WO2023095459A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2023095459A1
WO2023095459A1 PCT/JP2022/037414 JP2022037414W WO2023095459A1 WO 2023095459 A1 WO2023095459 A1 WO 2023095459A1 JP 2022037414 W JP2022037414 W JP 2022037414W WO 2023095459 A1 WO2023095459 A1 WO 2023095459A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
transparent electrode
electrode
angle
Prior art date
Application number
PCT/JP2022/037414
Other languages
English (en)
French (fr)
Inventor
幸次朗 池田
健夫 小糸
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to KR1020247016997A priority Critical patent/KR20240090767A/ko
Priority to EP22898244.3A priority patent/EP4439165A1/en
Priority to CN202280077680.XA priority patent/CN118302715A/zh
Priority to JP2023563540A priority patent/JPWO2023095459A1/ja
Priority to CA3237857A priority patent/CA3237857A1/en
Priority to MX2024006429A priority patent/MX2024006429A/es
Publication of WO2023095459A1 publication Critical patent/WO2023095459A1/ja
Priority to US18/671,439 priority patent/US20240310679A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells

Definitions

  • An embodiment of the present invention relates to an optical element that controls light distribution of light emitted from a light source.
  • an optical element a so-called liquid crystal lens, which utilizes a change in the refractive index of a liquid crystal by adjusting a voltage applied to the liquid crystal has been known (for example, see Patent Document 1, Patent Document 2, or Patent Document 3).
  • the illumination devices described in Patent Documents 1 and 2 use a liquid crystal lens to circularly distribute light from a light source.
  • the pattern of electrodes applied to the liquid crystal is changed to change the light distribution shape.
  • the optical element including the liquid crystal cell has problems such as brightness unevenness, coloring, or moire, and the light distribution characteristics deteriorate. Therefore, an optical element capable of obtaining uniform light distribution has been desired.
  • one of the objects of one embodiment of the present invention is to provide an optical element capable of obtaining uniform light distribution.
  • An optical element includes at least four sequentially stacked liquid crystal cells, each of the at least four liquid crystal cells including a first transparent electrode extending in a first direction and a second liquid crystal cell.
  • a first substrate on which transparent electrodes are alternately arranged in a second direction intersecting the first direction, and a third transparent electrode and a fourth transparent electrode extending in the second direction are arranged in a first substrate. and a liquid crystal layer between the first substrate and the second substrate.
  • An optical element includes a first liquid crystal cell, a second liquid crystal cell, a third liquid crystal cell, and a fourth liquid crystal cell that are sequentially stacked, and the first liquid crystal cell, the Each of the two liquid crystal cells, the third liquid crystal cell, and the fourth liquid crystal cell has a first transparent electrode and a second transparent electrode extending in a direction having a first angle with respect to the first direction. are alternately arranged in a second direction orthogonal to the first direction, and a third transparent electrode and a third substrate extending in a direction having a second angle with respect to the second direction.
  • Four transparent electrodes include second substrates alternately arranged in a first direction and a liquid crystal layer between the first and second substrates.
  • An optical element includes a first liquid crystal cell, a second liquid crystal cell, a third liquid crystal cell, and a fourth liquid crystal cell that are sequentially stacked, and the first liquid crystal cell, the Each of the second liquid crystal cell, the third liquid crystal cell, and the fourth liquid crystal cell extends in a direction having a first angle with respect to the first direction and extends in a second direction with respect to the first direction.
  • FIG. 1 is a schematic perspective view of an optical element according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of an optical element according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view illustrating the alignment direction of liquid crystal molecules in a liquid crystal layer of a liquid crystal cell of an optical element according to an embodiment of the present invention and the properties of light passing through the liquid crystal cell.
  • FIG. 2 is a schematic cross-sectional view illustrating the alignment direction of liquid crystal molecules in a liquid crystal layer of a liquid crystal cell of an optical element according to an embodiment of the present invention and the properties of light passing through the liquid crystal cell.
  • FIG. 4 is a graph showing the transmittance of an optical element according to one embodiment of the invention and a conventional optical element.
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention;
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention;
  • FIG. 3 is a schematic diagram illustrating the configuration of a first electrode pattern and a second electrode pattern of a liquid crystal cell of an optical element according to one embodiment of the present invention;
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 3 is a schematic diagram illustrating the configuration of a first electrode pattern and a second electrode pattern of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an optical element according to one embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating the structure of a transparent electrode of a liquid crystal cell of an
  • each structure When a single film is processed to form multiple structures, each structure may have different functions and roles, and each structure may have a different base on which it is formed. However, these multiple structures originate from films formed as the same layer in the same process and have the same material. Therefore, these multiple films are defined as existing in the same layer.
  • FIG. 1 An optical element 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 An optical element 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 An optical element 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is a schematic perspective view of an optical element 10 according to one embodiment of the invention.
  • the optical element 10 includes a plurality of liquid crystal cells 100 (first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100- 3, and a fourth liquid crystal cell 100-4).
  • a light source is arranged above the first liquid crystal cell 100-1.
  • the optical element 10 includes a first liquid crystal cell 100-1, a second liquid crystal cell 100-2, a third liquid crystal cell 100-3, and a fourth liquid crystal cell 100-4 with respect to the light source side. has a structure in which are sequentially stacked. Therefore, the light emitted from the light source is sequentially transmitted through the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4. .
  • optical elastic resin layer 160 Two adjacent liquid crystal cells 100 of the plurality of liquid crystal cells 100 are adhered via an optical elastic resin layer 160 .
  • an adhesive containing a translucent acrylic resin or epoxy resin can be used.
  • the optical element 10 can control the light distribution of unpolarized light. Therefore, in the optical element 10, for example, it is not necessary to provide a pair of polarizing plates provided on the front and back surfaces of the liquid crystal display element. Although four liquid crystal cells 100 are shown in FIG. 1, the number of liquid crystal cells 100 included in the optical element 10 is not limited to this. The number of liquid crystal cells included in the optical element 10 may be five or more.
  • FIG. 2A and 2B are schematic cross-sectional views of the optical element 10 according to one embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view in the zx plane cut along the A1-A2 line shown in FIG. 1
  • FIG. 2B is a schematic cross-sectional view along the B1-B2 line shown in FIG. It is a schematic cross-sectional view in the cut yz-plane.
  • the x-axis direction and the y-axis direction may be described as the first direction and the second direction, respectively. That is, the second direction is a direction orthogonal to the first direction.
  • each of the plurality of liquid crystal cells 100 includes a first substrate 110-1, a second substrate 110-2, a first transparent electrode 120-1 and a second transparent electrode 120. -2, a third transparent electrode 120-3, a fourth transparent electrode 120-4, a first alignment film 130-1, a second alignment film 130-2, a sealing material 140, and a liquid crystal layer 150.
  • a first transparent electrode 120-1, a second transparent electrode 120-2, and a second transparent electrode 120-1 and a second transparent electrode 120-2 are formed on the first substrate 110-1. 1 of the alignment film 130-1 is provided.
  • a third transparent electrode 120-3, a fourth transparent electrode 120-4, and a third transparent electrode 120-3 and a fourth transparent electrode 120-4 are formed on the second substrate 110-2.
  • a covering second alignment film 130-2 is provided.
  • the first substrate 110-1 and the second substrate 110-2 are composed of the first transparent electrode 120-1 and the second transparent electrode 120-2 on the first substrate 110-1 and the second substrate.
  • a third transparent electrode 120-3 and a fourth transparent electrode 120-4 on 110-2 are arranged to face each other.
  • the first substrate 110-1 and the second substrate 110-2 are adhered via the sealing material 140 provided in the periphery of the first substrate 110-1 and the second substrate 110-2.
  • the first substrate 110-1 (more specifically, the first alignment film 130-1), the second substrate 110-2 (more specifically, the second alignment film 130-2),
  • a liquid crystal is sealed in a space surrounded by the sealing material 140, and a liquid crystal layer 150 is provided between the first substrate 110-1 and the second substrate 110-2.
  • each of the first substrate 110-1 and the second substrate for example, a transparent rigid substrate such as a glass substrate, a quartz substrate, or a sapphire substrate is used.
  • a flexible substrate having translucency such as a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluorine resin substrate. can also be used.
  • Each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 is for forming an electric field in the liquid crystal layer 150. Acts as an electrode.
  • As each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 for example, indium tin oxide (ITO) Alternatively, a transparent conductive material such as indium-zinc oxide (IZO) is used.
  • the liquid crystal layer 150 can refract transmitted light or change the polarization state of transmitted light according to the alignment state of the liquid crystal molecules.
  • a nematic liquid crystal or the like is used as the liquid crystal of the liquid crystal layer 150 .
  • the liquid crystal described in this embodiment is of positive type, it is also possible to apply a negative type by changing the alignment direction of the liquid crystal molecules in a state where no voltage is applied to the transparent electrode 120 .
  • the liquid crystal preferably contains a chiral agent that imparts twist to the liquid crystal molecules.
  • Each of the first alignment film 130-1 and the second alignment film 130-2 orients the liquid crystal molecules in the liquid crystal layer 150 in a predetermined direction.
  • a polyimide resin or the like is used for each of the first alignment film 130-1 and the second alignment film 130-2.
  • each of the first alignment film 130-1 and the second alignment film 130-2 may be imparted with alignment properties by an alignment treatment such as a rubbing method or a photo-alignment method.
  • the rubbing method is a method of rubbing the surface of the alignment film in one direction.
  • the photo-alignment method is a method of irradiating an alignment film with linearly polarized ultraviolet rays.
  • An adhesive containing epoxy resin or acrylic resin is used as the sealing material 140 .
  • the adhesive may be of an ultraviolet curing type or a thermosetting type.
  • the first transparent electrode 120-1 and the Each of the two transparent electrodes 120-2 includes a plurality of comb tooth portions extending in the x-axis direction and a connection portion extending in the y-axis direction and connecting these comb tooth portions.
  • Each of the third and fourth transparent electrodes 120-4 includes a plurality of comb tooth portions extending in the y-axis direction and a connection portion extending in the x-axis direction and connecting these comb tooth portions.
  • the description of the transparent electrode 120 may be the description of the comb tooth portion (the description of the portion of the transparent electrode 120 excluding the connection portion).
  • the first transparent electrode 120-1 may be described as extending in the x-axis direction. .
  • the extending direction of each of the first transparent electrode 120-1 and the second transparent electrode is the x-axis direction
  • the extending direction of each of the third transparent electrode 120-3 and the fourth transparent electrode 120-4 is the x-axis direction.
  • the existing direction is the y-axis direction.
  • the first transparent electrodes 120-1 and the second transparent electrodes 120-2 have a comb shape and are alternately arranged in the y-axis direction.
  • the third transparent electrode 120-3 and the fourth transparent electrode 120-4 have a comb shape and are alternately arranged in the x-axis direction.
  • the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120- of each of the four liquid crystal cells 100 4 have the same or substantially the same extending direction. That is, the optical element 10 is not configured such that two of the four liquid crystal cells 100 must be rotated 90 degrees with respect to the other two liquid crystal cells 100, but the rotation of each liquid crystal cell 100 is independent of the rotation. Instead, it has a configuration in which four liquid crystal cells 100 are stacked as they are.
  • the extending direction of the first transparent electrode 120-1 and the second transparent electrode 120-2 is perpendicular to the extending direction of the third transparent electrode 120-3 and the fourth transparent electrode 120-4. , in this specification, even when they intersect with a deviation of about ⁇ 10 degrees from the orthogonal, they may be described as being orthogonal.
  • the first alignment film 130-1 is The second alignment film 130-2 has an alignment property that aligns the long axes of the liquid crystal molecules in the y-axis direction, and the second alignment film 130-2 has an alignment property that aligns the long axes of the liquid crystal molecules in the x-axis direction.
  • the first alignment film 130-1 is rubbed in the y-axis direction
  • the second alignment film 130-2 is rubbed. Rubbing processing is performed in the x-axis direction.
  • the first liquid crystal cell 100-1, the second liquid crystal cell 100-2, the third liquid crystal cell 100-3, and the fourth liquid crystal cell 100-4 have the same basic structure. .
  • the properties of light transmitted through the liquid crystal cell 100 will now be described with reference to FIGS. 3A and 3B.
  • FIG. 3A and 3B are schematic cross-sectional views illustrating the orientation direction of liquid crystal molecules in the liquid crystal layer 150 of the liquid crystal cell 100 of the optical element 10 according to one embodiment of the present invention and the properties of light transmitted through the liquid crystal cell 100. is. Specifically, FIG. 3A shows the liquid crystal cell 100 with no voltage applied to the transparent electrode 120 and FIG. 3B shows the liquid crystal cell 100 with a voltage applied to the transparent electrode 120 .
  • FIG. 3A shows the liquid crystal cell 100 with no voltage applied to the transparent electrode 120.
  • the liquid crystal molecules on the first alignment film 130-1 are oriented along the y-axis direction.
  • the alignment direction (initial alignment direction) of the liquid crystal molecules near the first substrate 110-1 is the y-axis direction.
  • the liquid crystal molecules on the second alignment film 130-2 are oriented along the x-axis direction.
  • the alignment direction (initial alignment direction) of the liquid crystal molecules near the second substrate 110-2 is the x-axis direction. Therefore, the liquid crystal molecules in the liquid crystal layer 150 are oriented so as to be twisted 90 degrees in the z-axis direction from the first substrate 110-1 to the second substrate 110-2.
  • the plane of polarization (direction of polarization axis or polarization component) of light transmitted through the liquid crystal layer 150 is rotated 90 degrees according to the alignment direction of the liquid crystal molecules. That is, the light passing through the liquid crystal layer 150 is optically rotated.
  • FIG. 3B shows the liquid crystal cell 100 with a voltage applied to the transparent electrode 120.
  • a high voltage (H) is applied to the first transparent electrode 120-1 and the third transparent electrode 120-3
