WO2023095444A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2023095444A1
WO2023095444A1 PCT/JP2022/036706 JP2022036706W WO2023095444A1 WO 2023095444 A1 WO2023095444 A1 WO 2023095444A1 JP 2022036706 W JP2022036706 W JP 2022036706W WO 2023095444 A1 WO2023095444 A1 WO 2023095444A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
resin portion
axial direction
yoke
Prior art date
Application number
PCT/JP2022/036706
Other languages
English (en)
French (fr)
Inventor
卓司 山田
葉子 田村
竜 文字山
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to CN202280074367.0A priority Critical patent/CN118202553A/zh
Priority to EP22898229.4A priority patent/EP4439932A1/en
Publication of WO2023095444A1 publication Critical patent/WO2023095444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Definitions

  • the present invention relates to motors.
  • the temperature of the rotor rises due to frictional heat from rotation and heat transferred from the stator coil. At that time, if the heat radiation from the rotor is insufficient, the motor efficiency is lowered due to the temperature rise.
  • the object is to provide a motor that can suppress a decrease in motor efficiency.
  • the motor includes a rotor and a stator radially facing the rotor.
  • the rotor includes a yoke, magnets, and a resin portion covering the yoke and the magnets. The resin portion is arranged adjacent to the magnet in the circumferential direction.
  • a decrease in motor efficiency can be suppressed.
  • FIG. 1 is a top perspective view showing an example of a molded rotor according to the embodiment.
  • FIG. 2 is a top perspective view showing an example of a rotor before being covered with resin in the embodiment.
  • FIG. 3 is a side cross-sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 4 is another side sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 5 is an enlarged top view showing an example of the rotor before being covered with resin in the embodiment.
  • FIG. 6 is a cross-sectional perspective view showing an example of a rotor in the embodiment.
  • FIG. 7 is an enlarged cross-sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 1 is a top perspective view showing an example of a molded rotor according to the embodiment.
  • FIG. 2 is a top perspective view showing an example of a rotor before being covered with resin in the embodiment.
  • FIG. 3 is a
  • FIG. 8 is an enlarged side sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 9 is another enlarged side cross-sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 10 is a bottom perspective view showing an example of the molded rotor in the embodiment.
  • FIG. 11 is a side cross-sectional view showing an example of the motor in the embodiment.
  • FIG. 12 is a bottom perspective view showing an example of a molded rotor in the first modified example.
  • FIG. 13 is a top perspective view showing an example of a molded rotor in the first modified example.
  • FIG. 14 is a side sectional view showing an example of the motor in the first modified example.
  • FIG. 15 is a top perspective view showing an example of a molded rotor in the second modified example.
  • FIG. 16 is a top perspective view showing an example of a molded rotor in the third modified example.
  • FIG. 17 is a top perspective view showing an example of the rotor before being covered with resin in the third modification.
  • the illustrated axial direction is the direction in which the shaft 19, which will be described later, extends. Let one direction be the 1st direction among axial directions, and let the other be the 2nd direction.
  • the illustrated radial direction is the radial direction orthogonal to the axial direction in the embodiment.
  • the illustrated circumferential direction is the direction that coincides with the rotation direction of the motor 1 in the embodiment.
  • FIG. 1 is a top perspective view showing an example of a molded rotor according to the embodiment.
  • FIG. 2 is a top perspective view showing an example of a rotor before being covered with resin in the embodiment.
  • the rotor covered with resin may be referred to as molded rotor 5 and the rotor before being covered with resin may be referred to as rotor 2 .
  • the molded rotor 5 shown in FIG. 1 is formed by covering the rotor 2 shown in FIG.
  • the resin member 60 is formed by, for example, filling the rotor 2 with the magnets 40 in a mold, filling the mold with liquid resin, and curing the resin.
  • the magnet 40 is covered with the resin member 60 and is not visually recognized.
  • the resin forming the resin member 60 is non-magnetic or soft magnetic, and contains, for example, aluminum or silicon.
  • the resin may be a thermosetting resin or a thermoplastic resin. Note that the resin member 60 is an example of a resin portion.
  • the rotor 2 includes a rotor core 20 and magnets 40.
  • the rotor core 20 is configured by laminating a plurality of flat cores made of electromagnetic steel sheets.
  • the rotor core 20 includes an annular portion 23 and a yoke 24 protruding radially outward from the annular portion 23 .
  • the yoke 24 is formed with, for example, a crimped portion 29 for fitting flat cores to each other.
  • the magnet 40 is made of, for example, a rare earth magnet such as a neodymium magnet. Also, the magnet 40 may be a bonded magnet or a sintered magnet.
  • the magnet 40 includes a first magnet 41 and a second magnet 42. As shown in FIG. 2 , the first magnet 41 is arranged in the first hole 21 of the rotor core 20 and the second magnet 42 is arranged in the second hole 22 of the rotor core 20 .
  • the first magnet 41 is shorter than the first hole 21 in the radial direction.
  • the radially outer surface 45 of the first magnet 41 is positioned radially inward of the outer peripheral side end surface 25 of the yoke 24 .
  • a gap in a portion of the first hole portion 21 inside the radially inner end face 46 of the first magnet 41 constitutes a flux barrier 26.
  • FIG. 5 is an enlarged top view showing an example of the rotor before being covered with resin in the embodiment.
  • FIG. 5 is an enlarged view of the portion indicated by the frame F1 in FIG.
