WO2023095711A1 - Agent for improving processed meat product, processed meat product, and method for producing processed meat product - Google Patents
Agent for improving processed meat product, processed meat product, and method for producing processed meat product Download PDFInfo
- Publication number
- WO2023095711A1 WO2023095711A1 PCT/JP2022/042711 JP2022042711W WO2023095711A1 WO 2023095711 A1 WO2023095711 A1 WO 2023095711A1 JP 2022042711 W JP2022042711 W JP 2022042711W WO 2023095711 A1 WO2023095711 A1 WO 2023095711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starch
- processed
- processed meat
- oil
- acetylated
- Prior art date
Links
- 235000020991 processed meat Nutrition 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 229920002472 Starch Polymers 0.000 claims abstract description 142
- 235000019698 starch Nutrition 0.000 claims abstract description 140
- 239000008107 starch Substances 0.000 claims abstract description 130
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 235000013372 meat Nutrition 0.000 claims description 58
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 20
- 240000003183 Manihot esculenta Species 0.000 claims description 12
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 12
- 235000013305 food Nutrition 0.000 claims description 10
- 238000007710 freezing Methods 0.000 claims description 10
- 230000008014 freezing Effects 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 8
- 235000015220 hamburgers Nutrition 0.000 claims description 6
- 241000287828 Gallus gallus Species 0.000 claims description 5
- 235000013580 sausages Nutrition 0.000 claims description 5
- 241000196324 Embryophyta Species 0.000 claims description 4
- 240000008415 Lactuca sativa Species 0.000 claims description 3
- 235000012045 salad Nutrition 0.000 claims description 3
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 abstract 1
- 229940032147 starch Drugs 0.000 description 116
- 239000000523 sample Substances 0.000 description 72
- 238000012360 testing method Methods 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 239000007788 liquid Substances 0.000 description 28
- 239000003921 oil Substances 0.000 description 23
- 235000019198 oils Nutrition 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 239000002994 raw material Substances 0.000 description 18
- 238000011282 treatment Methods 0.000 description 17
- 239000003925 fat Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 235000019197 fats Nutrition 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000008157 edible vegetable oil Substances 0.000 description 10
- -1 fatty acid ester Chemical class 0.000 description 10
- 235000015277 pork Nutrition 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 238000010257 thawing Methods 0.000 description 9
- 102000002322 Egg Proteins Human genes 0.000 description 8
- 108010000912 Egg Proteins Proteins 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 241000238366 Cephalopoda Species 0.000 description 7
- 235000013804 distarch phosphate Nutrition 0.000 description 7
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 6
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 235000014103 egg white Nutrition 0.000 description 6
- 210000000969 egg white Anatomy 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 230000021736 acetylation Effects 0.000 description 5
- 238000006640 acetylation reaction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- 229920002261 Corn starch Polymers 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 235000013330 chicken meat Nutrition 0.000 description 4
- 239000008120 corn starch Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 229920001592 potato starch Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000019465 surimi Nutrition 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 241000238557 Decapoda Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000021110 pickles Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004278 EU approved seasoning Substances 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000010495 camellia oil Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- 235000011194 food seasoning agent Nutrition 0.000 description 2
- 230000018984 mastication Effects 0.000 description 2
- 238000010077 mastication Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 229940116317 potato starch Drugs 0.000 description 2
- 235000013594 poultry meat Nutrition 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 235000014102 seafood Nutrition 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 2
- 229940038773 trisodium citrate Drugs 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- 239000000052 vinegar Substances 0.000 description 2
- 235000021419 vinegar Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229940100445 wheat starch Drugs 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- GUOCOOQWZHQBJI-UHFFFAOYSA-N 4-oct-7-enoxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OCCCCCCC=C GUOCOOQWZHQBJI-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 235000015579 Alternanthera sessilis Nutrition 0.000 description 1
- 240000002930 Alternanthera sessilis Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 241001121957 Atelecyclidae Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 235000003301 Ceiba pentandra Nutrition 0.000 description 1
- 244000146553 Ceiba pentandra Species 0.000 description 1
- 241001529572 Chaceon affinis Species 0.000 description 1
- 241000131500 Chionoecetes opilio Species 0.000 description 1
- 241000555825 Clupeidae Species 0.000 description 1
- 241000272201 Columbiformes Species 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000276438 Gadus morhua Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 235000006439 Lemna minor Nutrition 0.000 description 1
- 244000242291 Lemna paucicostata Species 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- YBHQCJILTOVLHD-YVMONPNESA-N Mirin Chemical compound S1C(N)=NC(=O)\C1=C\C1=CC=C(O)C=C1 YBHQCJILTOVLHD-YVMONPNESA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 241000238414 Octopus vulgaris Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000238037 Palinurus vulgaris Species 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000238552 Penaeus monodon Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 241000238371 Sepiidae Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 235000006732 Torreya nucifera Nutrition 0.000 description 1
- 244000111306 Torreya nucifera Species 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 241000269959 Xiphias gladius Species 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 239000004106 carminic acid Substances 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229940080423 cochineal Drugs 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 235000019516 cod Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000013364 duck meat Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 235000013332 fish product Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940029982 garlic powder Drugs 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- VRVKOZSIJXBAJG-TYYBGVCCSA-M monosodium fumarate Chemical compound [Na+].OC(=O)\C=C\C([O-])=O VRVKOZSIJXBAJG-TYYBGVCCSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 235000019992 sake Nutrition 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- UGTZMIPZNRIWHX-UHFFFAOYSA-K sodium trimetaphosphate Chemical compound [Na+].[Na+].[Na+].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)O1 UGTZMIPZNRIWHX-UHFFFAOYSA-K 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 235000021335 sword fish Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 235000014122 turkey meat Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L13/00—Meat products; Meat meal; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L13/00—Meat products; Meat meal; Preparation or treatment thereof
- A23L13/40—Meat products; Meat meal; Preparation or treatment thereof containing additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L13/00—Meat products; Meat meal; Preparation or treatment thereof
- A23L13/60—Comminuted or emulsified meat products, e.g. sausages; Reformed meat from comminuted meat product
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L17/00—Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
Definitions
- the present invention relates to an improving agent for processed meat products, processed meat products, and a method for producing processed meat products.
- Patent Literature 1 discloses a method of obtaining a processed meat product with good texture and high yield by using a meat improving agent containing transglutaminase and vinegar.
- improvers are used for the purpose of improving texture.
- improvers are added for the purpose of suppressing syneresis.
- starch which has the effect of suppressing water syneresis, weakens the gel strength when it contains water, so there is a problem that the texture (especially suppleness and hardness) of processed meat products deteriorates.
- an object of the present invention is to provide a processed meat improver capable of imparting moderate flexibility and hardness to a processed meat product while suppressing syneresis, a processed meat product using the same, and a processed meat product. It is to provide a method of manufacturing a product.
- An improver for processed meat products includes an acetylated starch processed with oil and fat, and the acetyl group content of the acetylated starch processed with oil and fat is 1.1% by mass or more and 1.7% by mass. It is below.
- the acetylated starch may be acetylated crosslinked starch, and the solubility of the acetylated crosslinked starch may be 40.5% or more and 46.0% or less.
- the acetylated starch may be acetylated phosphate-crosslinked tapioca starch.
- the acetylated starch comprises a first acetylated starch having a first acetyl group content, and a first acetylated starch having a higher acetyl group content than the first content. and a second content of a second acetylated starch.
- a processed meat product according to one aspect of the present invention is a processed meat product containing the above-described improving agent for processed meat products.
- the above-mentioned processed meat product may be one selected from the group consisting of ham, sausage, hamburger steak, plant-based hamburger steak, salad chicken, and water-paste food.
- the syneresis rate of the above-mentioned processed meat product after freezing and then thawing may be 0.1% or more and 3.0% or less.
- a method for producing a processed meat product according to one aspect of the present invention is a method for producing a processed meat product, including the step of applying the above-described improving agent for processed meat products to meat.
- the meat modifier is added to the meat so that the amount of the oil-processed acetylated starch with respect to 100 parts by mass of the meat is 1 part by mass or more and 15 parts by mass or less. may be applied to
- a method for improving the texture of a processed meat product according to one aspect of the present invention is characterized by adding the above-described modifier for processed meat products to the meat when producing the processed meat product.
- the present invention provides a processed meat improver capable of imparting moderate flexibility and hardness to a processed meat product while suppressing syneresis, a processed meat product using the same, and a method for producing the processed meat product. can do.
- FIG. 4 is a graph showing the syneresis rate of the sample of Test 1 after cooling and thawing.
- 1 is a graph showing the breaking strength/breaking distance of a sample of Test 1 after refrigerated storage for 1 day.
- 1 is a graph showing the gel strength of a sample of Test 1 after refrigerated storage for 1 day.
- 2 is a graph showing the breaking strength/breaking distance of the sample of Test 1 after refrigerated storage for 7 days.
- 4 is a graph showing the gel strength of the samples of Test 1 after refrigerated storage for 7 days.
- 2 is a graph showing breaking strength/breaking distance after cooling and thawing of samples in Test 1.
- FIG. 2 is a graph showing the gel strength of samples of Test 1 after cold-thawing.
- 10 is a graph showing the syneresis rate of the sample for Test 2.
- FIG. 10 is a graph showing the breaking strength of the samples for Test 2.
- FIG. 10 is a graph showing the breaking strength of the samples for Test 2.
- the improving agent for processed meat products according to the present embodiment contains oil-processed acetylated starch, and the acetyl group content of the oil-processed acetylated starch is 1.1% by mass or more and 1.7% by mass or less. It is characterized by a
- the acetylated starch processed with fats and oils can be obtained by subjecting acetylated starch to processing with fats and oils.
- Acetylated starch can be obtained by subjecting raw material starch to acetylation treatment.
- raw material starch for example, at least one selected from the group consisting of tapioca starch, potato starch, waxy corn starch, corn starch, high amylose corn starch, sweet potato starch, wheat starch, rice starch and sago starch can be used. However, it is not limited to these.
- tapioca starch is preferably used as raw material starch.
- the acetylated starch used in the present embodiment is obtained by subjecting raw material starch to acetylation treatment.
- Acetylation treatment can be carried out by esterifying the raw material starch with, for example, acetic anhydride or vinyl acetate.
- the raw material starch may be subjected to other treatments in addition to the acetylation treatment.
- other treatments such as cross-linking treatment, etherification treatment, and enzyme treatment may be applied.
- a phosphoric acid cross-linking treatment is applied as another treatment, sodium trimetaphosphate or phosphorus oxychloride may be used to esterify the starting starch.
- acetylated phosphate-crosslinked starch obtained by subjecting raw material starch to acetylation treatment and phosphate-crosslinking treatment.
- acetylated phosphate-crosslinked tapioca starch using tapioca starch as raw material starch.
- acetylated starch processed with fats and oils can be obtained by subjecting acetylated starch to fats-and-oil processing.
- Fat processing can be performed by adding one or more selected from the group consisting of edible fats and edible fats and analogues to acetylated starch, followed by mixing and heating.
- Edible oils used for oil processing include safflower oil such as high linoleic safflower oil, soybean oil, corn oil, rapeseed oil, perilla oil, linseed oil, sunflower oil, peanut oil, cottonseed oil, olive oil, rice oil, and palm oil. , coconut oil, sesame oil, camellia oil, tea oil, mustard oil, kapok oil, kaya oil, walnut oil, poppy oil and the like.
- edible oil-and-fat analogues used for oil processing include monoglycerin fatty acid ester; polyglycerin fatty acid ester; polyglycerin condensed ricinoleic acid ester; organic acid fatty acid ester; sucrose fatty acid ester; sorbitan fatty acid ester; preferably one or two selected from monoglycerin fatty acid esters and polyglycerin fatty acid esters, more preferably polyglycerin fatty acid esters.
- the amount of the edible oil or edible oil-related substance when preparing the oil-processed starch is, for example, the sum of the edible oil and the edible oil-related substance with respect to 100 parts by mass of raw starch (e.g., acetylated starch). It may be 0.005 parts by mass or more, preferably 0.008 parts by mass or more, and more preferably 0.02 parts by mass or more.
- the amount of edible oil or edible oil-related substance blended with respect to 100 parts by mass of raw starch is, for example, 2 parts by mass or less in total of edible oil and edible oil-related substance. 0.5 parts by mass or less, more preferably 0.8 parts by mass or less.
- the mixture may contain a pH adjuster from the viewpoint of protecting the acetyl group of the acetylated starch contained as a raw material.
- the pH adjuster may be any pH adjuster that can be used in foods, and can be selected according to the type of raw starch and edible oil. from, hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide; carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate; and disodium hydrogen phosphate, sodium dihydrogen phosphate, etc.
- organic acid salts other than the above such as trisodium citrate, sodium acetate, sodium lactate, disodium succinate, sodium gluconate, sodium tartrate, and monosodium fumarate, and one or more of these is preferably blended. More preferably, one or more carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate are used, and more preferably one or more selected from the group consisting of sodium carbonate and trisodium citrate, and more preferably citric acid. Trisodium phosphate is used.
- the amount of the pH adjuster added when preparing the oil-processed starch is, for example, 0.005 parts by mass or more, preferably 0.03 parts by mass or more, and more preferably 0.05 parts by mass or more with respect to 100 parts by mass of starch. , and more preferably 0.08 parts by mass or more.
- the amount of the pH adjuster added is, for example, 2 parts by mass or less, preferably 1.5 parts by mass or less with respect to 100 parts by mass of starch. It is preferably 1.2 parts by mass or less, and more preferably 1 part by mass or less.
- the acetyl group content of the acetylated starch processed with oil is 1.1% by mass or more and 1.7% by mass or less, preferably 1.1% by mass or more and 1.6% by mass or less. More preferably, it is 1.2% by mass or more and 1.6% by mass or less.
- the acetylated starch may be acetylated crosslinked starch, and in this case, the solubility of the acetylated crosslinked starch is 40.5% or more and 46.0% or less, preferably 41.0% or more and 46%. 0% or less, more preferably 41.5% or more and 46.0% or less.
- the acetylated starch having the acetyl group content in the above range may be used alone, or two or more types of acetylated starch having different acetyl group contents may be mixed to obtain the above-mentioned A range of acetylated starches may be prepared.
- a first acetylated starch having a first acetyl group content and a first acetylated starch having a first acetyl group content A second acetylated starch that is a second content greater than the amount of acetylated starch may be used.
- the acetylated starch comprising the starch may be oil processed to form the oil processed acetylated starch.
- acetylated starch having a predetermined acetyl group content can be easily prepared.
- the acetyl group content of the acetylated starch can be adjusted with high precision.
- two or more types of acetylated starches that have been processed with oils and fats may be mixed. It is preferable to mix the above acetylated starches before fat processing.
- the improving agent for processed meat products according to the present embodiment may contain a powdery component in addition to the acetylated starch processed with fats and oils.
- a powdery component in addition to the acetylated starch processed with fats and oils.
- specific examples of such components include starches (unprocessed starches such as corn starch, tapioca starch, potato starch, wheat starch, etc.), and those processed by esterification, etherification, gelatinization, oxidation, acid treatment, etc.
- modified starch, sodium starch octenyl succinate, etc. seasonings such as salt, sugar and sodium glutamate; proteins such as soybean protein and powdered egg white; spices such as pepper and garlic powder; Preservatives such as sodium, glycine, and Na acetate; Antioxidants such as sodium ascorbate; Colorants such as cochineal dyes; Emulsion stabilizers such as sodium caseinate; Thickeners such as xanthan gum, locust bean gum, and guar gum; gelling agent; nutritional enhancers such as calcined shell calcium, eggshell calcium, and calcium carbonate.
- powdery ingredients that are commonly used in foods may also be included.
- the improving agent for processed meat products according to the present embodiment is in powder form, for example, it may be used as a meat processing liquid in which a powdery improving agent for processed meat products is dispersed in a liquid.
- the content of the oil-processed acetylated starch in the improved agent for processed meat products according to the present embodiment is, for example, 10% by mass or more and 100% by mass or less, preferably 15% by mass or more and 100% by mass or less. , more preferably 20% by mass or more and 100% by mass or less, and still more preferably 20% by mass or more and 99% by mass or less.
- the processed meat product according to the present embodiment is a processed meat product obtained by applying the above-described improving agent for processed meat product to meat.
- the meat used in the present embodiment is not particularly limited as long as it is meat, and examples include pork, beef, chicken, goat meat, mutton, horse meat, wild boar meat, venison, rabbit meat, bear meat, duck meat, and pigeon meat.
- duck, quail and turkey meat animal and poultry meat, fish such as salmon, sea bream, tuna, salmon, swordfish, cod, bonito, and sardines, and shrimp such as Amaebi, spiny lobster and tiger prawn 1 selected from the group consisting of crabs such as crabs, horse crabs, snow crabs, and king crabs, squids such as red squid, bluefin squid, cuttlefish, flying squid, firefly squid, spear squid, and seafood such as octopuses such as octopus and common octopus A species or two or more species can be used.
