, the millimeter wave radar and/or the difference between the detection data of the ultrasonic sensor and the failure reference data. Whether the wave radar and/or the ultrasonic sensor is invalid.
  • processor 61 when the processor 61 executes the executable instructions, it is individually or jointly configured to:
  • the first return strategy includes controlling the UAV to fly to a return altitude; the second return strategy includes determining the return path of the UAV based on the detection data of the visual sensor.
  • the ambient light brightness is determined according to the number of photons received by photosensitive elements in one or more of the visual sensors, and/or pixel values of pixels in images collected by one or more of the visual sensors.
  • the ambient light brightness is based on statistical results of the number of photons received by the photosensitive element under a plurality of different exposure parameters by the visual sensor and/or pixel values of pixels in the image collected by the visual sensor The statistical results are confirmed.
  • the processor 61 is further configured to: determine the sunrise time and sunset time of the day where the drone is located according to the location of the drone and the current date; Between time and sunset time, detect the ambient light brightness of the environment where the drone is located.
  • the processor 61 is further configured to: if the current time is before sunrise time or after sunset time, determine the return route of the UAV based on the first return strategy.
  • the storage medium of the UAV pre-stores the correspondence between the combination of location information and date information and the sunrise and sunset times; the sunrise time and sunset time of the day where the UAV is located The location of the man-machine and the current date are determined from the correspondence.
  • the processor 61 is further configured to: in response to the return trigger of the UAV, output a first prompt message when the brightness of the ambient light is lower than a preset threshold, and/or When the brightness is higher than or equal to the preset threshold, the second prompt information is output; wherein, the first prompt information is used to remind the user that obstacle avoidance fails, and the UAV returns with the first return strategy; the second The second prompt information is used to remind the user that the UAV returns with the second return strategy to avoid obstacles.
  • the processor 61 is further configured to: switch from the second return strategy if the ambient light brightness is lower than a preset threshold during the return process of the UAV using the second return strategy. is the first return-to-home strategy.
  • the processor 61 is further configured to: output switching prompt information; wherein, the switching prompt information is used to prompt the user to avoid If the fault fails, the UAV returns with the first return strategy.
  • the processor 61 is further configured to: during the return process of the UAV using the first return strategy, if it is detected that the ambient light brightness has increased to be higher than or equal to the preset threshold, Controlling the UAV to avoid obstacles based on the detection data of the visual sensor during the return process of the UAV using the first return strategy.
  • the processor 61 is further configured to: before the drone takes off, output prompt information for setting a return altitude, so as to prompt the user to set the return altitude in the first return strategy.