  • a low voltage (H) is applied to the second transparent electrode 120-2 and the fourth transparent electrode 120-4.
  • L) is applied. That is, voltage is applied so that a potential difference is generated between two adjacent transparent electrodes 120 .
  • the electric field generated between two adjacent transparent electrodes 120 may be referred to as a lateral electric field.
  • Liquid crystal molecules in the vicinity of the first substrate 110-1 side are y It is oriented in a convex circular arc in the axial direction. Liquid crystal molecules in the vicinity of the second substrate 110-2 side are moved toward the second substrate 110-2 by the lateral electric field between the third transparent electrode 120-3 and the fourth transparent electrode 120-4. oriented in a convex arc shape in the x-axis direction.
  • the cell gap d which is the distance between the first substrate 110-1 and the second substrate 110-2, is sufficiently larger than the distance between adjacent electrodes on the substrate (for example, 10 ⁇ m ⁇ d ⁇ 30 ⁇ m), the liquid crystal molecules positioned near the center between the first substrate 110-1 and the second substrate 110-2 do not change their alignment state from the initial alignment very much due to any lateral electric field.
  • the first substrate 110-1 and the second substrate 110-2 have a sufficient distance between the substrates as described above, the first substrate 110-1 can The lateral electric field between the transparent electrode 120-1 and the second transparent electrode 120-2 does not affect the orientation of the liquid crystal molecules on the second substrate 110-2 side, or is negligibly small. .
  • the lateral electric field between the third transparent electrode 120-3 and the fourth transparent electrode 120-4 on the second substrate 110-2 is applied to the orientation of the liquid crystal molecules on the first substrate 110-1 side. have no effect or are so small as to be negligible.
  • Light emitted from a light source has a polarized component in the x-axis direction (P-polarized component) and a polarized component in the y-axis direction (S-polarized component).
  • P-polarized component polarized component in the x-axis direction
  • S-polarized component polarized component in the y-axis direction
  • the light emitted from the light source includes a first polarized light 1000-1 having a P-polarized component and a second polarized light 1000-2 having an S-polarized component (see (1) in FIG. 3B).
  • the P-polarized component of the first polarized light 1000-1 incident on the liquid crystal cell 100 is different from the alignment direction of the liquid crystal molecules on the first substrate 110-1 side, so the first polarized light 1000-1 is diffused. not (see (2) in FIG. 3B).
  • the first polarized light 1000-1 is directed from the first substrate 110-1 to the second substrate 110-2, the first polarized light 1000-1 undergoes optical rotation in the process of passing through the liquid crystal layer 150, and the polarized light component becomes It changes from the P-polarized component to the S-polarized component.
  • the first polarized light 1000-1 having the S-polarized component is different from the alignment direction of the liquid crystal molecules on the second substrate 110-2 side, the first polarized light 1000-1 is not diffused (see (3) in FIG. 3B). ). Also, the first polarized light 1000-1 emitted from the liquid crystal cell 100 has an S-polarized component (see (4) in FIG. 3B).
  • the S-polarized component of the second polarized light 1000-2 incident on the liquid crystal cell 100 has the same alignment direction as the liquid crystal molecules on the first substrate 110-1 side, it follows the refractive index distribution of the liquid crystal molecules. It is diffused in the y-axis direction (see (2) in FIG. 3B).
  • the second polarized light 1000-2 is directed from the first substrate 110-1 to the second substrate 110-2, the second polarized light 1000-2 undergoes optical rotation in the process of passing through the liquid crystal layer 150, and the polarized component becomes It changes from the S-polarized component to the P-polarized component.
  • the P-polarized component of the second polarized light 1000-2 is the same as the alignment direction of the liquid crystal molecules on the second substrate 110-2 side, it is diffused in the x-axis direction according to the refractive index distribution of the liquid crystal molecules ( See (3) in FIG. 3B). Also, the second polarized light 1000-2 emitted from the liquid crystal cell 100 has a P-polarized component (see (4) in FIG. 3B).
  • the liquid crystal cell 100 in the liquid crystal cell 100, light can be diffused in a predetermined direction by utilizing the direction of the horizontal electric field formed by the transparent electrodes 120 and the optical rotation and refractive index distribution of the liquid crystal molecules.
  • the optical element 10 By using a plurality of liquid crystal cells 100 in the optical element 10, it is possible to control diffusion of light in each liquid crystal cell 100 and form various light distribution shapes. Note that the light distribution shape can also be controlled by the magnitude of the voltage applied to the transparent electrode 120 .
  • the conventional optical element described here has a structure in which the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100-4 of the optical element 10 are rotated by 90 degrees.
  • FIG. 4 is a graph showing the transmittance of the optical element 10 according to one embodiment of the present invention and a conventional optical element. Specifically, the graph of FIG. 4 shows transmittance versus polar angle.
  • the transmittance of the optical element 10 and the conventional optical element was measured using an LCD evaluation device (LCD-5200 manufactured by Otsuka Electronics Co., Ltd.).
  • the direction of the 0 degree polar angle is perpendicular to the second substrate 110-2 of the fourth liquid crystal cell 100-4.
  • the transmittance at a polar angle of 0 degree when no voltage was applied to the transparent electrode 120 was defined as 100(%), and the transmittance was measured when a voltage was applied to the transparent electrode 120 .
  • the absolute value of the polar angle at which the transmittance is half the transmittance at a polar angle of 0 degrees is defined as the half width at half maximum.
  • the half width at half maximum of the optical element 10 was 38 degrees.
  • the half width at half maximum of the conventional optical element was 29 degrees. It has been found that the optical element 10 has a larger half width at half maximum than the conventional optical element as a result of uniform light diffusion in the liquid crystal cell 100 .
  • the optical element 10 can diffuse light uniformly. Therefore, in the optical element 10, uniform light distribution can be obtained.
  • FIG. 5 is a schematic diagram illustrating the configuration of the transparent electrode 120A of the liquid crystal cell 100A of the optical element 10A according to one embodiment of the present invention.
  • the optical element 10A includes four liquid crystal cells 100A. That is, in the optical element 10A, a first liquid crystal cell 100A-1, a second liquid crystal cell 100A-2, a third liquid crystal cell 100A-3, and a fourth liquid crystal cell 100A-4 are sequentially stacked. Each of the first liquid crystal cell 100A-1, the second liquid crystal cell 100A-2, the third liquid crystal cell 100A-3, and the fourth liquid crystal cell 100A-4 extends in the x-axis direction.
  • the arrows along each substrate indicate the alignment direction (initial alignment direction) of the alignment film on the substrate (FIGS. 6, 7, 9, 10, 11, 13 and The same applies to FIG. 14).
  • a first electrode pattern and a second electrode pattern for driving liquid crystal are formed on the first substrate 110A-1 and the second substrate 110A-2, respectively.
  • the first electrode pattern is a pattern in which the first transparent electrodes 120A-1 and the second transparent electrodes 120A-2 are alternately arranged in the y-axis direction.
  • the second electrode pattern is a pattern in which the third transparent electrodes 120A-3 and the fourth transparent electrodes 120A-4 are alternately arranged in the x-axis direction.
  • the inter-electrode pitch between the first transparent electrode 120A-1 and the second transparent electrode 120A-2 (the center line of the first transparent electrode 120A-1 and the second distance from the center line of the transparent electrode 120A-2 in the y-axis direction) (inter-electrode pitches p1 and p2 in FIG. 5).
  • the second electrode pattern of the liquid crystal cell 100A has an inter-electrode pitch between the third transparent electrode 120A-3 and the fourth transparent electrode 120A-4 (the center line of the third transparent electrode 120A-3 and the third transparent electrode 120A-4).
  • Each electrode pattern may have a configuration including two or more inter-electrode pitches. That is, each of the first electrode pattern and the second electrode pattern can adopt a configuration in which the pitches between two adjacent electrodes are all different. In this way, in each electrode pattern, a configuration having at least two inter-electrode pitches is referred to as unequal pitch.
  • a configuration in which the first electrode pattern and the second electrode pattern are the same can also be adopted.
  • the four liquid crystal cells 100A may each have the same first electrode pattern and second electrode pattern, and the first electrode pattern and the second electrode pattern of one liquid crystal cell 100A may be , may have the same configuration as the second electrode pattern and the first electrode pattern of another liquid crystal cell 100A.
  • One of the first electrode pattern and the second electrode pattern may be the same, and the other of the first electrode pattern and the second electrode pattern may be different.
  • the four liquid crystal cells 100A may have different first electrode patterns and second electrode patterns.
  • the four liquid crystal cells 100A are configured to have different first electrode patterns and second electrode patterns, the diffusion state in each liquid crystal cell 100A changes, so that the light intensity of a specific wavelength increases. can be further suppressed. Therefore, the four liquid crystal cells 100A preferably have different first electrode patterns and second electrode patterns, that is, the electrode patterns of the four liquid crystal cells 100A are all configured with different uneven pitches. .
  • the optical element 10A As described above, in the optical element 10A according to one embodiment of the present invention, it is possible to suppress an increase in the light intensity of a specific wavelength. Therefore, in the optical element 10A, uniform light distribution with suppressed coloring can be obtained.
  • FIG. 6 is a schematic diagram illustrating the configuration of the transparent electrode 120B of the liquid crystal cell 100B of the optical element 10B according to one embodiment of the present invention.
  • the optical element 10B includes four liquid crystal cells 100B. That is, in the optical element 10B, a first liquid crystal cell 100B-1, a second liquid crystal cell 100B-2, a third liquid crystal cell 100B-3, and a fourth liquid crystal cell 100B-4 are sequentially stacked. Each of the first liquid crystal cell 100B-1, the second liquid crystal cell 100B-2, the third liquid crystal cell 100B-3, and the fourth liquid crystal cell 100B-4 extends in the x-axis direction.
  • a first substrate 110B-1 provided with a transparent electrode 120B-1 and a second transparent electrode 120B-2, and a third transparent electrode 120B-3 and a fourth transparent electrode 120B- extending in the y-axis direction. 4 is provided on the second substrate 110B-2.
  • a first electrode pattern and a second electrode pattern for driving liquid crystal are formed on the first substrate 110B-1 and the second substrate 110B-2, respectively.
  • the first electrode pattern is a pattern in which the first transparent electrodes 120B-1 and the second transparent electrodes 120B-2 are alternately arranged in the y-axis direction.
  • the second electrode pattern is a pattern in which the third transparent electrodes 120B-3 and the fourth transparent electrodes 120B-4 are alternately arranged in the y-axis direction.
  • the width w1 of the comb tooth portion of the first transparent electrode 120B-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 120B-2.
  • the width w3 of the comb tooth portion of the third transparent electrode 120B-3 is different from the width w4 of the comb tooth portion of the fourth transparent electrode 120B-4.
  • the width w1 of the comb teeth of the first transparent electrode 120B-1 is the same as the width w3 of the comb teeth of the third transparent electrode 120B-3 and the width w4 of the comb teeth of the fourth transparent electrode. may be different.
  • the width w3 of the comb tooth portion of the third transparent electrode 120B-3 is equal to the width w1 of the comb tooth portion of the first transparent electrode 120B-1 and the width w2 of the comb tooth portion of the second transparent electrode 120B-2. may be the same as or different from. Note that the widths w1 of the plurality of comb tooth portions of the first transparent electrode 120B-1 may be different from each other, or may be partially the same.
  • the width w2 of the plurality of comb teeth of the second transparent electrode 120B-2, the width w3 of the plurality of comb teeth of the third transparent electrode 120B-3, and the plurality of comb teeth of the fourth transparent electrode 120B-4 The same applies to the width w4 of the portion.
  • the distance between two adjacent first transparent electrodes 120B-1 and second transparent electrodes 120B-2 may be all the same, some may be the same, or all may be different. may be The width w1 of the comb tooth portion of the first transparent electrode 120B-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 120B-2, and/or By varying the spacing between the comb teeth of the transparent electrode 120-2, unequal pitches are realized in the first electrode pattern. The same applies to the second electrode pattern.
  • the four liquid crystal cells 100B are configured to have first electrode patterns and second electrode patterns that are different from each other.
  • the width w1 of the first transparent electrode of the first liquid crystal cell 100B-1 is equal to that of each of the second liquid crystal cell 100B-2, the third liquid crystal cell 100B-3, and the fourth liquid crystal cell 100B-4. is different from the width w1 of .
  • the diffusion state in each liquid crystal cell 100B changes, it is possible to suppress the increase in the light intensity of a specific wavelength.
  • the optical element 10B As described above, in the optical element 10B according to one embodiment of the present invention, it is possible to suppress an increase in the light intensity of a specific wavelength. Therefore, in the optical element 10B, uniform light distribution with suppressed coloring can be obtained.
  • FIG. 7 is a schematic diagram illustrating the configuration of the transparent electrode 220 of the liquid crystal cell 200 of the optical element 20 according to one embodiment of the present invention.
  • Optical element 20 includes four liquid crystal cells 200 . That is, in the optical element 20, a first liquid crystal cell 200-1, a second liquid crystal cell 200-2, a third liquid crystal cell 200-3, and a fourth liquid crystal cell 200-4 are sequentially stacked.
  • Each of the first liquid crystal cell 200-1, the second liquid crystal cell 200-2, the third liquid crystal cell 200-3, and the fourth liquid crystal cell 200-4 includes a first transparent electrode 220-1 and a a first substrate 210-1 provided with two transparent electrodes 220-2, and a second substrate 210-2 provided with a third transparent electrode 220-3 and a fourth transparent electrode 220-4. .
  • a first electrode pattern and a second electrode pattern for driving liquid crystal are formed on the first substrate 210-1 and the second substrate 210-2, respectively.
  • the first electrode pattern and the second electrode pattern of the liquid crystal cell 200 will be described in detail with reference to FIG.
  • FIG. 8 is a schematic diagram illustrating the configuration of the first electrode pattern and the second electrode pattern of the liquid crystal cell 200 of the optical element 20 according to one embodiment of the present invention.
  • first transparent electrodes 220-1 and second transparent electrodes 220-2 extending in a direction having a first angle ⁇ 1 with respect to the x-axis direction are alternately arranged in the y-axis direction. pattern.
  • third transparent electrodes 220-3 and fourth transparent electrodes 220-4 extending in a direction having a second angle ⁇ 2 with respect to the y-axis direction are alternately arranged in the x-axis direction. pattern.
  • the first angle ⁇ 1 may be the same as the second angle ⁇ 2, in which case the transparent electrode 220 on the first substrate 110-1 side and the transparent electrode 220 on the second substrate 110-2 side are They are perpendicular to each other in plan view.