- the processed meat product according to the present embodiment is not particularly limited as long as it contains the above-described improving agent for processed meat products.
- Examples include ham, sausage, hamburger, salad chicken, meatball,
- Processed meat products include processed meat products such as steamed dumplings and dumplings, and processed marine products (water-paste products) such as kamaboko, fried kamaboko, hanpen, bamboo rings, and fish sausages.
- the invention according to the present embodiment can also be applied to animal meat-like processed products.
- meat processing product improver according to the present embodiment to vegetable proteins derived from beans such as soybeans and peas; grains such as wheat; vegetables; Meat-like processed products such as base hamburgers, plant-based sausages, and plant-based hams can be produced.
- the amount of acetylated starch processed with oil and fat is 1 part by mass or more and 15 parts by mass or less, preferably 2 parts by mass or more, relative to 100 parts by mass of meat.
- the improving agent for processed meat products may be applied to meat in an amount of 15 parts by mass or less, more preferably 4 parts by mass or more and 10 parts by mass or less.
- the improving agent for processed meat products according to the present embodiment to meat, it is possible to suppress syneresis and impart appropriate flexibility and hardness to the processed meat product. Moreover, the taste of processed meat products can be strengthened.
- the processed meat improver according to the present embodiment when the processed meat improver according to the present embodiment is applied to meat, after the processed meat is frozen and stored for a predetermined period, while suppressing syneresis of the processed meat when thawed, Flexibility and hardness can be imparted to processed meat products.
- the syneresis rate when the processed meat product is thawed after freezing can be 0.1% or more and 3.0% or less.
- the breaking strength when the processed meat product is thawed after freezing can be 200 g or more and 310 g or less.
- the method for producing the processed meat product according to the present embodiment is not particularly limited as long as it is a production method including the step of applying the above-described improving agent for processed meat product to meat.
- the improving agent for processed meat products according to the present embodiment is powdery, and for example, the powdery improving agent for processed meat products may be added to meat and used. Alternatively, the powdery processed meat improver may be dispersed in a liquid, and this liquid (meat processing liquid) may be applied to the meat.
- the amount of oil-processed acetylated starch contained in the meat processing liquid is 1% by mass or more and 10% by mass. % by mass or less, preferably 3% by mass or more and 8% by mass or less, more preferably 4% by mass or more and 6% by mass or less.
- the meat processing liquid may contain a liquid component in addition to the powder component that may be contained in the above-described meat improving agent.
- a liquid component in addition to the powder component that may be contained in the above-described meat improving agent.
- liquid seasonings such as soy sauce, vinegar, sake, and mirin; liquid oils such as canola oil, soybean oil, and blended oils; water such as water and ice; liquid proteins such as whey, egg yolk, and egg white. good.
- liquid ingredients that are commonly used in foods may also be included.
- injection treatment or tumbling treatment can be used.
- the injection process is a process of injecting a meat processing liquid into meat using an injector.
- Tumbling is the process of physically permeating meat with a meat processing liquid using a tumbler (a device with a rotating mechanism).
- Kamaboko manufacturing method When making Kamaboko, the raw materials shown in Table 3, for example, can be used. At this time, the improved agent for processed meat products according to the present embodiment is used as the oil-and-fat processed starch.
- these raw materials are mixed and mixed. Specifically, first, the cut frozen surimi is minced with a food processor. Thereafter, salt alone is added and mixed, and ice (crush) is added and mixed.
- the acetyl group content of the oil-processed acetylated starch contained in the processed meat improver is 1.1% by mass or more and 1.7% by mass or less.
- test 1 to 3 were carried out.
- the following tests are examples, and the present invention is not limited to Tests 1 to 3 below.
- Alcohol group content was measured by the following method.
- (1) The water content of the starch to be measured was measured using a moisture meter (manufactured by Kensei Kogyo Co., Ltd., electromagnetic moisture meter: model number MX50), and the moisture content (%) in the starch sample was calculated.
- (2) 20 mL of water and a few drops of 1.0 w/v % phenolphthalein ethanol solution were added to 1.8-2.0 g of starch sample.
- a 0.1N sodium hydroxide aqueous solution was added until the red color of the solution in (2) did not disappear, and then 8 mL of a 0.45N sodium hydroxide aqueous solution was added, followed by vigorous stirring at room temperature for 30 minutes.
- the solubility of oil-processed starch 2 is 39.0%, the solubility of oil-processed starch 3 is 41.8%, the solubility of oil-processed starch 4 is 42.5%, and the solubility of oil-processed starch 5 is 46.0%. there were.
- the raw materials after mixing were placed in a zipper bag and degassed with a vacuum packaging machine (Nichiwa Hot Temp). After that, it was filled into a vinyl casing. Also, keep the temperature low during the work. Then, it was allowed to stand in a hot bath at 30°C for 90 minutes (sitting). After that, it was heated in a hot water bath at 80° C. for 20 minutes. After heating, it was put into ice water and cooled for 10 minutes, and then stored in a refrigerator. In addition, some samples were stored frozen.
- Test 1 a sample according to Comparative Example 1-1 using oil-processed starch 1 (acetyl group content of 0%) and Comparative Example 1-2 using oil-processed starch 2 (acetyl group content of 0.9%) sample, Example 1-1 using oil-processed starch 3 (acetyl group content: 1.2%), Example 1 using oil-processed starch 4 (acetyl group content: 1.3%) -2 and samples of Examples 1-3 using oil-processed starch 5 (acetyl group content: 1.6%) were prepared.
- Test 1 a sample that was refrigerated for 1 day (hereinafter referred to as D1), a sample that was refrigerated for 7 days (hereinafter referred to as D7), and a sample that was repeatedly thawed three times (hereinafter referred to as thawed and thawed). described) was evaluated.
- the syneresis rate was measured for the sample after repeating the cooling and thawing three times.
- the freezing and thawing was performed by storing overnight in a freezer at ⁇ 10° C. and then leaving it in a refrigerator for 3 hours to thaw, which was repeated three times.
- the water syneresis rate is determined by lightly wiping the surface of the thawed sample with a paper towel, measuring the weight, calculating the difference from the previously measured weight of the sample before freezing, and using this difference as the weight of the sample before freezing. (see formula below).
- Syneresis rate (weight before freezing - weight after thawing) / weight before freezing x 100 (%)
- Table 4 and the graph in Fig. 1 show the measurement results of the water separation rate of each sample.
- the syneresis rate was measured for three samples for each test section.
- Table 4 shows the average value of the syneresis rate and the standard deviation of the syneresis rate of the three samples in each test plot.
- the graph in FIG. 1 shows the average syneresis of three samples in each plot.
- the syneresis rate of each sample decreased as the acetyl group content of the oil-processed starch increased.
- the samples according to Examples 1-1 to 1-3 had good syneresis rates of 2% or less.
- a texture analyzer (TA-XT Plus, Stable Micro Systems Co.) was used to measure the breaking strength and breaking distance.
- the casing was peeled off from the kamaboko stuffed in the casing, and the cylindrical kamaboko with a diameter of 30 mm was cut into a thickness of 25 mm and used as the measurement sample.
- the force of breaking through the kamaboko breaking strength (g)) and the distance traveled by the plunger until breakage (breaking distance (cm)
- Table 5 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g ⁇ cm) of the sample (D1) stored in a refrigerator for one day. Table 5 shows the average value of four measurements of each value. Also, the graph shown in FIG. 2 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 3 shows the gel strength (g ⁇ cm) of each sample. The graphs of FIGS. 2 and 3 plot the values shown in Table 5.
- the breaking strength (g) represents the hardness of the sample, and the breaking distance (cm) represents the flexibility of the sample. Moreover, the gel strength (g ⁇ cm) obtained by multiplying these values is an index representing their balance.
- Table 6 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g ⁇ cm) of the sample (D7) stored in a refrigerator for 7 days. Table 6 shows the average value of four measurements of each value. Also, the graph shown in FIG. 4 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 5 shows the gel strength (g ⁇ cm) of each sample. The graphs of FIGS. 4 and 5 plot the values shown in Table 6.
- the sample (D7) stored in a refrigerator for 7 days had good values of overall breaking strength (g), breaking distance (cm), and gel strength (g cm). It can be said that it has moderate hardness and flexibility. Therefore, in the samples according to Examples 1-1 to 1-3, it was possible to impart moderate flexibility and hardness to the kamaboko while suppressing syneresis.
- Table 7 shows the measurement results of breaking strength (g), breaking distance (cm), and gel strength (g ⁇ cm) of the cold-thawed samples. Table 7 shows the average of four measurements of each value. Also, the graph shown in FIG. 6 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 7 shows the gel strength (g ⁇ cm) of each sample. The graphs of FIGS. 6 and 7 plot the values shown in Table 7.
- the cold-thawed samples generally showed good values for breaking strength (g), breaking distance (cm), and gel strength (g cm). , It can be said that it has moderate hardness and flexibility. Therefore, in the samples according to Examples 1-1 to 1-3, it was possible to impart moderate flexibility and hardness to the kamaboko while suppressing syneresis.
- Test 2 salt and auxiliary materials other than salt were weighed.
- the raw materials used in Test 2 are shown in Table 8.
- potato starch, egg white, phosphate-crosslinked tapioca starch, acetylated tapioca starch, fat-processed starch 1 (acetyl group content 0%), and fat-processed starch 3 (acetyl group content 1.2%) were prepared.
- the type of starch (egg white) used in each sample was varied.
- each ingredient was mixed in a food processor. After that, each sample (test section) was placed in a zipper bag and slammed against a stone table to remove air.
- a cylindrical casing tube with a diameter of 30 mm was filled with the mixture (minced gel) prepared as described above. After that, it was heated in a constant temperature bath at 73° C. for 30 minutes. Then, it was cooled with ice water for 30 minutes to prepare a heat-treated minced gel.
- the syneresis rate of each prepared sample was measured.
- the syneresis rate was measured using the same method as in Test 1.
- Test 2 the syneresis rate was measured for the refrigerated sample and the cold-thawed sample.
- FIG. 8 shows the water syneresis of the samples of Test 2.
- both the refrigerated samples and the cold-thawed samples had high syneresis rates.
- both the refrigerated sample and the cold-thawed sample had a low syneresis rate. Therefore, when the oil-processed starch 3 (acetyl group content: 1.2%) was used, the syneresis rate of the minced gel could be reduced.
- the breaking strength of each prepared sample was measured. Specifically, the minced gel was cut to a thickness of 15 mm and subjected to a compression test using a texture analyzer. A spherical plunger with a diameter of 7 mm was used to measure the breaking strength and breaking distance, respectively, and the minced gel was compressed under the conditions of a test speed of 1 mm/sec and 80% strain, and the stress (g) at break and the break. The distance (mm) that the plunger moved up to was measured. In Test 2, the breaking strength was measured for a sample that had been refrigerated and a sample that had been frozen and thawed. FIG. 9 shows the breaking strength of the samples for Test 2. As shown in FIG.
- Injection yield (%) (weight of meat after injection/weight of meat before injection) x 100...Formula 1
- the tumbling treatment was carried out by putting the injected meat into a tumbler and tumbling it at 4° C. under vacuum for 16 hours. Cooling tumbler ESK-60 manufactured by Bacona was used as the tumbler. Table 11 shows the tumbling yield of each sample. The yield after tumbling treatment (tumbling yield) was calculated using Equation 2 below.
- Tumbling yield (%) (Meat weight after tumbling/Meat weight before tumbling) x 100 Formula 2
- the meat after tumbling was placed in a casing and heat-treated.
- the heat treatment was performed using a steam convection oven (Combimaster Plus XS manufactured by Rational) under the following conditions. First, it was dried at a temperature of 60°C for 30 minutes, and then dried at a temperature of 70°C for 90 minutes. Then, it was heated and steamed for 78 minutes at a temperature of 78°C. At this time, the core temperature of the sample reached 63°C. Then, preheating was performed at a temperature of 64° C. for 30 minutes. After that, it was stored overnight in a refrigerator (4°C), and the next day, it was taken out from the refrigerator. Table 12 shows the heating yield of each sample. The heating yield was calculated using Equation 3 below.
- Heat yield (%) (mass after heat treatment/mass before heat treatment) x 100...Equation 3
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Meat, Egg Or Seafood Products (AREA)
Abstract
Provided is an agent for improving a processed meat product, the agent being capable of suppressing water loss while imparting the appropriate flexibility and hardness to a processed meat product. This agent for improving a processed meat product is, according to one embodiment of the invention, characterized by containing an oil-processed acetylated starch, wherein the acetyl content of the oil-processed acetylated starch is 1.1 to 1.7 mass%.
Description
本発明は、食肉加工品用改良剤、食肉加工品、及び食肉加工品の製造方法に関する。
The present invention relates to an improving agent for processed meat products, processed meat products, and a method for producing processed meat products.
従来から、食肉加工品の製造工程では、食感の改良等を目的として様々な改良剤が用いられてきた。例えば、特許文献1には、トランスグルタミナーゼと食酢とを含む食肉改良剤を用いることにより、食感が良好で歩留まりの高い食肉加工品を得る方法が開示されている。
Conventionally, in the manufacturing process of processed meat products, various improvers have been used for the purpose of improving texture. For example, Patent Literature 1 discloses a method of obtaining a processed meat product with good texture and high yield by using a meat improving agent containing transglutaminase and vinegar.
上述のように、食肉加工品の製造工程では、食感の改良等を目的として様々な改良剤が用いられている。例えば、蒲鉾等の食肉加工品では、離水を抑制することを目的として改良剤が添加されている。
As mentioned above, in the manufacturing process of processed meat products, various improvers are used for the purpose of improving texture. For example, in processed meat products such as kamaboko, improvers are added for the purpose of suppressing syneresis.
しかしながら、離水抑制効果のある澱粉(改良剤)は、水分を含むとゲル強度が弱くなるため、食肉加工品の食感(特に、しなやかさと硬さ)が悪化するという問題がある。
However, starch (improving agent), which has the effect of suppressing water syneresis, weakens the gel strength when it contains water, so there is a problem that the texture (especially suppleness and hardness) of processed meat products deteriorates.
上記課題に鑑み本発明の目的は、離水を抑制しつつ適度なしなやかさと硬さを食肉加工品に付与することが可能な食肉加工品用改良剤、それを用いた食肉加工品、並びに食肉加工品の製造方法を提供することである。
In view of the above problems, an object of the present invention is to provide a processed meat improver capable of imparting moderate flexibility and hardness to a processed meat product while suppressing syneresis, a processed meat product using the same, and a processed meat product. It is to provide a method of manufacturing a product.
本発明の一態様にかかる食肉加工品用改良剤は、油脂加工されたアセチル化澱粉を含み、前記油脂加工されたアセチル化澱粉のアセチル基含有量が1.1質量%以上1.7質量%以下である。
An improver for processed meat products according to one aspect of the present invention includes an acetylated starch processed with oil and fat, and the acetyl group content of the acetylated starch processed with oil and fat is 1.1% by mass or more and 1.7% by mass. It is below.
上述の食肉加工品用改良剤において、前記アセチル化澱粉がアセチル化架橋澱粉であってもよく、当該アセチル化架橋澱粉の溶解度が40.5%以上46.0%以下であってもよい。
In the above-mentioned improving agent for processed meat products, the acetylated starch may be acetylated crosslinked starch, and the solubility of the acetylated crosslinked starch may be 40.5% or more and 46.0% or less.
上述の食肉加工品用改良剤において、前記アセチル化澱粉がアセチル化リン酸架橋タピオカ澱粉であってもよい。
In the above improver for processed meat products, the acetylated starch may be acetylated phosphate-crosslinked tapioca starch.
上述の食肉加工品用改良剤において、前記アセチル化澱粉が、アセチル基含有量が第1の含有量である第1のアセチル化澱粉と、アセチル基含有量が前記第1の含有量よりも多い第2の含有量である第2のアセチル化澱粉と、を含んでいてもよい。
In the above-mentioned improving agent for processed meat products, the acetylated starch comprises a first acetylated starch having a first acetyl group content, and a first acetylated starch having a higher acetyl group content than the first content. and a second content of a second acetylated starch.
本発明の一態様にかかる食肉加工品は、上述の食肉加工品用改良剤を含む食肉加工品である。
A processed meat product according to one aspect of the present invention is a processed meat product containing the above-described improving agent for processed meat products.
上述の食肉加工品が、ハム、ソーセージ、ハンバーグ、プラントベースハンバーグ、サラダチキン、水練り食品からなる群から選ばれる一種であってもよい。
The above-mentioned processed meat product may be one selected from the group consisting of ham, sausage, hamburger steak, plant-based hamburger steak, salad chicken, and water-paste food.
上述の食肉加工品を冷凍後、解凍した際の離水率が0.1%以上3.0%以下であってもよい。
The syneresis rate of the above-mentioned processed meat product after freezing and then thawing may be 0.1% or more and 3.0% or less.