  • the prompt information for setting the return altitude is output when any of the following conditions are met: the visual sensor failure, the ambient light brightness is lower than a preset threshold, and the take-off time of the drone Before sunrise time or after sunset time, or the take-off time of the drone is within a preset time range before sunset time.
  • the preset time range is determined according to the preset maximum flight duration of the drone.
  • the return altitude is determined according to the difference between the altitude of the UAV at the time of return and the altitude of the return point.
  • Various implementations described herein can be implemented using a computer readable medium such as computer software, hardware, or any combination thereof.
  • the embodiments described herein can be implemented by using Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays ( FPGA), processors, controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGA Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, electronic units designed to perform the functions described herein.
  • an embodiment such as a procedure or a function may be implemented with a separate software module that allows at least one function or operation to be performed.
  • the software codes can be implemented by a software application (or program) written in any suitable programming language, stored in memory and executed by a controller.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which are executable by a processor of an apparatus to perform the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer-readable storage medium enabling the terminal to execute the above method when instructions in the storage medium are executed by a processor of the terminal.
  • the embodiment of the present application also provides a drone, including:
  • a power system arranged in the fuselage, for providing power for the unmanned aerial vehicle
  • control device may be a flight controller in an unmanned aerial vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的返航方法、装置、无人机及存储介质。该方法包括:检测用于避障的传感器是否失效(S201);若用于避障的传感器失效,基于第一返航策略确定该无人机的返航路径(S202);若用于避障的传感器正常运行,基于第二返航策略确定该无人机的返航路径;其中,该第一返航策略包括控制该无人机飞行至返航高度;该第二返航策略包括基于该传感器的探测数据确定该无人机的返航路径(S203)。该方法综合两种返航策略实现兼顾无人机的返航效率和返航安全性。

Description

无人机的返航方法、装置、无人机及存储介质 技术领域
本申请涉及无人机技术领域,具体而言,涉及一种无人机的返航方法、装置、无人机及存储介质。
背景技术
无人机(UAV)是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由机载计算机完全地或间歇地自主地操作。无人机广泛应用于在航拍、农业植保、微型自拍、快递运输、灾难救援、观察野生动物、监控传染病、测绘、新闻报道、电力巡检、救灾、影视拍摄等场景。
其中,无人机在执行完飞行任务返航时,为了避免无人机与高楼、高山等一些障碍物碰撞,相关技术中的返航策略通常让无人机以较高的返航高度返航来保证飞行安全,但上升到较高的返航高度却要花费比较多的电量和时长,返航效率较低,而且为了保证有足够的电量安全返航,将导致无人机能够正常作业的电量(或者时长)也有所减少,降低了用户的使用体验。
发明内容
有鉴于此,本申请的目的之一是提供一种无人机的返航方法、装置、无人机及存储介质。
第一方面,本申请实施例提供了一种无人机的返航方法,包括:
检测用于避障的传感器是否失效;
若用于避障的传感器失效,基于第一返航策略确定所述无人机的返航路径;
若用于避障的传感器正常运行,基于第二返航策略确定所述无人机的返航路径;
其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述传感器的探测数据确定所述无人机的返航路径。
第二方面,本申请实施例提供了一种无人机的返航方法,无人机设置有视觉传感器,包括:
检测无人机所处环境的环境光亮度;
若所述环境光亮度低于预设阈值,基于第一返航策略确定所述无人机的返航路径;
若所述环境光亮度高于或等于所述预设阈值,基于第二返航策略确定所述无人机的返航路径;
其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述视觉传感器的探测数据确定所述无人机的返航路径。
第三方面,本申请实施例提供了一种无人机的返航装置,包括:
用于存储可执行指令的存储器;
一个或多个处理器;
其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行第一方面或第二方面所述的方法。
第四方面,本申请实施例提供了一种无人机,包括:
机身;
动力系统,设于所述机身中,用于为所述无人机提供动力;
以及,设于所述机身中的如第三方面所述的返航装置。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如第一方面或第二方面所述的方法。
本申请实施例所提供的一种无人机的返航方法,提供两种返航策略,在用于避障的传感器正常运行的情况下,使用第二返航策略,所述无人机无需飞行至返航高度,而是基于传感器的探测数据进行避障式返航,从而有利于缩短返航路径,节省电量损耗,提高返航效率;在用于避障的传感器失效的情况下,使用第一返航策略,无人机飞行至返航高度以保证无人机的飞行安全,综合两种返航策略实现兼顾无人机的返航效率和返航安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行系统的架构示意图;
图2是本申请实施例提供的一种无人机的返航方法的流程示意图;
图3是本申请实施例提供的一种检测视觉传感器是否失效的流程示意图;
图4是本申请实施例提供的另一种无人机的返航方法的流程示意图;
图5是本申请一个实施例提供的有关于提示信息输出的示意图;
图6是本申请一个实施例提供的有关于提示信息输出的另一示意图;
图7是本申请一个实施例提供的一种无人机的返航装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例针对于无人机(UAV)的返航进行优化,以兼顾无人机在返航过程中的返航效率和返航安全性。