  • the first angle ⁇ 1 and the second angle ⁇ 2 may be different from each other.
  • Each of the first angle ⁇ 1 and the second angle ⁇ 2 is ⁇ 5 degrees or more and +5 degrees or less, preferably ⁇ 3 degrees or more and +3 degrees or less.
  • the optical element 20 is not configured such that two of the four liquid crystal cells 200 must be rotated 90 degrees with respect to the other two liquid crystal cells 200, but is independent of the rotation of each liquid crystal cell 200. It has a structure in which four liquid crystal cells 200 are laminated.
  • An arrow A shown in FIG. 8 indicates the initial orientation direction of the first alignment film 130-1 with respect to the first electrode pattern of the first substrate 210-1.
  • the initial orientation direction is parallel to the y-axis.
  • the orientation of the initial orientation can be arbitrarily set within a range from a direction parallel to the y-axis to a direction perpendicular to the first electrode pattern (arrow B indicated by a two-dot chain line in the figure). That is, the orientation of the initial orientation in the first electrode pattern can be arbitrarily set within a range from the orientation parallel to the y-axis to ⁇ 1 with respect to the y-axis.
  • the arrow C shown in FIG. 8 indicates the initial orientation direction of the second alignment film 130-2 with respect to the second electrode pattern of the second substrate 210-2.
  • the initial orientation direction is parallel to the x-axis.
  • the orientation of the initial orientation can be arbitrarily set within a range from a direction parallel to the x-axis to a direction perpendicular to the second electrode pattern (arrow D indicated by a two-dot chain line in the figure). That is, the orientation of the initial orientation in the second electrode pattern can be arbitrarily set within the range from the orientation parallel to the x-axis to ⁇ 2 with respect to the y-axis.
  • the direction of the initial orientation shown in FIG. 7 is represented by the arrow A in the first electrode pattern and the arrow C in the second electrode pattern. Needless to say, it can be set within a range orthogonal to the corresponding electrode pattern as described above.
  • the four liquid crystal cells 200 are configured to have first electrode patterns and second electrode patterns that are different from each other.
  • the first liquid crystal cell 200-1, the second liquid crystal cell 200-2, the third liquid crystal cell 200-3, and the fourth liquid crystal cell 200-4 are arranged at different first angles ⁇ 1 or has a second angle ⁇ 2.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are the same in each liquid crystal cell 200 (for example, when the first angle ⁇ 1 and the second angle ⁇ 2 of the first liquid crystal cell 200-1 are the same )
  • the first angle ⁇ 1 of the first liquid crystal cell 200-1, the second liquid crystal cell 200-2, the third liquid crystal cell 200-3, and the fourth liquid crystal cell 200-4 is ⁇ 1. degrees, +1 degrees, +3 degrees, and -3 degrees.
  • the diffusion state in each liquid crystal cell 200 changes, it is possible to suppress the increase in the light intensity of a specific wavelength.
  • the first substrate 210-1 of the first liquid crystal cell 200-1 and the fourth liquid crystal cell 200-4 The alignment direction of the first substrate 210-1 of the second liquid crystal cell 200-2 and the alignment direction of the third liquid crystal cell 200-3 are the same (first alignment direction).
  • the orientation direction of one substrate 210-1 is the same (second orientation direction) and faces in the opposite direction to the first orientation direction.
  • the second substrate 210-2 of the first liquid crystal cell 200-1 and the second substrate 210-2 of the fourth liquid crystal cell 200-4 have the same alignment direction (third alignment direction), It crosses the first alignment direction.
  • the second substrate 210-2 of the second liquid crystal cell 200-2 and the second substrate 210-2 of the third liquid crystal cell 200-3 have the same alignment direction (fourth alignment direction), and It faces in the direction opposite to the third orientation direction.
  • the optical element 20 As described above, in the optical element 20 according to one embodiment of the present invention, it is possible to suppress an increase in the light intensity of a specific wavelength. Therefore, in the optical element 20, uniform light distribution with suppressed coloring can be obtained.
  • An optical element 20A which is a modified example of the optical element 20 according to one embodiment of the present invention, will be described with reference to FIG. Below, when the configuration of the optical element 20A is the same as the configuration of the optical element 20, the description of the configuration of the optical element 20A may be omitted.
  • FIG. 9 is a schematic diagram illustrating the configuration of the transparent electrode 220A of the liquid crystal cell 200A of the optical element 20A according to one embodiment of the present invention.
  • the optical element 20A includes four liquid crystal cells 200A. That is, in the optical element 20A, a first liquid crystal cell 200A-1, a second liquid crystal cell 200A-2, a third liquid crystal cell 200A-3, and a fourth liquid crystal cell 200A-4 are sequentially stacked.
  • Each of the first liquid crystal cell 200A-1, the second liquid crystal cell 200A-2, the third liquid crystal cell 200A-3, and the fourth liquid crystal cell 200A-4 includes a first transparent electrode 220A-1 and a a first substrate 210A-1 provided with two transparent electrodes 220A-2, and a second substrate 210A-2 provided with a third transparent electrode 220A-3 and a fourth transparent electrode 220A-4. .
  • a first electrode pattern and a second electrode pattern for driving the liquid crystal are formed on the first substrate 210A-1 and the second substrate 210A-2, respectively.
  • first transparent electrodes 220A-1 and second transparent electrodes 220A-2 extending in a direction having a first angle ⁇ 1 with respect to the x-axis direction are alternately arranged in the y-axis direction.
  • the pattern includes at least two inter-electrode pitches between the first transparent electrode 220A-1 and the second transparent electrode 220A-2 (see inter-electrode pitches p1 and p2 in FIG. 9).
  • third transparent electrodes 220A-3 and fourth transparent electrodes 220A-4 extending in a direction having a second angle ⁇ 2 with respect to the y-axis direction are alternately arranged in the x-axis direction. and includes at least two inter-electrode pitches between the third transparent electrode 220A-3 and the fourth transparent electrode 220A-4 (see inter-electrode pitches p3 and p4 in FIG. 9).
  • the four liquid crystal cells 200A are configured to have first electrode patterns and second electrode patterns that are different from each other. Specifically, the first liquid crystal cell 200A-1, the second liquid crystal cell 200A-2, the third liquid crystal cell 200A-3, and the fourth liquid crystal cell 200A-4 are arranged at different first angles ⁇ 1 or has a second angle ⁇ 2.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are the same in each liquid crystal cell 200A (for example, when the first angle ⁇ 1 and the second angle ⁇ 2 of the first liquid crystal cell 200A-1 are In the same case), the first angle ⁇ 1 of the first liquid crystal cell 200A-1, the second liquid crystal cell 200A-2, the third liquid crystal cell 200A-3, and the fourth liquid crystal cell 200A-4 is, respectively, -1 degree, +1 degree, +3 degree, and -3 degree.
  • the diffusion state in each liquid crystal cell 200A changes, it is possible to further suppress the increase in the light intensity of a specific wavelength.
  • the width w1 of the plurality of comb tooth portions of the first transparent electrode 220A-1 may be different from each other, or may be partially the same.
  • the width w2 of the plurality of comb teeth of the second transparent electrode 220A-2, the width w3 of the plurality of comb teeth of the third transparent electrode 220A-3, and the plurality of comb teeth of the fourth transparent electrode 220A-4 The same applies to the width w4 of the portion.
  • the distance between two adjacent first transparent electrodes 220A-1 and second transparent electrodes 220A-2 may be all the same, some may be the same, or all may be different.
  • the width w1 of the comb tooth portion of the first transparent electrode 220A-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 220A-2, and/or By varying the spacing between the comb teeth of the transparent electrode 220A-2, unequal pitches are realized in the first electrode pattern. The same applies to the second electrode pattern.
  • the optical element 20A As described above, in the optical element 20A according to one embodiment of the present invention, it is possible to suppress an increase in the light intensity of a specific wavelength. Therefore, in the optical element 20A, uniform light distribution with suppressed coloring can be obtained.
  • An optical element 20B which is another modification of the optical element 20 according to one embodiment of the present invention, will be described with reference to FIG. Below, when the configuration of the optical element 20B is the same as that of the optical element 20 or the configuration of the optical element 20A, the description of the configuration of the optical element 20B may be omitted.
  • FIG. 10 is a schematic diagram illustrating the configuration of the transparent electrode 220B of the liquid crystal cell 200B of the optical element 20B according to one embodiment of the present invention.
  • the optical element 20B includes four liquid crystal cells 200B. That is, in the optical element 20B, a first liquid crystal cell 200B-1, a second liquid crystal cell 200B-2, a third liquid crystal cell 200B-3, and a fourth liquid crystal cell 200B-4 are sequentially stacked.
  • Each of the first liquid crystal cell 200B-1, the second liquid crystal cell 200B-2, the third liquid crystal cell 200B-3, and the fourth liquid crystal cell 200B-4 includes the first transparent electrode 220B-1 and the third liquid crystal cell 200B-4.
  • a first substrate 210B-1 provided with two transparent electrodes 220B-2
  • a second substrate 210B-2 provided with a third transparent electrode 220B-3 and a fourth transparent electrode 220B-4. .
  • a first electrode pattern and a second electrode pattern for driving the liquid crystal are formed on the first substrate 210B-1 and the second substrate 210B-2, respectively.
  • first transparent electrodes 220B-1 and second transparent electrodes 220B-2 extending in a direction having a first angle ⁇ 1 with respect to the x-axis direction are alternately arranged in the y-axis direction. pattern.
  • third transparent electrodes 220B-3 and fourth transparent electrodes 220B-4 extending in a direction having a second angle ⁇ 2 with respect to the y-axis direction are alternately arranged in the x-axis direction. pattern.
  • the first electrode pattern of each of the first liquid crystal cell 200B-1 and the third liquid crystal cell 200B-3 has an inter-electrode pitch between the first transparent electrode 220B-1 and the second transparent electrode 220B-2. are included (see inter-electrode pitches p1 and p2 in FIG. 10). Also, the second electrode pattern of each of the first liquid crystal cell 200B-1 and the third liquid crystal cell 200B-3 is the electrode between the third transparent electrode 220B-3 and the fourth transparent electrode 220B-4. At least two inter-electrode pitches are included (see inter-electrode pitches p3 and p4 in FIG. 10).
  • the first electrode pattern of each of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B-4 is the electrode between the first transparent electrode 220B-1 and the second transparent electrode 220B-2.
  • One inter-electrode pitch is included (see inter-electrode pitch p5 in FIG. 10).
  • the second electrode pattern of each of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B-4 is the electrode between the third transparent electrode 220B-3 and the fourth transparent electrode 220B-4.
  • One inter-electrode pitch is included (see inter-electrode pitch p6 in FIG. 10). That is, the electrode patterns of each of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B-4 have the same pitch.
  • the inter-electrode pitch p5 of the first electrode pattern and the inter-electrode pitch p6 of the second electrode pattern are the same. may be different. Further, it is also possible to employ a configuration in which the inter-electrode pitch p5 of the first electrode pattern and the inter-electrode pitch p6 of the second electrode pattern are the same.
  • the first liquid crystal cell 200B-1, the second liquid crystal cell 200B-2, the third liquid crystal cell 200B-3, and the fourth liquid crystal cell 200B-4 are arranged at different first angles ⁇ 1 or second angles. ⁇ 2.
  • first angles ⁇ 1 or second angles. ⁇ 2 are arranged at different first angles ⁇ 1 or second angles. ⁇ 2.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are the same in each liquid crystal cell 200B (for example, when the first angle ⁇ 1 and the second angle ⁇ 2 of the first liquid crystal cell 200-1 are the same )
  • the first angle ⁇ 1 of the first liquid crystal cell 200B-1, the second liquid crystal cell 200B-2, the third liquid crystal cell 200B-3, and the fourth liquid crystal cell 200B-4 is ⁇ 1. degrees, +1 degrees, +3 degrees, and -3 degrees.
  • the electrode pitches of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B-4 are the same, the first angles ⁇ 1 are different.
  • a configuration having a pattern and a second electrode pattern since the diffusion state in each liquid crystal cell 200B changes, it is possible to suppress the increase in the light intensity of a specific wavelength.
  • the width w1 of the plurality of comb tooth portions of the first transparent electrode 220B-1 in each of the first liquid crystal cell 200B-1 and the third liquid crystal cell 200B-3 may be different. may be the same.
  • the width w2 of the plurality of comb tooth portions of the second transparent electrode 220B-2 and the plurality of combs of the third transparent electrode 220B-3 The same applies to the width w3 of the teeth and the width w4 of the plurality of comb teeth of the fourth transparent electrode 220B-4.
  • the distance between the two adjacent first transparent electrodes 220B-1 and second transparent electrodes 220B-2 is They may be the same, some may be the same, or they may all be different.
  • the width w1 of the comb tooth portion of the first transparent electrode 220B-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 220B-2, and/or By varying the spacing between the comb teeth of the transparent electrode 220B-2, unequal pitches are realized in the first electrode pattern. The same applies to the second electrode pattern.
  • the electrode patterns of the first liquid crystal cell 200B-1 and the third liquid crystal cell 200B-3 are arranged at irregular pitches, and the electrode patterns of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B-2
  • Each electrode pattern of 200B-4 has an equal pitch.
  • the electrode patterns of the first liquid crystal cell 200B-1 and the third liquid crystal cell 200B-3 are at equal pitches, and the electrode patterns of the second liquid crystal cell 200B-2 and the fourth liquid crystal cell 200B have the same pitch. It is also possible to employ a configuration in which the electrode patterns of -4 are arranged at unequal pitches.
  • the electrode patterns of the first liquid crystal cell 200B-1 and the fourth liquid crystal cell 200B-4 are arranged at uneven pitches, and the electrode patterns of the second liquid crystal cell 200B-2 and the third liquid crystal cell 200B-4 A configuration in which each electrode pattern of 200B-3 is evenly pitched can also be adopted. Furthermore, it is possible to employ a configuration in which one or three of the four liquid crystal cells 200B have uneven pitches and the other three or one have uniform pitches, or vice versa.
  • the optical element 20B As described above, in the optical element 20B according to one embodiment of the present invention, it is possible to suppress the enhancement of the specific light intensity. Therefore, in the optical element 20B, uniform light distribution with suppressed coloring can be obtained.
  • FIG. 11 when the configuration of the optical element 30 is the same as the configuration of the optical element 10 or the optical element 20, the description of the configuration of the optical element 30 may be omitted.
  • FIG. 11 is a schematic diagram illustrating the configuration of the transparent electrode 320 of the liquid crystal cell 300 of the optical element 30 according to one embodiment of the present invention.
  • Optical element 30 includes four liquid crystal cells 300 . That is, in the optical element 30, a first liquid crystal cell 300-1, a second liquid crystal cell 300-2, a third liquid crystal cell 300-3, and a fourth liquid crystal cell 300-4 are sequentially stacked.
  • Each of the first liquid crystal cell 300-1, the second liquid crystal cell 300-2, the third liquid crystal cell 300-3, and the fourth liquid crystal cell 300-4 includes a first transparent electrode 320-1 and a a first substrate 310-1 provided with two transparent electrodes 320-2, and a second substrate 310-2 provided with a third transparent electrode 320-3 and a fourth transparent electrode 320-4. .