本発明の一態様にかかる食肉加工品の製造方法は、上述の食肉加工品用改良剤を食肉に適用する工程を含む、食肉加工品の製造方法である。
A method for producing a processed meat product according to one aspect of the present invention is a method for producing a processed meat product, including the step of applying the above-described improving agent for processed meat products to meat.
上述の食肉加工品の製造方法において、前記食肉100質量部に対する前記油脂加工されたアセチル化澱粉の量が1質量部以上15質量部以下となるように、前記食肉加工品用改良剤を前記食肉に適用してもよい。
In the method for producing a processed meat product described above, the meat modifier is added to the meat so that the amount of the oil-processed acetylated starch with respect to 100 parts by mass of the meat is 1 part by mass or more and 15 parts by mass or less. may be applied to
本発明の一態様にかかる食肉加工品の食感を向上させる方法は、食肉加工品を製造する際に、上述の食肉加工品用改良剤を食肉に添加することを特徴とする。
A method for improving the texture of a processed meat product according to one aspect of the present invention is characterized by adding the above-described modifier for processed meat products to the meat when producing the processed meat product.
本発明により、離水を抑制しつつ適度なしなやかさと硬さを食肉加工品に付与することが可能な食肉加工品用改良剤、それを用いた食肉加工品、並びに食肉加工品の製造方法を提供することができる。
The present invention provides a processed meat improver capable of imparting moderate flexibility and hardness to a processed meat product while suppressing syneresis, a processed meat product using the same, and a method for producing the processed meat product. can do.
以下、本発明の実施の形態について説明する。
Embodiments of the present invention will be described below.
<食肉加工品用改良剤>
本実施の形態にかかる食肉加工品用改良剤は、油脂加工されたアセチル化澱粉を含み、油脂加工されたアセチル化澱粉のアセチル基含有量が1.1質量%以上1.7質量%以下であることを特徴としている。 <Improving agent for processed meat products>
The improving agent for processed meat products according to the present embodiment contains oil-processed acetylated starch, and the acetyl group content of the oil-processed acetylated starch is 1.1% by mass or more and 1.7% by mass or less. It is characterized by a
本実施の形態にかかる食肉加工品用改良剤は、油脂加工されたアセチル化澱粉を含み、油脂加工されたアセチル化澱粉のアセチル基含有量が1.1質量%以上1.7質量%以下であることを特徴としている。 <Improving agent for processed meat products>
The improving agent for processed meat products according to the present embodiment contains oil-processed acetylated starch, and the acetyl group content of the oil-processed acetylated starch is 1.1% by mass or more and 1.7% by mass or less. It is characterized by a
本実施の形態において、油脂加工されたアセチル化澱粉は、アセチル化澱粉に油脂加工を施すことで得ることができる。アセチル化澱粉は、原料澱粉にアセチル化処理を施すことで得ることができる。原料澱粉には、例えば、タピオカ澱粉、馬鈴薯澱粉、ワキシーコーン澱粉、コーン澱粉、ハイアミロースコーン澱粉、甘藷澱粉、小麦澱粉、米澱粉およびサゴ澱粉からなる群から選択される少なくとも一種を用いることができるが、これらに限定されることはない。本実施の形態では、原料澱粉としてタピオカ澱粉を用いることが好ましい。
In the present embodiment, the acetylated starch processed with fats and oils can be obtained by subjecting acetylated starch to processing with fats and oils. Acetylated starch can be obtained by subjecting raw material starch to acetylation treatment. As raw material starch, for example, at least one selected from the group consisting of tapioca starch, potato starch, waxy corn starch, corn starch, high amylose corn starch, sweet potato starch, wheat starch, rice starch and sago starch can be used. However, it is not limited to these. In the present embodiment, tapioca starch is preferably used as raw material starch.
本実施の形態で用いられるアセチル化澱粉は、原料澱粉にアセチル化処理を施すことで得られる。アセチル化処理は、例えば無水酢酸又は酢酸ビニルを用いて原料澱粉をエステル化することで実施できる。また、本実施の形態では、アセチル化処理に加えて他の処理を原料澱粉に施してもよい。例えば、他の処理として架橋処理、エーテル化処理、酵素処理等を施してもよい。例えば他の処理として、リン酸架橋処理を施す場合は、トリメタリン酸ナトリウム又はオキシ塩化リンを用いて原料澱粉をエステル化してもよい。
The acetylated starch used in the present embodiment is obtained by subjecting raw material starch to acetylation treatment. Acetylation treatment can be carried out by esterifying the raw material starch with, for example, acetic anhydride or vinyl acetate. Moreover, in the present embodiment, the raw material starch may be subjected to other treatments in addition to the acetylation treatment. For example, other treatments such as cross-linking treatment, etherification treatment, and enzyme treatment may be applied. For example, when a phosphoric acid cross-linking treatment is applied as another treatment, sodium trimetaphosphate or phosphorus oxychloride may be used to esterify the starting starch.
本実施の形態では、原料澱粉にアセチル化処理とリン酸架橋処理とを施した、アセチル化リン酸架橋澱粉を用いることが好ましい。また、原料澱粉にタピオカ澱粉を用いた、アセチル化リン酸架橋タピオカ澱粉を用いることが特に好ましい。
In the present embodiment, it is preferable to use acetylated phosphate-crosslinked starch obtained by subjecting raw material starch to acetylation treatment and phosphate-crosslinking treatment. Moreover, it is particularly preferable to use acetylated phosphate-crosslinked tapioca starch using tapioca starch as raw material starch.
本実施の形態では、アセチル化澱粉に油脂加工を施すことで、油脂加工されたアセチル化澱粉(油脂加工澱粉)を得ることができる。油脂加工は、アセチル化澱粉に食用油脂および食用油脂類縁物質からなる群から選択される1種または2種以上を添加した後、混合、加熱することで行うことができる。
In the present embodiment, acetylated starch processed with fats and oils (oil-processed starch) can be obtained by subjecting acetylated starch to fats-and-oil processing. Fat processing can be performed by adding one or more selected from the group consisting of edible fats and edible fats and analogues to acetylated starch, followed by mixing and heating.
油脂加工に用いる食用油脂としては、ハイリノールサフラワー油等のサフラワー油、大豆油、コーン油、ナタネ油、エゴマ油、アマニ油、ヒマワリ油、落花生油、綿実油、オリーブ油、コメ油、パーム油、ヤシ油、ゴマ油、椿油、茶油、カラシ油、カポック油、カヤ油、クルミ油、ケシ油などが挙げられる。
Edible oils used for oil processing include safflower oil such as high linoleic safflower oil, soybean oil, corn oil, rapeseed oil, perilla oil, linseed oil, sunflower oil, peanut oil, cottonseed oil, olive oil, rice oil, and palm oil. , coconut oil, sesame oil, camellia oil, tea oil, mustard oil, kapok oil, kaya oil, walnut oil, poppy oil and the like.
また、油脂加工に用いる食用油脂類縁物質としては、モノグリセリン脂肪酸エステル;ポリグリセリン脂肪酸エステル;ポリグリセリン縮合リシノレイン酸エステル;有機酸脂肪酸エステル;ショ糖脂肪酸エステル;ソルビタン脂肪酸エステル;ポリソルベート;リン脂質などが挙げられ、好ましくはモノグリセリン脂肪酸エステルおよびポリグリセリン脂肪酸エステルから選ばれる1種または2種であり、より好ましくはポリグリセリン脂肪酸エステルである。
In addition, edible oil-and-fat analogues used for oil processing include monoglycerin fatty acid ester; polyglycerin fatty acid ester; polyglycerin condensed ricinoleic acid ester; organic acid fatty acid ester; sucrose fatty acid ester; sorbitan fatty acid ester; preferably one or two selected from monoglycerin fatty acid esters and polyglycerin fatty acid esters, more preferably polyglycerin fatty acid esters.
ここで、油脂加工澱粉調製時の食用油脂または食用油脂類縁物質の配合量は、例えば、100質量部の原料澱粉(例えば、アセチル化澱粉)に対して、食用油脂および食用油脂類縁物質の合計で0.005質量部以上としてもよく、0.008質量部以上が好ましく、0.02質量部以上がさらに好ましい。また、100質量部の原料澱粉(例えば、アセチル化澱粉)に対しての食用油脂または食用油脂類縁物質の配合量は、例えば、食用油脂および食用油脂類縁物質の合計で2質量部以下とし、1.5質量部以下が好ましく、より好ましくは0.8質量部以下とする。
Here, the amount of the edible oil or edible oil-related substance when preparing the oil-processed starch is, for example, the sum of the edible oil and the edible oil-related substance with respect to 100 parts by mass of raw starch (e.g., acetylated starch). It may be 0.005 parts by mass or more, preferably 0.008 parts by mass or more, and more preferably 0.02 parts by mass or more. In addition, the amount of edible oil or edible oil-related substance blended with respect to 100 parts by mass of raw starch (for example, acetylated starch) is, for example, 2 parts by mass or less in total of edible oil and edible oil-related substance. 0.5 parts by mass or less, more preferably 0.8 parts by mass or less.
ここで、油脂加工澱粉を調製する工程において、原料として含まれるアセチル化澱粉のアセチル基を保護する観点から、混合物がpH調整剤を含む構成としてもよい。
pH調整剤は、食品に利用可能なpH調整剤であればよく、原料澱粉および食用油脂の種類に応じて選択することができるが、水への溶解性や、最終製品への味などの影響から、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の水酸化物;炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の炭酸塩;およびリン酸水素2ナトリウム、リン酸2水素ナトリウム等のリン酸塩類;およびクエン酸3ナトリウム、酢酸ナトリウム、乳酸ナトリウム、コハク酸2ナトリウム、グルコン酸ナトリウム、酒石酸ナトリウム、フマル酸1ナトリウム等の上記以外の有機酸塩等が好ましく、これらの1種以上を配合するのが好ましい。さらに好ましくは、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の炭酸塩類を1種以上用い、さらにまた好ましくは炭酸ナトリウムおよびクエン酸三ナトリウムからなる群から選択される1種以上、さらにより好ましくはクエン酸三ナトリウムを用いる。 Here, in the step of preparing the oil-processed starch, the mixture may contain a pH adjuster from the viewpoint of protecting the acetyl group of the acetylated starch contained as a raw material.
The pH adjuster may be any pH adjuster that can be used in foods, and can be selected according to the type of raw starch and edible oil. from, hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide; carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate; and disodium hydrogen phosphate, sodium dihydrogen phosphate, etc. and organic acid salts other than the above, such as trisodium citrate, sodium acetate, sodium lactate, disodium succinate, sodium gluconate, sodium tartrate, and monosodium fumarate, and one or more of these is preferably blended. More preferably, one or more carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate are used, and more preferably one or more selected from the group consisting of sodium carbonate and trisodium citrate, and more preferably citric acid. Trisodium phosphate is used.
pH調整剤は、食品に利用可能なpH調整剤であればよく、原料澱粉および食用油脂の種類に応じて選択することができるが、水への溶解性や、最終製品への味などの影響から、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の水酸化物;炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の炭酸塩;およびリン酸水素2ナトリウム、リン酸2水素ナトリウム等のリン酸塩類;およびクエン酸3ナトリウム、酢酸ナトリウム、乳酸ナトリウム、コハク酸2ナトリウム、グルコン酸ナトリウム、酒石酸ナトリウム、フマル酸1ナトリウム等の上記以外の有機酸塩等が好ましく、これらの1種以上を配合するのが好ましい。さらに好ましくは、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の炭酸塩類を1種以上用い、さらにまた好ましくは炭酸ナトリウムおよびクエン酸三ナトリウムからなる群から選択される1種以上、さらにより好ましくはクエン酸三ナトリウムを用いる。 Here, in the step of preparing the oil-processed starch, the mixture may contain a pH adjuster from the viewpoint of protecting the acetyl group of the acetylated starch contained as a raw material.
The pH adjuster may be any pH adjuster that can be used in foods, and can be selected according to the type of raw starch and edible oil. from, hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide; carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate; and disodium hydrogen phosphate, sodium dihydrogen phosphate, etc. and organic acid salts other than the above, such as trisodium citrate, sodium acetate, sodium lactate, disodium succinate, sodium gluconate, sodium tartrate, and monosodium fumarate, and one or more of these is preferably blended. More preferably, one or more carbonates such as sodium carbonate, sodium hydrogencarbonate and potassium carbonate are used, and more preferably one or more selected from the group consisting of sodium carbonate and trisodium citrate, and more preferably citric acid. Trisodium phosphate is used.
油脂加工澱粉調製時のpH調整剤の添加量は、澱粉100質量部に対して、たとえば0.005質量部以上であり、好ましくは0.03質量部以上、さらに好ましくは0.05質量部以上、よりいっそう好ましくは0.08質量部以上である。また、食肉加工食品に異風味を生じることを抑制する観点から、pH調整剤の添加量は、澱粉100質量部に対してたとえば2質量部以下であり、好ましくは1.5質量部以下、さらに好ましくは1.2質量部以下、よりいっそう好ましくは1質量部以下である。
The amount of the pH adjuster added when preparing the oil-processed starch is, for example, 0.005 parts by mass or more, preferably 0.03 parts by mass or more, and more preferably 0.05 parts by mass or more with respect to 100 parts by mass of starch. , and more preferably 0.08 parts by mass or more. In addition, from the viewpoint of suppressing the production of a strange flavor in processed meat foods, the amount of the pH adjuster added is, for example, 2 parts by mass or less, preferably 1.5 parts by mass or less with respect to 100 parts by mass of starch. It is preferably 1.2 parts by mass or less, and more preferably 1 part by mass or less.
また、本実施の形態において、油脂加工されたアセチル化澱粉のアセチル基含有量は、1.1質量%以上1.7質量%以下、好ましくは1.1質量%以上1.6質量%以下、より好ましくは1.2質量%以上1.6質量%以下である。アセチル基含有量の範囲をこの範囲とすることで、離水を抑制しつつ適度なしなやかさと硬さを食肉加工品に付与することができる。
Further, in the present embodiment, the acetyl group content of the acetylated starch processed with oil is 1.1% by mass or more and 1.7% by mass or less, preferably 1.1% by mass or more and 1.6% by mass or less. More preferably, it is 1.2% by mass or more and 1.6% by mass or less. By setting the acetyl group content within this range, syneresis can be suppressed and appropriate flexibility and hardness can be imparted to the processed meat product.
本実施の形態において、アセチル化澱粉はアセチル化架橋澱粉であってもよく、この場合、当該アセチル化架橋澱粉の溶解度は40.5%以上46.0%以下、好ましくは41.0%以上46.0%以下、より好ましくは41.5%以上46.0%以下としてもよい。
In the present embodiment, the acetylated starch may be acetylated crosslinked starch, and in this case, the solubility of the acetylated crosslinked starch is 40.5% or more and 46.0% or less, preferably 41.0% or more and 46%. 0% or less, more preferably 41.5% or more and 46.0% or less.
本実施の形態では、アセチル基含有量が上述の範囲のアセチル化澱粉を単独で用いてもよく、また、アセチル基含有量がそれぞれ異なる2種以上のアセチル化澱粉を混合することで、上述の範囲のアセチル化澱粉を調製してもよい。
In the present embodiment, the acetylated starch having the acetyl group content in the above range may be used alone, or two or more types of acetylated starch having different acetyl group contents may be mixed to obtain the above-mentioned A range of acetylated starches may be prepared.
アセチル基含有量がそれぞれ異なる2種以上のアセチル化澱粉を用いる場合は、例えば、アセチル基含有量が第1の含有量である第1のアセチル化澱粉と、アセチル基含有量が第1の含有量よりも多い第2の含有量である第2のアセチル化澱粉と、を含むアセチル化澱粉を用いてもよい。具体的には、アセチル基含有量が第1の含有量である第1のアセチル化澱粉と、アセチル基含有量が第1の含有量よりも多い第2の含有量である第2のアセチル化澱粉と、を含むアセチル化澱粉を油脂加工することで、油脂加工されたアセチル化澱粉を形成してもよい。このように、アセチル基含有量がそれぞれ異なる2種以上のアセチル化澱粉を用いることで、所定のアセチル基含有量を備えるアセチル化澱粉を容易に調製することができる。また、アセチル化澱粉のアセチル基含有量を精度よく調整することができる。なお、アセチル基含有量がそれぞれ異なる2種以上のアセチル化澱粉を用いる場合は、油脂加工されている2種以上のアセチル化澱粉を混合してもよいが、アセチル基含有量がそれぞれ異なる2種以上のアセチル化澱粉を油脂加工前に混合することが好ましい。
When using two or more types of acetylated starch having different acetyl group contents, for example, a first acetylated starch having a first acetyl group content and a first acetylated starch having a first acetyl group content A second acetylated starch that is a second content greater than the amount of acetylated starch may be used. Specifically, a first acetylated starch having a first content of acetyl groups and a second acetylated starch having a second content of acetyl groups greater than the first content. The acetylated starch comprising the starch may be oil processed to form the oil processed acetylated starch. Thus, by using two or more types of acetylated starch with different acetyl group contents, acetylated starch having a predetermined acetyl group content can be easily prepared. Also, the acetyl group content of the acetylated starch can be adjusted with high precision. When using two or more types of acetylated starches with different acetyl group contents, two or more types of acetylated starches that have been processed with oils and fats may be mixed. It is preferable to mix the above acetylated starches before fat processing.