其中,对于本领域技术人员将会显而易见的是,可以不受限制地使用任何类型的无人机,本申请的实施例可以应用于各种类型的无人机。例如,无人机可以是小型或大型的无人机。在某些实施例中,无人机可以是旋翼无人机(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼无人机,本申请的实施例并不限于此,无人机也可以是其它类型的无人机。
图1是根据本申请的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人飞行系统100可以包括无人机110、显示设备130和遥控设备140。其中,无人机110可以包括动力系统150、飞行控制系统160、机架和承载在机架上的云台120。无人机110可以与遥控设备140和显示设备130进行无线通信。无人机110可以是农业无人机或行业应用无人机,有循环作业的需求。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152 连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人机110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人机110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自遥控设备140的一个或多个遥控信号对无人机110进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,拍摄装置123也可直接固定于无人机110上,从而云台120可以省略。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130 上显示拍摄装置123拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在遥控设备140中。
遥控设备140位于无人飞行系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
考虑到相关技术中的返航策略需要让无人机以较高的返航高度返航,返航效率较低且返航所需电量增多可能导致无人机能够正常作业的电量(或者时长)减少的情况,本申请实施例提供了一种无人机的返航方法,所述返航方法可以由无人机的返航装置来执行。示例性的,所述返航装置可以是图1实施例中的飞行控制器。
请参阅图2,图2示出了一种无人机的返航方法的流程示意图,所述方法包括:
在步骤S201中,检测用于避障的传感器是否失效。
在步骤S202中,若用于避障的传感器失效,基于第一返航策略确定所述无人机的返航路径。
在步骤S203中,若用于避障的传感器正常运行,基于第二返航策略确定所述无人机的返航路径;其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述传感器的探测数据确定所述无人机的返航路径。
本实施例中,提供两种返航策略,在用于避障的传感器正常运行的情况下,所述无人机无需飞行至返航高度,而是基于所述传感器的探测数据进行避障式返航,从而有利于缩短返航路径,节省电量损耗,提高返航效率;在用于避障的传感器失效的情况下,所述无人机飞行至返航高度以保证无人机的飞行安全,综合两种返航策略实现兼顾无人机的返航效率和返航安全性。
在一些实施例中,在所述无人机飞行过程中,所述无人机可以实时检测用于避障的传感器是否失效;或者,响应于无人机的返航触发,所述无人机检测用于避障的传感器是否失效,从而便于根据所述传感器的状态(失效状态/正常运行状态)确定使用不同的返航策略来确定无人机的返航路径,以兼顾无人机的返航效率和返航安全性。
其中,所述用于避障的传感器包括但不限于视觉传感器、激光雷达、毫米波雷达或者超声波传感器等等,可以根据实际应用场景选择使用其中一种传感器的探测数据进行障碍物检测,或者融合至少两种传感器的探测数据进行障碍物检测,以便无人机可以基于障碍物检测结果决定是否进行避障。
在一些实施例中,导致所述用于避障的传感器失效的原因有多种。
示例性的,所述用于避障的传感器可能因内部因素而失效,比如所述用于避障的传感器的内部器件老化、磨损或者损坏而失效,在这种情况下,所述无人机无法从所述传感器中接收到有效信号,可以确定所述传感器内部可能发生了故障。
示例性的,所述用于避障的传感器可能因外部因素影响而失效,比如所述用于避障的传感器因外部环境影响导致无法采集到满足预设要求的探测数据而失效,所述预设要求指示所述传感器采集的探测数据能够进行有效的障碍物检测。在一个例子中,以所述用于避障的传感器为视觉传感器为例,视觉传感器对于环境明暗度较为敏感,比如在黑夜环境中,视觉传感器采集的探测数据无法进行有效的障碍物检测,可能出现障碍物检测出错的情况,即该探测数据不符合预设要求,视觉传感器在该种情况下处于失效状态。在另一个例子中,以所述用于避障的传感器为激光雷达为例,雾霾、沙尘暴等环境对于激光雷达的影响较大,激光雷达所发射的激光脉冲难以穿透雾、烟或者灰尘等细小物体,导致所述激光雷达采集到的回波信号较弱,无法进行有效的障碍物检测,可能出现障碍物检测出错的情况,即该探测数据不符合预设要求,激光雷达在该种情况下处于失效状态。
在一示例性的实施例中,以所述用于避障的传感器为视觉传感器为例,在所述传感器本身没有故障的情况下,可以根据环境明暗度来确定视觉传感器是否失效。
在一种可能的实施方式中,可以检测所述无人机所处环境的环境光亮度,若所述环境光亮度低于预设阈值,表明所述视觉传感器采集的探测数据可能无法进行有效的障碍物检测,则确定所述视觉传感器失效;若所述环境光亮度高于或等于所述预设阈值,表明所述视觉传感器采集的探测数据可以进行有效的障碍物检测,则确定所述视觉传感器正常运行。其中,所述预设阈值可依据实际应用场景进行具体设置,本实施例对此不做任何限制。
对于所述环境光亮度的检测,在所述传感器本身没有故障的情况下,可以根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值来确定所述环境光亮度。其中,所述光子数量与所述环境光亮度呈正相关关系,即所述光子数量越多,所述环境光亮度越大。所述像素的像素值与所述环境光亮度呈正相关关系,比如所述像素的像素值以灰度值表示,灰度值越高则表示环境光亮度越大。可以理解的是,可以根据光子数量和所述图像中像素的像素值中的任一者来确定所述环境光亮度,也可以根据两者来共同确定所述环境光亮度,本实施例对此不做任何限制,可依据实际应用场景进行具体设置。
示例性的,为了提高所述环境光亮度的检测准确性,可以根据所述视觉传感器在 多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定所述环境光亮度,本实施例综合多次采集结果进行有效统计,可以有效消除个别误差影响,提高所述环境光亮度的检测准确性。其中,所述不同的曝光参数指示的曝光量不同,所述不同的曝光参数可以是以下至少一种或多种:曝光时长不同、进光量不同或者感光度不同。
在一个例子中,假设预设有N个曝光参数,N为大于0的整数,N个曝光参数指示的曝光量不同,比如第1,2,……,N个曝光参数指示的曝光量逐渐增加,所述无人机确定所述视觉传感器中的感光元件分别在第1,2,……,N个曝光参数下接收到的光子数量,然后根据N个光子数量的统计结果来确定所述环境光亮度,比如可以根据N个光子数量的平均值、中位数、最大值或者最小值等统计结果来确定所述环境光亮度。本实施例中综合N个光子数量进行有效统计,可以有效消除个别误差影响,提高所述环境光亮度的检测准确性。
在另一种可能的实施方式中,因为宇宙中天体运动的规律性,所以地球上每一个经纬度坐标和日期的结对组合都对应一个确定的日出时间和日落时间。因此,可以根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;若当前时间在日出时间和日落时间之间,即处于白天环境中,环境光亮度一般较大,可以确定所述视觉传感器正常运行;若当前时间在日出时间之前或者日落时间之后,即处于黑夜环境中,环境光亮度很小,可以确定所述视觉传感器失效。
其中,所述无人机所处位置可以根据设置在所述无人机中的卫星定位装置所采集的数据确定。所述当前日期可以是所述无人机从外部设备中获取,比如所述无人机可以与遥控终端通信连接,所述遥控终端可以将相关时间信息(如包含当前日期的信息)发送给所述无人机。所述无人机的存储介质中可以预存有位置信息和日期信息的组合与日出日落时间的对应关系,所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