  • a first electrode pattern and a second electrode pattern for driving liquid crystal are formed on the first substrate 310-1 and the second substrate 310-2, respectively.
  • the first electrode pattern and the second electrode pattern of the liquid crystal cell 300 are described in detail.
  • FIG. 12 is a schematic diagram illustrating the configuration of the first electrode pattern and the second electrode pattern of the liquid crystal cell 300 of the optical element 30 according to one embodiment of the present invention.
  • the first electrode pattern is a pattern in which first transparent electrodes 320-1 and second transparent electrodes 320-2 having a doglegged shape are alternately arranged in the y-axis direction.
  • the first transparent electrode 320-1 extends in a direction having a first angle ⁇ 1 with respect to the x-axis direction and is bent in a direction having a second angle ⁇ 2 with respect to the x-axis direction. do.
  • the second transparent electrode 320-2 extends in a direction having a second angle ⁇ 2 with respect to the x-axis direction and bends in a direction having a first angle ⁇ 1 with respect to the x-axis direction.
  • the second electrode pattern is a pattern in which the third transparent electrode 320-3 and the fourth transparent electrode 320-4 having a doglegged shape are alternately arranged in the x-axis direction.
  • the third transparent electrode 320-3 extends in a direction having a third angle ⁇ 3 with respect to the y-axis direction and is bent in a direction having a fourth angle ⁇ 4 with respect to the y-axis direction. do.
  • the fourth transparent electrode 320-4 extends in a direction having a fourth angle ⁇ 4 with respect to the y-axis direction and bends in a direction having a third angle ⁇ 3 with respect to the y-axis direction.
  • the first angle ⁇ 1 may be the same as or different from the third angle ⁇ 3.
  • the second angle ⁇ 2 may be the same as or different from the fourth angle ⁇ 4. Since the transparent electrode 320 has a dogleg shape, the first angle ⁇ 1 and the second angle ⁇ 2 have opposite signs, and the third angle ⁇ 3 and the fourth angle ⁇ 4 have positive and negative signs. has the opposite sign.
  • Each of the first angle ⁇ 1, the second angle ⁇ 2, the third angle ⁇ 3, and the fourth angle ⁇ 4 is ⁇ 5 degrees or more and +5 degrees or less, preferably ⁇ 3 degrees or more and +3 degrees or less.
  • the first angle ⁇ 1, the second angle ⁇ 2, the third angle ⁇ 3, and the fourth angle ⁇ 4 are different.
  • the extending directions of the second transparent electrode 320-2, the third transparent electrode 320-3, and the fourth transparent electrode 320-4 are basically the same. That is, the optical element 30 is not configured such that two of the four liquid crystal cells 300 must be rotated 90 degrees with respect to the other two liquid crystal cells 300, but is independent of the rotation of each liquid crystal cell 300. It has a structure in which four liquid crystal cells 300 are laminated.
  • Arrow E shown in FIG. 12 indicates the initial orientation direction of the orientation film with respect to the first electrode pattern of the first substrate 310-1. As indicated by arrow E, the initial orientation direction is parallel to the y-axis.
  • the arrow F shown in FIG. 12 indicates the initial orientation direction of the alignment film with respect to the second electrode pattern of the second substrate 310-2. As indicated by arrow F, the initial orientation direction is parallel to the x-axis.
  • the four liquid crystal cells 300 are configured to have first electrode patterns and second electrode patterns that are different from each other. Specifically, the first liquid crystal cell 300-1, the second liquid crystal cell 300-2, the third liquid crystal cell 300-3, and the fourth liquid crystal cell 300-4 are arranged at a first angle ⁇ 1 and At least one of the second angles ⁇ 2 is different.
  • the first angle ⁇ 1 and the second angle ⁇ 2 in each liquid crystal cell 300 are the same as the third angle ⁇ 3 and the fourth angle ⁇ 4, respectively (for example, in the first liquid crystal cell 300-1
  • the first liquid crystal cell 300-1, the second liquid crystal cell 300-2, the third (first angle ⁇ 1, second angle ⁇ 2) of the first liquid crystal cell 300-3 and the fourth liquid crystal cell 300-4 are (-1 degree, +3 degrees), (+1 degree, -3 degrees), respectively. ), (+3 degrees, -1 degrees), and (-3 degrees, +1 degrees).
  • the diffusion state in each liquid crystal cell 300 changes, it is possible to suppress the increase in the light intensity of a specific wavelength.
  • the transparent electrodes 320 have a doglegged shape, it is possible to prevent the transparent electrodes 320 from overlapping with periodicity.
  • the transparent electrodes 320 are prevented from overlapping with periodicity, and the intensity of light of a specific wavelength is suppressed from being increased. can do. Therefore, in the optical element 30, uniform light distribution with suppressed moire and coloring can be obtained.
  • An optical element 30A which is a modified example of the optical element 30 according to one embodiment of the present invention, will be described with reference to FIG. Below, when the configuration of the optical element 30A is the same as the configuration of the optical element 30, the description of the configuration of the optical element 30A may be omitted.
  • FIG. 13 is a schematic diagram illustrating the configuration of the transparent electrode 320A of the liquid crystal cell 300A of the optical element 30A according to one embodiment of the present invention.
  • the optical element 30A includes four liquid crystal cells 300A. That is, in the optical element 30A, a first liquid crystal cell 300A-1, a second liquid crystal cell 300A-2, a third liquid crystal cell 300A-3, and a fourth liquid crystal cell 300A-4 are sequentially stacked.
  • Each of the first liquid crystal cell 300A-1, the second liquid crystal cell 300A-2, the third liquid crystal cell 300A-3, and the fourth liquid crystal cell 300A-4 includes a first transparent electrode 320A-1 and a a first substrate 310A-1 provided with two transparent electrodes 320A-2, and a second substrate 310A-2 provided with a third transparent electrode 320A-3 and a fourth transparent electrode 320A-4. .
  • a first electrode pattern and a second electrode pattern for driving the liquid crystal are formed on the first substrate 310A-1 and the second substrate 310A-2, respectively.
  • the first electrode pattern is a pattern in which first transparent electrodes 320A-1 and second transparent electrodes 320A-2 having a doglegged shape are alternately arranged in the y-axis direction.
  • -1 and the second transparent electrode 320A-2 include at least two inter-electrode pitches (see inter-electrode pitches p1 and p2 in FIG. 13).
  • the second electrode pattern is a pattern in which the third transparent electrode 320A-3 and the fourth transparent electrode 320A-4 having a doglegged shape are alternately arranged in the x-axis direction. It includes at least two inter-electrode pitches between the electrode 320A-3 and the fourth transparent electrode 320A-4 (see inter-electrode pitches p3 and p4 in FIG. 13).
  • the four liquid crystal cells 300A are configured to have first electrode patterns and second electrode patterns that are different from each other. Specifically, the first liquid crystal cell 300A-1, the second liquid crystal cell 300A-2, the third liquid crystal cell 300A-3, and the fourth liquid crystal cell 300A-4 are arranged at first angles ⁇ 1 and At least one of the second angles ⁇ 2 is different.
  • the first angle ⁇ 1 and the second angle ⁇ 2 in each liquid crystal cell 300A are the same as the third angle ⁇ 3 and the fourth angle ⁇ 4, respectively (for example, in the first liquid crystal cell 300A-1
  • the first liquid crystal cell 300A-1, the second liquid crystal cell 300A-2, the third (first angle ⁇ 1, second angle ⁇ 2) of the first liquid crystal cell 300A-3 and the fourth liquid crystal cell 300A-4 are ( ⁇ 1 degree, +3 degrees), (+1 degree, ⁇ 3 degrees), respectively. ), (+3 degrees, -1 degrees), and (-3 degrees, +1 degrees).
  • each liquid crystal cell 300A since the diffusion state in each liquid crystal cell 300A changes, it is possible to prevent the light intensity of a specific wavelength from being increased. Moreover, since the transparent electrodes 320A have a doglegged shape, it is possible to prevent the transparent electrodes 320A from overlapping with periodicity.
  • the width w1 of the plurality of comb tooth portions of the first transparent electrode 320A-1 may be different from each other, or may be partially the same.
  • the width w2 of the plurality of comb teeth of the second transparent electrode 320A-2, the width w3 of the plurality of comb teeth of the third transparent electrode 320A-3, and the plurality of comb teeth of the fourth transparent electrode 320A-4 The same applies to the width w4 of the portion.
  • the distance between two adjacent first transparent electrodes 320A-1 and second transparent electrodes 320A-2 may be all the same, some may be the same, or all may be different.
  • the width w1 of the comb tooth portion of the first transparent electrode 320A-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 320A-2, and/or By varying the spacing between the comb teeth of the transparent electrode 320A-2, the unequal pitch is realized in the first electrode pattern. The same applies to the second electrode pattern.
  • the transparent electrodes 320A are prevented from overlapping with periodicity, and the intensity of light of a specific wavelength is suppressed from being increased. can do. Therefore, in the optical element 30A, uniform light distribution with suppressed moire and coloring can be obtained.
  • FIG. 14 is a schematic diagram illustrating the configuration of the transparent electrode 320B of the liquid crystal cell 300B of the optical element 30B according to one embodiment of the present invention.
  • the optical element 30B includes four liquid crystal cells 300B. That is, in the optical element 30B, a first liquid crystal cell 300B-1, a second liquid crystal cell 300B-2, a third liquid crystal cell 300B-3, and a fourth liquid crystal cell 300B-4 are sequentially stacked.
  • Each of the first liquid crystal cell 300B-1, the second liquid crystal cell 300B-2, the third liquid crystal cell 300B-3, and the fourth liquid crystal cell 300B-4 includes a first transparent electrode 320B-1 and a a first substrate 310B-1 provided with two transparent electrodes 320B-2, and a second substrate 310B-2 provided with a third transparent electrode 320B-3 and a fourth transparent electrode 320B-4. .
  • a first electrode pattern and a second electrode pattern for driving the liquid crystal are formed on the first substrate 310B-1 and the second substrate 310B-2, respectively.
  • the first electrode pattern is a pattern in which first transparent electrodes 320B-1 and second transparent electrodes 320B-2 having a doglegged shape are alternately arranged in the y-axis direction.
  • the second electrode pattern is a pattern in which the third transparent electrode 320B-3 and the fourth transparent electrode 320B-4 having a doglegged shape are alternately arranged in the x-axis direction.
  • the first electrode pattern of each of the first liquid crystal cell 300B-1 and the third liquid crystal cell 300B-3 has an inter-electrode pitch between the first transparent electrode 320B-1 and the second transparent electrode 320B-2. (inter-electrode pitches p1 and p2 in FIG. 14). Also, the second electrode pattern of each of the first liquid crystal cell 300B-1 and the third liquid crystal cell 300B-3 is the electrode between the third transparent electrode 320B-3 and the fourth transparent electrode 320B-4. At least two inter-electrode pitches are included (inter-electrode pitches p3 and p4 in FIG. 14).
  • the first electrode pattern of each of the second liquid crystal cell 300B-2 and the fourth liquid crystal cell 300B-4 is the electrode between the first transparent electrode 320B-1 and the second transparent electrode 320B-2.
  • One inter-electrode pitch is included (inter-electrode pitch p5 in FIG. 14).
  • the second electrode pattern of each of the second liquid crystal cell 300B-2 and the fourth liquid crystal cell 200B-4 is the electrode between the third transparent electrode 320B-3 and the fourth transparent electrode 320B-4.
  • One inter-electrode pitch is included (inter-electrode pitch p6 in FIG. 14). That is, the electrode patterns of each of the second liquid crystal cell 300B-2 and the fourth liquid crystal cell 300B-4 have the same pitch.
  • the inter-electrode pitch p5 of the first electrode pattern and the inter-electrode pitch p6 of the second electrode pattern are the same. may be different. Further, it is also possible to employ a configuration in which the inter-electrode pitch p5 of the first electrode pattern and the inter-electrode pitch p6 of the second electrode pattern are the same.
  • the first liquid crystal cell 300B-1, the second liquid crystal cell 300B-2, the third liquid crystal cell 300B-3, and the fourth liquid crystal cell 300B-4 are arranged at a first angle ⁇ 1 and a second angle ⁇ 2 to each other. at least one of is different.
  • the first angle ⁇ 1 and the second angle ⁇ 2 of each liquid crystal cell 300B are the same as the third angle ⁇ 3 and the fourth angle ⁇ 4, respectively (for example, the first angle ⁇ 1 of the first liquid crystal cell 300B-1
  • the first liquid crystal cell 300B-1, the second liquid crystal cell 300B-2, the third (first angle ⁇ 1, second angle ⁇ 2) of the first liquid crystal cell 300B-3 and the fourth liquid crystal cell 300B-4 are (-1 degree, +3 degrees), (+1 degree, -3 degrees), respectively. ), (+3 degrees, -1 degrees), and (-3 degrees, +1 degrees).
  • the four liquid crystal cells 300B is a configuration having a first electrode pattern and a second electrode pattern that are different from each other.
  • the diffusion state in each liquid crystal cell 300B changes, it is possible to prevent the light intensity of a specific wavelength from being increased.
  • the transparent electrode 320B has a doglegged shape, it is possible to prevent the transparent electrode 320B from overlapping with periodicity.
  • the width w1 of the plurality of comb tooth portions of the first transparent electrode 320B-1 in each of the first liquid crystal cell 300B-1 and the third liquid crystal cell 300B-3 may be different. may be the same.
  • the width w2 of the plurality of comb tooth portions of the second transparent electrode 320B-2 and the plurality of combs of the third transparent electrode 320B-3 The same applies to the width w3 of the teeth and the width w4 of the plurality of comb teeth of the fourth transparent electrode 320B-4.
  • the distance between the two adjacent first transparent electrodes 320B-1 and second transparent electrodes 320B-2 is They may be the same, some may be the same, or they may all be different.
  • the width w1 of the comb tooth portion of the first transparent electrode 320B-1 is different from the width w2 of the comb tooth portion of the second transparent electrode 320B-2, and/or By varying the spacing between the comb teeth of the transparent electrode 320B-2, unequal pitches are realized in the first electrode pattern. The same applies to the second electrode pattern.
  • the electrode patterns of the first liquid crystal cell 300B-1 and the third liquid crystal cell 300B-3 are arranged at uneven pitches, and the electrode patterns of the second liquid crystal cell 300B-2 and the fourth liquid crystal cell 300B-2
  • Each electrode pattern of 300B-4 has an equal pitch configuration.
  • the electrode patterns of the first liquid crystal cell 300B-1 and the third liquid crystal cell 300B-3 have the same pitch
  • the electrode patterns of the second liquid crystal cell 300B-2 and the fourth liquid crystal cell 300B have the same pitch. It is also possible to employ a configuration in which the electrode patterns of -4 are arranged at unequal pitches.
  • the electrode patterns of the first liquid crystal cell 300B-1 and the fourth liquid crystal cell 300B-4 are arranged at uneven pitches, and the electrode patterns of the second liquid crystal cell 300B-2 and the third liquid crystal cell 300B-4 A configuration in which each electrode pattern of 300B-3 has an equal pitch can also be adopted. Furthermore, it is also possible to employ a configuration in which one or three of the four liquid crystal cells 300B have uneven pitches and the other three or one have uniform pitches, or vice versa.
  • the transparent electrodes 320B from overlapping with periodicity and to suppress the enhancement of the specific light intensity. can be done. Therefore, in the optical element 30B, uniform light distribution with suppressed moire and coloring can be obtained.
  • 10, 10A, 10B, 20, 20A, 20B, 30, 30A, 30B optical elements, 100, 100A, 100B, 200, 200A, 200B, 300, 300A, 300B: liquid crystal cell, 110, 110A, 110B, 210, 210A, 210B, 310, 310A, 310B: substrate, 120, 120A, 120B, 220, 220A, 220B, 320, 320A, 320B: transparent electrode, 130: alignment film, 140: sealing material, 150: liquid crystal layer, 160: optical elastic resin layer, 1000-1: first polarization, 1000-2: second polarization