本実施の形態にかかる食肉加工品用改良剤は、油脂加工されたアセチル化澱粉以外に、粉体状の成分を含んでもよい。かかる成分の具体例として、澱粉(トウモロコシ澱粉、タピオカ澱粉、馬鈴薯澱粉、小麦澱粉等の未加工澱粉や、およびこれらにエステル化、エーテル化、α化、酸化、酸処理等の加工処理を施した加工澱粉、オクテニルコハク酸澱粉ナトリウム、等);塩、砂糖、グルタミン酸ナトリウム等の調味料;大豆蛋白質、粉末卵白等の蛋白質;こしょう、ガーリックパウダー等のスパイス類;亜硝酸ナトリウム等の発色剤;ソルビン酸ナトリウムやグリシン、酢酸Na等の保存料;アスコルビン酸ナトリウム等の酸化防止剤;コチニール色素などの着色料、カゼインナトリウム等の乳化安定剤;キサンタンガムやローカストビーンガム、グアーガム等の増粘剤;カラギーナン等のゲル化剤;貝殻焼成カルシウム、卵殻カルシウム、炭酸カルシウム等の栄養強化剤が挙げられる。その他、通常食品に用いられる粉体状の成分を含めてもよい。
The improving agent for processed meat products according to the present embodiment may contain a powdery component in addition to the acetylated starch processed with fats and oils. Specific examples of such components include starches (unprocessed starches such as corn starch, tapioca starch, potato starch, wheat starch, etc.), and those processed by esterification, etherification, gelatinization, oxidation, acid treatment, etc. modified starch, sodium starch octenyl succinate, etc.); seasonings such as salt, sugar and sodium glutamate; proteins such as soybean protein and powdered egg white; spices such as pepper and garlic powder; Preservatives such as sodium, glycine, and Na acetate; Antioxidants such as sodium ascorbate; Colorants such as cochineal dyes; Emulsion stabilizers such as sodium caseinate; Thickeners such as xanthan gum, locust bean gum, and guar gum; gelling agent; nutritional enhancers such as calcined shell calcium, eggshell calcium, and calcium carbonate. In addition, powdery ingredients that are commonly used in foods may also be included.
本実施の形態にかかる食肉加工品用改良剤は粉末状であるが、例えば、粉末状の食肉加工品用改良剤を液体に分散させた食肉加工液として用いてもよい。
Although the improving agent for processed meat products according to the present embodiment is in powder form, for example, it may be used as a meat processing liquid in which a powdery improving agent for processed meat products is dispersed in a liquid.
本実施の形態にかかる食肉加工品用改良剤中の油脂加工されたアセチル化澱粉の含有量は、たとえば10質量%以上100質量%以下であり、好ましくは15質量%以上100質量%以下であり、より好ましくは20質量%以上100質量%以下であり、さらに好ましくは20質量%以上99質量%以下である。
The content of the oil-processed acetylated starch in the improved agent for processed meat products according to the present embodiment is, for example, 10% by mass or more and 100% by mass or less, preferably 15% by mass or more and 100% by mass or less. , more preferably 20% by mass or more and 100% by mass or less, and still more preferably 20% by mass or more and 99% by mass or less.
<食肉加工品>
本実施の形態にかかる食肉加工品は、食肉に上述の食肉加工品用改良剤を適用した食肉加工品である。本実施の形態で用いられる食肉は、食肉であれば特に限定されず、例えば、豚肉、牛肉、鶏肉、山羊肉、羊肉、馬肉、猪肉、鹿肉、兎肉、熊肉、鴨肉、鳩肉、アヒル肉、鶉肉及び七面鳥肉などの畜肉、獣肉及び食鳥肉、ならびに、サーモン、タイ、マグロ、サケ、カジキマグロ、タラ、カツオ、イワシ等の魚類、及び、アマエビ、イセエビ、クルマエビ等のエビ類、ケガニ、ズワイガニ、タラバガニ等のカニ類、及び、アカイカ、ケンサキイカ、コウイカ、スルメイカ、ホタルイカ、ヤリイカ等のイカ類、及び、イイダコ、マダコ等のタコ類などの魚介類からなる群から選ばれる1種または2種以上を使用することができる。特に本発明の効果がより得られやすいという観点から、魚介類、畜肉、獣肉及び食鳥肉からなる群から選ばれる1種または2種以上を使用することが好ましく、魚介類、豚肉、牛肉及び鶏肉からなる群から選ばれる1種または2種以上を使用することがより好ましい。 <Processed meat products>
The processed meat product according to the present embodiment is a processed meat product obtained by applying the above-described improving agent for processed meat product to meat. The meat used in the present embodiment is not particularly limited as long as it is meat, and examples include pork, beef, chicken, goat meat, mutton, horse meat, wild boar meat, venison, rabbit meat, bear meat, duck meat, and pigeon meat. , duck, quail and turkey meat, animal and poultry meat, fish such as salmon, sea bream, tuna, salmon, swordfish, cod, bonito, and sardines, and shrimp such as Amaebi, spiny lobster and tiger prawn 1 selected from the group consisting of crabs such as crabs, horse crabs, snow crabs, and king crabs, squids such as red squid, bluefin squid, cuttlefish, flying squid, firefly squid, spear squid, and seafood such as octopuses such as octopus and common octopus A species or two or more species can be used. In particular, from the viewpoint that the effects of the present invention are more likely to be obtained, it is preferable to use one or more selected from the group consisting of seafood, livestock meat, animal meat and poultry meat. It is more preferable to use one or more selected from the group consisting of chicken.
本実施の形態にかかる食肉加工品は、食肉に上述の食肉加工品用改良剤を適用した食肉加工品である。本実施の形態で用いられる食肉は、食肉であれば特に限定されず、例えば、豚肉、牛肉、鶏肉、山羊肉、羊肉、馬肉、猪肉、鹿肉、兎肉、熊肉、鴨肉、鳩肉、アヒル肉、鶉肉及び七面鳥肉などの畜肉、獣肉及び食鳥肉、ならびに、サーモン、タイ、マグロ、サケ、カジキマグロ、タラ、カツオ、イワシ等の魚類、及び、アマエビ、イセエビ、クルマエビ等のエビ類、ケガニ、ズワイガニ、タラバガニ等のカニ類、及び、アカイカ、ケンサキイカ、コウイカ、スルメイカ、ホタルイカ、ヤリイカ等のイカ類、及び、イイダコ、マダコ等のタコ類などの魚介類からなる群から選ばれる1種または2種以上を使用することができる。特に本発明の効果がより得られやすいという観点から、魚介類、畜肉、獣肉及び食鳥肉からなる群から選ばれる1種または2種以上を使用することが好ましく、魚介類、豚肉、牛肉及び鶏肉からなる群から選ばれる1種または2種以上を使用することがより好ましい。 <Processed meat products>
The processed meat product according to the present embodiment is a processed meat product obtained by applying the above-described improving agent for processed meat product to meat. The meat used in the present embodiment is not particularly limited as long as it is meat, and examples include pork, beef, chicken, goat meat, mutton, horse meat, wild boar meat, venison, rabbit meat, bear meat, duck meat, and pigeon meat. , duck, quail and turkey meat, animal and poultry meat, fish such as salmon, sea bream, tuna, salmon, swordfish, cod, bonito, and sardines, and shrimp such as Amaebi, spiny lobster and tiger prawn 1 selected from the group consisting of crabs such as crabs, horse crabs, snow crabs, and king crabs, squids such as red squid, bluefin squid, cuttlefish, flying squid, firefly squid, spear squid, and seafood such as octopuses such as octopus and common octopus A species or two or more species can be used. In particular, from the viewpoint that the effects of the present invention are more likely to be obtained, it is preferable to use one or more selected from the group consisting of seafood, livestock meat, animal meat and poultry meat. It is more preferable to use one or more selected from the group consisting of chicken.
本実施の形態にかかる食肉加工品は、上述の食肉加工品用改良剤を含む食肉加工品であれば特に限定されることはないが、例えば、ハム、ソーセージ、ハンバーグ、サラダチキン、ミートボール、シュウマイ、餃子などの畜肉加工品や、蒲鉾、揚げ蒲鉾、はんぺん、竹輪、魚肉ソーセージなどの水産加工品(水練り食品)などの食肉加工品である。また、本実施の形態にかかる発明は、畜肉様加工品にも適用することができる。一例を挙げると、大豆やエンドウマメ等の豆類;小麦等の穀類;野菜;果実等、を由来とする植物性タンパク質に本実施の形態にかかる食肉加工品用改良剤を適用することで、プラントベースハンバーグ、プラントベースソーセージ、プラントベースハム等の畜肉様加工品を作製することができる。
The processed meat product according to the present embodiment is not particularly limited as long as it contains the above-described improving agent for processed meat products. Examples include ham, sausage, hamburger, salad chicken, meatball, Processed meat products include processed meat products such as steamed dumplings and dumplings, and processed marine products (water-paste products) such as kamaboko, fried kamaboko, hanpen, bamboo rings, and fish sausages. Moreover, the invention according to the present embodiment can also be applied to animal meat-like processed products. As an example, by applying the meat processing product improver according to the present embodiment to vegetable proteins derived from beans such as soybeans and peas; grains such as wheat; vegetables; Meat-like processed products such as base hamburgers, plant-based sausages, and plant-based hams can be produced.
本実施の形態にかかる食肉加工品用改良剤を食肉に適用する際は、食肉100質量部に対する油脂加工されたアセチル化澱粉の量を1質量部以上15質量部以下、好ましくは2質量部以上15質量部以下、更に好ましくは4質量部以上10質量部以下となるように、食肉加工品用改良剤を食肉に適用してもよい。
When applying the meat improving agent for processed meat products according to the present embodiment to meat, the amount of acetylated starch processed with oil and fat is 1 part by mass or more and 15 parts by mass or less, preferably 2 parts by mass or more, relative to 100 parts by mass of meat. The improving agent for processed meat products may be applied to meat in an amount of 15 parts by mass or less, more preferably 4 parts by mass or more and 10 parts by mass or less.
本実施の形態にかかる食肉加工品用改良剤を食肉に適用することで、離水を抑制しつつ適度なしなやかさと硬さを食肉加工品に付与することができる。また、食肉加工品の味を強くすることができる。
By applying the improving agent for processed meat products according to the present embodiment to meat, it is possible to suppress syneresis and impart appropriate flexibility and hardness to the processed meat product. Moreover, the taste of processed meat products can be strengthened.
また、本実施の形態にかかる食肉加工品用改良剤を食肉に適用した場合は、食肉加工品を冷凍して所定期間保存した後、解凍した際の食肉加工品の離水を抑制しつつ、適度なしなやかさと硬さを食肉加工品に付与することができる。一例を挙げると、食肉加工品を冷凍後、解凍した際の離水率を0.1%以上3.0%以下とすることができる。また、食肉加工品を冷凍後、解凍した際の破断強度を200g以上310g以下とすることができる。
Further, when the processed meat improver according to the present embodiment is applied to meat, after the processed meat is frozen and stored for a predetermined period, while suppressing syneresis of the processed meat when thawed, Flexibility and hardness can be imparted to processed meat products. To give an example, the syneresis rate when the processed meat product is thawed after freezing can be 0.1% or more and 3.0% or less. Moreover, the breaking strength when the processed meat product is thawed after freezing can be 200 g or more and 310 g or less.
<食肉加工品の製造方法>
次に、本実施の形態にかかる食肉加工品の製造方法について説明する。本実施の形態にかかる食肉加工品の製造方法は、上述の食肉加工品用改良剤を食肉に適用する工程を備える製造方法であれば特に限定されることはない。本実施の形態にかかる食肉加工品用改良剤は粉末状であり、例えば、粉末状の食肉加工品用改良剤を食肉に添加して用いてもよい。また、粉末状の食肉加工品用改良剤を液体に分散させ、この液体(食肉加工液)を食肉に適用してもよい。 <Manufacturing method of processed meat products>
Next, a method for manufacturing a processed meat product according to this embodiment will be described. The method for producing the processed meat product according to the present embodiment is not particularly limited as long as it is a production method including the step of applying the above-described improving agent for processed meat product to meat. The improving agent for processed meat products according to the present embodiment is powdery, and for example, the powdery improving agent for processed meat products may be added to meat and used. Alternatively, the powdery processed meat improver may be dispersed in a liquid, and this liquid (meat processing liquid) may be applied to the meat.
次に、本実施の形態にかかる食肉加工品の製造方法について説明する。本実施の形態にかかる食肉加工品の製造方法は、上述の食肉加工品用改良剤を食肉に適用する工程を備える製造方法であれば特に限定されることはない。本実施の形態にかかる食肉加工品用改良剤は粉末状であり、例えば、粉末状の食肉加工品用改良剤を食肉に添加して用いてもよい。また、粉末状の食肉加工品用改良剤を液体に分散させ、この液体(食肉加工液)を食肉に適用してもよい。 <Manufacturing method of processed meat products>
Next, a method for manufacturing a processed meat product according to this embodiment will be described. The method for producing the processed meat product according to the present embodiment is not particularly limited as long as it is a production method including the step of applying the above-described improving agent for processed meat product to meat. The improving agent for processed meat products according to the present embodiment is powdery, and for example, the powdery improving agent for processed meat products may be added to meat and used. Alternatively, the powdery processed meat improver may be dispersed in a liquid, and this liquid (meat processing liquid) may be applied to the meat.
粉末状の食肉加工品用改良剤を液体に分散させて食肉加工液(ピックル液)を調製する際は、食肉加工液に含まれる、油脂加工されたアセチル化澱粉の量を1質量%以上10質量%以下、好ましくは3質量%以上8質量%以下、より好ましくは4質量%以上6質量%以下とすることができる。食肉加工液に含まれる、油脂加工されたアセチル化澱粉の量を上述の範囲とすることで、食肉加工液の粘度の上昇と離水を抑制しつつ、適度なしなやかさと硬さを食肉加工品に付与することができる。
When preparing a meat processing liquid (pickling liquid) by dispersing a powdered meat improving agent in a liquid, the amount of oil-processed acetylated starch contained in the meat processing liquid is 1% by mass or more and 10% by mass. % by mass or less, preferably 3% by mass or more and 8% by mass or less, more preferably 4% by mass or more and 6% by mass or less. By setting the amount of oil-processed acetylated starch contained in the meat processing liquid within the above range, the meat processing liquid can be controlled to have moderate flexibility and hardness while suppressing the viscosity increase and syneresis of the meat processing liquid. can be given.
また、食肉加工液(ピックル液)には、上述の食肉加工品用改良剤に含んでも良い粉体成分に加えて、液体状の成分を含んでも良い。例えば、醤油、食酢、酒、みりん等の液体調味料;キャノーラ油、大豆油、ブレンドオイル等の液状油;水、氷等の水分;乳清、卵黄、卵白等の液状タンパク質等を含めてもよい。その他、通常食品に用いられる液体状の成分を含めてもよい。
In addition, the meat processing liquid (pickle liquid) may contain a liquid component in addition to the powder component that may be contained in the above-described meat improving agent. For example, liquid seasonings such as soy sauce, vinegar, sake, and mirin; liquid oils such as canola oil, soybean oil, and blended oils; water such as water and ice; liquid proteins such as whey, egg yolk, and egg white. good. In addition, liquid ingredients that are commonly used in foods may also be included.
食肉に食肉加工液を適用する際は、例えば、インジェクション処理やタンブリング処理を用いることができる。ここでインジェクション処理は、インジェクターを用いて食肉に食肉加工液を注入する処理である。タンブリング処理は、タンブラー(回転機構を有する装置)を使用して、食肉加工液を食肉に物理的に浸透させる処理である。
When applying the meat processing liquid to meat, for example, injection treatment or tumbling treatment can be used. Here, the injection process is a process of injecting a meat processing liquid into meat using an injector. Tumbling is the process of physically permeating meat with a meat processing liquid using a tumbler (a device with a rotating mechanism).
以下では一例として、蒲鉾の製造方法について説明する。
As an example, the manufacturing method of kamaboko will be explained below.
(蒲鉾の製造方法)
蒲鉾を作製する際は、例えば表3に示す原材料を用いることができる。このとき、油脂加工澱粉として本実施の形態にかかる食肉加工品用改良剤を用いる。 (Kamaboko manufacturing method)
When making Kamaboko, the raw materials shown in Table 3, for example, can be used. At this time, the improved agent for processed meat products according to the present embodiment is used as the oil-and-fat processed starch.