  • the flux barrier 26 is for preventing the magnetic flux flowing to the stator 10 side from decreasing due to the magnetic flux emitted from the magnetic poles of the magnets 40 of the rotor 2 flowing through the rotor 2 . Moreover, as shown in FIG. 5, the flux barriers 26 are formed at positions sandwiched between the second holes 22 adjacent to each other in the circumferential direction.
  • the molded rotor 5 is formed by filling the rotor 2 shown in FIG.
  • the resin member 60 is also formed at positions adjacent to the first magnet 41 and the second magnet 42 in the circumferential direction.
  • FIG. 6 is a cross-sectional perspective view showing an example of a rotor in the embodiment.
  • FIG. 7 is an enlarged cross-sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 6 shows a cross section taken along line AA of FIG.
  • FIG. 7 is an enlarged view of the portion indicated by frame F2 in FIG.
  • the radial portion 51 of the resin member 60 extends radially and is formed between the surface 47 of the first magnet 41 and the yoke 24 in the circumferential direction. That is, the radial portion 51 of the resin member 60 is arranged adjacent to the first magnet 41 in the circumferential direction, and the first magnet 41 faces the yoke 24 in the circumferential direction with the radial portion 51 interposed therebetween.
  • the radially outer surface 45 of the first magnet 41 is covered with the outer peripheral portion 52 of the resin member 60 .
  • the end face 25 on the outer peripheral side of the yoke 24 of the rotor 2 is exposed without being covered with the resin member 60, as shown in FIGS.
  • the radially outer surface 55 of the outer peripheral portion 52 is formed flush with the outer peripheral end surface 25 of the yoke 24 of the rotor core 20, as shown in FIGS.
  • the radially outer surface 55 and the outer peripheral end surface 25 of the yoke 24 are formed continuously.
  • the second hole 22 shown in FIG. 5 is also filled with resin.
  • the mold rotor 5 includes a thin portion 61, a stepped portion 62, and a recessed portion 63 in the first axial direction.
  • the thin portion 61, the stepped portion 62, and the recessed portion 63 are all formed in an annular shape and formed substantially concentrically from the radially outer side to the radially inner side.
  • the thin portion 61 covers the first magnet 41 from the first axial direction side on the outer peripheral side of the rotor 2 in the radial direction.
  • the thin portion 61 does not cover the yoke 24 of the rotor 2, as shown in FIG. That is, the yoke 24 is exposed in the first axial direction.
  • FIGS. 3 and 4 the recessed portion 63 protrudes from the thin portion 61 toward the first direction in the axial direction.
  • the end surface of the concave portion 63 on the first axial direction side is positioned closer to the second axial direction side than the end surface of the stepped portion 62 on the first axial direction side.
  • FIG. 8 is an enlarged side sectional view showing an example of the molded rotor in the embodiment.
  • FIG. 9 is another enlarged side cross-sectional view showing an example of the molded rotor in the embodiment. 8 is an enlarged view of the portion indicated by the frame F3 in FIG. 3, and FIG. 9 is an enlarged view of the portion indicated by the frame F4 in FIG.
  • the recess 63 is arranged at a position facing the flux barrier 26 of the rotor core 20 and the second magnet 42 in the axial direction.
  • resin injection traces 69 forming the resin member 60 are formed in the concave portion 63 at approximately equal intervals in the circumferential direction.
  • the injection trace 69 is formed at a position facing the flux barrier 26 and not at a position facing the second magnet 42 in the axial direction.
  • the resin injected into the flux barrier 26 further forms an inner surface portion 56 as shown in FIG.
  • FIG. 10 is a bottom perspective view showing an example of the molded rotor in the embodiment.
  • the first magnet 41 is covered by the first lower surface portion 64 of the resin member 60 from the second axial direction side
  • the second magnet 42 is covered by the second lower surface portion 65 of the resin member 60 . It is covered from the second direction side.
  • the thickness (size in the axial direction) of the first lower surface portion 64 and the second lower surface portion 65 is substantially the same as the thickness of the thin portion 61 .
  • the yoke 24 is exposed without being covered with the resin member 60 also in the second axial direction.
  • FIG. 11 is a side cross-sectional view showing an example of the motor in the embodiment.
  • the motor 1 in the embodiment is a so-called inner rotor type motor in which the stator 10 is arranged radially outside the molded rotor 5 .
  • the stator 10 includes a stator core 11, insulators 12, and coils 13.
  • a substrate 15 is further mounted on the stator 10 .
  • the mold rotor 5 is rotatably supported by the shaft 19 via the bearing 18 .
  • the motor 1 is housed in a housing 17 .
  • the motor 1 further includes a sensor 31.
  • the sensor 31 detects, for example, the rotational speed, rotational angle, etc. of the molded rotor 5 by detecting the magnetic flux of the first magnet 41 of the molded rotor 5 .
  • the sensor 31 is supported by, for example, a sensor holder 32 fixed to the housing 17 .
  • the sensor 31 is arranged on the first direction side in the axial direction, and faces the molded rotor 5 arranged on the second direction side in the axial direction while being spaced apart in the axial direction.
  • the mold rotor 5 is arranged such that the thin portion 61, the stepped portion 62 and the recessed portion 63 are located on the axial first direction side.
  • the sensor 31 and the first magnet 41 of the mold rotor 5 face each other with the thin portion 61 interposed therebetween.
  • the end surface of the thin portion 61 on the first direction side in the axial direction is located on the second direction side in the axial direction with respect to the end surface of the stepped portion 62 on the first direction side in the axial direction.
  • the motor 1 in the embodiment includes the rotor 2 and the stator 10 facing the rotor 2 in the radial direction.
  • the rotor 2 includes a yoke 24 , magnets 41 , and a resin member 60 covering the yoke 24 and the magnets 41 .