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明の光学素子(10)は、順次積層された少なくとも4つの液晶セル(100-1、100-2、100-3、100-4)を含み、少なくとも4つの液晶セル(100-1、100-2、100-3、100-4)の各々は、第1の方向に延在する第1の透明電極(120-1)および第2の透明電極(120-2)が、第1の方向と交差する第2の方向に交互に配置された第1の基板(110-1)と、第2の方向に延在する第3の透明電極(120-3)および第4の透明電極(120-4)が、第1の方向に交互に配置された第2の基板(110-2)と、第1の基板(110-1)と前記第2の基板(110-2)との間の液晶層(150)と、を含む。

Description

光学素子
 本発明の一実施形態は、光源から出射された光の配光を制御する光学素子に関する。
 従来より、液晶に印加する電圧を調整し、液晶の屈折率が変化することを利用した光学素子、いわゆる液晶レンズが知られている(例えば、特許文献1、特許文献2、または特許文献3参照)。例えば、特許文献1および特許文献2に記載された照明装置は、液晶レンズを利用し、光源からの光を円形状に配光する。また、特許文献3に記載されたビーム成形デバイスでは、液晶に印加する電極のパターンを変えて配光形状を変化させている。
特開2005-317879号公報 特開2010-230887号公報 特開2014-160277号公報
 液晶セルを含む光学素子は、液晶セルの構成によっては輝度ムラ、色付き、またはモアレなどの現象が発生し、配光特性が低下する問題があった。そのため、均一な配光が得られる光学素子が望まれていた。
 本発明の一実施形態は、上記問題に鑑み、均一な配光が得られる光学素子を提供することを目的の一つとする。
 本発明の一実施形態に係る光学素子は、順次積層された少なくとも4つの液晶セルを含み、少なくとも4つの液晶セルの各々は、第1の方向に延在する第1の透明電極および第2の透明電極が、第1の方向と交差する第2の方向に交互に配置された第1の基板と、第2の方向に延在する第3の透明電極および第4の透明電極が、第1の方向に交互に配置された第2の基板と、第1の基板と前記第2の基板との間の液晶層と、を含む。
 本発明の一実施形態に係る光学素子は、順次積層された第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルを含み、第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルの各々は、第1の方向に対して第1の角度を有する方向に延在する第1の透明電極および第2の透明電極が、第1の方向と直交する第2の方向に交互に配置された第1の基板と、第2の方向に対して第2の角度を有する方向に延在する第3の透明電極および第4の透明電極が、第1の方向に交互に配置された第2の基板と、第1の基板と第2の基板との間の液晶層と、を含む。
 本発明の一実施形態に係る光学素子は、順次積層された第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルを含み、第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルの各々は、第1の方向に対して第1の角度を有する方向に延在し、第1の方向に対して第2の角度を有する方向に屈曲する第1の透明電極、および第1の方向に対して第2の角度を有する方向に延在し、第1の方向に対して第1の角度を有する方向に屈曲する第2の透明電極が、第1の方向と直交する第2の方向に交互に配置された第1の基板と、第2の方向に対して第3の角度を有する方向に延在し、第2の方向に対して第4の角度を有する方向に屈曲する第3の透明電極、および第2の方向に対して第4の角度を有する方向に延在し、第2の方向に対して第3の角度を有する方向に屈曲する第4の透明電極が、第1の方向に交互に配置された第2の基板と、第1の基板と第2の基板との間の液晶層と、を含む。
本発明の一実施形態に係る光学素子の模式的な斜視図である。 本発明の一実施形態に係る光学素子の模式的な断面図である。 本発明の一実施形態に係る光学素子の模式的な断面図である。 本発明の一実施形態に係る光学素子の液晶セルの液晶層の液晶分子の配向方向および液晶セルを透過する光の性質を説明する模式的な断面図である。 本発明の一実施形態に係る光学素子の液晶セルの液晶層の液晶分子の配向方向および液晶セルを透過する光の性質を説明する模式的な断面図である。 本発明の一実施形態に係る光学素子および従来の光学素子の透過率を示すグラフである。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの第1の電極パターンおよび第2の電極パターンの構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの第1の電極パターンおよび第2の電極パターンの構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。 本発明の一実施形態に係る光学素子の液晶セルの透明電極の構成を説明する模式図である。
 以下、本発明の各実施形態において、図面等を参照しつつ説明する。但し、本発明は、その技術的思想の要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、図示の形状そのものが本発明の解釈を限定するものではない。また、図面において、明細書中で既出の図に関して説明したものと同様の機能を備えた要素には、別図であっても同一の符号を付して、重複する説明を省略する場合がある。
 ある一つの膜を加工して複数の構造体を形成した場合、各々の構造体は異なる機能、役割を有する場合があり、また各々の構造体はそれが形成される下地が異なる場合がある。しかしながらこれら複数の構造体は、同一の工程で同一層として形成された膜に由来するものであり、同一の材料を有する。従って、これら複数の膜は同一層に存在しているものと定義する。
 ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上」と表記する場合、特に断りの無い限りは、ある構造体に接して、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
 図1~図4を参照して、本発明の一実施形態に係る光学素子10について説明する。
[1.光学素子10の構成]
 図1は、本発明の一実施形態に係る光学素子10の模式的な斜視図である。図1に示すように、光学素子10は、z軸方向に積層された複数の液晶セル100(第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4)を含む。図示しないが、光源は、第1の液晶セル100-1の上方に配置される。換言すると、光学素子10は、光源側を基準として、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4が順次積層された構造を有する。したがって、光源から出射された光は、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4を順に透過する。
 複数の液晶セル100の隣接する2つの液晶セル100は、光学弾性樹脂層160を介して、接着されている。光学弾性樹脂層160として、例えば、透光性を有するアクリル樹脂またはエポキシ樹脂などを含む接着剤を用いることができる。
 光学素子10は、少なくとも2つの液晶セル100を含むことにより、無偏光の光の配光を制御することができる。そのため、光学素子10では、例えば、液晶表示素子の表裏面に設けられる一対の偏光板を設ける必要はない。なお、図1には、4つの液晶セル100が示されているが、光学素子10に含まれる液晶セル100の数は、これに限られない。光学素子10に含まれる液晶セルの数は、5つ以上であってもよい。
 図2Aおよび図2Bは、本発明の一実施形態に係る光学素子10の模式的な断面図である。具体的には、図2Aは、図1に示すA1-A2線に沿って切断されたzx面内の模式的な断面図であり、図2Bは、図1に示すB1-B2線に沿って切断されたyz面内の模式的な断面図である。なお、以下では、x軸方向およびy軸方向を、それぞれ、第1の方向および第2の方向として記載する場合がある。すなわち、第2の方向は、第1の方向と直交する方向である。
 図2Aおよび図2Bに示すように、複数の液晶セル100の各々は、第1の基板110-1、第2の基板110-2、第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、第4の透明電極120-4、第1の配向膜130-1、第2の配向膜130-2、シール材140、および液晶層150を含む。第1の基板110-1上には、第1の透明電極120-1、第2の透明電極120-2、ならびに第1の透明電極120-1および第2の透明電極120-2を覆う第1の配向膜130-1が設けられている。また、第2の基板110-2上には、第3の透明電極120-3、第4の透明電極120-4、ならびに第3の透明電極120-3および第4の透明電極120-4を覆う第2の配向膜130-2が設けられている。第1の基板110-1と第2の基板110-2とは、第1の基板110-1上の第1の透明電極120-1および第2の透明電極120-2と、第2の基板110-2上の第3の透明電極120-3および第4の透明電極120-4とが対向するように配置されている。また、第1の基板110-1と第2の基板110-2とは、第1の基板110-1および第2の基板110-2の周辺部に設けられたシール材140を介して、接着されている。また、第1の基板110-1(より具体的には、第1の配向膜130-1)、第2の基板110-2(より具体的には、第2の配向膜130-2)、およびシール材140で囲まれた空間には液晶が封入され、第1の基板110-1と第2の基板110-2との間に液晶層150が設けられている。
 第1の基板110-1および第2の基板の各々として、例えば、ガラス基板、石英基板、またはサファイア基板などの透光性を有する剛性基板が用いられる。また、第1の基板110-1および第2の基板110-2の各々として、例えば、ポリイミド樹脂基板、アクリル樹脂基板、シロキサン樹脂基板、またはフッ素樹脂基板などの透光性を有する可撓性基板を用いることもできる。
 第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々は、液晶層150に電界を形成するための電極として機能する。第1の透明電極120-1、第2の透明電極120-2,第3の透明電極120-3、および第4の透明電極120-4の各々として、例えば、インジウム・スズ酸化物(ITO)またはインジウム・亜鉛酸化物(IZO)などの透明導電材料が用いられる。
 液晶層150は、液晶分子の配向状態に応じて、透過する光を屈折し、または透過する光の偏光状態を変化させることができる。液晶層150の液晶として、ネマティック液晶などが用いられる。本実施形態で説明する液晶はポジ型であるが、透明電極120に電圧を印加しない状態における液晶分子の配向方向などを変更することによりネガ型を適用する構成も可能である。また、液晶には、液晶分子にねじれを付与するカイラル剤が含まれていることが好ましい。
 第1の配向膜130-1および第2の配向膜130-2の各々は、液晶層150内の液晶分子を所定の方向に配向させる。第1の配向膜130-1および第2の配向膜130-2の各々として、ポリイミド樹脂などが用いられる。なお、第1の配向膜130-1および第2の配向膜130-2の各々は、ラビング法または光配向法などの配向処理によって配向特性が付与されてもよい。ラビング法は、配向膜の表面を一方向に擦る方法である。また、光配向法は、配向膜に直線偏光の紫外線を照射する方法である。
 シール材140として、エポキシ樹脂またはアクリル樹脂を含む接着材などが用いられる。なお、接着材は、紫外線硬化型であってもよく、熱硬化型であってもよい。
 ここで、透明電極120の延在方向および配向膜130の配向特性について説明する。
 第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4の各々において、第1の透明電極120-1および第2の透明電極120-2の各々はx軸方向に延在する複数の櫛歯部とy軸方向に延在してこれら櫛歯部を接続する接続部を含み、第3の透明電極120-3および第4の透明電極120-4の各々はy軸方向に延在する複数の櫛歯部と、x軸方向に延在してこれら櫛歯部を接続する接続部を含む。なお、以下では、便宜上、透明電極120としての説明が櫛歯部についての説明(透明電極120のうち、接続部を除いた部分の説明)となっている場合がある。例えば、第1の透明電極120-1の櫛歯部の延在方向がx軸方向であるとき、第1の透明電極120-1の延在方向がx軸方向であるとして説明する場合がある。
 したがって、第1の透明電極120-1および第2の透明電極の各々の延在方向はx軸方向であり、第3の透明電極120-3および第4の透明電極120-4の各々の延在方向はy軸方向である。第1の透明電極120-1および第2の透明電極120-2は櫛歯形状を有し、且つ、y軸方向に交互に配置されている。また、第3の透明電極120-3および第4の透明電極120-4は櫛歯形状を有し、且つ、x軸方向に交互に配置されている。
 以上、説明したように、4つの液晶セル100の各々の第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4は、延在方向が一致乃至略一致している。すなわち、光学素子10は、4つの液晶セル100のうちの2つが、他の2つの液晶セル100に対して90度回転しなければならないような構成ではなく、各液晶セル100の回転とは関係なく、4つの液晶セル100がそのまま積層された構成を有する。
 なお、第1の透明電極120-1および第2の透明電極120-2の延在方向は、第3の透明電極120-3および第4の透明電極120-4の延在方向と直交するが、本明細書では、直交から±10度程度ずれて交差する場合も直交するとして説明する場合がある。
 第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4の各々において、第1の配向膜130-1は、液晶分子の長軸をy軸方向に配向させる配向特性を有し、第2の配向膜130-2は、液晶分子の長軸をx軸方向に配向させる配向特性を有する。このような配向特性を配向膜130に付与するため、例えば、第1の配向膜130-1に対してはy軸方向にラビング処理が行われ、第2の配向膜130-2に対してはx軸方向にラビング処理が行われる。
 上述したように、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4は、基本的構造は同じである。ここで、図3Aおよび図3Bを参照して、液晶セル100を透過する光の性質について説明する。
 図3Aおよび図3Bは、本発明の一実施形態に係る光学素子10の液晶セル100の液晶層150の液晶分子の配向方向および液晶セル100を透過する光の性質を説明する模式的な断面図である。具体的には、図3Aは、透明電極120に電圧が印加されていない状態の液晶セル100を示し、図3Bは、透明電極120に電圧が印加されている状態の液晶セル100を示す。
 図3Aは、透明電極120に電圧が印加されていない状態の液晶セル100を示す。図3Aに示すように、第1の配向膜130-1上の液晶分子は、長軸がy軸方向に沿って配向される。換言すると、第1の基板110-1側近傍の液晶分子の配向方向(初期配向方向)は、y軸方向である。一方、第2の配向膜130-2上の液晶分子は、長軸がx軸方向に沿って配向される。換言すると、第2の基板110-2側近傍の液晶分子の配向方向(初期配向方向)は、x軸方向である。したがって、液晶層150内の液晶分子は、第1の基板110-1から第2の基板110-2に向かうにつれてz軸方向に90度ねじれるように配向する。この場合、液晶層150を透過する光は、液晶分子の配向方向にしたがって、偏光面(偏光軸または偏光成分の向き)が90度回転される。すなわち、液晶層150を透過する光は、旋光する。
 図3Bは、透明電極120に電圧が印加されている状態の液晶セル100を示す。例えば、第1の透明電極120-1および第3の透明電極120-3にHigh電圧(H)が印加され、第2の透明電極120-2および第4の透明電極120-4にLow電圧(L)が印加される。すなわち、隣接する2つの透明電極120間で電位差が生じるように電圧が印加される。なお、以下では、隣接する2つの透明電極120間に生じる電界を横電界という場合がある。
 第1の基板110-1側近傍の液晶分子は、第1の透明電極120-1と第2の透明電極120-2との間の横電界によって、第1の基板110-1に対してy軸方向に凸円弧状に配向する。また、第2の基板110-2側近傍の液晶分子は、第3の透明電極120-3と第4の透明電極120-4との間の横電界によって、第2の基板110-2に対してx軸方向に凸円弧状に配向する。一方、第1の基板110-1と第2の基板110-2の間の間隔であるセルギャップdは基板上にて隣合う電極間の距離に比して十分に大きい(例えば10μm≦d≦30μm)ため、第1の基板110-1と第2の基板110-2との間の中央近傍に位置する液晶分子は、いずれの横電界によっても初期配向から配向状態があまり変化しない。なお、第1の基板110-1と第2の基板110-2とは、上述したように、十分に離れた基板間距離を有しているため、第1の基板110-1の第1の透明電極120-1と第2の透明電極120-2との間の横電界は、第2の基板110-2側の液晶分子の配向に対して影響を及ぼさない、または、無視できるほどに小さい。同様に、第2の基板110-2の第3の透明電極120-3と第4の透明電極120-4との間の横電界は、第1の基板110-1側の液晶分子の配向に対して影響を及ぼさない、または、無視できるほどに小さい。
 光源から出射された光は、x軸方向の偏光成分(P偏光成分)およびy軸方向の偏光成分(S偏光成分)を有するが、以下では、便宜上、光をP偏光成分とS偏光成分とに分けて説明する。すなわち、光源から出射された光は、P偏光成分を有する第1の偏光1000-1およびS偏光成分を有する第2の偏光1000-2を含む(図3Bの(1)参照)。
 図3Bにおいて、液晶セル100に入射した第1の偏光1000-1のP偏光成分は、第1の基板110-1側の液晶分子の配向方向と異なるため、第1の偏光1000-1は拡散されない(図3Bの(2)参照)。第1の偏光1000-1が、第1の基板110-1から第2の基板110-2に向かうと、第1の偏光1000-1は液晶層150を通過する過程で旋光し、偏光成分がP偏光成分からS偏光成分に変化する。S偏光成分を有する第1の偏光1000-1は、第2の基板110-2側の液晶分子の配向方向と異なるため、第1の偏光1000-1は拡散されない(図3Bの(3)参照)。また、液晶セル100から出射される第1の偏光1000-1は、S偏光成分を有する(図3Bの(4)参照)。
 一方、液晶セル100に入射した第2の偏光1000-2のS偏光成分は、第1の基板110-1側の液晶分子の配向方向と同じであるため、当該液晶分子の屈折率分布にしたがってy軸方向に拡散される(図3Bの(2)参照)。第2の偏光1000-2が、第1の基板110-1から第2の基板110-2に向かうと、第2の偏光1000-2は液晶層150を通過する過程で旋光し、偏光成分がS偏光成分からP偏光成分に変化する。第2の偏光1000-2のP偏光成分は、第2の基板110-2側の液晶分子の配向方向と同じであるため、当該液晶分子の屈折率分布にしたがってx軸方向に拡散される(図3Bの(3)参照)。また、液晶セル100から出射される第2の偏光1000-2は、P偏光成分を有する(図3Bの(4)参照)。
 以上からわかるように、液晶セル100では、透明電極120が形成する横電界の方向、ならびに液晶分子が有する旋光性および屈折率分布を利用して、所定の方向に光を拡散することができる。光学素子10では、複数の液晶セル100を用いることにより、各液晶セル100の光の拡散を制御し、様々な配光形状を形成することができる。なお、配光形状は、透明電極120に印加する電圧の大きさによっても制御することができる。
 ここで、図4を参照して、本実施形態の光学素子10と従来の光学素子との配光特性の比較を示す。なお、ここで説明する従来の光学素子は、光学素子10の第3の液晶セル100-3および第4の液晶セル100-4が90度回転された構造を有する。
 図4は、本発明の一実施形態に係る光学素子10および従来の光学素子の透過率を示すグラフである。具体的には、図4のグラフには、極角に対する透過率が示されている。光学素子10および従来の光学素子の透過率は、LCD評価装置(大塚電子株式製LCD-5200)を用いて測定した。極角0度の方向は、第4の液晶セル100-4の第2の基板110-2に対して垂直方向である。透明電極120に電圧を印加していないときの極角0度の透過率を100(%)とし、透明電極120に電圧を印加したときの透過率を測定した。なお、極角0度の透過率に対して半分の透過率になる極角の絶対値を半値半幅として定義する。
 光学素子10の半値半幅は38度であった。一方、従来の光学素子の半値半幅は29度であった。光学素子10は、液晶セル100での光の拡散が均一化された結果、従来の光学素子よりも大きな半値半幅を有することがわかった。