蒲鉾を作製する際は、例えば表3に示す原材料を用いることができる。このとき、油脂加工澱粉として本実施の形態にかかる食肉加工品用改良剤を用いる。 (Kamaboko manufacturing method)
When making Kamaboko, the raw materials shown in Table 3, for example, can be used. At this time, the improved agent for processed meat products according to the present embodiment is used as the oil-and-fat processed starch.
そして、これらの原材料を混合してミキシングを行う。具体的には、まず、カットした冷凍すり身をフードプロセッサーで細かくする。その後、食塩のみを加えてミキシングし、更に、氷(クラッシュ)を加えてミキシングする。
Then, these raw materials are mixed and mixed. Specifically, first, the cut frozen surimi is minced with a food processor. Thereafter, salt alone is added and mixed, and ice (crush) is added and mixed.
次いで、ミキシング後の原材料をチャック袋に入れ、真空包装機で脱気する。その後、ビニールケーシングに充填する。なお、作業時も低温を保つことが好ましい。次いで、30℃の温浴で90分間静置する(坐り)。その後、80℃の湯浴で20分間、加熱する。加熱後、氷水に投入して10分間冷却する。なお、坐り、加熱、冷却の条件はこれら以外の条件としてもよい。
Next, put the raw materials after mixing into a zipper bag and deaerate with a vacuum packaging machine. It is then filled into a vinyl casing. In addition, it is preferable to keep the temperature low during the work. Then, it is left still for 90 minutes in a hot bath at 30°C (sitting). After that, it is heated in a hot water bath at 80° C. for 20 minutes. After heating, put into ice water and cool for 10 minutes. The sitting, heating, and cooling conditions may be conditions other than these.
以上、食肉加工品の製造方法について説明したが、上述の食肉加工品の製造方法は一例であり、本実施の形態では、食肉に本実施の形態にかかる食肉加工品用改良剤を適用できるのであれば、どのような製造方法を用いてもよい。
The method for producing processed meat products has been described above, but the above-described method for producing processed meat products is only an example, and in the present embodiment, the improved agent for processed meat products according to the present embodiment can be applied to meat. Any manufacturing method, if any, may be used.
以上で説明した本実施の形態にかかる発明では、食肉加工品用改良剤に含まれる油脂加工されたアセチル化澱粉のアセチル基含有量を1.1質量%以上1.7質量%以下としている。このようなアセチル化澱粉を含む食肉加工品用改良剤を用いることで、離水を抑制しつつ適度なしなやかさと硬さを食肉加工品に付与することができる。
In the invention according to the present embodiment described above, the acetyl group content of the oil-processed acetylated starch contained in the processed meat improver is 1.1% by mass or more and 1.7% by mass or less. By using such an acetylated starch-containing improver for processed meat products, syneresis can be suppressed and moderate flexibility and hardness can be imparted to the processed meat products.
実施例として、以下の試験1~試験3を実施した。なお、以下の試験は一例であり本発明は下記の試験1~試験3に限定されることはない。
As an example, the following tests 1 to 3 were carried out. The following tests are examples, and the present invention is not limited to Tests 1 to 3 below.
<澱粉、及び油脂加工澱粉の製造例>
まず、澱粉、及び油脂加工澱粉の製造例について説明する。 <Production example of starch and oil-processed starch>
First, production examples of starch and oil-and-fat-processed starch will be described.
まず、澱粉、及び油脂加工澱粉の製造例について説明する。 <Production example of starch and oil-processed starch>
First, production examples of starch and oil-and-fat-processed starch will be described.
(製造例1)アセチル化リン酸架橋澱粉Aの製造
500mLセパラブルフラスコに、タピオカ澱粉(株式会社J-オイルミルズ製)を用い、澱粉160gにスラリー質量に対する澱粉乾物換算質量濃度が38%(dry starch weight/slurry weight)となるよう水を加えたスラリーを調製した。得られたスラリーの温度を30℃にした後、pH11.3でオキシ塩化リンを144mg加え、その後、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、90分間反応させた。その後、pH8.4で酢酸ビニル4.3gを加え、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、60分間反応させた。その後、スラリーに3質量%水酸化ナトリウムを添加してpH6まで中和し、洗浄脱水したのち乾燥させ、アセチル化リン酸架橋澱粉Aを得た。後述の方法で測定したところ、アセチル基含有量0.9質量%であった(表2参照)。 (Production Example 1) Production of acetylated phosphate cross-linked starch A Tapioca starch (manufactured by J-Oil Mills Co., Ltd.) was used in a 500 mL separable flask, and 160 g of starch was added to the slurry mass to give a starch dry matter conversion mass concentration of 38% (dry A slurry was prepared by adding water to obtain a starch weight/slurry weight). After the temperature of the resulting slurry is brought to 30° C., 144 mg of phosphorus oxychloride is added at pH 11.3, and then an aqueous sodium hydroxide solution is added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the end of the reaction. and allowed to react for 90 minutes. Thereafter, 4.3 g of vinyl acetate was added at pH 8.4, and an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed, and the reaction was allowed to proceed for 60 minutes. Thereafter, the slurry was neutralized topH 6 by adding 3% by mass of sodium hydroxide, washed and dehydrated, and dried to obtain acetylated phosphate-crosslinked starch A. When measured by the method described below, the acetyl group content was 0.9% by mass (see Table 2).
500mLセパラブルフラスコに、タピオカ澱粉(株式会社J-オイルミルズ製)を用い、澱粉160gにスラリー質量に対する澱粉乾物換算質量濃度が38%(dry starch weight/slurry weight)となるよう水を加えたスラリーを調製した。得られたスラリーの温度を30℃にした後、pH11.3でオキシ塩化リンを144mg加え、その後、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、90分間反応させた。その後、pH8.4で酢酸ビニル4.3gを加え、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、60分間反応させた。その後、スラリーに3質量%水酸化ナトリウムを添加してpH6まで中和し、洗浄脱水したのち乾燥させ、アセチル化リン酸架橋澱粉Aを得た。後述の方法で測定したところ、アセチル基含有量0.9質量%であった(表2参照)。 (Production Example 1) Production of acetylated phosphate cross-linked starch A Tapioca starch (manufactured by J-Oil Mills Co., Ltd.) was used in a 500 mL separable flask, and 160 g of starch was added to the slurry mass to give a starch dry matter conversion mass concentration of 38% (dry A slurry was prepared by adding water to obtain a starch weight/slurry weight). After the temperature of the resulting slurry is brought to 30° C., 144 mg of phosphorus oxychloride is added at pH 11.3, and then an aqueous sodium hydroxide solution is added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the end of the reaction. and allowed to react for 90 minutes. Thereafter, 4.3 g of vinyl acetate was added at pH 8.4, and an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed, and the reaction was allowed to proceed for 60 minutes. Thereafter, the slurry was neutralized to
(製造例2)アセチル化リン酸架橋澱粉Bの製造
500mLセパラブルフラスコに、タピオカ澱粉(株式会社J-オイルミルズ製)を用い、澱粉160gにスラリー質量に対する澱粉乾物換算質量濃度が38%(dry starch weight/slurry weight)となるよう水を加えたスラリーを調製した。得られたスラリーの温度を30℃にした後、pH11.0でオキシ塩化リンを144mg加え、その後、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、90分間反応させた。その後、pH8.4で酢酸ビニル7.3gを加え、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、60分間反応させた。その後、スラリーに3質量%水酸化ナトリウムを添加してpH6まで中和し、洗浄脱水したのち乾燥させ、アセチル化リン酸架橋澱粉Bを得た。アセチル基含有量1.6質量%であった(表2参照)。 (Production Example 2) Production of acetylated phosphate cross-linked starch B Tapioca starch (manufactured by J-Oil Mills Co., Ltd.) was used in a 500 mL separable flask, and 160 g of starch had a starch dry matter conversion mass concentration of 38% (dry A slurry was prepared by adding water to obtain a starch weight/slurry weight). After the temperature of the resulting slurry was brought to 30° C., 144 mg of phosphorus oxychloride was added at pH 11.0, and then an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed. and allowed to react for 90 minutes. Thereafter, 7.3 g of vinyl acetate was added at pH 8.4, and an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed, and the reaction was allowed to proceed for 60 minutes. Thereafter, the slurry was neutralized topH 6 by adding 3% by mass of sodium hydroxide, washed and dehydrated, and then dried to obtain acetylated phosphate-crosslinked starch B. The acetyl group content was 1.6% by mass (see Table 2).
500mLセパラブルフラスコに、タピオカ澱粉(株式会社J-オイルミルズ製)を用い、澱粉160gにスラリー質量に対する澱粉乾物換算質量濃度が38%(dry starch weight/slurry weight)となるよう水を加えたスラリーを調製した。得られたスラリーの温度を30℃にした後、pH11.0でオキシ塩化リンを144mg加え、その後、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、90分間反応させた。その後、pH8.4で酢酸ビニル7.3gを加え、適時水酸化ナトリウム水溶液を滴下して、反応終了までpHを設定値±0.03以内に維持し、60分間反応させた。その後、スラリーに3質量%水酸化ナトリウムを添加してpH6まで中和し、洗浄脱水したのち乾燥させ、アセチル化リン酸架橋澱粉Bを得た。アセチル基含有量1.6質量%であった(表2参照)。 (Production Example 2) Production of acetylated phosphate cross-linked starch B Tapioca starch (manufactured by J-Oil Mills Co., Ltd.) was used in a 500 mL separable flask, and 160 g of starch had a starch dry matter conversion mass concentration of 38% (dry A slurry was prepared by adding water to obtain a starch weight/slurry weight). After the temperature of the resulting slurry was brought to 30° C., 144 mg of phosphorus oxychloride was added at pH 11.0, and then an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed. and allowed to react for 90 minutes. Thereafter, 7.3 g of vinyl acetate was added at pH 8.4, and an aqueous sodium hydroxide solution was added dropwise at appropriate times to maintain the pH within ±0.03 of the set value until the reaction was completed, and the reaction was allowed to proceed for 60 minutes. Thereafter, the slurry was neutralized to
(製造例3)その他の澱粉の製造方法
製造例1及び2で得られたアセチル化リン酸架橋澱粉AおよびBを、表2に示す割合で混合し、アセチル基含有量の異なるアセチル化リン酸架橋澱粉を得た。それぞれのアセチル基含有量は後述の方法で測定した。 (Production Example 3) Other Methods for Producing Starch The acetylated phosphate-crosslinked starches A and B obtained in Production Examples 1 and 2 were mixed at the ratios shown in Table 2, and acetylated phosphates having different acetyl group contents were obtained. A crosslinked starch was obtained. Each acetyl group content was measured by the method described later.
製造例1及び2で得られたアセチル化リン酸架橋澱粉AおよびBを、表2に示す割合で混合し、アセチル基含有量の異なるアセチル化リン酸架橋澱粉を得た。それぞれのアセチル基含有量は後述の方法で測定した。 (Production Example 3) Other Methods for Producing Starch The acetylated phosphate-crosslinked starches A and B obtained in Production Examples 1 and 2 were mixed at the ratios shown in Table 2, and acetylated phosphates having different acetyl group contents were obtained. A crosslinked starch was obtained. Each acetyl group content was measured by the method described later.
「アセチル基含有量」は、以下の方法により測定した。
(1)測定する澱粉を、水分計(研精工業社製、電磁水分計:型番MX50)を用いて水分測定し、澱粉試料中の水分(%)を算出した。
(2)1.8~2.0gの澱粉試料に水20mLおよび数滴の1.0w/v%フェノールフタレインエタノール溶液を加えた。
(3)0.1N水酸化ナトリウム水溶液を、(2)の液の赤色が消えなくなるまで加えた後、0.45N水酸化ナトリウム水溶液8mLを加え、室温で30分間激しく撹拌した。
(4)0.2N塩酸にて液の赤色が消失するまで滴定し、滴定値A(mL)を求めた。
(5)ブランクとして蒸留水20mlに0.45N水酸化ナトリウム水溶液を8ml加え、同様に0.2N塩酸にて液の赤色が消失するまで滴定し、滴定値B(mL)を求めた。
(6)アセチル基含有量は次式より算定した。 "Acetyl group content" was measured by the following method.
(1) The water content of the starch to be measured was measured using a moisture meter (manufactured by Kensei Kogyo Co., Ltd., electromagnetic moisture meter: model number MX50), and the moisture content (%) in the starch sample was calculated.
(2) 20 mL of water and a few drops of 1.0 w/v % phenolphthalein ethanol solution were added to 1.8-2.0 g of starch sample.
(3) A 0.1N sodium hydroxide aqueous solution was added until the red color of the solution in (2) did not disappear, and then 8 mL of a 0.45N sodium hydroxide aqueous solution was added, followed by vigorous stirring at room temperature for 30 minutes.
(4) Titration was performed with 0.2N hydrochloric acid until the red color of the liquid disappeared to obtain a titration value A (mL).
(5) As a blank, 8 ml of 0.45N aqueous sodium hydroxide solution was added to 20 ml of distilled water, and the solution was titrated with 0.2N hydrochloric acid until the red color of the liquid disappeared to obtain the titration value B (mL).
(6) Acetyl group content was calculated from the following formula.
(1)測定する澱粉を、水分計(研精工業社製、電磁水分計:型番MX50)を用いて水分測定し、澱粉試料中の水分(%)を算出した。
(2)1.8~2.0gの澱粉試料に水20mLおよび数滴の1.0w/v%フェノールフタレインエタノール溶液を加えた。
(3)0.1N水酸化ナトリウム水溶液を、(2)の液の赤色が消えなくなるまで加えた後、0.45N水酸化ナトリウム水溶液8mLを加え、室温で30分間激しく撹拌した。
(4)0.2N塩酸にて液の赤色が消失するまで滴定し、滴定値A(mL)を求めた。
(5)ブランクとして蒸留水20mlに0.45N水酸化ナトリウム水溶液を8ml加え、同様に0.2N塩酸にて液の赤色が消失するまで滴定し、滴定値B(mL)を求めた。
(6)アセチル基含有量は次式より算定した。 "Acetyl group content" was measured by the following method.
(1) The water content of the starch to be measured was measured using a moisture meter (manufactured by Kensei Kogyo Co., Ltd., electromagnetic moisture meter: model number MX50), and the moisture content (%) in the starch sample was calculated.
(2) 20 mL of water and a few drops of 1.0 w/v % phenolphthalein ethanol solution were added to 1.8-2.0 g of starch sample.
(3) A 0.1N sodium hydroxide aqueous solution was added until the red color of the solution in (2) did not disappear, and then 8 mL of a 0.45N sodium hydroxide aqueous solution was added, followed by vigorous stirring at room temperature for 30 minutes.
(4) Titration was performed with 0.2N hydrochloric acid until the red color of the liquid disappeared to obtain a titration value A (mL).
(5) As a blank, 8 ml of 0.45N aqueous sodium hydroxide solution was added to 20 ml of distilled water, and the solution was titrated with 0.2N hydrochloric acid until the red color of the liquid disappeared to obtain the titration value B (mL).
(6) Acetyl group content was calculated from the following formula.
アセチル基含有量=[(滴定値B-滴定値A)×0.043×塩酸規定度×F×100]÷[試料質量×(100-澱粉試料中の水分(%))/100]
(上記式中、塩酸規定度=0.2N、Fは塩酸のファクターである。) Acetyl group content = [(titration value B - titration value A) x 0.043 x hydrochloric acid normality x F x 100] ÷ [sample mass x (100 - water content in starch sample (%)) / 100]
(In the above formula, hydrochloric acid normality = 0.2N, F is the factor of hydrochloric acid.)
(上記式中、塩酸規定度=0.2N、Fは塩酸のファクターである。) Acetyl group content = [(titration value B - titration value A) x 0.043 x hydrochloric acid normality x F x 100] ÷ [sample mass x (100 - water content in starch sample (%)) / 100]
(In the above formula, hydrochloric acid normality = 0.2N, F is the factor of hydrochloric acid.)
(製造例4)油脂加工澱粉1~5の製造方法
製造例1~3で得られた各アセチル化リン酸架橋澱粉および、リン酸架橋タピオカ澱粉(アクトボディーTP-1、株式会社J-オイルミルズ社製)を原料とする油脂加工澱粉はすべて、以下の方法で得た。
表1に示した原材料を、混合機(スーパーミキサー、カワタ社製)で2000rpm、3分間均一に混合し、混合物を得た。この混合物を棚段式乾燥機にて、70℃11日間加熱し、油脂加工澱粉1~5を得た。 (Production Example 4) Method for producing oil-processed starches 1 to 5 Each acetylated phosphate-crosslinked starch obtained in Production Examples 1-3 and phosphate-crosslinked tapioca starch (Actobody TP-1, J-Oil Mills Co., Ltd.) Co., Ltd.) were all obtained by the following method.
The raw materials shown in Table 1 were uniformly mixed at 2000 rpm for 3 minutes with a mixer (Super Mixer, manufactured by Kawata Co., Ltd.) to obtain a mixture. This mixture was heated at 70° C. for 11 days in a tray dryer to obtain oil-processed starches 1-5.