  • the resin member 60 is arranged adjacent to the magnet 41 in the circumferential direction. According to such a configuration, the surface area of the resin member 60 in contact with the magnet 41 can be increased, so that the stability of the magnet 41 is improved, and heat dissipation from the rotor 2 is improved, thereby preventing a decrease in motor efficiency. can be suppressed.
  • FIG. 12 is a bottom perspective view showing an example of a molded rotor in the first modified example.
  • the same parts as those shown in the previously described drawings are given the same reference numerals, and overlapping explanations are omitted.
  • a concave portion 73 is formed in the surface of the mold rotor 7 on the second axial direction side in the first modified example, and an injection mark 79 is formed in the concave portion 73 .
  • the shapes of the recess 73 and the injection trace 79 are substantially the same as the shapes of the recess 63 and the injection trace 69 formed on the first axial direction side of the mold rotor 5 shown in FIG.
  • the thickness (size in the axial direction) of the first lower surface portion 71 of the molded rotor 7 is greater than the thickness of the thin portion 61 of the molded rotor 5 in the embodiment.
  • the first magnets 41 are covered by the first upper surface portion 74 of the resin member 70 from the axial first direction side
  • the second magnets 42 are covered by the first upper surface portion 74 of the resin member 70 . 2 is covered from the first axial direction side by the upper surface portion 75 .
  • a portion corresponding to the stepped portion 62 is not formed on either the first direction side or the second direction side in the axial direction.
  • FIG. 14 is a side sectional view showing an example of the motor in the first modified example.
  • a motor 1 ⁇ /b>A in the first modification includes a molded rotor 7 instead of the molded rotor 5 . 14, illustration of the bearing 18, the shaft 19, etc. is omitted.
  • the senor 31 faces the first upper surface portion 74 of the mold rotor 7 in the axial direction. That is, the sensor 31 and the first magnet 41 of the mold rotor 7 face each other with the first upper surface portion 74 interposed therebetween.
  • the thickness (size in the axial direction) of the first upper surface portion 74 is small, it is possible to suppress deterioration in detection accuracy, as in the embodiment.
  • the thickness of the first lower surface portion 71 is not limited to this, and the thickness of the first lower surface portion 71 is greater than the thickness of the first upper surface portion 74. can also be large. Also in this configuration, since the thickness of the first upper surface portion 74 is small, it is possible to suppress deterioration in detection accuracy.
  • the end face of the yoke 24 on the second axial direction side are also covered with the resin member 70 .
  • the surface area of the resin member 70 can be increased, so that the heat dissipation from the rotor 2 can be further improved.
  • the thickness of the first upper surface portion 74 facing the sensor 31 in the axial direction is small, it is possible to suppress deterioration in the detection accuracy of the sensor 31 .
  • the first lower surface portion 64 of the molded rotor 5 faces the sensor 31 arranged on the first direction side.
  • the thickness (size in the axial direction) of the first lower surface portion 64 is small, deterioration in the detection accuracy of the sensor 31 can be suppressed.
  • FIG. 15 is a top perspective view showing an example of a molded rotor in the second modified example.
  • the molded rotor 8 shown in FIG. 15 further includes a ring portion 68 made of resin on the outer peripheral portion of the surface on the first direction side of the molded rotor 5 in the embodiment.
  • the ring portion 68 may be formed integrally with the resin member 60 such as the thin portion 61 or may be formed as a separate member and attached to the rotor core 20 .
  • FIG. 16 is a top perspective view showing an example of a molded rotor in the third modified example.
  • FIG. 17 is a top perspective view showing an example of the rotor before being covered with resin in the third modification.
  • the rotor 3 of the third modification includes a rotor core 80, a first magnet M1, a second magnet M2 and a third magnet M3.
  • the first magnet M1 is arranged between the yoke 84 of the rotor core 80 and the annular portion 83 in the radial direction.
  • the second magnet M2 and the third magnet M3 are arranged between two yokes 84 adjacent in the circumferential direction.
  • the first magnet M1, the second magnet M2 and the third magnet M3 are arranged adjacent to each other in the circumferential direction.
  • the first radial portion 92 of the resin member 90 in the molded rotor 9 is formed between the second magnet M2 and the yoke 84 in the circumferential direction.
  • the second radial portion 93 of the resin member 90 is formed between the third magnet M3 and the yoke 84 in the circumferential direction.
  • the resin member 90 may also be formed in the gap between the second magnet M2 and the third magnet M3 in the circumferential direction.
  • the radially outer surfaces of the second magnet M2 and the third magnet M3 are covered with the resin member 90 .
  • the yoke 84 , the annular portion 83 , and the end surfaces of the first magnet M ⁇ b>1 , the second magnet M ⁇ b>2 , and the third magnet M ⁇ b>3 on the first direction side in the axial direction are covered with the resin portion 91 .
  • the resin portion 91 As a result, by improving the heat dissipation from the mold rotor 9, it is possible to suppress a decrease in motor efficiency.
  • the material of the yoke shown in the embodiment and each modified example is not limited to iron, and may be another magnetic material.
  • the rotors or stators described in the embodiments and modifications of the present invention may be mounted on actuators, electronic devices, and the like.
  • the rotor or stator according to the embodiments and modifications of the present invention is accommodated in a frame, housing, body, or the like of an actuator or an electronic device, and used as a drive element for the actuator or electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