 以上、説明したように、本発明の一実施形態に係る光学素子10では、光の拡散を均一化することができる。したがって、光学素子10では、均一な配光を得ることができる。
<第1実施形態の変形例1>
 図5を参照して、本発明の一実施形態に係る光学素子10の一変形例である光学素子10Aについて説明する。以下では、光学素子10Aの構成が光学素子10の構成と同様であるとき、光学素子10Aの構成の説明を省略する場合がある。
 図5は、本発明の一実施形態に係る光学素子10Aの液晶セル100Aの透明電極120Aの構成を説明する模式図である。光学素子10Aは、4つの液晶セル100Aを含む。すなわち、光学素子10Aでは、第1の液晶セル100A-1、第2の液晶セル100A-2、第3の液晶セル100A-3、および第4の液晶セル100A-4が順次積層されている。第1の液晶セル100A-1、第2の液晶セル100A-2、第3の液晶セル100A-3、および第4の液晶セル100A-4の各々は、x軸方向に延在する第1の透明電極120A-1および第2の透明電極120A-2が設けられた第1の基板110A-1、ならびにy軸方向に延在する第3の透明電極120A-3および第4の透明電極120A-4が設けられた第2の基板110A-2を含む。なお、各基板に沿って示される矢印は、当該基板における配向膜の配向の向き(初期配向方向)を示している(図6、図7、図9、図10、図11、図13、および図14においても同様である。)。
 第1の基板110A-1および第2の基板110A-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、第1の透明電極120A-1および第2の透明電極120A-2がy軸方向に交互に配置されたパターンである。第2の電極パターンは、第3の透明電極120A-3および第4の透明電極120A-4がx軸方向に交互に配置されたパターンである。
 液晶セル100Aの第1の電極パターンは、第1の透明電極120A-1および第2の透明電極120A-2の間の電極間ピッチ(第1の透明電極120A-1の中心線と第2の透明電極120A-2の中心線との間のy軸方向における距離)を少なくとも2つ含む(図5の電極間ピッチp1、p2)。また、液晶セル100Aの第2の電極パターンは、第3の透明電極120A-3および第4の透明電極120A-4の間の電極間ピッチ(第3の透明電極120A-3の中心線と第4の透明電極120A-4の中心線との間のx方向における距離)を少なくとも2つ含む(図5の電極間ピッチp3、p4)。なお、各電極パターンは、2以上の電極間ピッチを含む構成であってもよい。すなわち、第1の電極パターン及び第2の電極パターンの各々は、隣接する2つの電極の電極間ピッチがすべて異なる構成も採用可能である。このように、各電極パターンにおいて、少なくとも2以上の電極間ピッチを有する構成を不等ピッチと称することとする。
 また、第1の電極パターンと第2の電極パターンとが同じである構成も採用可能である。
 4つの液晶セル100Aは、それぞれが同じ第1の電極パターンおよび第2の電極パターンを有する構成であってもよく、1つの液晶セル100Aの第1の電極パターンおよび第2の電極パターンが、それぞれ、別の1つの液晶セル100Aの第2の電極パターンおよび第1の電極パターンと同じ構成であってもよい。第1の電極パターンおよび第2の電極パターンの一方が同じであり、第1の電極パターンおよび第2の電極パターンの他方が異なる構成であってもよい。もちろん、4つの液晶セル100Aは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成であってもよい。但し、4つの液晶セル100Aが、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である場合、各液晶セル100Aでの拡散状態が変化するため、特定の波長の光強度が強められることをさらに抑制することができる。そのため、4つの液晶セル100Aは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成、すなわち、4つの液晶セル100Aの電極パターンが全て異なる不等ピッチで構成されていることが好ましい。
 以上、説明したように、本発明の一実施形態に係る光学素子10Aでは、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子10Aでは、色付きが抑制された均一な配光を得ることができる。
<第1実施形態の変形例2>
 図6を参照して、本発明の一実施形態に係る光学素子10の別の変形例である光学素子10Bについて説明する。以下では、光学素子10Bの構成が光学素子10の構成と同様であるとき、光学素子10Bの構成の説明を省略する場合がある。
 図6は、本発明の一実施形態に係る光学素子10Bの液晶セル100Bの透明電極120Bの構成を説明する模式図である。光学素子10Bは、4つの液晶セル100Bを含む。すなわち、光学素子10Bでは、第1の液晶セル100B-1、第2の液晶セル100B-2、第3の液晶セル100B-3、および第4の液晶セル100B-4が順次積層されている。第1の液晶セル100B-1、第2の液晶セル100B-2、第3の液晶セル100B-3、および第4の液晶セル100B-4の各々は、x軸方向に延在する第1の透明電極120B-1および第2の透明電極120B-2が設けられた第1の基板110B-1、ならびにy軸方向に延在する第3の透明電極120B-3および第4の透明電極120B-4が設けられた第2の基板110B-2を含む。
 第1の基板110B-1および第2の基板110B-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、第1の透明電極120B-1および第2の透明電極120B-2がy軸方向に交互に配置されたパターンである。第2の電極パターンは、第3の透明電極120B-3および第4の透明電極120B-4がy軸方向に交互に配置されたパターンである。
 液晶セル100Bの第1の電極パターンにおいて、少なくとも第1の透明電極120B-1の櫛歯部の幅w1は、第2の透明電極120B-2の櫛歯部の幅w2と異なる。また、液晶セル100Bの第2の電極パターンにおいて、第3の透明電極120B-3の櫛歯部の幅w3は、第4の透明電極120B-4の櫛歯部の幅w4と異なる。第1の透明電極120B-1の櫛歯部の幅w1は、第3の透明電極120B-3の櫛歯部の幅w3および第4の透明電極の櫛歯部の幅w4と同じであってもよく、異なっていてもよい。また、第3の透明電極120B-3の櫛歯部の幅w3は、第1の透明電極120B-1の櫛歯部の幅w1および第2の透明電極120B-2の櫛歯部の幅w2と同じであってもよく、異なっていてもよい。なお、第1の透明電極120B-1の複数の櫛歯部の幅w1は、それぞれ異なっていてもよく、一部が同じであってもよい。第2の透明電極120B-2の複数の櫛歯部の幅w2、第3の透明電極120B-3の複数の櫛歯部の幅w3、および第4の透明電極120B-4の複数の櫛歯部の幅w4も同様である。また、隣接する2つの第1の透明電極120B-1と第2の透明電極120B-2との間の間隔は、すべて同じであってよく、一部が同じであってもよく、またはすべて異なっていてもよい。第1の透明電極120B-1の櫛歯部の幅w1と第2の透明電極120B-2の櫛歯部の幅w2とが異なり、および/または第1の透明電極120-1および第2の透明電極120-2の櫛歯部の間隔が異なることにより、第1の電極パターンにおいて不等ピッチが実現される。第2の電極パターンについても同様である。
 4つの液晶セル100Bは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。例えば、第1の液晶セル100B-1の第1の透明電極の幅w1は、第2の液晶セル100B-2、第3の液晶セル100B-3、および第4の液晶セル100B-4の各々の幅w1と異なる。この場合、各液晶セル100Bでの拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。
 以上、説明したように、本発明の一実施形態に係る光学素子10Bでは、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子10Bでは、色付きが抑制された均一な配光を得ることができる。
<第2実施形態>
 図7および図8を参照して、本発明の一実施形態に係る光学素子20について説明する。以下では、光学素子20の構成が光学素子10の構成と同様であるとき、光学素子20の構成の説明を省略する場合がある。
 図7は本発明の一実施形態に係る光学素子20の液晶セル200の透明電極220の構成を説明する模式図である。光学素子20は、4つの液晶セル200を含む。すなわち、光学素子20では、第1の液晶セル200-1、第2の液晶セル200-2、第3の液晶セル200-3、および第4の液晶セル200-4が順次積層されている。第1の液晶セル200-1、第2の液晶セル200-2、第3の液晶セル200-3、および第4の液晶セル200-4の各々は、第1の透明電極220-1および第2の透明電極220-2が設けられた第1の基板210-1、ならびに第3の透明電極220-3および第4の透明電極220-4が設けられた第2の基板210-2を含む。
 第1の基板210-1および第2の基板210-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。ここで、図8を参照して、液晶セル200の第1の電極パターンおよび第2の電極パターンについて詳細に説明する。
 図8は、本発明の一実施形態に係る光学素子20の液晶セル200の第1の電極パターンおよび第2の電極パターンの構成を説明する模式図である。第1の電極パターンは、x軸方向に対して第1の角度θ1を有する方向に延在する第1の透明電極220-1および第2の透明電極220-2がy軸方向に交互に配置されたパターンである。第2の電極パターンは、y軸方向に対して第2の角度θ2を有する方向に延在する第3の透明電極220-3および第4の透明電極220-4がx軸方向に交互に配置されたパターンである。第1の角度θ1は、第2の角度θ2と同じであってもよく、この場合、第1の基板110-1側の透明電極220と第2の基板110-2側の透明電極220は、平面視において互いに直交する。もちろん、第1の角度θ1と第2の角度θ2とは、互いに異なっていてもよい。第1の角度θ1および第2の角度θ2の各々は、-5度以上+5度以下であり、好ましくは-3度以上+3度以下である。なお、第1の角度θ1および第2の角度θ2という違いを有するが、4つの液晶セル200の各々の第1の透明電極220-1、第2の透明電極220-2、第3の透明電極220-3、および第4の透明電極220-4の延在方向は、基本的には同じである。すなわち、光学素子20は、4つの液晶セル200のうちの2つが、他の2つの液晶セル200に対して90度回転しなければならないような構成ではなく、各液晶セル200の回転とは関係なく、4つの液晶セル200が積層された構成を有する。
 また、図8中に示す矢印Aは、第1の基板210-1の第1の電極パターンに対する第1の配向膜130-1の初期配向の向きを示している。矢印Aに示す通り、当該初期配向方向はy軸に平行である。なお、当該初期配向の向きは、y軸に平行な方向から第1の電極パターンと直交する方向(図中二点鎖線で示す矢印B)までの範囲で任意に設定可能である。すなわち、第1の電極パターンにおける初期配向の向きは、y軸に平行な向きから当該y軸に対してθ1までの範囲で任意に設定可能である。
 同様に、図8中に示す矢印Cは、第2の基板210-2の第2の電極パターンに対する第2の配向膜130-2の初期配向の向きを示している。矢印Cに示す通り、当該初期配向方向はx軸に平行である。なお、当該初期配向の向きは、x軸に平行な方向から第2の電極パターンと直交する方向(図中二点鎖線で示す矢印D)までの範囲で任意に設定可能である。すなわち、第2の電極パターンにおける初期配向の向きは、x軸に平行な向きから当該y軸に対してθ2までの範囲で任意に設定可能である。
 なお、図7に示される初期配向の向きは、第1の電極パターンにおける上記矢印Aおよび第2の電極パターンにおける上記矢印Cを代表して示しているが、図7に示す初期配向の向きが上述の如く対応する電極パターンと直交する範囲で設定可能であることは言うまでもない。
 4つの液晶セル200は、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。具体的には、第1の液晶セル200-1、第2の液晶セル200-2、第3の液晶セル200-3、および第4の液晶セル200-4は、互いに異なる第1の角度θ1または第2の角度θ2を有する。例えば、各液晶セル200において第1の角度θ1と第2の角度θ2とが同じである場合(例えば、第1の液晶セル200-1の第1の角度θ1と第2の角度θ2が同じ場合)、第1の液晶セル200-1、第2の液晶セル200-2、第3の液晶セル200-3、および第4の液晶セル200-4の第1の角度θ1は、それぞれ、-1度、+1度、+3度、および-3度である。この場合、各液晶セル200での拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。
 なお、図7に示すように、4つの液晶セルの各基板の初期配向の向きに着目すると、第1の液晶セル200-1の第1の基板210-1と第4の液晶セル200-4の第1の基板210-1の配向方向は同じであり(第1の配向方向)、第2の液晶セル200-2の第1の基板210-1と第3の液晶セル200-3の第1の基板210-1の配向方向は同じであり(第2の配向方向)、かつ、第1の配向方向とは反対の方向を向いている。また、第1の液晶セル200-1の第2の基板210-2と第4の液晶セル200-4の第2の基板210-2の配向方向は同じであり(第3の配向方向)、第1の配向方向に対して交差している。第2の液晶セル200-2の第2の基板210-2と第3の液晶セル200-3の第2の基板210-2の配向方向は同じであり(第4の配向方向)、かつ、第3の配向方向とは反対の方向を向いている。このように各基板において初期配向方向を設定することにより、光学素子20全体で見た場合に初期配向の向きがバランスよく設けられ、光学素子を通過する光の左右または上下のバランスも保たれる。
 以上、説明したように、本発明の一実施形態に係る光学素子20では、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子20では、色付きが抑制された均一な配光を得ることができる。
<第2実施形態の変形例1>
 図9を参照して、本発明の一実施形態に係る光学素子20の一変形例である光学素子20Aについて説明する。以下では、光学素子20Aの構成が光学素子20の構成と同様であるとき、光学素子20Aの構成の説明を省略する場合がある。
 図9は、本発明の一実施形態に係る光学素子20Aの液晶セル200Aの透明電極220Aの構成を説明する模式図である。光学素子20Aは、4つの液晶セル200Aを含む。すなわち、光学素子20Aでは、第1の液晶セル200A-1、第2の液晶セル200A-2、第3の液晶セル200A-3、および第4の液晶セル200A-4が順次積層されている。第1の液晶セル200A-1、第2の液晶セル200A-2、第3の液晶セル200A-3、および第4の液晶セル200A-4の各々は、第1の透明電極220A-1および第2の透明電極220A-2が設けられた第1の基板210A-1、ならびに第3の透明電極220A-3および第4の透明電極220A-4が設けられた第2の基板210A-2を含む。
 第1の基板210A-1および第2の基板210A-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、x軸方向に対して第1の角度θ1を有する方向に延在する第1の透明電極220A-1および第2の透明電極220A-2がy軸方向に交互に配置されたパターンであり、第1の透明電極220A-1および第2の透明電極220A-2の間の電極間ピッチを少なくとも2つ含む(図9の電極間ピッチp1、p2参照)。また、第2の電極パターンは、y軸方向に対して第2の角度θ2を有する方向に延在する第3の透明電極220A-3および第4の透明電極220A-4がx軸方向に交互に配置されたパターンであり、第3の透明電極220A-3および第4の透明電極220A-4の間の電極間ピッチを少なくとも2つ含む(図9の電極間ピッチp3、p4参照)。
 4つの液晶セル200Aは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。具体的には、第1の液晶セル200A-1、第2の液晶セル200A-2、第3の液晶セル200A-3、および第4の液晶セル200A-4は、互いに異なる第1の角度θ1または第2の角度θ2を有する。例えば、各液晶セル200Aにおいてに第1の角度θ1と第2の角度θ2とが同じである場合(例えば、第1の液晶セル200A-1の第1の角度θ1と第2の角度θ2とが同じ場合)、第1の液晶セル200A-1、第2の液晶セル200A-2、第3の液晶セル200A-3、および第4の液晶セル200A-4の第1の角度θ1は、それぞれ、-1度、+1度、+3度、および-3度である。この場合、各液晶セル200Aでの拡散状態が変化するため、特定の波長の光強度が強められることをさらに抑制することができる。
 なお、第1の透明電極220A-1の複数の櫛歯部の幅w1は、それぞれ異なっていてもよく、一部が同じであってもよい。第2の透明電極220A-2の複数の櫛歯部の幅w2、第3の透明電極220A-3の複数の櫛歯部の幅w3、および第4の透明電極220A-4の複数の櫛歯部の幅w4も同様である。また、隣接する2つの第1の透明電極220A-1と第2の透明電極220A-2との間の間隔は、すべて同じであってよく、一部が同じであってもよく、またはすべて異なっていてもよい。第1の透明電極220A-1の櫛歯部の幅w1と第2の透明電極220A-2の櫛歯部の幅w2とが異なり、および/または第1の透明電極220A-1および第2の透明電極220A-2の櫛歯部の間隔が異なることにより、第1の電極パターンにおいて不等ピッチが実現される。第2の電極パターンについても同様である。
 以上、説明したように、本発明の一実施形態に係る光学素子20Aでは、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子20Aでは、色付きが抑制された均一な配光を得ることができる。
<第2実施形態の変形例2>
 図10を参照して、本発明の一実施形態に係る光学素子20の別の変形例である光学素子20Bについて説明する。以下では、光学素子20Bの構成が光学素子20または光学素子20Aの構成と同様であるとき、光学素子20Bの構成の説明を省略する場合がある。
 図10は、本発明の一実施形態に係る光学素子20Bの液晶セル200Bの透明電極220Bの構成を説明する模式図である。光学素子20Bは、4つの液晶セル200Bを含む。すなわち、光学素子20Bでは、第1の液晶セル200B-1、第2の液晶セル200B-2、第3の液晶セル200B-3、および第4の液晶セル200B-4が順次積層されている。第1の液晶セル200B-1、第2の液晶セル200B-2、第3の液晶セル200B-3、および第4の液晶セル200B-4の各々は、第1の透明電極220B-1および第2の透明電極220B-2が設けられた第1の基板210B-1、ならびに第3の透明電極220B-3および第4の透明電極220B-4が設けられた第2の基板210B-2を含む。
 第1の基板210B-1および第2の基板210B-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、x軸方向に対して第1の角度θ1を有する方向に延在する第1の透明電極220B-1および第2の透明電極220B-2がy軸方向に交互に配置されたパターンである。第2の電極パターンは、y軸方向に対して第2の角度θ2を有する方向に延在する第3の透明電極220B-3および第4の透明電極220B-4がx軸方向に交互に配置されたパターンである。
 第1の液晶セル200B-1および第3の液晶セル200B-3の各々の第1の電極パターンは、第1の透明電極220B-1および第2の透明電極220B-2の間の電極間ピッチを少なくとも2つ含む(図10の電極間ピッチp1、p2参照)。また、第1の液晶セル200B-1および第3の液晶セル200B-3の各々の第2の電極パターンは、第3の透明電極220B-3および第4の透明電極220B-4の間の電極間ピッチを少なくとも2つ含む(図10の電極間ピッチp3、p4参照)。
 一方、第2の液晶セル200B-2および第4の液晶セル200B-4の各々の第1の電極パターンは、第1の透明電極220B-1および第2の透明電極220B-2の間の電極間ピッチを1つ含む(図10の電極間ピッチp5参照)。また、第2の液晶セル200B-2および第4の液晶セル200B-4の各々の第2の電極パターンは、第3の透明電極220B-3および第4の透明電極220B-4の間の電極間ピッチを1つ含む(図10の電極間ピッチp6参照)。すなわち、第2の液晶セル200B-2および第4の液晶セル200B-4の各々の電極パターンは、いずれも等ピッチである。なお、第2の液晶セル200B-2および第4の液晶セル200B-4の各々において、第1の電極パターンの電極間ピッチp5と第2の電極パターンの電極間ピッチp6とは、同じであってもよく、異なっていてもよい。また、これら第1の電極パターンの電極間ピッチp5と第2の電極パターンの電極間ピッチp6が同じである構成も採用可能である。
 第1の液晶セル200B-1、第2の液晶セル200B-2、第3の液晶セル200B-3、および第4の液晶セル200B-4は、互いに異なる第1の角度θ1または第2の角度θ2を有する。例えば、各液晶セル200Bにおいて第1の角度θ1と第2の角度θ2とが同じである場合(例えば、第1の液晶セル200-1の第1の角度θ1と第2の角度θ2が同じ場合)、第1の液晶セル200B-1、第2の液晶セル200B-2、第3の液晶セル200B-3、および第4の液晶セル200B-4の第1の角度θ1は、それぞれ、-1度、+1度、+3度、および-3度である。そのため、第2の液晶セル200B-2および第4の液晶セル200B-4の電極間ピッチが同じ場合でも、第1の角度θ1が異なるため、4つの液晶セル200Bは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。この場合、各液晶セル200Bでの拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。
 なお、第1の液晶セル200B-1および第3の液晶セル200B-3の各々における第1の透明電極220B-1の複数の櫛歯部の幅w1は、それぞれ異なっていてもよく、一部が同じであってもよい。第1の液晶セル200B-1および第3の液晶セル200B-3の各々における第2の透明電極220B-2の複数の櫛歯部の幅w2、第3の透明電極220B-3の複数の櫛歯部の幅w3、および第4の透明電極220B-4の複数の櫛歯部の幅w4も同様である。また、第1の液晶セル200B-1および第3の液晶セル200B-3において、隣接する2つの第1の透明電極220B-1と第2の透明電極220B-2との間の間隔は、すべて同じであってよく、一部が同じであってもよく、またはすべて異なっていてもよい。第1の透明電極220B-1の櫛歯部の幅w1と第2の透明電極220B-2の櫛歯部の幅w2とが異なり、および/または第1の透明電極220B-1および第2の透明電極220B-2の櫛歯部の間隔が異なることにより、第1の電極パターンにおいて不等ピッチが実現される。第2の電極パターンについても同様である。
 上述した光学素子20Bは、第1の液晶セル200B-1および第3の液晶セル200B-3の各電極パターンが不等ピッチであって、第2の液晶セル200B-2および第4の液晶セル200B-4の各電極パターンが等ピッチである構成を有する。しかしながら、光学素子20Bは、第1の液晶セル200B-1および第3の液晶セル200B-3の各電極パターンが等ピッチであって、第2の液晶セル200B-2および第4の液晶セル200B-4の各電極パターンが不等ピッチである構成も採用可能である。また、光学素子20Bは、第1の液晶セル200B-1および第4の液晶セル200B-4の各電極パターンが不等ピッチであって、第2の液晶セル200B-2および第3の液晶セル200B-3の各電極パターンが等ピッチである構成も採用可能である。さらに、4つの液晶セル200Bのうちの1つまたは3つが不等ピッチであって、他の3つまたは1つが等ピッチである構成、またはその逆の構成も採用可能である。
 以上、説明したように、本発明の一実施形態に係る光学素子20Bでは、特定の光強度が強められることを抑制することができる。したがって、光学素子20Bでは、色付きが抑制された均一な配光を得ることができる。
<第3実施形態>
 図11および図12を参照して、本発明の一実施形態に係る光学素子30について説明する。以下では、光学素子30の構成が光学素子10または光学素子20の構成と同様であるとき、光学素子30の構成の説明を省略する場合がある。
 図11は本発明の一実施形態に係る光学素子30の液晶セル300の透明電極320の構成を説明する模式図である。光学素子30は、4つの液晶セル300を含む。すなわち、光学素子30では、第1の液晶セル300-1、第2の液晶セル300-2、第3の液晶セル300-3、および第4の液晶セル300-4が順次積層されている。第1の液晶セル300-1、第2の液晶セル300-2、第3の液晶セル300-3、および第4の液晶セル300-4の各々は、第1の透明電極320-1および第2の透明電極320-2が設けられた第1の基板310-1、ならびに第3の透明電極320-3および第4の透明電極320-4が設けられた第2の基板310-2を含む。
 第1の基板310-1および第2の基板310-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。ここで、図12を参照して、液晶セル300の第1の電極パターンおよび第2の電極パターンについて詳細に説明する。
 図12は、本発明の一実施形態に係る光学素子30の液晶セル300の第1の電極パターンおよび第2の電極パターンの構成を説明する模式図である。第1の電極パターンは、くの字形状を有する第1の透明電極320-1および第2の透明電極320-2がy軸方向に交互に配置されたパターンである。具体的には、第1の透明電極320-1は、x軸方向に対して第1の角度θ1を有する方向に延在し、x軸方向に対して第2の角度θ2を有する方向に屈曲する。第2の透明電極320-2は、x軸方向に対して第2の角度θ2を有する方向に延在し、x軸方向に対して第1の角度θ1を有する方向に屈曲する。また、第2の電極パターンは、くの字形状を有する第3の透明電極320-3および第4の透明電極320-4がx軸方向に交互に配置されたパターンである。具体的には、第3の透明電極320-3は、y軸方向に対して第3の角度θ3を有する方向に延在し、y軸方向に対して第4の角度θ4を有する方向に屈曲する。第4の透明電極320-4は、y軸方向に対して第4の角度θ4を有する方向に延在し、y軸方向に対して第3の角度θ3を有する方向に屈曲する。
 第1の角度θ1は、第3の角度θ3と同じであってもよく、異なっていてもよい。また、第2の角度θ2は、第4の角度θ4と同じであってもよく、異なっていてもよい。なお、透明電極320は、くの字形状を有するため、第1の角度θ1と第2の角度θ2とは正負の符号が逆であり、第3の角度θ3と第4の角度θ4とは正負の符号が逆である。第1の角度θ1、第2の角度θ2、第3の角度θ3、および第4の角度θ4の各々は、-5度以上+5度以下であり、好ましくは-3度以上+3度以下である。なお、第1の角度θ1、第2の角度θ2、第3の角度θ3、および第4の角度θ4という違いを有するが、4つの液晶セル300の各々の第1の透明電極320-1、第2の透明電極320-2、第3の透明電極320-3、および第4の透明電極320-4の延在方向は、基本的には同じである。すなわち、光学素子30は、4つの液晶セル300のうちの2つが、他の2つの液晶セル300に対して90度回転しなければならないような構成ではなく、各液晶セル300の回転とは関係なく、4つの液晶セル300が積層された構成を有する。
 また、図12中に示す矢印Eは、第1の基板310-1の第1の電極パターンに対する配向膜の初期配向の向きを示している。矢印Eに示す通り、当該初期配向方向はy軸に平行である。
 同様に、図12中に示す矢印Fは、第2の基板310-2の第2の電極パターンに対する配向膜の初期配向の向きを示している。矢印Fに示す通り、当該初期配向方向はx軸に平行である。
 4つの液晶セル300は、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。具体的には、第1の液晶セル300-1、第2の液晶セル300-2、第3の液晶セル300-3、および第4の液晶セル300-4は、互いに第1の角度θ1および第2の角度θ2の少なくとも一方が異なる。例えば、各液晶セル300において第1の角度θ1および第2の角度θ2が、それぞれ、第3の角度θ3および第4の角度θ4と同じである場合(例えば、第1の液晶セル300-1の第1の角度θ1および第2の角度θ2と、第3の角度θ3および第4の角度θ4がそれぞれ同じ場合)、第1の液晶セル300-1、第2の液晶セル300-2、第3の液晶セル300-3、および第4の液晶セル300-4の(第1の角度θ1,第2の角度θ2)は、それぞれ、(-1度,+3度)、(+1度,-3度)、(+3度,-1度)、および(-3度,+1度)である。この場合、各液晶セル300での拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。また、透明電極320がくの字形状を有していることにより、透明電極320が周期性を有して重畳することを防止することができる。
 以上、説明したように、本発明の一実施形態に係る光学素子30では、透明電極320が周期性を有して重畳することを防止するとともに、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子30では、モアレおよび色付きが抑制された均一な配光を得ることができる。
<第3実施形態の変形例1>
 図13を参照して、本発明の一実施形態に係る光学素子30の一変形例である光学素子30Aについて説明する。以下では、光学素子30Aの構成が光学素子30の構成と同様であるとき、光学素子30Aの構成の説明を省略する場合がある。
 図13は、本発明の一実施形態に係る光学素子30Aの液晶セル300Aの透明電極320Aの構成を説明する模式図である。光学素子30Aは、4つの液晶セル300Aを含む。すなわち、光学素子30Aでは、第1の液晶セル300A-1、第2の液晶セル300A-2、第3の液晶セル300A-3、および第4の液晶セル300A-4が順次積層されている。第1の液晶セル300A-1、第2の液晶セル300A-2、第3の液晶セル300A-3、および第4の液晶セル300A-4の各々は、第1の透明電極320A-1および第2の透明電極320A-2が設けられた第1の基板310A-1、ならびに第3の透明電極320A-3および第4の透明電極320A-4が設けられた第2の基板310A-2を含む。
 第1の基板310A-1および第2の基板310A-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、くの字形状を有する第1の透明電極320A-1および第2の透明電極320A-2がy軸方向に交互に配置されたパターンであり、第1の透明電極320A-1および第2の透明電極320A-2の間の電極間ピッチを少なくとも2つ含む(図13の電極間ピッチp1、p2参照)。また、第2の電極パターンは、くの字形状を有する第3の透明電極320A-3および第4の透明電極320A-4がx軸方向に交互に配置されたパターンであり、第3の透明電極320A-3および第4の透明電極320A-4の間の電極間ピッチを少なくとも2つ含む(図13の電極間ピッチp3、p4参照)。
 4つの液晶セル300Aは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。具体的には、第1の液晶セル300A-1、第2の液晶セル300A-2、第3の液晶セル300A-3、および第4の液晶セル300A-4は、互いに第1の角度θ1および第2の角度θ2の少なくとも一方が異なる。例えば、各液晶セル300Aにおいて第1の角度θ1および第2の角度θ2が、それぞれ、第3の角度θ3および第4の角度θ4と同じである場合(例えば、第1の液晶セル300A-1の第1の角度θ1および第2の角度θ2と、第3の角度θ3および第4の角度θ4がそれぞれ同じ場合)、第1の液晶セル300A-1、第2の液晶セル300A-2、第3の液晶セル300A-3、および第4の液晶セル300A-4の(第1の角度θ1,第2の角度θ2)は、それぞれ、(-1度,+3度)、(+1度,-3度)、(+3度,-1度)、および(-3度,+1度)である。この場合、各液晶セル300Aでの拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。また、透明電極320Aがくの字形状を有していることにより、透明電極320Aが周期性を有して重畳することを防止することができる。
 なお、第1の透明電極320A-1の複数の櫛歯部の幅w1は、それぞれ異なっていてもよく、一部が同じであってもよい。第2の透明電極320A-2の複数の櫛歯部の幅w2、第3の透明電極320A-3の複数の櫛歯部の幅w3、および第4の透明電極320A-4の複数の櫛歯部の幅w4も同様である。また、隣接する2つの第1の透明電極320A-1と第2の透明電極320A-2との間の間隔は、すべて同じであってよく、一部が同じであってもよく、またはすべて異なっていてもよい。第1の透明電極320A-1の櫛歯部の幅w1と第2の透明電極320A-2の櫛歯部の幅w2とが異なり、および/または第1の透明電極320A-1および第2の透明電極320A-2の櫛歯部の間隔が異なることにより、第1の電極パターンにおいて不等ピッチが実現される。第2の電極パターンについても同様である。
 以上、説明したように、本発明の一実施形態に係る光学素子30Aでは、透明電極320Aが周期性を有して重畳することを防止するとともに、特定の波長の光強度が強められることを抑制することができる。したがって、光学素子30Aでは、モアレおよび色付きが抑制された均一な配光を得ることができる。
<第3実施形態の変形例2>
 図14を参照して、本発明の一実施形態に係る光学素子30の別の変形例である光学素子30Bについて説明する。以下では、光学素子30Bの構成が光学素子30または光学素子30Aの構成と同様であるとき、光学素子30Bの構成の説明を省略する場合がある。
 図14は、本発明の一実施形態に係る光学素子30Bの液晶セル300Bの透明電極320Bの構成を説明する模式図である。光学素子30Bは、4つの液晶セル300Bを含む。すなわち、光学素子30Bでは、第1の液晶セル300B-1、第2の液晶セル300B-2、第3の液晶セル300B-3、および第4の液晶セル300B-4が順次積層されている。第1の液晶セル300B-1、第2の液晶セル300B-2、第3の液晶セル300B-3、および第4の液晶セル300B-4の各々は、第1の透明電極320B-1および第2の透明電極320B-2が設けられた第1の基板310B-1、ならびに第3の透明電極320B-3および第4の透明電極320B-4が設けられた第2の基板310B-2を含む。
 第1の基板310B-1および第2の基板310B-2上には、それぞれ、液晶を駆動するための第1の電極パターンおよび第2の電極パターンが形成されている。第1の電極パターンは、くの字形状を有する第1の透明電極320B-1および第2の透明電極320B-2がy軸方向に交互に配置されたパターンである。また、第2の電極パターンは、くの字形状を有する第3の透明電極320B-3および第4の透明電極320B-4がx軸方向に交互に配置されたパターンである。
 第1の液晶セル300B-1および第3の液晶セル300B-3の各々の第1の電極パターンは、第1の透明電極320B-1および第2の透明電極320B-2の間の電極間ピッチを少なくとも2つ含む(図14の電極間ピッチp1、p2)。また、第1の液晶セル300B-1および第3の液晶セル300B-3の各々の第2の電極パターンは、第3の透明電極320B-3および第4の透明電極320B-4の間の電極間ピッチを少なくとも2つ含む(図14の電極間ピッチp3、p4)。
 一方、第2の液晶セル300B-2および第4の液晶セル300B-4の各々の第1の電極パターンは、第1の透明電極320B-1および第2の透明電極320B-2の間の電極間ピッチを1つ含む(図14の電極間ピッチp5)。また、第2の液晶セル300B-2および第4の液晶セル200B-4の各々の第2の電極パターンは、第3の透明電極320B-3および第4の透明電極320B-4の間の電極間ピッチを1つ含む(図14の電極間ピッチp6)。すなわち、第2の液晶セル300B-2および第4の液晶セル300B-4の各々の電極パターンは、いずれも等ピッチである。なお、第2の液晶セル300B-2および第4の液晶セル300B-4の各々において、第1の電極パターンの電極間ピッチp5と第2の電極パターンの電極間ピッチp6とは、同じであってもよく、異なっていてもよい。また、これら第1の電極パターンの電極間ピッチp5と第2の電極パターンの電極間ピッチp6が同じである構成も採用可能である。
 第1の液晶セル300B-1、第2の液晶セル300B-2、第3の液晶セル300B-3、および第4の液晶セル300B-4は、互いに第1の角度θ1および第2の角度θ2の少なくとも一方が異なる。例えば、各液晶セル300Bの第1の角度θ1および第2の角度θ2が、それぞれ、第3の角度θ3および第4の角度θ4と同じである場合(例えば、第1の液晶セル300B-1の第1の角度θ1および第2の角度θ2と、第3の角度θ3および第4の角度θ4がそれぞれ同じ場合)、第1の液晶セル300B-1、第2の液晶セル300B-2、第3の液晶セル300B-3、および第4の液晶セル300B-4の(第1の角度θ1,第2の角度θ2)は、それぞれ、(-1度,+3度)、(+1度,-3度)、(+3度,-1度)、および(-3度,+1度)である。そのため、第2の液晶セル300B-2および第4の液晶セル300B-4の電極間ピッチが同じ場合でも、第1の角度θ1および第2の角度θ2の少なくとも一方が異なるため、4つの液晶セル300Bは、互いに異なる第1の電極パターンおよび第2の電極パターンを有する構成である。この場合、各液晶セル300Bでの拡散状態が変化するため、特定の波長の光強度が強められることを抑制することができる。また、透明電極320Bがくの字形状を有していることにより、透明電極320Bが周期性を有して重畳することを防止することができる。
 なお、第1の液晶セル300B-1および第3の液晶セル300B-3の各々における第1の透明電極320B-1の複数の櫛歯部の幅w1は、それぞれ異なっていてもよく、一部が同じであってもよい。第1の液晶セル300B-1および第3の液晶セル300B-3の各々における第2の透明電極320B-2の複数の櫛歯部の幅w2、第3の透明電極320B-3の複数の櫛歯部の幅w3、および第4の透明電極320B-4の複数の櫛歯部の幅w4も同様である。また、第1の液晶セル300B-1および第3の液晶セル300B-3において、隣接する2つの第1の透明電極320B-1と第2の透明電極320B-2との間の間隔は、すべて同じであってよく、一部が同じであってもよく、またはすべて異なっていてもよい。第1の透明電極320B-1の櫛歯部の幅w1と第2の透明電極320B-2の櫛歯部の幅w2とが異なり、および/または第1の透明電極320B-1および第2の透明電極320B-2の櫛歯部の間隔が異なることにより、第1の電極パターンにおいて不等ピッチが実現される。第2の電極パターンについても同様である。
 上述した光学素子30Bは、第1の液晶セル300B-1および第3の液晶セル300B-3の各電極パターンが不等ピッチであって、第2の液晶セル300B-2および第4の液晶セル300B-4の各電極パターンが等ピッチである構成を有する。しかしながら、光学素子30Bは、第1の液晶セル300B-1および第3の液晶セル300B-3の各電極パターンが等ピッチであって、第2の液晶セル300B-2および第4の液晶セル300B-4の各電極パターンが不等ピッチである構成も採用可能である。また、光学素子30Bは、第1の液晶セル300B-1および第4の液晶セル300B-4の各電極パターンが不等ピッチであって、第2の液晶セル300B-2および第3の液晶セル300B-3の各電極パターンが等ピッチである構成も採用可能である。さらに、4つの液晶セル300Bのうちの1つまたは3つが不等ピッチであって、他の3つまたは1つが等ピッチである構成、またはその逆の構成も採用可能である。
 以上、説明したように、本発明の一実施形態に係る光学素子30Bでは、透明電極320Bが周期性を有して重畳することを防止するとともに、特定の光強度が強められることを抑制することができる。したがって、光学素子30Bでは、モアレおよび色付きが抑制された均一な配光を得ることができる。
 本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に相当し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。例えば、上述の各実施形態に対して、当業者が適宜、構成要素の追加、削除もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、本実施形態において態様によりもたらされる他の作用効果について本明細書の記載から明らかなもの、または当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。
10、10A、10B、20、20A、20B、30、30A、30B:光学素子、
100、100A、100B、200、200A、200B、300、300A、300B:液晶セル、
110、110A、110B、210、210A、210B、310、310A、310B:基板、
120、120A、120B、220、220A、220B、320、320A、320B:透明電極、
130:配向膜、
140:シール材、
150:液晶層、
160:光学弾性樹脂層、
1000-1:第1の偏光、
1000-2:第2の偏光
 

Claims (13)

  1.  順次積層された少なくとも4つの液晶セルを含み、
     前記少なくとも4つの液晶セルの各々は、
      第1の方向に延在する第1の透明電極および第2の透明電極が、前記第1の方向と交差する第2の方向に交互に配置された第1の基板と、
      前記第2の方向に延在する第3の透明電極および第4の透明電極が、前記第1の方向に交互に配置された第2の基板と、
      前記第1の基板と前記第2の基板との間の液晶層と、を含む、光学素子。
  2.  少なくとも2つの異なる電極間ピッチを有するように、前記第1の透明電極および前記第2の透明電極が配置され、
     少なくとも2つの異なる電極間ピッチを有するように、前記第3の透明電極および前記第4の透明電極が配置されている、請求項1に記載の光学素子。
  3.  前記第1の透明電極、前記第2の透明電極、前記第3の透明電極、および前記第4の透明電極の少なくとも2つは、異なる幅を有する、請求項1または請求項2に記載の光学素子。
  4.  順次積層された第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルを含み、
     前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの各々は、
      第1の方向に対して第1の角度を有する方向に延在する第1の透明電極および第2の透明電極が、前記第1の方向と直交する第2の方向に交互に配置された第1の基板と、
      前記第2の方向に対して第2の角度を有する方向に延在する第3の透明電極および第4の透明電極が、前記第1の方向に交互に配置された第2の基板と、
      前記第1の基板と前記第2の基板との間の液晶層と、を含む、光学素子。
  5.  前記第1の角度は、前記第2の角度と同じである、請求項4に記載の光学素子。
  6.  前記第1の角度は、前記第2の角度と異なる、請求項4に記載の光学素子。
  7.  前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの前記第1の角度は、互いに異なる、請求項4乃至請求項6のいずれか一項に記載の光学素子。
  8.  順次積層された第1の液晶セル、第2の液晶セル、第3の液晶セル、および第4の液晶セルを含み、
     前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの各々は、
      第1の方向に対して第1の角度を有する方向に延在し、前記第1の方向に対して第2の角度を有する方向に屈曲する第1の透明電極、および前記第1の方向に対して前記第2の角度を有する方向に延在し、前記第1の方向に対して前記第1の角度を有する方向に屈曲する第2の透明電極が、前記第1の方向と直交する第2の方向に交互に配置された第1の基板と、
      前記第2の方向に対して第3の角度を有する方向に延在し、前記第2の方向に対して第4の角度を有する方向に屈曲する第3の透明電極、および前記第2の方向に対して前記第4の角度を有する方向に延在し、前記第2の方向に対して前記第3の角度を有する方向に屈曲する第4の透明電極が、前記第1の方向に交互に配置された第2の基板と、
      前記第1の基板と前記第2の基板との間の液晶層と、を含む、光学素子。
  9.  前記第1の角度は、前記第3の角度と同じであり、
     前記第2の角度は、前記第4の角度と同じである、請求項8に記載の光学素子。
  10.  前記第1の角度は、前記第3の角度と異なり、
     前記第2の角度は、前記第4の角度と異なる、請求項8に記載の光学素子。
  11.  前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの前記第1の角度は、互いに異なり、
     前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの前記第2の角度は、互いに異なる、請求項8乃至請求項10のいずれか一項に記載の光学素子。
  12.  前記第1の液晶セル、前記第2の液晶セル、前記第3の液晶セル、および前記第4の液晶セルの少なくとも2つにおいて、
      少なくとも2つの異なる電極間ピッチを有するように、前記第1の透明電極および前記第2の透明電極が配置され、
      少なくとも2つの異なる電極間ピッチを有するように、前記第3の透明電極および前記第4の透明電極が配置されている、請求項4乃至請求項11のいずれか一項に記載の光学素子。
  13.  前記少なくとも2つは、前記第2の液晶セルおよび前記第4の液晶セルを含む、請求項12に記載の光学素子。
PCT/JP2022/037414 2021-11-25 2022-10-06 光学素子 WO2023095459A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020247016997A KR20240090767A (ko) 2021-11-25 2022-10-06 광학 소자
EP22898244.3A EP4439165A1 (en) 2021-11-25 2022-10-06 Optical element
CN202280077680.XA CN118302715A (zh) 2021-11-25 2022-10-06 光学元件
JP2023563540A JPWO2023095459A1 (ja) 2021-11-25 2022-10-06
CA3237857A CA3237857A1 (en) 2021-11-25 2022-10-06 Optical element
MX2024006429A MX2024006429A (es) 2021-11-25 2022-10-06 Elemento optico.
US18/671,439 US20240310679A1 (en) 2021-11-25 2024-05-22 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191218 2021-11-25
JP2021-191218 2021-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/671,439 Continuation US20240310679A1 (en) 2021-11-25 2024-05-22 Optical element

Publications (1)

Publication Number Publication Date
WO2023095459A1 true WO2023095459A1 (ja) 2023-06-01

Family

ID=86539235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037414 WO2023095459A1 (ja) 2021-11-25 2022-10-06 光学素子

Country Status (8)

Country Link
US (1) US20240310679A1 (ja)
EP (1) EP4439165A1 (ja)
JP (1) JPWO2023095459A1 (ja)
KR (1) KR20240090767A (ja)
CN (1) CN118302715A (ja)
CA (1) CA3237857A1 (ja)
MX (1) MX2024006429A (ja)
WO (1) WO2023095459A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110068A (ja) * 1992-09-29 1994-04-22 Toshiba Corp 液晶表示装置
JP2005317879A (ja) 2004-04-30 2005-11-10 Citizen Electronics Co Ltd 液晶レンズ付き発光装置
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
JP2012252993A (ja) * 2011-05-10 2012-12-20 Sony Corp 照明装置および表示装置
JP2014160277A (ja) 2007-04-17 2014-09-04 Koninklijke Philips Nv ビーム成形デバイス
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
WO2021149407A1 (ja) * 2020-01-24 2021-07-29 株式会社ジャパンディスプレイ 光制御装置及び照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110068A (ja) * 1992-09-29 1994-04-22 Toshiba Corp 液晶表示装置
JP2005317879A (ja) 2004-04-30 2005-11-10 Citizen Electronics Co Ltd 液晶レンズ付き発光装置
JP2014160277A (ja) 2007-04-17 2014-09-04 Koninklijke Philips Nv ビーム成形デバイス
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
JP2012252993A (ja) * 2011-05-10 2012-12-20 Sony Corp 照明装置および表示装置
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
WO2021149407A1 (ja) * 2020-01-24 2021-07-29 株式会社ジャパンディスプレイ 光制御装置及び照明装置

Also Published As

Publication number Publication date
CA3237857A1 (en) 2023-06-01
US20240310679A1 (en) 2024-09-19
MX2024006429A (es) 2024-07-29
CN118302715A (zh) 2024-07-05
KR20240090767A (ko) 2024-06-21
EP4439165A1 (en) 2024-10-02
JPWO2023095459A1 (ja) 2023-06-01

Similar Documents

Publication Publication Date Title
JP5323013B2 (ja) 液晶表示装置
US12038655B2 (en) Optical element
US20240045276A1 (en) Optical device
WO2015190208A1 (ja) 配光調整シートおよび表示装置
US20240004243A1 (en) Liquid crystal light control device
KR100255058B1 (ko) 넓은시야각및높은콘트라스트를갖는액정표시장치
JP2007249243A (ja) 液晶表示装置
US20230375159A1 (en) Optical element and lighting device
JP2005351953A (ja) 双安定化型液晶表示装置
WO2023095459A1 (ja) 光学素子
WO2023074106A1 (ja) 光学素子
JP4749391B2 (ja) 液晶表示装置
JP7565454B2 (ja) 光学素子の駆動方法
JP7510002B2 (ja) 光学素子
WO2023135937A1 (ja) 照明装置
JP2007256989A (ja) 液晶表示装置
WO2024034293A1 (ja) 光学装置
US11347118B2 (en) Liquid crystal display panel comprising a resin layer having a height difference between a portion over an electrode and a portion within a slit and method for manufacturing the same
JP7053178B2 (ja) 液晶表示装置
JP2021144115A (ja) 液晶表示パネルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563540

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3237857

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247016997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280077680.X

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024010277

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022898244

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022898244

Country of ref document: EP

Effective date: 20240625

ENP Entry into the national phase

Ref document number: 112024010277

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240523