在又一种可能的实施方式中,考虑到在黑夜环境中仍然使用视觉传感器进行环境光检测会造成资源浪费的问题,而在白天环境中也会出现视觉传感器失效的情况,比如在阴天场景下的环境光亮度较低可能导致视觉传感器采集的探测数据不符合预设要求,因此可以考虑综合上述两种实施方式,如图3所示,图3示出了检测视觉传感器是否失效的过程。
在需要检测所述视觉传感器是否失效时,在步骤S301中,检测所述视觉传感器内部是否故障;比如可以向所述视觉传感器发送查询指令,在接收到所述视觉传感器的 响应的情况下确定所述视觉传感器内部无故障,在预设时长未接收到所述传感器的响应的情况下确定所述视觉传感器内部故障。若是,执行步骤S302,若否,执行步骤S303。
在步骤S302中,确定所述视觉传感器失效。
在步骤S303中,根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间。
在步骤S304中,判断当前时间是否在日出时间和日落时间之间;若是,执行步骤S305,若否,即当前时间在日出时间之前或者日落时间之后,执行步骤S302。
在步骤S305中,检测所述无人机所处环境的环境光亮度,判断所述环境光亮度是否低于预设阈值,若是,执行步骤S302,若否,执行步骤S306。
在步骤S306中,确定所述视觉传感器正常运行。
本实施例中,在视觉传感器内部无故障的情况下,在白天环境中需进一步检测环境光亮度,以便准确确定视觉传感器是否因外部环境影响而失效,在黑夜环境中则直接确定视觉传感器因外部环境影响而失效,无需进一步检测环境光亮度,有利于节省检测资源,综合当天的日出日落时间和视觉传感器的实时检测结果实现对视觉传感器是否失效进行有效检测,既保证检测准确性又实现检测资源的合理使用。
在一示例性的实施例中,以所述用于避障的传感器为激光雷达为例。
在一种可能的实现方式中,在所述激光雷达本身没有故障的情况下,可以根据当前环境是否为雾霾环境、沙尘暴环境等来确定激光雷达是否失效。比如在所述激光雷达本身没有故障的情况下,如果当前环境为雾霾环境,确定所述激光雷达失效,否则,确定所述激光雷达正常运行。示例性的,所述无人机还设置有视觉传感器,所述雾霾环境可以通过所述视觉传感器采集的图像识别得到。示例性的,所述雾霾环境可以是所述无人机从预设天气平台直接或间接获取的天气预报数据所确定。
在另一种可能的实现方式中,所述无人机的存储介质预存有所述激光雷达的失效参考数据,比如所述失效参考数据可以是所述激光雷达在雾霾环境、沙尘暴环境等采集得到的,所述无人机可以根据所述激光雷达的探测数据与所述失效参考数据之间的差异,确定所述激光雷达是否失效。比如若所述激光雷达的探测数据与所述失效参考数据相同或者差异较小,确定所述激光雷达失效,否则,确定所述激光雷达正常运行。
在一示例性的实施例中,以所述用于避障的传感器包括毫米波雷达为例,所述无人机的存储介质预存有所述毫米波雷达的失效参考数据。所述无人机可以根据所述毫米波雷达的探测数据与所述失效参考数据之间的差异,确定所述毫米波雷达是否失效。比如若所述毫米波雷达的探测数据与所述失效参考数据相同或者差异较小,确定所述 毫米波雷达失效,否则,确定所述毫米波雷达正常运行。
在一示例性的实施例中,以所述用于避障的传感器包括超声波传感器为例,所述无人机的存储介质预存有所述超声波传感器的失效参考数据。示例性的,比如在比较杂乱的环境中,超声波可能会经过多次反射或者投射,超声波传感器的探测效果较差,因此所述失效参考数据可以是所述超声波雷达在较为杂乱的环境中采集得到。所述无人机可以根据所述超声波传感器的探测数据与所述失效参考数据之间的差异,确定所述超声波传感器是否失效。若所述超声波传感器的探测数据与所述失效参考数据相同或者差异较小,确定所述超声波传感器失效,否则,确定所述超声波传感器正常运行。
在一些实施例中,在检测到所述用于避障的传感器失效的情况下,为了保证无人机的飞行安全性,可以基于第一返航策略确定所述无人机的返航路径,所述第一返航策略包括控制所述无人机飞行至返航高度,即所述第一返航策略指示所述无人机在返航过程中飞行至所述返航高度,并以所述返航高度返航。示例性的,所述返航路径可以是直线返航路径,所述返航路径指示所述无人机在返航时先飞行至所述返航高度,然后以所述返航高度飞行到返航点上方,最后从返航点上方降落至所述返航点。
示例性的,所述返航高度可以是根据所述无人机的实际应用场景所预设的参考返航高度,比如所述返航高度是开发人员在所述无人机出厂时根据所述无人机的一些可能飞行场景进行预先设置的。
示例性的,所述返航高度也可以由用户进行设置,在所述无人机起飞之前,可以输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度,例如在与所述无人机通信连接的遥控终端中显示所述设置返航高度的提示信息,则用户可以根据所述无人机所在的飞行场景来灵活设置所述返航高度。
进一步地,考虑到在每次起飞之前均需设置返航高度对于用户来说,操作较为繁琐,因此为了便于用户使用,在无人机起飞之前,可以响应于所述用于避障的传感器失效,输出设置返航高度的提示信息;或者在检测到所述用于避障的传感器受外部因素影响即将失效的情况下,输出设置返航高度的提示信息,从而有利于减少用户的操作步骤,在用于避障的传感器正常运行或者预测到用于避障的传感器能够持续正常运行的情况下无需用户设置返航高度,有利于减少用户的操作步骤,提高用户的使用体验。
在一个例子中,对所述用于避障的传感器受外部因素影响即将失效的情况进行示例性说明,以视觉传感器为例,可以根据时间信息来确定视觉传感器是否即将失效,比如所述无人机是在距日落时间还有10分钟的情况下起飞,则有可能发生无人机在天 黑时返航,所述视觉传感器失效的情况;以激光雷达为例,可以根据天气信息来确定激光雷达是否即将失效,比如无人机早晨在山上执行飞行任务,有可能遇到起雾天气,所述激光雷达失效的情况。本实施例通过有效预测所述用于避障的传感器在未来是否会失效,以使用户进行高度设置,能够有效保证无人机的返航安全性。
示例性的,所述返航高度还可以根据所述无人机在返航时的高度和返航点的高度之间的差异确定,从而保证无人机的返航安全性。在一个例子中,响应于无人机返航触发,获取所述无人机的当前高度以及返航点的高度,如果所述无人机的当前高度低于所述返航点的高度,可以根据所述返航点的高度和预设的安全高度差,确定所述无人机的返航高度。其中,所述无人机的返航高度与所述当前高度的差值大于或等于所述返航点的高度与所述当前高度两者的差值与所述预设的安全高度差之和。所述预设的安全高度差可以提供高度误差补偿。
在一些实施例中,所述第一返航策略包括控制所述无人机以当前高度返航。示例的,所述第一返航策略包括,若无人机和返航点的距离小于一定距离阈值,以当前高度飞行到返航点上方;若无人机和返航点的距离大于一定距离阈值,控制无人机飞行至返航高度,并以返航高度飞行到返航点上方。即使用于避障的传感器失效,但在大多数场景下,返航点周围障碍物较少,在无人机和返航点距离较近的情况下,以当前高度返航也是比较安全的,这样可以避免无人机不必要的升高导致的电量浪费。
在一些实施例中,在检测到所述用于避障的传感器正常运行的情况下,为了提高无人机的返航效率,可以基于第二返航策略确定所述无人机的返航路径,所述第二返航策略包括基于所述传感器的探测数据确定所述无人机的返航路径,所述第二返航策略指示可以根据所述传感器所探测到的障碍物的分布情况来规划所述无人机的返航路径,所述障碍物的分布情况根据所述传感器的探测数据所确定。示例性的,可以根据所述传感器在历史时间段探测到的障碍物的分布情况规划所述无人机的最短返航路径,并在所述无人机按照所述最短返航路径返航过程中,根据所述传感器实时观测到的障碍物的分布情况调整所述最短返航路径,以使得所述无人机按照调整后的最短返航路径执行返航任务。
在一些实施例中,响应于无人机的返航触发,在用于避障的传感器失效的情况下,所述无人机以所述第一返航策略所确定的返航路径执行返航任务,同时可以输出第一提示信息,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航,比如所述第一提示信息为“避障失效,无人机将升高到返航高度”。响应于无人机的返航触发,在用于避障的传感器正常运行的情况下,所述无人机以所述第二返航策 略所确定的返航路径执行返航任务,同时可以输出第二提示信息,所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航,比如所述第二提示信息为“传感器正常运行,自主规划返航中”,从而便于用户了解所述无人机的返航情况。