モータ(1)は、ロータ(2)と、径方向においてロータ(2)と対向するステータ(10)とを備える。ロータ(2)は、ヨーク(24)と、マグネット(40)と、ヨーク(24)とマグネット(40)とを覆う樹脂部(60)と、を備える。周方向において、樹脂部(60)が、マグネット(40)と隣接して配置される。

Description

モータ
 本発明は、モータに関する。
 モータにおいて、ロータを樹脂モールドにより成形したモールドモータが知られている。
特開2019-122190号公報 特開平7-312852号公報
 ロータは、回転による摩擦熱や、ステータのコイルから伝わる熱などにより、温度が上昇する。その際、ロータからの放熱が不充分であれば、温度上昇によるモータ効率低下の原因となる。
 一つの側面では、モータ効率の低下を抑制できるモータを提供することを目的とする。
 一つの態様において、モータは、ロータと、径方向において前記ロータと対向するステータとを備える。前記ロータは、ヨークと、マグネットと、前記ヨークと前記マグネットとを覆う樹脂部と、を備える。周方向において、前記樹脂部が、前記マグネットと隣接して配置される。
 一つの態様によれば、モータ効率の低下を抑制できる。
図1は、実施形態におけるモールドロータの一例を示す上面斜視図である。 図2は、実施形態における、樹脂で覆われる前のロータの一例を示す上面斜視図である。 図3は、実施形態におけるモールドロータの一例を示す側断面図である。 図4は、実施形態におけるモールドロータの一例を示す別の側断面図である。 図5は、実施形態における、樹脂で覆われる前のロータの一例を示す拡大上面図である。 図6は、実施形態におけるロータの一例を示す断面斜視図である。 図7は、実施形態におけるモールドロータの一例を示す拡大断面図である。 図8は、実施形態におけるモールドロータの一例を示す拡大側断面図である。 図9は、実施形態におけるモールドロータの一例を示す別の拡大側断面図である。 図10は、実施形態におけるモールドロータの一例を示す下面斜視図である。 図11は、実施形態におけるモータの一例を示す側断面図である。 図12は、第1の変形例におけるモールドロータの一例を示す下面斜視図である。 図13は、第1の変形例におけるモールドロータの一例を示す上面斜視図である。 図14は、第1の変形例におけるモータの一例を示す側断面図である。 図15は、第2の変形例におけるモールドロータの一例を示す上面斜視図である。 図16は、第3の変形例におけるモールドロータの一例を示す上面斜視図である。 図17は、第3の変形例における、樹脂で覆われる前のロータの一例を示す上面斜視図である。
 以下に、本願の開示するモータの実施形態を図面に基づいて詳細に説明する。なお、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。なお、以下の説明では、便宜上、図示の軸方向は、後に説明するシャフト19が延在する方向とする。軸方向のうち、一方を第1方向、他方を第2方向とする。図示の径方向は、実施形態における軸方向と直交する径方向とする。図示の周方向は、実施形態におけるモータ1の回転方向と一致する方向とする。
[実施形態]
 まず、実施形態におけるモータについて、図1及び図2を用いて説明する。図1は、実施形態におけるモールドロータの一例を示す上面斜視図である。図2は、実施形態における、樹脂で覆われる前のロータの一例を示す上面斜視図である。なお、以下において、樹脂で覆われたロータをモールドロータ5と表記し、樹脂で覆われる前のロータをロータ2と表記する場合がある。
 図1に示すモールドロータ5は、図2に示すロータ2を、樹脂部材60で覆うことにより形成される。樹脂部材60は、例えば、マグネット40を備えたロータ2を金型に入れた状態で液状の樹脂を充填し、樹脂が硬化することで形成される。なお、図1において、マグネット40は、樹脂部材60に覆われており、視認されない。
 実施形態において、樹脂部材60を形成する樹脂は、非磁性体又は軟磁性体であり、例えば、アルミニウム又はケイ素を含む。樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂を用いてもよい。なお、樹脂部材60は、樹脂部の一例である。
 図2に示すように、ロータ2は、ロータコア20と、マグネット40とを備える。ロータコア20は、電磁鋼板からなる平板状のコアが複数枚積層されて構成される。ロータコア20は、環状部23と、環状部23から径方向外側に突出するヨーク24とを備える。ヨーク24には、例えば、平板状のコアを相互に嵌合するカシメ部29が形成される。
 また、ロータコア20には、第1孔部21と、第2孔部22とが形成される。第1孔部21は、周方向において、隣接するヨーク24の間に形成され、第2孔部22は、径方向において、環状部23と、ヨーク24との間に形成される。
 マグネット40は、例えば、ネオジム磁石のような希土類磁石により形成される。また、マグネット40は、ボンド磁石や焼結磁石を用いてもよい。
 実施形態において、マグネット40は、第1マグネット41と、第2マグネット42とを備える。図2に示すように、第1マグネット41は、ロータコア20の第1孔部21に配置され、第2マグネット42は、ロータコア20の第2孔部22に配置される。
 図2及び図3に示すように、第1マグネット41は、径方向に長い板状に形成され、図2及び図4に示すように、第2マグネット42は、周方向に長い板状に形成される。図3は、実施形態におけるモールドロータの一例を示す側断面図である。図4は、実施形態におけるモールドロータの一例を示す別の側断面図である。図3及び図4に示すように、第1マグネット41及び第2マグネット42の軸方向における大きさは、ロータコア20の環状部23及びヨーク24の軸方向における大きさよりも小さい。
 また、第1マグネット41は、径方向において、第1孔部21よりも短い。この場合において、図2及び図3に示すように、第1マグネット41の径方向における外側の面45は、ヨーク24の外周側の端面25よりも、径方向において内側に位置する。また、第1孔部21のうち、第1マグネット41の径方向内側の端面46よりも内側の部分の空隙は、図5に示すように、フラックスバリア26を構成する。図5は、実施形態における、樹脂で覆われる前のロータの一例を示す拡大上面図である。図5は、図2の枠F1に示す部分を拡大した図である。フラックスバリア26は、ロータ2のマグネット40の磁極から出た磁束がロータ2内を流れてしまうことで、ステータ10側に流れる磁束が減少してしまうことを防止するためのものである。また、図5に示すように、フラックスバリア26は、周方向において、相互に隣接する第2孔部22に挟まれる位置に形成される。
 図2に示すロータ2に、第1孔部21の径方向内側の軸方向第1方向側から樹脂が充填されることにより、モールドロータ5が形成される。実施形態において、樹脂部材60は、図6及び図7に示すように、第1マグネット41及び第2マグネット42と周方向において隣接する位置にも形成される。図6は、実施形態におけるロータの一例を示す断面斜視図である。図7は、実施形態におけるモールドロータの一例を示す拡大断面図である。図6は、図1のA-A線で切断した断面を示す。図7は、図6の枠F2に示す部分を拡大した図である。