製造例1~3で得られた各アセチル化リン酸架橋澱粉および、リン酸架橋タピオカ澱粉(アクトボディーTP-1、株式会社J-オイルミルズ社製)を原料とする油脂加工澱粉はすべて、以下の方法で得た。
表1に示した原材料を、混合機(スーパーミキサー、カワタ社製)で2000rpm、3分間均一に混合し、混合物を得た。この混合物を棚段式乾燥機にて、70℃11日間加熱し、油脂加工澱粉1~5を得た。 (Production Example 4) Method for producing oil-processed starches 1 to 5 Each acetylated phosphate-crosslinked starch obtained in Production Examples 1-3 and phosphate-crosslinked tapioca starch (Actobody TP-1, J-Oil Mills Co., Ltd.) Co., Ltd.) were all obtained by the following method.
The raw materials shown in Table 1 were uniformly mixed at 2000 rpm for 3 minutes with a mixer (Super Mixer, manufactured by Kawata Co., Ltd.) to obtain a mixture. This mixture was heated at 70° C. for 11 days in a tray dryer to obtain oil-processed starches 1-5.
なお、油脂加工澱粉2の溶解度は39.0%、油脂加工澱粉3の溶解度は41.8%、油脂加工澱粉4の溶解度は42.5%、油脂加工澱粉5の溶解度は46.0%であった。
The solubility of oil-processed starch 2 is 39.0%, the solubility of oil-processed starch 3 is 41.8%, the solubility of oil-processed starch 4 is 42.5%, and the solubility of oil-processed starch 5 is 46.0%. there were.
<試験1>
試験1として、以下の手順で食肉加工品の一種である魚肉加工品(蒲鉾)を作製した。 <Test 1>
As Test 1, a processed fish product (kamaboko), which is a type of processed meat product, was produced by the following procedure.
試験1として、以下の手順で食肉加工品の一種である魚肉加工品(蒲鉾)を作製した。 <Test 1>
As Test 1, a processed fish product (kamaboko), which is a type of processed meat product, was produced by the following procedure.
(サンプルの作製)
まず、食塩および食塩以外の副素材を秤量した。また、冷凍すり身を半解凍させ、包丁でサイコロ状にカットした。なお、試験1で用いた原材料を表3に示している。試験1では、油脂加工澱粉として表2に示した油脂加工澱粉1~5を使用した。試験1では、各々のサンプルにおいて使用する油脂加工澱粉の種類を変えている。 (Preparation of sample)
First, salt and auxiliary materials other than salt were weighed. Also, the frozen surimi was partially thawed and cut into dices with a kitchen knife. The raw materials used in Test 1 are shown in Table 3. In Test 1, oil-processed starches 1 to 5 shown in Table 2 were used as the oil-processed starches. In Test 1, the type of oil-processed starch used in each sample was changed.
まず、食塩および食塩以外の副素材を秤量した。また、冷凍すり身を半解凍させ、包丁でサイコロ状にカットした。なお、試験1で用いた原材料を表3に示している。試験1では、油脂加工澱粉として表2に示した油脂加工澱粉1~5を使用した。試験1では、各々のサンプルにおいて使用する油脂加工澱粉の種類を変えている。 (Preparation of sample)
First, salt and auxiliary materials other than salt were weighed. Also, the frozen surimi was partially thawed and cut into dices with a kitchen knife. The raw materials used in Test 1 are shown in Table 3. In Test 1, oil-processed starches 1 to 5 shown in Table 2 were used as the oil-processed starches. In Test 1, the type of oil-processed starch used in each sample was changed.
次いでミキシングを行った。ミキシングは下記の手順で実施した。
まず、カットした冷凍すり身をフードプロセッサー(クイジナート製)で細かくした(20秒×3回)。その後、食塩のみを加えてミキシング(20秒×3回)した。更に、氷(クラッシュ)を1/3量加えてミキシング(20秒×6回)した。次いで、食塩以外の副素材および氷(クラッシュ)を1/3量を添加してミキシング(20秒×6回)した。最後に、氷(クラッシュ)を1/3量加えてミキシングした。最後のミキシングは、20秒ずつ実施し、すり身温度を11℃以下に保ち、最大4分までとした。 Mixing was then performed. Mixing was carried out according to the following procedure.
First, the cut frozen surimi was minced by a food processor (manufactured by Cuisinart) (20 seconds x 3 times). After that, salt alone was added and mixed (20 seconds x 3 times). Furthermore, ⅓ amount of ice (crush) was added and mixed (20 seconds×6 times). Then, 1/3 amount of auxiliary materials other than salt and ice (crush) were added and mixed (20 seconds x 6 times). Finally, 1/3 amount of ice (crush) was added and mixed. Final mixing was performed for 20 seconds each, keeping the surimi temperature below 11°C and up to 4 minutes.
まず、カットした冷凍すり身をフードプロセッサー(クイジナート製)で細かくした(20秒×3回)。その後、食塩のみを加えてミキシング(20秒×3回)した。更に、氷(クラッシュ)を1/3量加えてミキシング(20秒×6回)した。次いで、食塩以外の副素材および氷(クラッシュ)を1/3量を添加してミキシング(20秒×6回)した。最後に、氷(クラッシュ)を1/3量加えてミキシングした。最後のミキシングは、20秒ずつ実施し、すり身温度を11℃以下に保ち、最大4分までとした。 Mixing was then performed. Mixing was carried out according to the following procedure.
First, the cut frozen surimi was minced by a food processor (manufactured by Cuisinart) (20 seconds x 3 times). After that, salt alone was added and mixed (20 seconds x 3 times). Furthermore, ⅓ amount of ice (crush) was added and mixed (20 seconds×6 times). Then, 1/3 amount of auxiliary materials other than salt and ice (crush) were added and mixed (20 seconds x 6 times). Finally, 1/3 amount of ice (crush) was added and mixed. Final mixing was performed for 20 seconds each, keeping the surimi temperature below 11°C and up to 4 minutes.
次いで、ミキシング後の原材料をチャック袋に入れ、真空包装機(ニチワ製ホットテンプ)で脱気した。その後、ビニールケーシングに充填した。なお、作業時も低温を保つようにした。次いで、30℃の温浴で90分間静置した(坐り)。その後、80℃の湯浴で20分間、加熱した。加熱後、氷水に投入して10分間冷却し、その後、冷蔵保存した。また、一部のサンプルを冷凍保存した。
Next, the raw materials after mixing were placed in a zipper bag and degassed with a vacuum packaging machine (Nichiwa Hot Temp). After that, it was filled into a vinyl casing. Also, keep the temperature low during the work. Then, it was allowed to stand in a hot bath at 30°C for 90 minutes (sitting). After that, it was heated in a hot water bath at 80° C. for 20 minutes. After heating, it was put into ice water and cooled for 10 minutes, and then stored in a refrigerator. In addition, some samples were stored frozen.
試験1では、油脂加工澱粉1(アセチル基含有量0%)を使用した比較例1-1にかかるサンプル、油脂加工澱粉2(アセチル基含有量0.9%)を使用した比較例1-2にかかるサンプル、油脂加工澱粉3(アセチル基含有量1.2%)を使用した実施例1-1にかかるサンプル、油脂加工澱粉4(アセチル基含有量1.3%)を使用した実施例1-2にかかるサンプル、及び油脂加工澱粉5(アセチル基含有量1.6%)を使用した実施例1-3にかかるサンプルをそれぞれ作製した。また、試験1では、1日間冷蔵保存したサンプル(以下、D1と記載する)、7日間冷蔵保存したサンプル(以下、D7と記載する)、冷解凍を3回繰り返したサンプル(以下、冷解凍と記載する)について評価を行った。
In Test 1, a sample according to Comparative Example 1-1 using oil-processed starch 1 (acetyl group content of 0%) and Comparative Example 1-2 using oil-processed starch 2 (acetyl group content of 0.9%) sample, Example 1-1 using oil-processed starch 3 (acetyl group content: 1.2%), Example 1 using oil-processed starch 4 (acetyl group content: 1.3%) -2 and samples of Examples 1-3 using oil-processed starch 5 (acetyl group content: 1.6%) were prepared. In Test 1, a sample that was refrigerated for 1 day (hereinafter referred to as D1), a sample that was refrigerated for 7 days (hereinafter referred to as D7), and a sample that was repeatedly thawed three times (hereinafter referred to as thawed and thawed). described) was evaluated.
(離水率の測定)
作製したサンプルのうち、冷解凍を3回繰り返した後のサンプルについて離水率を測定した。冷解凍は、-10℃の冷凍庫で一晩保管した後、冷蔵庫で3時間放置して解凍する作業を3回繰り返すことで実施した。離水率は、解凍したサンプルの表面をペーパータオルで軽く拭いた後、重量を測定し、予め測定しておいた冷凍前のサンプルの重量との差を算出し、この差分を冷凍前のサンプルの重量で割ることで算出した(下記の式を参照)。 (Measurement of separation rate)
Among the prepared samples, the syneresis rate was measured for the sample after repeating the cooling and thawing three times. The freezing and thawing was performed by storing overnight in a freezer at −10° C. and then leaving it in a refrigerator for 3 hours to thaw, which was repeated three times. The water syneresis rate is determined by lightly wiping the surface of the thawed sample with a paper towel, measuring the weight, calculating the difference from the previously measured weight of the sample before freezing, and using this difference as the weight of the sample before freezing. (see formula below).
作製したサンプルのうち、冷解凍を3回繰り返した後のサンプルについて離水率を測定した。冷解凍は、-10℃の冷凍庫で一晩保管した後、冷蔵庫で3時間放置して解凍する作業を3回繰り返すことで実施した。離水率は、解凍したサンプルの表面をペーパータオルで軽く拭いた後、重量を測定し、予め測定しておいた冷凍前のサンプルの重量との差を算出し、この差分を冷凍前のサンプルの重量で割ることで算出した(下記の式を参照)。 (Measurement of separation rate)
Among the prepared samples, the syneresis rate was measured for the sample after repeating the cooling and thawing three times. The freezing and thawing was performed by storing overnight in a freezer at −10° C. and then leaving it in a refrigerator for 3 hours to thaw, which was repeated three times. The water syneresis rate is determined by lightly wiping the surface of the thawed sample with a paper towel, measuring the weight, calculating the difference from the previously measured weight of the sample before freezing, and using this difference as the weight of the sample before freezing. (see formula below).
離水率=(冷凍前の重量-解凍後の重量)/冷凍前の重量×100(%)
Syneresis rate = (weight before freezing - weight after thawing) / weight before freezing x 100 (%)
各サンプルの離水率の測定結果を表4、及び図1のグラフに示す。なお、各試験区あたり3つのサンプルについて離水率を測定した。表4には各試験区の3つのサンプルの離水率の平均値と離水率の標準偏差を示している。図1のグラフには、各試験区の3つのサンプルの離水率の平均値を示している。
Table 4 and the graph in Fig. 1 show the measurement results of the water separation rate of each sample. In addition, the syneresis rate was measured for three samples for each test section. Table 4 shows the average value of the syneresis rate and the standard deviation of the syneresis rate of the three samples in each test plot. The graph in FIG. 1 shows the average syneresis of three samples in each plot.
表4、図1に示すように、油脂加工澱粉のアセチル基含有量が増加するほど、各サンプルの離水率が低下した。特に、実施例1-1~実施例1-3にかかるサンプルでは離水率が2%以下となり、良好な値を示した。
As shown in Table 4 and Fig. 1, the syneresis rate of each sample decreased as the acetyl group content of the oil-processed starch increased. In particular, the samples according to Examples 1-1 to 1-3 had good syneresis rates of 2% or less.
(破断強度・破断距離の測定)
1日間冷蔵保存したサンプル(D1)、7日間冷蔵保存したサンプル(D7)、冷解凍を3回繰り返したサンプル(冷解凍)の各々に対して、テクスチャーアナライザー(TA-XT Plus、Stable Micro Systems社製)を用いて破断強度と破断距離を測定した。 (Measurement of breaking strength and breaking distance)
A texture analyzer (TA-XT Plus, Stable Micro Systems Co.) ) was used to measure the breaking strength and breaking distance.
1日間冷蔵保存したサンプル(D1)、7日間冷蔵保存したサンプル(D7)、冷解凍を3回繰り返したサンプル(冷解凍)の各々に対して、テクスチャーアナライザー(TA-XT Plus、Stable Micro Systems社製)を用いて破断強度と破断距離を測定した。 (Measurement of breaking strength and breaking distance)
A texture analyzer (TA-XT Plus, Stable Micro Systems Co.) ) was used to measure the breaking strength and breaking distance.
具体的には、ケーシングに充填されたかまぼこからケーシングを剥ぎ取り、直径30mm円柱状の蒲鉾を厚さ25mmにカットしたものを測定試料とした。カット面を上下とした試料を試料台に置き、テクスチャーアナライザーに直径5mmボール状のプローブを装着し、圧縮速度1mm/sec、室温(約20℃)で試料上面から中心部を15mm貫通させ、プローブが蒲鉾を突破する力(破断強度(g))と破断するまでプランジャーが移動した距離(破断距離(cm))とを測定した。
Specifically, the casing was peeled off from the kamaboko stuffed in the casing, and the cylindrical kamaboko with a diameter of 30 mm was cut into a thickness of 25 mm and used as the measurement sample. Place the sample with the cut surface up and down on the sample table, attach a ball-shaped probe with a diameter of 5 mm to the texture analyzer, compress the sample at a compression speed of 1 mm/sec, and at room temperature (approximately 20°C), pierce the center of the sample by 15 mm from the top surface, The force of breaking through the kamaboko (breaking strength (g)) and the distance traveled by the plunger until breakage (breaking distance (cm)) were measured.
また、下記の式を用いて、ゲル強度を算出した。
ゲル強度(g・cm)=破断強度(g)×破断距離(cm) Also, the gel strength was calculated using the following formula.
Gel strength (g cm) = breaking strength (g) × breaking distance (cm)
ゲル強度(g・cm)=破断強度(g)×破断距離(cm) Also, the gel strength was calculated using the following formula.
Gel strength (g cm) = breaking strength (g) × breaking distance (cm)
[1日間冷蔵保存したサンプル(D1)の結果]
表5は、1日間冷蔵保存したサンプル(D1)の破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表5では、各々の値を4回測定した値の平均値を示している。また、図2に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図3に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図2、図3のグラフは、表5に示す値をプロットしている。 [Results of sample (D1) stored refrigerated for 1 day]
Table 5 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the sample (D1) stored in a refrigerator for one day. Table 5 shows the average value of four measurements of each value. Also, the graph shown in FIG. 2 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 3 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 2 and 3 plot the values shown in Table 5.
表5は、1日間冷蔵保存したサンプル(D1)の破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表5では、各々の値を4回測定した値の平均値を示している。また、図2に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図3に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図2、図3のグラフは、表5に示す値をプロットしている。 [Results of sample (D1) stored refrigerated for 1 day]
Table 5 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the sample (D1) stored in a refrigerator for one day. Table 5 shows the average value of four measurements of each value. Also, the graph shown in FIG. 2 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 3 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 2 and 3 plot the values shown in Table 5.
破断強度(g)はサンプルの硬さを表しており、破断距離(cm)はサンプルのしなやかさを表している。また、これらを掛け合わせたゲル強度(g・cm)はそれらのバランスを表す指標となる。
The breaking strength (g) represents the hardness of the sample, and the breaking distance (cm) represents the flexibility of the sample. Moreover, the gel strength (g·cm) obtained by multiplying these values is an index representing their balance.
表5、図2、図3に示すように、1日間冷蔵保存したサンプル(D1)では、比較例1-2以外のサンプルにおいて、破断強度(g)、破断距離(cm)、ゲル強度(g・cm)が良好な値を示した。よって、比較例1-2以外のサンプルは、適度な硬さとしなやかさを備えているといえる。したがって、実施例1-1~実施例1-3にかかるサンプルでは、離水を抑制しつつ適度なしなやかさと硬さを蒲鉾に付与することができた。
As shown in Table 5, FIG. 2, and FIG. 3, in the sample (D1) stored in a refrigerator for 1 day, the breaking strength (g), breaking distance (cm), gel strength (g · cm) showed good values. Therefore, it can be said that the samples other than Comparative Example 1-2 have appropriate hardness and suppleness. Therefore, in the samples according to Examples 1-1 to 1-3, it was possible to impart moderate flexibility and hardness to the kamaboko while suppressing syneresis.
[7日間冷蔵保存したサンプル(D7)の結果]
表6は、7日間冷蔵保存したサンプル(D7)の破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表6では、各々の値を4回測定した値の平均値を示している。また、図4に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図5に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図4、図5のグラフは、表6に示す値をプロットしている。 [Results of sample (D7) stored refrigerated for 7 days]
Table 6 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the sample (D7) stored in a refrigerator for 7 days. Table 6 shows the average value of four measurements of each value. Also, the graph shown in FIG. 4 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 5 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 4 and 5 plot the values shown in Table 6.