在一些实施例中,在用于避障的传感器正常运行的情况下,所述无人机以所述第二返航策略所确定的返航路径执行返航任务,在所述无人机以所述第二返航策略返航过程中所述无人机可以实时检测所述用于避障的传感器是否失效,如果所述用于避障的传感器失效,从所述第二返航策略切换为所述第一返航策略,所述无人机以第一返航策略确定的返航路径执行返航任务,以保证所述无人机的飞行安全性,同时为了便于用户了解无人机的返航情况,所述无人机在从所述第二返航策略切换为所述第一返航策略之后,可以输出切换提示信息,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航。
在一些实施例中,在用于避障的传感器失效的情况下,所述无人机可以通过所述第一返航策略所确定的返航路径执行返航任务,在所述无人机以所述第一返航策略返航过程中所述无人机可以实时检测所述用于避障的传感器是否恢复正常运行,如果检测到所述用于避障的传感器恢复正常运行,考虑到在该种返航情况下无人机无法有效判断所述用于避障的传感器是否能够持续正常运行,则为了保证所述无人机的飞行安全性,所述无人机仍然以所述第一返航策略所确定的返航路径执行返航任务,并且在返航过程中可以基于所述用于避障的传感器采集的探测数据控制所述无人机避障,以提高所述无人机的飞行安全性。
在一示例性的实施例中,请参阅图4,以所述用于避障的传感器为视觉传感器为例,请参阅图4,图4示出了另一种无人机的返航方法的流程示意图,所述方法包括:
在步骤S401中,检测无人机所处环境的环境光亮度。
在步骤S402中,若所述环境光亮度低于预设阈值,基于第一返航策略确定所述无人机的返航路径。
在步骤403中,若所述环境光亮度高于或等于所述预设阈值,基于第二返航策略确定所述无人机的返航路径;其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述视觉传感器的探测数据确定所述无人机的返航路径。
本实施例中,可根据环境光亮度来确定所述视觉传感器是否失效,在环境光亮度较低的情况下所述视觉传感器无法采集到满足预设要求的探测数据,从而导致障碍物 检测结果出错,因此可以基于第一返航策略确定所述无人机的返航路径,所述无人机飞行至返航高度以保证无人机的飞行安全,在环境光亮度较高的情况下所述视觉传感器可以采集到满足预设要求的探测数据以进行有效的障碍物检测,因此可以基于第二返航策略确定所述无人机的返航路径,基于所述传感器的探测数据进行避障式返航,从而有利于缩短返航路径,节省电量损耗,提高返航效率;综合两种返航策略实现兼顾无人机的返航效率和返航安全性。
在一些实施例中,所述环境光亮度根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值确定。
进一步地,所述环境光亮度根据所述视觉传感器在多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定,本实施例综合多次采集结果进行有效统计,可以有效消除个别误差影响,提高所述环境光亮度的检测准确性。
在一些实施例中,所述检测所述无人机所处环境的环境光亮度,包括:根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;若当前时间在日出时间和日落时间之间,检测所述无人机所处环境的环境光亮度。进一步地,还包括:若当前时间在日出时间之前或者日落时间之后,基于第一返航策略确定所述无人机的返航路径。本实施例中,在视觉传感器内部无故障的情况下,在白天环境中需进一步检测环境光亮度,以便准确确定视觉传感器是否因外部环境影响而失效,在黑夜环境中则直接确定视觉传感器因外部环境影响而失效,无需进一步检测环境光亮度,有利于节省检测资源,综合当天的日出日落时间和视觉传感器的实时检测结果实现对视觉传感器是否失效进行有效检测,既保证检测准确性又实现检测资源的合理使用。
在一些实施例中,所述无人机的存储介质预存有位置信息和日期信息的组合与日出日落时间的对应关系;所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
在一些实施例中,还包括:响应于无人机的返航触发,在所述环境光亮度低于预设阈值的情况下输出第一提示信息、和/或在所述环境光亮度高于或等于所述预设阈值的情况下输出第二提示信息;其中,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航;所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航。本实施例中通过提示信息的输出能够使用户了解所述无人机的返航情况。
在一些实施例中,还包括:在所述无人机以所述第二返航策略返航过程中,如果所述环境光亮度低于预设阈值,从所述第二返航策略切换为所述第一返航策略,以保证所述无人机的飞行安全性。进一步地,在所述从所述第二返航策略切换为所述第一返航策略之后,输出切换提示信息;其中,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航,便于用户了解无人机的返航情况。
在一些实施例中,所述方法还包括:在所述无人机以所述第一返航策略返航过程中,如果检测到所述环境光亮度增大至高于或等于所述预设阈值,在所述无人机以所述第一返航策略返航的过程中基于所述视觉传感器的探测数据控制所述无人机避障,从而有利于提高所述无人机的飞行安全性。
在一些实施例中,还包括:在所述无人机起飞之前,输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
示例性的,所述设置返航高度的提示信息是在满足以下任一条件的情况下输出的:所述视觉传感器故障、所述环境光亮度低于预设阈值、所述无人机的起飞时间在日出时间之前或者日落时间之后、或者所述无人机的起飞时间在日落时间之前的预设时间范围内。其中,所述预设时间范围根据所述无人机的预设最大飞行时长确定,比如所述预设时间范围为日落时间之前的30分钟内。
示例性的,所述返航高度根据所述无人机在返航时的高度和返航点的高度之间的差异确定。
在一示例性的应用场景中,请参阅图5,如果所述无人机是在白天(即日出时间和日落时间之间)起飞,并且是在白天返航,在检测到当前环境光亮度高于或等于所述预设阈值,基于第二返航策略确定所述无人机的返航路径,并输出第二提示信息,以提示用户所述无人机以第二返航策略避障式返航。在所述无人机以所述第二返航策略返航过程中,如果遇到乌云、强逆光等对视觉传感器不友好场景时,所述环境光亮度减小至低于预设阈值,则所述无人机从所述第二返航策略切换为所述第一返航策略,所述无人机飞行至返航高度,并输出切换提示信息,以提示用户避障失效,所述无人机以第一返航策略返航。
在一示例性的应用场景中,请参阅图6,如果所述无人机在日落时间之前的预设时间范围内起飞,比如在日落时间之前的30分钟内起飞,则输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度,所述设置返航高度的提示信息比如是“本架次有可能遇到光线不足导致避障失效,请提前设置返航高度”。进一步地,响应于无人机返航触发,如果是在日落时间之前返航,所述无人机以第二返 航策略返航,并输出第二提示信息,以提示用户所述无人机以第二返航策略避障式返航;如果是在日落时间之后返航,所述无人机基于第一返航策略所确定的返航路径执行返航任务,所述无人机飞行到用户设置的返航高度,并输出所述第一提示信息,以提示用户避障失效,所述无人机以第一返航策略返航。
在一示例性的应用场景中,考虑到在日出时间之后的一段时间内,也有可能出现光线不足的情况,则如果所述无人机是在日落时间之后到第二天的日出时间之后的预设时间范围内起飞,则输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
相应地,请参阅图7,本申请实施例还提供了一种无人机的返航装置60,包括:
用于存储可执行指令的存储器62;
一个或多个处理器61;
其中,所述一个或多个处理器61执行所述可执行指令时,被单独地或共同地配置成执行上述任意一项所述的方法。
所述处理器61执行所述存储器62中包括的可执行指令,所述处理器61可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器62存储无人机的返航方法的可执行指令,所述存储器62可以包括至少一种类型的存储介质,存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,设备可以与通过网络连接执行存储器的存储功能的网络存储装置协作。存储器62可以是内部存储单元,例如硬盘或内存。存储器62也可以是外部存储设备,例如插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器62还可以既包括内部存储单元也包括外部存储设备。存储器62还可以用于暂时地存储已经输出或者将要输出的数据。
在一些实施例中,所述处理器61执行所述可执行指令时,被单独地或共同地配置 成:
检测用于避障的传感器是否失效;
若用于避障的传感器失效,基于第一返航策略确定所述无人机的返航路径;
若用于避障的传感器正常运行,基于第二返航策略确定所述无人机的返航路径;
其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述传感器的探测数据确定所述无人机的返航路径。
示例性的,所述处理器61还用于:响应于无人机的返航触发,在用于避障的传感器失效的情况下输出第一提示信息、和/或在用于避障的传感器正常运行的情况下输出第二提示信息;其中,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航;所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航。
示例性的,所述处理器61还用于:在所述无人机以所述第二返航策略返航过程中,如果所述用于避障的传感器失效,从所述第二返航策略切换为所述第一返航策略。
示例性的,在所述从所述第二返航策略切换为所述第一返航策略之后,所述处理器61还用于:输出切换提示信息;其中,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航。
示例性的,所述处理器61还用于:在所述无人机以所述第一返航策略返航过程中,如果检测到所述用于避障的传感器恢复正常运行,在所述无人机以所述第一返航策略返航的过程中基于所述用于避障的传感器采集的探测数据控制所述无人机避障。
示例性的,所述处理器61还用于:在所述无人机起飞之前,输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
示例性的,所述处理器61还用于:响应于所述用于避障的传感器失效,输出设置返航高度的提示信息;或者若检测到所述用于避障的传感器受外部因素影响即将失效,输出设置返航高度的提示信息。
示例性的,所述返航高度根据所述无人机在返航时的高度和返航点的高度之间的差异确定。
示例性的,所述用于避障的传感器的失效包括:所述传感器因内部器件老化、磨损或者损坏而失效,和/或,所述传感器因无法采集到满足预设要求的探测数据而失效。
示例性的,所述用于避障的传感器包括以下至少一种:视觉传感器、激光雷达、毫米波雷达或者超声波传感器。
示例性的,所述用于避障的传感器包括视觉传感器。
所述处理器61还用于:根据当前环境的环境光亮度确定所述视觉传感器是否失效。
示例性的,所述处理器61还用于:检测所述无人机所处环境的环境光亮度;若所述环境光亮度低于预设阈值,确定所述视觉传感器失效;若所述环境光亮度高于或等于所述预设阈值,确定所述视觉传感器正常运行。
示例性的,所述环境光亮度根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值确定。
示例性的,所述环境光亮度根据所述视觉传感器在多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定。
示例性的,所述处理器61还用于:根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;若当前时间在日出时间和日落时间之间,确定所述视觉传感器正常运行;若当前时间在日出时间之前或者日落时间之后,确定所述视觉传感器失效。
示例性的,所述处理器61还用于:若当前时间在日出时间和日落时间之间,检测所述无人机所处环境的环境光亮度;若所述环境光亮度低于预设阈值,确定所述视觉传感器失效;若所述环境光亮度高于或等于所述预设阈值,确定所述视觉传感器正常运行。
示例性的,所述无人机的存储介质预存有位置信息和日期信息的组合与日出日落时间的对应关系;所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
示例性的,所述用于避障的传感器包括激光雷达。
所述处理器61还用于:若当前环境为雾霾环境,确定所述激光雷达失效,否则,确定所述激光雷达正常运行。
示例性的,所述无人机设置有视觉传感器,所述雾霾环境通过所述视觉传感器采集的图像识别得到。
示例性的,所述用于避障的传感器包括激光雷达、毫米波雷达和/或超声波传感器;所述无人机的存储介质预存有所述激光雷达、所述毫米波雷达和/或所述超声波传感器的失效参考数据。
所述处理器61还用于:根据所述激光雷达、所述毫米波雷达和/或所述超声波传感器的探测数据与所述失效参考数据之间的差异,确定所述激光雷达、所述毫米波雷达和/或所述超声波传感器是否失效。
在一些实施例中,所述处理器61执行所述可执行指令时,被单独地或共同地配置成:
检测无人机所处环境的环境光亮度;
若所述环境光亮度低于预设阈值,基于第一返航策略确定所述无人机的返航路径;
若所述环境光亮度高于或等于所述预设阈值,基于第二返航策略确定所述无人机的返航路径;
其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述视觉传感器的探测数据确定所述无人机的返航路径。
示例性的,所述环境光亮度根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值确定。
示例性的,所述环境光亮度根据所述视觉传感器在多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定。
示例性的,所述处理器61还用于:根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;若当前时间在日出时间和日落时间之间,检测所述无人机所处环境的环境光亮度。
示例性的,所述处理器61还用于:若当前时间在日出时间之前或者日落时间之后,基于第一返航策略确定所述无人机的返航路径。
示例性的,所述无人机的存储介质预存有位置信息和日期信息的组合与日出日落时间的对应关系;所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
示例性的,所述处理器61还用于:响应于无人机的返航触发,在所述环境光亮度低于预设阈值的情况下输出第一提示信息、和/或在所述环境光亮度高于或等于所述预设阈值的情况下输出第二提示信息;其中,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航;所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航。
示例性的,所述处理器61还用于:在所述无人机以所述第二返航策略返航过程中,如果所述环境光亮度低于预设阈值,从所述第二返航策略切换为所述第一返航策略。
示例性的,在所述从所述第二返航策略切换为所述第一返航策略之后,所述处理器61还用于:输出切换提示信息;其中,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航。
示例性的,所述处理器61还用于:在所述无人机以所述第一返航策略返航过程中,如果检测到所述环境光亮度增大至高于或等于所述预设阈值,在所述无人机以所述第一返航策略返航的过程中基于所述视觉传感器的探测数据控制所述无人机避障。
示例性的,所述处理器61还用于:在所述无人机起飞之前,输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
示例性的,所述设置返航高度的提示信息是在满足以下任一条件的情况下输出的:所述视觉传感器故障、所述环境光亮度低于预设阈值、所述无人机的起飞时间在日出时间之前或者日落时间之后、或者所述无人机的起飞时间在日落时间之前的预设时间范围内。
示例性的,所述预设时间范围根据所述无人机的预设最大飞行时长确定。
示例性的,所述返航高度根据所述无人机在返航时的高度和返航点的高度之间的差异确定。这里描述的各种实施方式可以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储器中并且由控制器执行。
上述设备中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行上述方法。
在一些实施例中,本申请实施例还提供了一种无人机,包括:
机身;
动力系统,设于所述机身中,用于为所述无人机提供动力;
以及,设于所述机身中的上述的返航装置。
示例性的,请参阅图1,所述控制装置可以是无人机中的飞行控制器。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (37)

  1. 一种无人机的返航方法,其特征在于,包括:
    检测用于避障的传感器是否失效;
    若用于避障的传感器失效,基于第一返航策略确定所述无人机的返航路径;
    若用于避障的传感器正常运行,基于第二返航策略确定所述无人机的返航路径;
    其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述传感器的探测数据确定所述无人机的返航路径。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    响应于无人机的返航触发,在用于避障的传感器失效的情况下输出第一提示信息、和/或在用于避障的传感器正常运行的情况下输出第二提示信息;
    其中,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航;所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述无人机以所述第二返航策略返航过程中,如果所述用于避障的传感器失效,从所述第二返航策略切换为所述第一返航策略。
  4. 根据权利要求3所述的方法,其特征在于,在所述从所述第二返航策略切换为所述第一返航策略之后,还包括:
    输出切换提示信息;其中,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述无人机以所述第一返航策略返航过程中,如果检测到所述用于避障的传感器恢复正常运行,在所述无人机以所述第一返航策略返航的过程中基于所述用于避障的传感器采集的探测数据控制所述无人机避障。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述无人机起飞之前,输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
  7. 根据权利要求6所述的方法,其特征在于,所述输出设置返航高度的提示信息,包括:
    响应于所述用于避障的传感器失效,输出设置返航高度的提示信息;或者
    若检测到所述用于避障的传感器受外部因素影响即将失效,输出设置返航高度的提示信息。
  8. 根据权利要求1所述的方法,其特征在于,所述返航高度根据所述无人机在返航时的高度和返航点的高度之间的差异确定。
  9. 根据权利要求1所述的方法,其特征在于,所述用于避障的传感器的失效包括:所述传感器因内部器件老化、磨损或者损坏而失效,和/或,所述传感器因无法采集到满足预设要求的探测数据而失效。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,所述用于避障的传感器包括以下至少一种:视觉传感器、激光雷达、毫米波雷达或者超声波传感器。
  11. 根据权利要求1至9任意一项所述的方法,其特征在于,所述用于避障的传感器包括视觉传感器;
    所述检测用于避障的传感器是否失效,包括:
    根据当前环境的环境光亮度确定所述视觉传感器是否失效。
  12. 根据权利要求11所述的方法,其特征在于,所述根据当前环境的环境光亮度确定所述视觉传感器是否失效,包括:
    检测所述无人机所处环境的环境光亮度;
    若所述环境光亮度低于预设阈值,确定所述视觉传感器失效;
    若所述环境光亮度高于或等于所述预设阈值,确定所述视觉传感器正常运行。
  13. 根据权利要求11所述的方法,其特征在于,所述环境光亮度根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值确定。
  14. 根据权利要求13所述的方法,其特征在于,所述环境光亮度根据所述视觉传感器在多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定。
  15. 根据权利要求11所述的方法,其特征在于,所述检测用于避障的传感器是否失效,还包括:
    根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;
    若当前时间在日出时间和日落时间之间,确定所述视觉传感器正常运行;
    若当前时间在日出时间之前或者日落时间之后,确定所述视觉传感器失效。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    若当前时间在日出时间和日落时间之间,检测所述无人机所处环境的环境光亮度;
    若所述环境光亮度低于预设阈值,确定所述视觉传感器失效;
    若所述环境光亮度高于或等于所述预设阈值,确定所述视觉传感器正常运行。
  17. 根据权利要求15所述的方法,其特征在于,所述无人机的存储介质预存有位置信息和日期信息的组合与日出日落时间的对应关系;
    所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
  18. 根据权利要求1至9任意一项所述的方法,其特征在于,所述用于避障的传感器包括激光雷达;
    所述检测用于避障的传感器是否失效,包括:
    若当前环境为雾霾环境,确定所述激光雷达失效,否则,确定所述激光雷达正常运行。
  19. 根据权利要求18所述的方法,其特征在于,所述无人机设置有视觉传感器,所述雾霾环境通过所述视觉传感器采集的图像识别得到。
  20. 根据权利要求1至9任意一项所述的方法,其特征在于,所述用于避障的传感器包括激光雷达、毫米波雷达和/或超声波传感器;所述无人机的存储介质预存有所述激光雷达、所述毫米波雷达和/或所述超声波传感器的失效参考数据;
    所述检测用于避障的传感器是否失效,包括:
    根据所述激光雷达、所述毫米波雷达和/或所述超声波传感器的探测数据与所述失效参考数据之间的差异,确定所述激光雷达、所述毫米波雷达和/或所述超声波传感器是否失效。
  21. 一种无人机的返航方法,其特征在于,无人机设置有视觉传感器,包括:
    检测无人机所处环境的环境光亮度;
    若所述环境光亮度低于预设阈值,基于第一返航策略确定所述无人机的返航路径;
    若所述环境光亮度高于或等于所述预设阈值,基于第二返航策略确定所述无人机的返航路径;
    其中,所述第一返航策略包括控制所述无人机飞行至返航高度;所述第二返航策略包括基于所述视觉传感器的探测数据确定所述无人机的返航路径。
  22. 根据权利要求21所述的方法,其特征在于,
    所述环境光亮度根据一个或多个所述视觉传感器中的感光元件接收到的光子数量、和/或一个或多个所述视觉传感器采集的图像中像素的像素值确定。
  23. 根据权利要求22所述的方法,其特征在于,
    所述环境光亮度根据所述视觉传感器在多个不同的曝光参数下,所述感光元件接收到的光子数量的统计结果和/或所述视觉传感器采集的图像中像素的像素值的统计结果确定。
  24. 根据权利要求21所述的方法,其特征在于,所述检测所述无人机所处环境的环境光亮度,包括:
    根据所述无人机所处位置和当前日期,确定所述无人机所处位置当天的日出时间和日落时间;
    若当前时间在日出时间和日落时间之间,检测所述无人机所处环境的环境光亮度。
  25. 根据权利要求24所述的方法,其特征在于,还包括:
    若当前时间在日出时间之前或者日落时间之后,基于第一返航策略确定所述无人机的返航路径。
  26. 根据权利要求24所述的方法,其特征在于,所述无人机的存储介质预存有位置信息和日期信息的组合与日出日落时间的对应关系;
    所述无人机所处位置当天的日出时间和日落时间根据所述无人机所处位置和当前日期,从所述对应关系中确定。
  27. 根据权利要求21所述的方法,其特征在于,还包括:
    响应于无人机的返航触发,在所述环境光亮度低于预设阈值的情况下输出第一提示信息、和/或在所述环境光亮度高于或等于所述预设阈值的情况下输出第二提示信息;
    其中,所述第一提示信息用于提示用户避障失效,所述无人机以第一返航策略返航;所述第二提示信息用于提示用户所述无人机以第二返航策略避障式返航。
  28. 根据权利要求21所述的方法,其特征在于,还包括:
    在所述无人机以所述第二返航策略返航过程中,如果所述环境光亮度低于预设阈值,从所述第二返航策略切换为所述第一返航策略。
  29. 根据权利要求28所述的方法,其特征在于,在所述从所述第二返航策略切换为所述第一返航策略之后,还包括:
    输出切换提示信息;其中,所述切换提示信息用于提示用户避障失效,所述无人机以第一返航策略返航。
  30. 根据权利要求21所述的方法,其特征在于,
    所述方法还包括:
    在所述无人机以所述第一返航策略返航过程中,如果检测到所述环境光亮度增大至高于或等于所述预设阈值,在所述无人机以所述第一返航策略返航的过程中基于所 述视觉传感器的探测数据控制所述无人机避障。
  31. 根据权利要求21至30任意一项所述的方法,其特征在于,还包括:
    在所述无人机起飞之前,输出设置返航高度的提示信息,以提示用户设置所述第一返航策略中的所述返航高度。
  32. 根据权利要求31所述的方法,其特征在于,所述设置返航高度的提示信息是在满足以下任一条件的情况下输出的:
    所述视觉传感器故障、所述环境光亮度低于预设阈值、所述无人机的起飞时间在日出时间之前或者日落时间之后、或者所述无人机的起飞时间在日落时间之前的预设时间范围内。
  33. 根据权利要求32所述的方法,其特征在于,所述预设时间范围根据所述无人机的预设最大飞行时长确定。
  34. 根据权利要求21所述的方法,其特征在于,所述返航高度根据所述无人机在返航时的高度和返航点的高度之间的差异确定。
  35. 一种无人机的返航装置,其特征在于,包括:
    用于存储可执行指令的存储器;
    一个或多个处理器;
    其中,所述一个或多个处理器执行所述可执行指令时,被单独地或共同地配置成执行如权利要求1至34任意一项所述的方法。
  36. 一种无人机,其特征在于,包括:
    机身;
    动力系统,设于所述机身中,用于为所述无人机提供动力;
    以及,设于所述机身中的如权利要求35所述的返航装置。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时实现如权利要求1至34任一项所述的方法。
PCT/CN2021/123457 2021-10-13 2021-10-13 无人机的返航方法、装置、无人机及存储介质 WO2023060467A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101549.8A CN117836736A (zh) 2021-10-13 2021-10-13 无人机的返航方法、装置、无人机及存储介质
PCT/CN2021/123457 WO2023060467A1 (zh) 2021-10-13 2021-10-13 无人机的返航方法、装置、无人机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123457 WO2023060467A1 (zh) 2021-10-13 2021-10-13 无人机的返航方法、装置、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2023060467A1 true WO2023060467A1 (zh) 2023-04-20

Family

ID=85988129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123457 WO2023060467A1 (zh) 2021-10-13 2021-10-13 无人机的返航方法、装置、无人机及存储介质

Country Status (2)

Country Link
CN (1) CN117836736A (zh)
WO (1) WO2023060467A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118824A (ja) * 2014-12-18 2016-06-30 清水建設株式会社 移動体位置検出システムおよび方法
CN205844824U (zh) * 2016-07-19 2016-12-28 陈昊 基于光敏传感器的无人飞行器的视觉识别装置
CN106814744A (zh) * 2017-03-14 2017-06-09 吉林化工学院 一种无人机飞行控制系统以及方法
JP2018176846A (ja) * 2017-04-05 2018-11-15 三菱重工業株式会社 空気調和システム、航空機及び空気調和システムの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118824A (ja) * 2014-12-18 2016-06-30 清水建設株式会社 移動体位置検出システムおよび方法
CN205844824U (zh) * 2016-07-19 2016-12-28 陈昊 基于光敏传感器的无人飞行器的视觉识别装置
CN106814744A (zh) * 2017-03-14 2017-06-09 吉林化工学院 一种无人机飞行控制系统以及方法
JP2018176846A (ja) * 2017-04-05 2018-11-15 三菱重工業株式会社 空気調和システム、航空機及び空気調和システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO XU: "Design of a Flight Controller with Integrated Obstacle Avoidance Function", TECHNOLOGY OUTLOOK, no. 36, 30 December 2016 (2016-12-30), pages 141 - 141, XP093058401 *

Also Published As

Publication number Publication date
CN117836736A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US11776413B2 (en) Aerial vehicle flight control method and device thereof
CN111316066B (zh) 用于无人飞行器的备用导航系统
JP6312178B2 (ja) ナビゲーションシステム、輸送機の状態情報を評価する方法、及び、輸送機の状態情報を評価する装置
JP2020098567A (ja) 適応検知・回避システム
WO2023077341A1 (zh) 无人机的返航方法、装置、无人机、遥控设备、系统及存储介质
WO2020143576A1 (zh) 调整机载雷达的主探测方向的方法、装置和无人机
US11783716B2 (en) Return flight control method and device for unmanned aerial vehicle, and unmanned aerial vehicle
US11975866B2 (en) Aircraft night flight control method and apparatus, control apparatus, and aircraft
WO2023272633A1 (zh) 无人机的控制方法、无人机、飞行系统及存储介质
CN112596071A (zh) 无人机自主定位方法、装置及无人机
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
US20220100208A1 (en) Autonomous Multifunctional Aerial Drone
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
CN112378397A (zh) 无人机跟踪目标的方法、装置及无人机
KR102348289B1 (ko) 드론을 이용하여 시설물을 점검하는 시스템 및 그 제어방법
WO2021237462A1 (zh) 无人飞行器的限高方法、装置、无人飞行器及存储介质
WO2023060467A1 (zh) 无人机的返航方法、装置、无人机及存储介质
WO2020062255A1 (zh) 拍摄控制方法和无人机
WO2020014930A1 (zh) 无人机的控制方法、装置和无人机
CN107390707A (zh) 无人机控制系统
US20240019866A1 (en) Aerial vehicle control method and apparatus, aerial vehicle, and storage medium
KR102289743B1 (ko) 복수의 무인항공기를 이용한 목표를 탐색하기 위한 장치 및 이를 위한 방법
KR102266467B1 (ko) 검출 확률을 기초로 무인항공기를 이용한 목표를 탐색하기 위한 장치 및 이를 위한 방법
US20240176367A1 (en) Uav dispatching method, server, dock apparatus, system, and storage medium
JP7242682B2 (ja) 無人航空機発射のパラシュート着陸方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101549.8

Country of ref document: CN