 図7に示すように、樹脂部材60の放射状部51は、径方向に延在し、周方向において、第1マグネット41の面47と、ヨーク24との間に形成される。すなわち、樹脂部材60の放射状部51は、周方向において第1マグネット41と隣接するように配置され、第1マグネット41は、放射状部51を挟んで、周方向においてヨーク24と対向する。
 また、第1マグネット41の径方向における外側の面45は、樹脂部材60の外周部52により覆われる。一方、ロータ2のヨーク24の外周側の端面25は、図6及び図7に示すように、樹脂部材60に覆われることなく露出する。実施形態において、外周部52の径方向外側の面55は、図6及び図7に示すように、ロータコア20のヨーク24の外周側の端面25と面一になるように形成される。言い換えると、径方向外側の面55とヨーク24の外周側の端面25とは、連続して形成される。
 実施形態において、図5に示す第2孔部22にも樹脂が充填される。これにより、図5に示す第2マグネット42の径方向の両端面48に加えて、第2マグネット42の周方向の両端面49も、樹脂部材60により覆われる。
 また、図1に示すように、実施形態において、モールドロータ5は、軸方向第1方向において、薄肉部61と、段部62と、凹部63とを備える。薄肉部61、段部62及び凹部63は、いずれも環状に形成され、径方向外側から径方向内側に向かって略同心円状に形成される。
 薄肉部61は、ロータ2の径方向における外周側において、第1マグネット41を軸方向第1方向側から覆う。薄肉部61は、図1に示すように、ロータ2のヨーク24を覆わない。すなわち、ヨーク24は、軸方向第1方向側に対して露出している。
 図3及び図4に示すように、凹部63は、薄肉部61よりも、軸方向第1方向側に突出する。一方、図8及び図9に示すように、凹部63の軸方向第1方向側の端面は、段部62の軸方向第1方向側の端面よりも、軸方向第2方向側に位置する。図8は、実施形態におけるモールドロータの一例を示す拡大側断面図である。図9は、実施形態におけるモールドロータの一例を示す別の拡大側断面図である。図8は、図3の枠F3に示す部分を拡大した図であり、図9は、図4の枠F4に示す部分を拡大した図である。
 図8及び図9に示すように、凹部63は、軸方向において、ロータコア20のフラックスバリア26、及び第2マグネット42に対向する位置に配置される。また、凹部63には、図2に示すように、樹脂部材60を形成する樹脂の注入跡69が、周方向において略等間隔で形成される。実施形態において、注入跡69は、図8及び図9に示すように、軸方向において、フラックスバリア26に対向する位置に形成され、第2マグネット42に対向する位置には形成されない。この場合において、フラックスバリア26に注入された樹脂は、図9に示すように、内面部56をさらに形成する。
 また、モールドロータ5においては、図10に示すように、第1マグネット41及び第2マグネット42の軸方向第2方向側も、さらに樹脂部材60により覆われる。図10は、実施形態におけるモールドロータの一例を示す下面斜視図である。図10に示すように、第1マグネット41は、樹脂部材60の第1下面部64により軸方向第2方向側から覆われ、第2マグネット42は、樹脂部材60の第2下面部65により軸方向第2方向側から覆われる。実施形態において、第1下面部64及び第2下面部65の厚さ(軸方向における大きさ)は、薄肉部61の厚さと略同一である。一方、図10に示すように、ヨーク24は、軸方向第2方向側に対しても、樹脂部材60に覆われることなく露出する。
 実施形態におけるモールドロータ5は、例えば図11に示すようなモータ1に装着される。図11は、実施形態におけるモータの一例を示す側断面図である。図11に示すように、実施形態におけるモータ1は、ステータ10が、モールドロータ5よりも径方向に外側に配置される、いわゆるインナーロータ型のモータである。
 図11に示すように、ステータ10は、ステータコア11と、インシュレータ12と、コイル13とを備える。また、ステータ10には、基板15がさらに装着される。モータ1において、モールドロータ5は、軸受け18を介して、シャフト19に回動可能に軸支される。また、モータ1は、ハウジング17に収容される。
 図11に示すように、モータ1は、センサ31をさらに備える。センサ31は、例えば、モールドロータ5の第1マグネット41の磁束を検出することにより、モールドロータ5の回転速度、回転角度等を検出する。センサ31は、例えば、ハウジング17に固定されたセンサホルダ32により支持される。
 センサ31は、軸方向第1方向側に配置され、軸方向第2方向側に配置されたモールドロータ5と、軸方向において離間して対向する。実施形態において、モールドロータ5は、薄肉部61、段部62及び凹部63が、軸方向第1方向側に位置するように配置される。この場合、センサ31と、モールドロータ5の第1マグネット41とは、薄肉部61を介して対向する。
 薄肉部61の軸方向第1方向側の端面は、段部62の軸方向第1方向側の端面よりも、軸方向第2方向側に位置する。これにより、センサ31とモールドロータ5との距離を小さくすることができるので、センサ31における検出精度を向上できる。また、薄肉部61の厚さ(軸方向における大きさ)を小さくすることにより、磁束が弱くなることによる検出精度の低下を抑制できる。
 以上説明したように、実施形態におけるモータ1は、ロータ2と、径方向においてロータ2と対向するステータ10とを備える。ロータ2は、ヨーク24と、マグネット41と、ヨーク24とマグネット41とを覆う樹脂部材60と、を備える。周方向において、樹脂部材60が、マグネット41と隣接して配置される。かかる構成によれば、マグネット41に接する樹脂部材60の表面積を大きくすることができるので、マグネット41の安定性を向上するとともに、ロータ2からの放熱性を改善することにより、モータ効率の低下を抑制することができる。
 [変形例]
 以上、実施形態における構成について説明したが、実施の形態はこれに限られない。例えば、実施形態におけるモータ1はインナーロータ型のモータであるが、これに限られず、アウターロータ型のモータであってもよい。また、実施形態におけるモータは、軸方向における長さに対して、径方向における長さの方が大きい、いわゆる扁平モータであるが、これに限られず、軸方向におけるモータの長さが、径方向における長さより大きくてもよい。なお、モータの軸方向における長さに関係なく、マグネットの軸方向における長さは、ヨークの軸方向における長さよりも小さいことが好ましい。
 また、ロータ2に形成される樹脂部材の形状も、実施形態に示すものに限られない。図12は、第1の変形例におけるモールドロータの一例を示す下面斜視図である。なお、以下の各変形例において、先に説明した図面に示す部位と同一の部位には同一の符号を付し、重複する説明は省略する。
 図12に示すように、第1の変形例におけるモールドロータ7の軸方向第2方向側の面には、凹部73が形成され、凹部73には注入跡79が形成される。凹部73及び注入跡79の形状は、図1に示すモールドロータ5の軸方向第1方向側に形成された凹部63及び注入跡69の形状と略同一である。
 また、モールドロータ7の軸方向第2方向側の面において、凹部73よりも径方向外側の部分は、第1マグネット41だけでなく、ロータ2のヨーク24も、第1下面部71により覆われる。第1の変形例において、モールドロータ7の第1下面部71の厚さ(軸方向における大きさ)は、実施形態におけるモールドロータ5の薄肉部61の厚さよりも大きい。
 また、第1の変形例において、モールドロータ7の軸方向第1方向側の面は、図13に示すように、図10に示すモールドロータ5の軸方向第2方向側の面と略同一の形状を備える。図13は、第1の変形例におけるモールドロータの一例を示す上面斜視図である。なお、図13においては、図1及び図2に示すカシメ部29の図示を省略している。
 図13に示すように、モールドロータ7においては、第1マグネット41は、樹脂部材70の第1上面部74により軸方向第1方向側から覆われ、第2マグネット42は、樹脂部材70の第2上面部75により軸方向第1方向側から覆われる。また、第1の変形例においては、軸方向の第1方向側及び第2方向側のいずれにおいても、段部62に相当する部分は形成されない。
 第1の変形例において、第1上面部74及び第2上面部75の厚さ(軸方向における大きさ)は、第1下面部71の厚さよりも小さい。例えば、第1上面部74の厚さは、モールドロータ5の薄肉部61の厚さと略同一である。
 図14は、第1の変形例におけるモータの一例を示す側断面図である。第1の変形例におけるモータ1Aは、モールドロータ5の代わりに、モールドロータ7を備える。なお、図14においては、軸受け18及びシャフト19等の図示を省略する。
 第1の変形例において、センサ31は、軸方向において、モールドロータ7の第1上面部74と対向する。すなわち、センサ31と、モールドロータ7の第1マグネット41とは、第1上面部74を介して対向する。
 第1の変形例においても、第1上面部74の厚さ(軸方向における大きさ)が小さいため、実施形態と同様に、検出精度の低下を抑制できる。なお、第1上面部74の厚さと第1下面部71の厚さとが略同一の構成について説明したが、これに限られず、第1下面部71の厚さが第1上面部74の厚さよりも大きくてもよい。かかる構成においても、第1上面部74の厚さが小さいため、検出精度の低下を抑制できる。
 このように、第1の変形例においては、モールドロータ7では、第1マグネット41及び第2マグネット42の軸方向第2方向側の端面に加えて、ヨーク24の軸方向第2方向側の端面も、樹脂部材70により覆われる。かかる構成によれば、樹脂部材70の表面積を大きくできるので、ロータ2からの放熱性をより向上できる。また、第1の変形例においても、センサ31と軸方向において対向する第1上面部74の厚さが小さいため、センサ31における検出精度の低下を抑制できる。
 なお、実施形態においても、モールドロータ5を上下反転させてモータ1に配置することにより、第1方向側に配置されたセンサ31に、モールドロータ5の第1下面部64が対向するような構成としてもよい。かかる構成においても、第1下面部64の厚さ(軸方向における大きさ)が小さいため、センサ31における検出精度の低下を抑制できる。
 また、ロータ2の軸方向第1方向側の面が、薄肉部61、段部62及び凹部63に加えて、図15に示すように、さらに他の樹脂部材によりさらに覆われていてもよい。例えば、モールドロータはさらに他の樹脂部材が設けられていてもよい。図15は、第2の変形例におけるモールドロータの一例を示す上面斜視図である。図15に示すモールドロータ8は、実施形態におけるモールドロータ5の第1方向側の面における外周部分に、さらに樹脂で形成されたリング部68を備えたものである。なお、リング部68は、薄肉部61等の樹脂部材60と一体に成形してもよく、また、別部材として形成し、ロータコア20に取り付けてもよい。
 かかる構成においても、実施形態と比べて、モールドロータにおける樹脂部材の表面積が増加することで、さらに放熱効率を向上できる。また、リング部68は、図11に示すようにモールドロータ8がモータ1に装着される場合においても、センサ31と第1マグネット41との磁束の流れを妨げないため、検出精度の低下を抑制できる。なお、リング部68は、例えばモールドロータ8の第2方向側の面に設けられてもよい。
 さらに、図16及び図17に示すようなハルバッハ配列のロータにおいても、実施形態と同様に、マグネットの周方向側に樹脂部材が配置されてもよい。図16は、第3の変形例におけるモールドロータの一例を示す上面斜視図である。図17は、第3の変形例における、樹脂で覆われる前のロータの一例を示す上面斜視図である。第3の変形例のロータ3は、ロータコア80と、第1マグネットM1、第2マグネットM2及び第3マグネットM3とを備える。第1マグネットM1は、径方向において、ロータコア80のヨーク84と環状部83との間に配置される。第2マグネットM2及び第3マグネットM3は、周方向において隣接する2つのヨーク84の間に配置される。
 図17に示すように、第3の変形例のロータ3において、第1マグネットM1と、第2マグネットM2及び第3マグネットM3とは、周方向において相互に隣接して配置される。この場合において、図16に示すように、モールドロータ9における樹脂部材90の第1放射状部92は、周方向において、第2マグネットM2と、ヨーク84との間に形成される。同様に、樹脂部材90の第2放射状部93は、周方向において、第3マグネットM3と、ヨーク84との間に形成される。なお、樹脂部材90は、周方向において、第2マグネットM2と第3マグネットM3との間隙にも形成されていてもよい。また、第2マグネットM2及び第3マグネットM3の径方向外側の面は、樹脂部材90によって覆われる。
 また、ヨーク84と環状部83、及び、第1マグネットM1と第2マグネットM2と第3マグネットM3との軸方向第1方向側の端面は、樹脂部91によって覆われる。これにより、モールドロータ9からの放熱性を改善することにより、モータ効率の低下を抑制することができる。
 さらに、実施形態及び各変形例に示すヨークの材質は鉄に限らず、その他の磁性体であってもよい。
 本発明の実施形態及び各変形例に記載のロータまたはステータをアクチュエータや電子機器等に搭載させても構わない。具体的には、アクチュエータや電子機器のフレームあるいは筐体、ボディ等に対して、本発明の実施形態及び各変形例に記載のロータまたはステータを収容し、当該アクチュエータや電子機器の駆動要素として用いてもよい。
 以上、本発明を実施形態及び各変形例に基づき説明したが、本発明は実施形態及び各変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもない。そのような要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。
 1,1A モータ、2,3 ロータ、5,7,8,9 モールドロータ、10 ステータ、11 ステータコア、12 インシュレータ、13 コイル、15 基板、17 ハウジング、18 軸受け、19 シャフト、20,80 ロータコア、21 第1孔部、22 第2孔部、23,83 環状部、24,84 ヨーク、25 外周側の端面、26 フラックスバリア、29 カシメ部、31 センサ、32 センサホルダ、40 マグネット、41,M1 第1マグネット、42,M2 第2マグネット、M3 第3マグネット、51 放射状部、52 外周部、55 外側の面、56 内面部、60,70,90 樹脂部材、61 薄肉部、62 段部、63,73 凹部、64,71 第1下面部、65 第2下面部、68 リング部、69,79 注入跡、74 第1上面部、75 第2上面部、92 第1放射状部、93 第2放射状部

Claims (9)

  1.  ロータと、
     径方向において前記ロータと対向するステータと、を備え、
     前記ロータは、ヨークと、マグネットと、前記ヨークと前記マグネットとを覆う樹脂部と、を備え、
     周方向において、前記樹脂部が、前記マグネットと隣接して配置される、
     モータ。
  2.  前記樹脂部は、アルミニウム、又はケイ素を含む、請求項1に記載のモータ。
  3.  前記樹脂部は、非磁性体または軟磁性体である、請求項2に記載のモータ。
  4.  前記ステータは、径方向において前記ロータの外周側に配置され、
     前記ヨークは、前記ステータと対向する外周面を有し、
     前記外周面は、前記樹脂部に対して露出している、
     請求項2又は3に記載のモータ。
  5.  前記マグネットは、前記ステータと対向するマグネット外周面を有し、
     前記樹脂部は、前記マグネット外周面を覆う、
     請求項4に記載のモータ。
  6.  前記樹脂部は、軸方向一方側の面に軸方向他方側に凹む凹部を有し、
     前記凹部は、前記樹脂部を形成する樹脂の注入跡が形成される、
     請求項2乃至5のいずれか1つに記載のモータ。
  7.  磁束を検出するセンサを有し、
     前記樹脂部は、軸方向一方側の面に段部を有し、前記段部よりも外周側における前記マグネットの軸方向一方側に配置される樹脂部の軸方向の厚みが、前記段部よりも内周側における前記マグネットの軸方向一方側に配置される樹脂部の軸方向の厚みよりも小さい、薄肉部を有し、
     前記センサは、軸方向において前記薄肉部と対向する、請求項1乃至6のいずれか1項に記載のモータ。
  8.  磁束を検出するセンサを有し、
     前記樹脂部は、前記マグネットの軸方向他方側に配置される樹脂部の軸方向の厚みが、前記マグネットの軸方向一方側に配置される樹脂部の軸方向の厚みよりも小さく、
     前記センサは、軸方向他方側において前記マグネットと前記樹脂部を介して対向する、
     請求項1乃至7のいずれか1項に記載のモータ。
  9.  前記ロータは、径方向において前記ヨークの内周側に形成される環状部と、第2マグネットとを有し、
     前記第2マグネットは、環状部と前記ヨークとの間に配置され、
     前記マグネットは、前記環状部と前記ステータとの間に配置され、
     前記樹脂部は、軸方向において、前記マグネットと前記第2マグネットと前記ヨークとを両方向から覆い、
     前記マグネットは、径方向において前記樹脂部を介して前記ステータと対向し、
     前記マグネットの径方向内側にはフラックスバリアが形成され、
     前記第2マグネットは、径方向において前記樹脂部を介して前記ヨーク及び環状部とそれぞれ対向し、周方向両側において前記樹脂部を介して前記フラックスバリアとそれぞれ対向する、
     請求項1乃至8のいずれか1項に記載のモータ。
PCT/JP2022/036706 2021-11-25 2022-09-30 モータ WO2023095444A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280074367.0A CN118202553A (zh) 2021-11-25 2022-09-30 马达
EP22898229.4A EP4439932A1 (en) 2021-11-25 2022-09-30 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-191339 2021-11-25
JP2021191339A JP2023077856A (ja) 2021-11-25 2021-11-25 モータ

Publications (1)

Publication Number Publication Date
WO2023095444A1 true WO2023095444A1 (ja) 2023-06-01

Family

ID=86539229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036706 WO2023095444A1 (ja) 2021-11-25 2022-09-30 モータ

Country Status (5)

Country Link
EP (1) EP4439932A1 (ja)
JP (1) JP2023077856A (ja)
CN (1) CN118202553A (ja)
TW (1) TW202322518A (ja)
WO (1) WO2023095444A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312852A (ja) 1994-05-13 1995-11-28 Yaskawa Electric Corp 永久磁石形回転子の製造方法
JPH11299207A (ja) * 1998-04-17 1999-10-29 Matsushita Electric Ind Co Ltd ブラシレスモータ
JP2012060773A (ja) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp 同期電動機の回転子
JP2014014271A (ja) * 2013-10-21 2014-01-23 Mitsui High Tec Inc 永久磁石の樹脂封止方法及びその方法で製造された積層鉄心
JP2019122190A (ja) 2018-01-10 2019-07-22 日本電産テクノモータ株式会社 ロータ、モータおよびロータの製造方法
JP2020010466A (ja) * 2018-07-05 2020-01-16 日立オートモティブシステムズ株式会社 永久磁石埋込型回転電機の回転子及びその製作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312852A (ja) 1994-05-13 1995-11-28 Yaskawa Electric Corp 永久磁石形回転子の製造方法
JPH11299207A (ja) * 1998-04-17 1999-10-29 Matsushita Electric Ind Co Ltd ブラシレスモータ
JP2012060773A (ja) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp 同期電動機の回転子
JP2014014271A (ja) * 2013-10-21 2014-01-23 Mitsui High Tec Inc 永久磁石の樹脂封止方法及びその方法で製造された積層鉄心
JP2019122190A (ja) 2018-01-10 2019-07-22 日本電産テクノモータ株式会社 ロータ、モータおよびロータの製造方法
JP2020010466A (ja) * 2018-07-05 2020-01-16 日立オートモティブシステムズ株式会社 永久磁石埋込型回転電機の回転子及びその製作方法

Also Published As

Publication number Publication date
JP2023077856A (ja) 2023-06-06
CN118202553A (zh) 2024-06-14
TW202322518A (zh) 2023-06-01
EP4439932A1 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
US8680736B2 (en) Armature core, motor using same, and axial gap electrical rotating machine using same
JP4720982B2 (ja) アキシャルエアギャップ型電動機
JP4162565B2 (ja) 電動機のロータ
US10594196B2 (en) Dual shaft integrated motor
JP4863061B2 (ja) 電動モータ
JP6673707B2 (ja) 埋込磁石型モータ
WO2018037455A1 (ja) コンシクエントポール型の回転子、電動機および空気調和機
JP6591084B2 (ja) 回転子および回転電機
JP2006304539A (ja) アキシャルギャップ型回転電機のロータ構造
JP2020054211A (ja) モータ
JP5672149B2 (ja) 回転電機用ロータ、および、これを用いた回転電機
WO2023095444A1 (ja) モータ
JP7077153B2 (ja) モータ及びブラシレスワイパーモータ
WO2017009902A1 (ja) 電動機および空気調和機
JP2020010539A (ja) ロータ、及びブラシレスモータ
JP7224987B2 (ja) 回転電機
JP5554272B2 (ja) 磁石装着型回転子
JP2012244808A (ja) 回転電機のロータ
CN108075591B (zh) 马达
JP6659169B2 (ja) ロータおよび回転電機
JP2007295637A (ja) 電動モータ
JP7192431B2 (ja) ロータおよびモータ
JP7224986B2 (ja) 回転電機
US20230155431A1 (en) Motor
US20240097520A1 (en) Axial flux motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074367.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18711382

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022898229

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022898229

Country of ref document: EP

Effective date: 20240625