表6は、7日間冷蔵保存したサンプル(D7)の破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表6では、各々の値を4回測定した値の平均値を示している。また、図4に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図5に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図4、図5のグラフは、表6に示す値をプロットしている。 [Results of sample (D7) stored refrigerated for 7 days]
Table 6 shows the measurement results of the breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the sample (D7) stored in a refrigerator for 7 days. Table 6 shows the average value of four measurements of each value. Also, the graph shown in FIG. 4 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 5 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 4 and 5 plot the values shown in Table 6.
表6、図4、図5に示すように、7日間冷蔵保存したサンプル(D7)は、全体的に破断強度(g)、破断距離(cm)、ゲル強度(g・cm)が良好な値を示したことから、適度な硬さとしなやかさを備えているといえる。したがって、実施例1-1~実施例1-3にかかるサンプルでは、離水を抑制しつつ適度なしなやかさと硬さを蒲鉾に付与することができた。
As shown in Table 6, FIG. 4, and FIG. 5, the sample (D7) stored in a refrigerator for 7 days had good values of overall breaking strength (g), breaking distance (cm), and gel strength (g cm). It can be said that it has moderate hardness and flexibility. Therefore, in the samples according to Examples 1-1 to 1-3, it was possible to impart moderate flexibility and hardness to the kamaboko while suppressing syneresis.
[冷解凍したサンプルの結果]
表7は、冷解凍したサンプルの破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表7では、各々の値を4回測定した値の平均値を示している。また、図6に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図7に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図6、図7のグラフは、表7に示す値をプロットしている。 [Results of frozen and thawed samples]
Table 7 shows the measurement results of breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the cold-thawed samples. Table 7 shows the average of four measurements of each value. Also, the graph shown in FIG. 6 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 7 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 6 and 7 plot the values shown in Table 7.
表7は、冷解凍したサンプルの破断強度(g)、破断距離(cm)、及びゲル強度(g・cm)の測定結果を示している。表7では、各々の値を4回測定した値の平均値を示している。また、図6に示すグラフは、各サンプルの破断強度(g)と破断距離(cm)を示している。図7に示すグラフは、各サンプルのゲル強度(g・cm)を示している。図6、図7のグラフは、表7に示す値をプロットしている。 [Results of frozen and thawed samples]
Table 7 shows the measurement results of breaking strength (g), breaking distance (cm), and gel strength (g·cm) of the cold-thawed samples. Table 7 shows the average of four measurements of each value. Also, the graph shown in FIG. 6 shows the breaking strength (g) and breaking distance (cm) of each sample. The graph shown in FIG. 7 shows the gel strength (g·cm) of each sample. The graphs of FIGS. 6 and 7 plot the values shown in Table 7.
表7、図6、図7に示すように、冷解凍したサンプルは、全体的に破断強度(g)、破断距離(cm)、ゲル強度(g・cm)が良好な値を示したことから、適度な硬さとしなやかさを備えているといえる。したがって、実施例1-1~実施例1-3にかかるサンプルでは、離水を抑制しつつ適度なしなやかさと硬さを蒲鉾に付与することができた。
As shown in Table 7, FIG. 6, and FIG. 7, the cold-thawed samples generally showed good values for breaking strength (g), breaking distance (cm), and gel strength (g cm). , It can be said that it has moderate hardness and flexibility. Therefore, in the samples according to Examples 1-1 to 1-3, it was possible to impart moderate flexibility and hardness to the kamaboko while suppressing syneresis.
(官能評価)
作製したサンプルのうち、冷解凍を3回繰り返した後のサンプルについて官能評価を実施した。官能評価の結果は次の通りである。比較例1-1にかかるサンプルでは、咀嚼時に水が出てきた。比較例1-2にかかるサンプルでは、咀嚼時に中から出てくる水量が比較例1-1よりも多かった。実施例1-1にかかるサンプルでは、比較例1-1、比較例1-2にかかるサンプルよりもキメが細かく、中から出てくる水量が少なかった。実施例1-2にかかるサンプルでは、実施例1-1にかかるサンプルよりもキメが細かかった。実施例1-2にかかるサンプルでは、最もキメが細かく、離水量も少なかった。 (sensory evaluation)
Sensory evaluation was carried out on the sample after repeating freezing and thawing three times among the prepared samples. The results of sensory evaluation are as follows. In the sample according to Comparative Example 1-1, water came out during mastication. In the sample of Comparative Example 1-2, the amount of water coming out during mastication was larger than that of Comparative Example 1-1. The sample according to Example 1-1 had a finer texture than the samples according to Comparative Examples 1-1 and 1-2, and the amount of water coming out from inside was small. The sample according to Example 1-2 had a finer texture than the sample according to Example 1-1. The sample according to Example 1-2 had the finest texture and the least amount of water separation.
作製したサンプルのうち、冷解凍を3回繰り返した後のサンプルについて官能評価を実施した。官能評価の結果は次の通りである。比較例1-1にかかるサンプルでは、咀嚼時に水が出てきた。比較例1-2にかかるサンプルでは、咀嚼時に中から出てくる水量が比較例1-1よりも多かった。実施例1-1にかかるサンプルでは、比較例1-1、比較例1-2にかかるサンプルよりもキメが細かく、中から出てくる水量が少なかった。実施例1-2にかかるサンプルでは、実施例1-1にかかるサンプルよりもキメが細かかった。実施例1-2にかかるサンプルでは、最もキメが細かく、離水量も少なかった。 (sensory evaluation)
Sensory evaluation was carried out on the sample after repeating freezing and thawing three times among the prepared samples. The results of sensory evaluation are as follows. In the sample according to Comparative Example 1-1, water came out during mastication. In the sample of Comparative Example 1-2, the amount of water coming out during mastication was larger than that of Comparative Example 1-1. The sample according to Example 1-1 had a finer texture than the samples according to Comparative Examples 1-1 and 1-2, and the amount of water coming out from inside was small. The sample according to Example 1-2 had a finer texture than the sample according to Example 1-1. The sample according to Example 1-2 had the finest texture and the least amount of water separation.
<試験2>
試験2として、以下の手順で食肉加工品(ミンチゲル)を作製した。 <Test 2>
AsTest 2, a processed meat product (minced gel) was produced by the following procedure.
試験2として、以下の手順で食肉加工品(ミンチゲル)を作製した。 <
As
(サンプルの作製)
まず、冷凍豚ロース肉を準備した。そして、冷凍豚ロース肉を半解凍した後、豚ロース肉を包丁で1cm角のサイコロ状にカットした。解凍後、サイコロ状の豚ロース肉をフードプロセッサー(10秒間×2回の条件)でミンチ状にせん断して豚ミンチを作製した。 (Preparation of sample)
First, frozen pork loin was prepared. Then, after the frozen pork loin was partially thawed, the pork loin was cut into 1 cm square dice with a kitchen knife. After thawing, the diced pork loin meat was minced by a food processor (10 seconds x 2 times) to prepare minced pork.
まず、冷凍豚ロース肉を準備した。そして、冷凍豚ロース肉を半解凍した後、豚ロース肉を包丁で1cm角のサイコロ状にカットした。解凍後、サイコロ状の豚ロース肉をフードプロセッサー(10秒間×2回の条件)でミンチ状にせん断して豚ミンチを作製した。 (Preparation of sample)
First, frozen pork loin was prepared. Then, after the frozen pork loin was partially thawed, the pork loin was cut into 1 cm square dice with a kitchen knife. After thawing, the diced pork loin meat was minced by a food processor (10 seconds x 2 times) to prepare minced pork.
次に、食塩および食塩以外の副素材を秤量した。試験2で用いた原材料を表8に示している。試験2では、馬鈴薯澱粉、卵白、リン酸架橋タピオカ澱粉、アセチル化タピオカ澱粉、油脂加工澱粉1(アセチル基含有量0%)、油脂加工澱粉3(アセチル基含有量1.2%)を各々準備し、各々のサンプルにおいて使用する澱粉(卵白)の種類を変えている。
Next, salt and auxiliary materials other than salt were weighed. The raw materials used in Test 2 are shown in Table 8. In test 2, potato starch, egg white, phosphate-crosslinked tapioca starch, acetylated tapioca starch, fat-processed starch 1 (acetyl group content 0%), and fat-processed starch 3 (acetyl group content 1.2%) were prepared. However, the type of starch (egg white) used in each sample was varied.
次に、各原料をフードプロセッサーで混合した。その後、サンプル(試験区)ごとに、チャック袋に入れ、ストーンテーブルに叩きつけて空気を抜いた。
Next, each ingredient was mixed in a food processor. After that, each sample (test section) was placed in a zipper bag and slammed against a stone table to remove air.
次に、上述のようにして調製した混合物(ミンチゲル)を、直径30mmの円筒状のケーシングチューブに充填した。その後、73℃の恒温槽で30分間加熱した。そして、氷水で30分間冷却して加熱処理されたミンチゲルを作製した。
Next, a cylindrical casing tube with a diameter of 30 mm was filled with the mixture (minced gel) prepared as described above. After that, it was heated in a constant temperature bath at 73° C. for 30 minutes. Then, it was cooled with ice water for 30 minutes to prepare a heat-treated minced gel.
(離水率の測定)
作製した各サンプルの離水率を測定した。離水率は試験1と同様の方法を用いて測定した。なお、試験2では冷蔵保存したサンプルと、冷解凍したサンプルについて離水率を測定した。図8に、試験2にかかるサンプルの離水率を示す。図8に示すように、比較例2-1~比較例2-5にかかるサンプルでは、冷蔵保存したサンプルおよび冷解凍したサンプルの両方において離水率が高かった。一方、実施例2-1にかかるサンプルでは、冷蔵保存したサンプルおよび冷解凍したサンプルの両方において離水率が低かった。したがって、油脂加工澱粉3(アセチル基含有量1.2%)を用いた場合は、ミンチゲルの離水率を低減することができた。 (Measurement of separation rate)
The syneresis rate of each prepared sample was measured. The syneresis rate was measured using the same method as in Test 1. InTest 2, the syneresis rate was measured for the refrigerated sample and the cold-thawed sample. FIG. 8 shows the water syneresis of the samples of Test 2. As shown in FIG. As shown in FIG. 8, in the samples of Comparative Examples 2-1 to 2-5, both the refrigerated samples and the cold-thawed samples had high syneresis rates. On the other hand, in the sample according to Example 2-1, both the refrigerated sample and the cold-thawed sample had a low syneresis rate. Therefore, when the oil-processed starch 3 (acetyl group content: 1.2%) was used, the syneresis rate of the minced gel could be reduced.
作製した各サンプルの離水率を測定した。離水率は試験1と同様の方法を用いて測定した。なお、試験2では冷蔵保存したサンプルと、冷解凍したサンプルについて離水率を測定した。図8に、試験2にかかるサンプルの離水率を示す。図8に示すように、比較例2-1~比較例2-5にかかるサンプルでは、冷蔵保存したサンプルおよび冷解凍したサンプルの両方において離水率が高かった。一方、実施例2-1にかかるサンプルでは、冷蔵保存したサンプルおよび冷解凍したサンプルの両方において離水率が低かった。したがって、油脂加工澱粉3(アセチル基含有量1.2%)を用いた場合は、ミンチゲルの離水率を低減することができた。 (Measurement of separation rate)
The syneresis rate of each prepared sample was measured. The syneresis rate was measured using the same method as in Test 1. In
(破断強度・破断距離の測定)
作製した各サンプルの破断強度を測定した。具体的には、ミンチゲルを厚さ15mmにカットし、テクスチャーアナライザーで圧縮試験を行った。破断強度および破断距離の測定にはそれぞれ、直径7mmの球状のプランジャーを用い、テストスピード1mm/sec、80% strainの条件でミンチゲルを圧縮して、破断した時の応力(g)と破断するまでプランジャーが移動した距離(mm)とを測定した。なお、試験2では冷蔵保存したサンプルと、冷解凍したサンプルについて破断強度を測定した。図9に、試験2にかかるサンプルの破断強度を示す。図9に示すように、比較例2-1、2-2、2-5、実施例2-1にかかるサンプルにおいて、破断強度(g)が良好な値を示した。よって、これらのサンプルは、適度な硬さとしなやかさを備えているといえる。したがって、実施例2-1にかかるサンプルでは、離水を抑制しつつ適度なしなやかさと硬さをミンチゲルに付与することができた。 (Measurement of breaking strength and breaking distance)
The breaking strength of each prepared sample was measured. Specifically, the minced gel was cut to a thickness of 15 mm and subjected to a compression test using a texture analyzer. A spherical plunger with a diameter of 7 mm was used to measure the breaking strength and breaking distance, respectively, and the minced gel was compressed under the conditions of a test speed of 1 mm/sec and 80% strain, and the stress (g) at break and the break. The distance (mm) that the plunger moved up to was measured. InTest 2, the breaking strength was measured for a sample that had been refrigerated and a sample that had been frozen and thawed. FIG. 9 shows the breaking strength of the samples for Test 2. As shown in FIG. 9, the samples according to Comparative Examples 2-1, 2-2, 2-5, and Example 2-1 exhibited good breaking strength (g) values. Therefore, it can be said that these samples have moderate hardness and flexibility. Therefore, in the sample according to Example 2-1, it was possible to impart appropriate flexibility and hardness to the minced gel while suppressing syneresis.
作製した各サンプルの破断強度を測定した。具体的には、ミンチゲルを厚さ15mmにカットし、テクスチャーアナライザーで圧縮試験を行った。破断強度および破断距離の測定にはそれぞれ、直径7mmの球状のプランジャーを用い、テストスピード1mm/sec、80% strainの条件でミンチゲルを圧縮して、破断した時の応力(g)と破断するまでプランジャーが移動した距離(mm)とを測定した。なお、試験2では冷蔵保存したサンプルと、冷解凍したサンプルについて破断強度を測定した。図9に、試験2にかかるサンプルの破断強度を示す。図9に示すように、比較例2-1、2-2、2-5、実施例2-1にかかるサンプルにおいて、破断強度(g)が良好な値を示した。よって、これらのサンプルは、適度な硬さとしなやかさを備えているといえる。したがって、実施例2-1にかかるサンプルでは、離水を抑制しつつ適度なしなやかさと硬さをミンチゲルに付与することができた。 (Measurement of breaking strength and breaking distance)
The breaking strength of each prepared sample was measured. Specifically, the minced gel was cut to a thickness of 15 mm and subjected to a compression test using a texture analyzer. A spherical plunger with a diameter of 7 mm was used to measure the breaking strength and breaking distance, respectively, and the minced gel was compressed under the conditions of a test speed of 1 mm/sec and 80% strain, and the stress (g) at break and the break. The distance (mm) that the plunger moved up to was measured. In
<試験3>
試験3として、以下の手順で食肉加工品(ハム)を作製した。 <Test 3>
As Test 3, a processed meat product (ham) was produced by the following procedure.
試験3として、以下の手順で食肉加工品(ハム)を作製した。 <Test 3>
As Test 3, a processed meat product (ham) was produced by the following procedure.
(サンプルの作製)
まず、豚ロース肉を4kg準備した。その後、豚ロース肉の中心部を約800gに分割して、4本の豚ロース肉を準備した。豚ロース肉は余分な脂、肉をトリミングして芯のみを使用した。次いで、ピックル液を3000g準備した。ピックル液の配合を表9に示す。試験3では、ピックル液を作製する際に表2に示す油脂加工澱粉1、油脂加工澱粉3、または卵白(乾燥卵白)を使用した。 (Preparation of sample)
First, 4 kg of pork loin was prepared. After that, the central portion of the pork loin was divided into approximately 800 g to prepare four pieces of pork loin. Excess fat and meat were trimmed from the pork loin, and only the core was used. Next, 3000 g of pickling liquid was prepared. Table 9 shows the formulation of the pickling liquid. In Test 3, oil-processed starch 1, oil-processed starch 3, or egg white (dried egg white) shown in Table 2 was used to prepare the pickling liquid.
まず、豚ロース肉を4kg準備した。その後、豚ロース肉の中心部を約800gに分割して、4本の豚ロース肉を準備した。豚ロース肉は余分な脂、肉をトリミングして芯のみを使用した。次いで、ピックル液を3000g準備した。ピックル液の配合を表9に示す。試験3では、ピックル液を作製する際に表2に示す油脂加工澱粉1、油脂加工澱粉3、または卵白(乾燥卵白)を使用した。 (Preparation of sample)
First, 4 kg of pork loin was prepared. After that, the central portion of the pork loin was divided into approximately 800 g to prepare four pieces of pork loin. Excess fat and meat were trimmed from the pork loin, and only the core was used. Next, 3000 g of pickling liquid was prepared. Table 9 shows the formulation of the pickling liquid. In Test 3, oil-processed starch 1, oil-processed starch 3, or egg white (dried egg white) shown in Table 2 was used to prepare the pickling liquid.
また、ピックル液を調整する際、亜硝酸Naおよびトリポリリン酸Naは少量の温水で溶解した(A)。また、粉体原料(氷水以外)は粉体原料のみで混合した(B)。そして、AとBとを混合した後、氷水を数回に分けて加え、ジューサーミキサーを用いて混合してピックル液を作成した。
Also, when preparing the pickling solution, sodium nitrite and sodium tripolyphosphate were dissolved in a small amount of warm water (A). In addition, powder raw materials (other than ice water) were mixed only with powder raw materials (B). After A and B were mixed, ice water was added in several portions and mixed using a juicer mixer to prepare a pickling solution.
その後、準備した肉にピックル液を注入するインジェクション処理を実施した。インジェクション処理には桜井エンジニアリング社製、ピックルインジェクターを用いた。インジェクションの目標値は1.8倍とした。表10に各サンプルのインジェクション歩留りを示す。なお、インジェクション歩留りは下記の式1を用いて算出した。
After that, an injection process was performed to inject the pickle liquid into the prepared meat. A pickle injector manufactured by Sakurai Engineering Co., Ltd. was used for the injection process. The injection target value was set at 1.8 times. Table 10 shows the injection yield of each sample. The injection yield was calculated using Equation 1 below.
インジェクション歩留り(%)=(インジェクション後肉重量/インジェクション前肉重量)×100・・・式1
Injection yield (%) = (weight of meat after injection/weight of meat before injection) x 100...Formula 1
次いで、インジェクション処理後の肉にタンブリング処理を行った。タンブリング処理は、インジェクション処理後の肉をタンブラーに投入して、4℃、真空状態で16時間、タンブリングすることで行った。タンブラーにはバコナ社製、クーリングタンブラーESK-60を用いた。表11に各サンプルのタンブリング歩留りを示す。なお、タンブリング処理後の歩留り(タンブリング歩留り)は、下記の式2を用いて算出した。
Next, the meat after the injection process was tumbling processed. The tumbling treatment was carried out by putting the injected meat into a tumbler and tumbling it at 4° C. under vacuum for 16 hours. Cooling tumbler ESK-60 manufactured by Bacona was used as the tumbler. Table 11 shows the tumbling yield of each sample. The yield after tumbling treatment (tumbling yield) was calculated using Equation 2 below.
タンブリング歩留り(%)=(タンブリング後肉重量/タンブリング前肉重量)×100 ・・・式2
Tumbling yield (%) = (Meat weight after tumbling/Meat weight before tumbling) x 100 Formula 2
その後、タンブリング処理後の肉をケーシングに入れて加熱処理を行った。加熱処理は、スチームコンベクションオーブン(Rational社製、コンビマスタープラスXS)を用いて、次の条件で行った。まず、60℃の温度条件で30分間乾燥させ、その後、70℃の温度条件で90分間乾燥させた。その後、78℃の温度条件で78分間、加熱して蒸煮した。このとき、サンプルの芯温は63℃まで達した。次いで、64℃の温度条件で30分間、余熱処理した。その後、冷蔵庫(4℃)にて一晩保管し、翌日、冷蔵庫から取り出した。表12に各サンプルの加熱歩留りを示す。なお、加熱歩留りは下記の式3を用いて算出した。
After that, the meat after tumbling was placed in a casing and heat-treated. The heat treatment was performed using a steam convection oven (Combimaster Plus XS manufactured by Rational) under the following conditions. First, it was dried at a temperature of 60°C for 30 minutes, and then dried at a temperature of 70°C for 90 minutes. Then, it was heated and steamed for 78 minutes at a temperature of 78°C. At this time, the core temperature of the sample reached 63°C. Then, preheating was performed at a temperature of 64° C. for 30 minutes. After that, it was stored overnight in a refrigerator (4°C), and the next day, it was taken out from the refrigerator. Table 12 shows the heating yield of each sample. The heating yield was calculated using Equation 3 below.
加熱歩留り(%)=(加熱処理後の質量/加熱処理前の質量)×100 ・・・式3
Heat yield (%) = (mass after heat treatment/mass before heat treatment) x 100...Equation 3
(離水率の測定)
上述のようにして作製した各サンプルを、スライサーを用いて1.2mm程度に揃えてスライスした。その後、スライスしたサンプルを真空パックして冷蔵保管した。そして、冷蔵保管前と冷蔵保管後の重量を測定して各サンプルの離水率を測定した。表13に、試験3にかかるサンプルの離水率を示す。表13に示すように、比較例3-1~比較例3-3にかかるサンプルでは離水率それぞれ3.16%、3.73%、3.23%となり、離水率が高かった。一方、実施例3-1にかかるサンプルでは離水率が1.91%となり離水率が低かった。したがって、油脂加工澱粉3(アセチル基含有量1.2%)を用いた場合は、食肉加工品(ハム)の離水率を低減することができた。また、油脂加工澱粉3を用いた実施例3-1にかかるサンプルでは、粉っぽさもなくハムの味が強く感じられた。 (Measurement of separation rate)
Each sample prepared as described above was sliced by aligning to about 1.2 mm using a slicer. The sliced samples were then vacuum packed and stored refrigerated. Then, the weight of each sample before and after refrigeration storage was measured to measure the syneresis rate of each sample. Table 13 shows the syneresis rate of the samples for Test 3. As shown in Table 13, the samples of Comparative Examples 3-1 and 3-3 had high water separation rates of 3.16%, 3.73%, and 3.23%, respectively. On the other hand, the sample according to Example 3-1 had a low water separation rate of 1.91%. Therefore, when the fat-and-oil-processed starch 3 (acetyl group content: 1.2%) was used, the syneresis rate of the processed meat product (ham) could be reduced. In addition, the sample of Example 3-1 using the oil-processed starch 3 did not feel powdery and had a strong ham taste.
上述のようにして作製した各サンプルを、スライサーを用いて1.2mm程度に揃えてスライスした。その後、スライスしたサンプルを真空パックして冷蔵保管した。そして、冷蔵保管前と冷蔵保管後の重量を測定して各サンプルの離水率を測定した。表13に、試験3にかかるサンプルの離水率を示す。表13に示すように、比較例3-1~比較例3-3にかかるサンプルでは離水率それぞれ3.16%、3.73%、3.23%となり、離水率が高かった。一方、実施例3-1にかかるサンプルでは離水率が1.91%となり離水率が低かった。したがって、油脂加工澱粉3(アセチル基含有量1.2%)を用いた場合は、食肉加工品(ハム)の離水率を低減することができた。また、油脂加工澱粉3を用いた実施例3-1にかかるサンプルでは、粉っぽさもなくハムの味が強く感じられた。 (Measurement of separation rate)
Each sample prepared as described above was sliced by aligning to about 1.2 mm using a slicer. The sliced samples were then vacuum packed and stored refrigerated. Then, the weight of each sample before and after refrigeration storage was measured to measure the syneresis rate of each sample. Table 13 shows the syneresis rate of the samples for Test 3. As shown in Table 13, the samples of Comparative Examples 3-1 and 3-3 had high water separation rates of 3.16%, 3.73%, and 3.23%, respectively. On the other hand, the sample according to Example 3-1 had a low water separation rate of 1.91%. Therefore, when the fat-and-oil-processed starch 3 (acetyl group content: 1.2%) was used, the syneresis rate of the processed meat product (ham) could be reduced. In addition, the sample of Example 3-1 using the oil-processed starch 3 did not feel powdery and had a strong ham taste.
この出願は、2021年11月29日に出願された日本出願特願2021-193436を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2021-193436 filed on November 29, 2021, and the entire disclosure thereof is incorporated herein.
Claims (10)
- 油脂加工されたアセチル化澱粉を含み、前記油脂加工されたアセチル化澱粉のアセチル基含有量が1.1質量%以上1.7質量%以下である、食肉加工品用改良剤。 A meat improver for processed meat products, comprising oil-processed acetylated starch, wherein the acetyl group content of the oil-processed acetylated starch is 1.1% by mass or more and 1.7% by mass or less.
- 前記アセチル化澱粉がアセチル化架橋澱粉であり、当該アセチル化架橋澱粉の溶解度が40.5%以上46.0%以下である、請求項1に記載の食肉加工品用改良剤。 The improving agent for processed meat products according to claim 1, wherein the acetylated starch is acetylated crosslinked starch, and the solubility of the acetylated crosslinked starch is 40.5% or more and 46.0% or less.
- 前記アセチル化澱粉がアセチル化リン酸架橋タピオカ澱粉である、請求項1または2に記載の食肉加工品用改良剤。 The improving agent for processed meat products according to claim 1 or 2, wherein the acetylated starch is acetylated phosphate-crosslinked tapioca starch.
- 前記アセチル化澱粉が、アセチル基含有量が第1の含有量である第1のアセチル化澱粉と、アセチル基含有量が前記第1の含有量よりも多い第2の含有量である第2のアセチル化澱粉と、を含む、請求項1~3のいずれか一項に記載の食肉加工品用改良剤。 The acetylated starch comprises a first acetylated starch having a first acetyl group content and a second acetylated starch having a second acetyl group content higher than the first content. The improving agent for processed meat products according to any one of claims 1 to 3, comprising acetylated starch.
- 請求項1~4のいずれか一項に記載の食肉加工品用改良剤を含む食肉加工品。 A processed meat product containing the improving agent for processed meat products according to any one of claims 1 to 4.
- 前記食肉加工品が、ハム、ソーセージ、ハンバーグ、プラントベースハンバーグ、サラダチキン、水練り食品からなる群から選ばれる一種である、請求項5に記載の食肉加工品。 The processed meat product according to claim 5, wherein the processed meat product is one selected from the group consisting of ham, sausage, hamburger steak, plant-based hamburger steak, salad chicken, and water-paste food.
- 前記食肉加工品を冷凍後、解凍した際の離水率が0.1%以上3.0%以下である、請求項5または6に記載の食肉加工品。 The processed meat product according to claim 5 or 6, wherein the water separation rate when the processed meat product is thawed after freezing is 0.1% or more and 3.0% or less.
- 請求項1~4のいずれか一項に記載の食肉加工品用改良剤を食肉に適用する工程を含む、食肉加工品の製造方法。 A method for producing processed meat products, comprising the step of applying the improving agent for processed meat products according to any one of claims 1 to 4 to meat.
- 前記食肉100質量部に対する前記油脂加工されたアセチル化澱粉の量が1質量部以上15質量部以下となるように、前記食肉加工品用改良剤を前記食肉に適用する、請求項8に記載の食肉加工品の製造方法。 9. The improving agent for processed meat products is applied to the meat so that the amount of the oil-processed acetylated starch with respect to 100 parts by mass of the meat is 1 part by mass or more and 15 parts by mass or less. A method for producing a processed meat product.
- 食肉加工品を製造する際に、請求項1~3のいずれか一項に記載の食肉加工品用改良剤を食肉に添加することを特徴とする前記食肉加工品の食感を向上させる方法。 A method for improving the texture of processed meat products, characterized by adding the improving agent for processed meat products according to any one of claims 1 to 3 to the meat when producing the processed meat products.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023563654A JPWO2023095711A1 (en) | 2021-11-29 | 2022-11-17 | |
KR1020247008184A KR20240113894A (en) | 2021-11-29 | 2022-11-17 | Improver for processed meat products, processed meat products, and method for manufacturing processed meat products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021193436 | 2021-11-29 | ||
JP2021-193436 | 2021-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095711A1 true WO2023095711A1 (en) | 2023-06-01 |
Family
ID=86539602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042711 WO2023095711A1 (en) | 2021-11-29 | 2022-11-17 | Agent for improving processed meat product, processed meat product, and method for producing processed meat product |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023095711A1 (en) |
KR (1) | KR20240113894A (en) |
WO (1) | WO2023095711A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004041011A (en) * | 2002-07-09 | 2004-02-12 | Honen Corp | Meat quality improver, and method for improving meat quality using the same |
WO2012164801A1 (en) * | 2011-06-01 | 2012-12-06 | 株式会社J-オイルミルズ | Starch processed with oil or fat and method for producing same |
JP2013110973A (en) * | 2011-11-25 | 2013-06-10 | Nippon Shokuhin Kako Co Ltd | Animal meat product improver, and animal meat product |
JP2016067336A (en) * | 2014-10-02 | 2016-05-09 | グリコ栄養食品株式会社 | Texture improving composition |
WO2020066845A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社J-オイルミルズ | Meat processing liquid |
JP2020162560A (en) * | 2019-03-29 | 2020-10-08 | 日本食品化工株式会社 | Fishery/livestock meat product improving agent and fishery/livestock meat product |
WO2021060350A1 (en) * | 2019-09-27 | 2021-04-01 | 株式会社J-オイルミルズ | Method for manufacturing processed meat product |
WO2021200333A1 (en) * | 2020-03-30 | 2021-10-07 | 株式会社J-オイルミルズ | Method for manufacturing processed meat product |
WO2021241736A1 (en) * | 2020-05-29 | 2021-12-02 | 株式会社J-オイルミルズ | Improving agent for processed meat product, processed meat product, and method for producing processed meat product |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007189926A (en) | 2006-01-18 | 2007-08-02 | Ajinomoto Co Inc | Meat quality improver, and method for producing meat processed product |
-
2022
- 2022-11-17 JP JP2023563654A patent/JPWO2023095711A1/ja active Pending
- 2022-11-17 KR KR1020247008184A patent/KR20240113894A/en unknown
- 2022-11-17 WO PCT/JP2022/042711 patent/WO2023095711A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004041011A (en) * | 2002-07-09 | 2004-02-12 | Honen Corp | Meat quality improver, and method for improving meat quality using the same |
WO2012164801A1 (en) * | 2011-06-01 | 2012-12-06 | 株式会社J-オイルミルズ | Starch processed with oil or fat and method for producing same |
JP2013110973A (en) * | 2011-11-25 | 2013-06-10 | Nippon Shokuhin Kako Co Ltd | Animal meat product improver, and animal meat product |
JP2016067336A (en) * | 2014-10-02 | 2016-05-09 | グリコ栄養食品株式会社 | Texture improving composition |
WO2020066845A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社J-オイルミルズ | Meat processing liquid |
JP2020162560A (en) * | 2019-03-29 | 2020-10-08 | 日本食品化工株式会社 | Fishery/livestock meat product improving agent and fishery/livestock meat product |
WO2021060350A1 (en) * | 2019-09-27 | 2021-04-01 | 株式会社J-オイルミルズ | Method for manufacturing processed meat product |
WO2021200333A1 (en) * | 2020-03-30 | 2021-10-07 | 株式会社J-オイルミルズ | Method for manufacturing processed meat product |
WO2021241736A1 (en) * | 2020-05-29 | 2021-12-02 | 株式会社J-オイルミルズ | Improving agent for processed meat product, processed meat product, and method for producing processed meat product |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023095711A1 (en) | 2023-06-01 |
KR20240113894A (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100352145B1 (en) | Processed Meat and Axes Meat Processing Method Using the Same | |
US20110091632A1 (en) | Meat Additive, Pickling Liquid and Processed Meat Product | |
CN110087487A (en) | The manufacturing method of meat-processing liquid and meat-processing food | |
EP2835060B1 (en) | Method for the preparation of oil-containing whole muscle meat-based products and reconstituted meat-based products | |
MX2011002165A (en) | Oil composition for the preparation of oil containing food products. | |
WO2021200333A1 (en) | Method for manufacturing processed meat product | |
JP3353383B2 (en) | Method for producing enzyme preparations and binding molded foods | |
CA2764259A1 (en) | Method for the preparation of oil-containing meat-based products comprising a reduced amount of additives | |
KR20210071955A (en) | meat processing liquid | |
Praneetha et al. | Development of fish finger from rohu (Labeo rohita) and its quality evaluation during refrigerated storage condition | |
WO2021241736A1 (en) | Improving agent for processed meat product, processed meat product, and method for producing processed meat product | |
WO2020066844A1 (en) | Composition for meat, method for manufacturing processed meat food, and method for improving texture of processed meat food | |
JP6782020B2 (en) | Food protein binders, food compositions containing them, and methods for producing foods using them. | |
WO2023095711A1 (en) | Agent for improving processed meat product, processed meat product, and method for producing processed meat product | |
CN105831612A (en) | Composition for improving quality of frozen meat product | |
JPH0361416B2 (en) | ||
WO2022181759A1 (en) | Emulsion composition | |
US20230371559A1 (en) | Method for suppressing coloring of oil/fat composition | |
JP7069775B2 (en) | Manufacturing method of processed livestock meat products or processed fish products with modified physical characteristics | |
RU2144776C1 (en) | Sausage product manufacture method | |
JP6890911B1 (en) | Oil-processed starch with excellent dispersibility, its manufacturing method and its use | |
WO2018122757A1 (en) | Gelled restructured food product | |
JP7505897B2 (en) | Manufacturing method for dried meat products | |
KR102096663B1 (en) | Tuna franks-vienna sausage and method of manufacturing the same | |
KR20230084474A (en) | Dry oxalic acid dough product and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22898495 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023563654 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401003132 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |