WO2023095432A1 - 光部品の製造方法および光部品 - Google Patents

光部品の製造方法および光部品 Download PDF

Info

Publication number
WO2023095432A1
WO2023095432A1 PCT/JP2022/035509 JP2022035509W WO2023095432A1 WO 2023095432 A1 WO2023095432 A1 WO 2023095432A1 JP 2022035509 W JP2022035509 W JP 2022035509W WO 2023095432 A1 WO2023095432 A1 WO 2023095432A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
glass member
refractive index
light intensity
optical component
Prior art date
Application number
PCT/JP2022/035509
Other languages
English (en)
French (fr)
Inventor
重博 長能
学 塩▲崎▼
肇 荒生
哲也 中西
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023095432A1 publication Critical patent/WO2023095432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present disclosure relates to an optical component manufacturing method and an optical component.
  • This application claims priority from Japanese Patent Application No. 2021-190291 filed on November 24, 2021, the content of which is relied upon and incorporated herein by reference in its entirety.
  • Non-Patent Document 1 discloses that three optical waveguides that are optically independent from each other are simultaneously produced in a glass member by multi-point irradiation using a hologram optical element.
  • a manufacturing method is disclosed.
  • Non-Patent Document 2 discloses a manufacturing method for forming an optical waveguide (core) having a nearly circular cross-section in a laser focusing region in a glass member by the heat storage effect of a laser beam having a high repetition frequency of 5 MHz.
  • Non-Patent Document 3 discloses a manufacturing method for fabricating an optical waveguide having a square cross section in a glass member by irradiating laser light multiple times while shifting the laser irradiation position in the width direction of the optical waveguide.
  • Non-Patent Document 4 discloses a beam shaping technique using a diffractive optical element (hereinafter referred to as "DOE (Diffractive Optical Element)”) and an aspherical lens.
  • DOE diffractive Optical Element
  • Non-Patent Document 5 The mechanism of increasing the refractive index by laser irradiation using, for example, femtosecond laser light as the laser light is disclosed in Non-Patent Document 5, Non-Patent Document 6, and Non-Patent Document 7 below.
  • a manufacturing method of an optical component according to the present disclosure includes a preparation step, a laser irradiation step, and a focal point moving step.
  • a glass member is prepared in which a continuous refractive index change region is provided.
  • femtosecond laser light is irradiated into the glass member so as to converge within the glass member.
  • the condensing point moving step the position of the condensing point is relatively moved along the scanning direction with respect to the glass member.
  • the irradiated femtosecond laser light has an energy amount that causes a photo-induced refractive index change in the glass member.
  • the light intensity distribution on the plane that includes the focal point of the femtosecond laser beam and is perpendicular to the thickness direction of the glass member has a flat top region.
  • a beam irradiation region on a plane including the focal point and perpendicular to the thickness direction of the glass member is a beam spot of femtosecond laser light.
  • the beam irradiation region is a single continuous region defined by the outline of the region where the light intensity is 1/e 2 or more of the maximum light intensity.
  • the flat top region is a region with a maximum light intensity of 1/2 or more, and has an area of 0.45 times or more the area of the beam irradiation region.
  • the angle formed between the direction in which the width of the beam irradiation region is maximized and the scanning direction is 70° or more and 110° or less, and the angle formed between the plane orthogonal to the thickness direction of the glass member and the scanning direction is 20° or less.
  • FIG. 1 is a flow chart for explaining a method for manufacturing an optical component according to the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a manufacturing apparatus for carrying out the method of manufacturing an optical component according to the present disclosure.
  • FIG. 3 is a diagram for explaining various beam shaping optical systems and beam spot shapes.
  • FIG. 4 is a diagram showing a beam spot image of a rectangular flat top beam and a flat top light intensity distribution.
  • FIG. 5 is a diagram for explaining the structure of a beam spot.
  • FIG. 6 is a diagram for explaining an evaluation experiment of hydrogen-containing glass.
  • FIG. 7 is a diagram for explaining an example in which the same effect as that of the embodiment of the present disclosure cannot be obtained.
  • FIG. 1 is a flow chart for explaining a method for manufacturing an optical component according to the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a manufacturing apparatus for carrying out the method of manufacturing an optical component according to the present disclosure.
  • FIG. 3 is a diagram for explaining various beam shaping optical systems
  • FIG. 8 is a diagram showing a cross-sectional structure of a refractive index changing region functioning as an optical waveguide, obtained by a method for manufacturing an optical component according to a comparative example.
  • FIG. 9 is a diagram showing a cross-sectional structure of a refractive index change region functioning as an optical waveguide, obtained by the method for manufacturing an optical component according to the present disclosure.
  • Non-Patent Document 2 by heating a predetermined position in the glass member by irradiating laser light with an increased repetition frequency, the length of the modified region along the thickness direction of the glass member (light guide It realizes heat diffusion exceeding the thickness of the wave path).
  • an optical waveguide (core) having a cross-sectional shape close to circular is realized in the glass member (increase in width of the optical waveguide).
  • core diameter the cross-sectional size of the optical waveguide
  • the width of the optical waveguide provided in the glass member is controlled by irradiating the laser beam a plurality of times, for example, 20 times while shifting the laser irradiation position in the width direction of the optical waveguide (multiscan). It is carried out. Therefore, in the manufacturing method of Non-Patent Document 3, there is a problem that the manufacturing time is greatly increased as compared with the case where the optical waveguide is manufactured by one laser scanning.
  • Non-Patent Document 4 proposes beam shaping realized by an optical system including an aspherical lens, an optical system combining a condenser lens and a cylindrical lens, and the like.
  • the laser shaping technique disclosed in Non-Patent Document 4 is simply applied, a decrease in the power density of the laser beam irradiated to the glass member cannot be avoided, and as a result, the energy required for reforming the glass member There was a problem that the amount may not be obtained.
  • the present disclosure has been made to solve the problems described above, and provides a structure for facilitating control of the width and thickness of an optical waveguide provided in an optical component and effectively suppressing propagation loss. It is an object of the present invention to provide an optical component manufacturing method and an optical component that enable fabrication of an optical waveguide having
  • the method for manufacturing an optical component of the present disclosure includes: (1) A preparation process, a laser irradiation process, and a focal point movement process are provided.
  • a glass member is prepared in which a continuous refractive index change region is provided.
  • femtosecond laser light is irradiated into the glass member so as to converge within the glass member.
  • the condensing point moving step the position of the condensing point is relatively moved along the scanning direction with respect to the glass member.
  • the irradiated femtosecond laser light has an energy amount that causes a photo-induced refractive index change in the glass member.
  • the light intensity distribution on the plane that includes the focal point of the femtosecond laser beam and is orthogonal to the thickness direction (X-axis direction) of the glass member has a flat top region.
  • a beam irradiation area on a plane including the focal point and perpendicular to the X-axis direction is a beam spot of femtosecond laser light.
  • the beam irradiation area is one continuous area defined by the outline of the area where the light intensity is 1/e 2 or more of the maximum light intensity.
  • the flat top region is a region with a maximum light intensity of 1/2 or more, and has an area of 0.45 times or more the area of the beam irradiation region.
  • the angle formed by the direction (Y-axis direction) in which the width of the beam irradiation region is maximized and the scanning direction is 70° or more and 110° or less, and the plane orthogonal to the thickness direction of the glass member and the scanning direction. is 20° or less.
  • Configuration 1A facilitates control of the width and thickness of the optical waveguide provided in the glass component. Moreover, the configuration 1B suppresses fluctuations in the refractive index of the inner surface of the optical waveguide to be formed and roughness of the side surfaces, and as a result, it is possible to suppress propagation loss.
  • the preparation step may include a hydrogen injection step of injecting hydrogen into the glass member.
  • a hydrogen injection step 100% hydrogen gas is introduced into the chamber while the glass member is installed, and the pressure inside the chamber is maintained at 10 atmospheres or higher.
  • the hydrogen injection period is 1 day or more and 8 weeks or less. Thereby, hydrogen is injected into the glass member.
  • the central region of the light intensity distribution is within the range of 75% or more and 125% or less of the average value of the light intensity in the central region, the maximum light in the central region It may have flatness to the extent that the intensity and the minimum light intensity are accommodated.
  • the central region constitutes a part of the flat top region, includes the center of gravity of the beam irradiation region, and occupies 50% of the area of the flat top region.
  • the beam spot may be formed by a first optical system including an aspherical lens or a second optical system including a condenser lens and a cylindrical lens. good.
  • the shape of the beam spot itself of the femtosecond laser beam can be arbitrarily shaped.
  • the optical component of the present disclosure is (5) An optical component manufactured by the manufacturing method of any one of (1) to (4) above, wherein in a cross section of the glass member perpendicular to the scanning direction, the refractive index changing region has the refractive index It is preferable not to include a refractive index periodic structure in which the refractive index varies periodically along an axis passing through the variable region.
  • the fact that the refractive index changing region does not include a periodic refractive index structure means that the uniformity of the modified state of the cross section of the refractive index changing region is ensured.
  • the propagation loss is controlled to less than 0.2 dB/cm.
  • the axis for confirming the periodic refractive index structure is 0° ( parallel) to an angle of up to 10°.
  • the laser light is shifted along the Y-axis direction.
  • Optical waveguide formation by multi-scanning is known. In the case of multi-scanning, a modified region and an unmodified region including an insufficiently modified region are periodically formed in the refractive index changing region along the Y-axis direction. Area uniformity cannot be ensured.
  • the laser beam has a sufficiently wide width of the beam spot shape along the Y-axis direction, it is possible to form the refractive index changing region by one laser scanning, and to modify the refractive index changing region. uniformity is also ensured.
  • the manufacturing method of the refractive index change region that functions as an optical waveguide.
  • FIG. 1 is a flow chart for explaining the method for manufacturing an optical component according to the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a manufacturing apparatus for carrying out the method for manufacturing an optical component according to the present disclosure.
  • the manufacturing apparatus shown in FIG. 2 includes a femtosecond laser 20, a laser driver 25 for driving the femtosecond laser 20, and beam shaping optics for shaping the beam spot of the femtosecond laser light into an arbitrary shape. It comprises a system 30, an XYZ stage 40, a stage drive section 45 for driving the XYZ stage 40, and a control section 50 for controlling the operations of these sections.
  • the laser drive unit 25 controls the power and repetition frequency of pulsed laser light (femtosecond laser light) output from the femtosecond laser 20 according to instructions from the control unit 50 .
  • femtosecond laser light having a pulse width of several hundred femtoseconds or less can be output from the femtosecond laser 20 .
  • femtosecond laser light whose pulse width is set to several hundred femtoseconds or less is effective because its peak power can be 10 5 W or more.
  • the repetition frequency of the output femtosecond laser light should be 10 kHz or higher in order to smooth the refractive index and structure of the optical waveguide formed inside the glass material.
  • a glass member 10 to be an optical component is placed on the device mounting surface of the XYZ stage 40 .
  • the glass member 10 includes a front surface 10a irradiated with laser light and a back surface 10b located on the opposite side of the front surface 10a.
  • the glass member 10 contains Ge in order to cause both pressure-derived refractive index change ⁇ np and structure-derived refractive index change ⁇ nd by laser light irradiation in a region sandwiched between the front surface 10a and the back surface 10b.
  • it consists of a glass containing no dopant other than Ge, or a glass co-doped with B and Ge.
  • glass or the like to which no impurity is added to maximize the effect of ⁇ np is also effective.
  • These glasses are also quartz-based glasses, phosphate-based glasses, halide glasses, and sulfide glasses.
  • H 2 may be injected into the glass member 10 in advance.
  • the femtosecond laser light output from the femtosecond laser 20 is condensed by the beam shaping optical system 30 to the inside of the glass member 10 placed on the XYZ stage 40, that is, the condensing point 35 located on the YZ plane. be. Thereby, a refractive index change region 15 functioning as an optical waveguide is formed inside the glass member 10 .
  • the stage drive unit 45 drives the XYZ stage 40 according to instructions from the control unit 50 so that the device mounting surface of the XYZ stage 40 moves along the X-axis direction, the Y-axis direction, and the Z-axis direction. With this configuration, the position of the focal point 35 of the femtosecond laser beam moves relative to the glass member 10 .
  • the control unit 50 performs laser drawing by controlling the operations of the laser driving unit 25 and the stage driving unit 45 as described above. Note that the laser drawing creates the refractive index changing region 15 of an arbitrary pattern inside the glass member 10 .
  • the arbitrary pattern of the refractive index change region 15 is made to match the shape of the optical waveguide projected onto the YZ plane with the depth direction information of the X axis taken into account.
  • an optical component manufacturing method of the present disclosure which manufactures an optical component provided with an optical waveguide using a manufacturing apparatus having the structure described above, will be described with reference to the flowchart of FIG.
  • a three-dimensional optical waveguide device which is an optical component in which the refractive index changing regions 15 functioning as optical waveguides of arbitrary patterns are built, will be described.
  • the method of manufacturing an optical component according to the present disclosure includes a preparation process and an optical waveguide manufacturing process.
  • a glass member 10 to be a three-dimensional optical waveguide device such as parallel plate glass
  • 100% hydrogen gas is introduced into the chamber, and the pressure inside the chamber is maintained at 10 atmospheres or higher.
  • the hydrogen injection period is 1 day or more and 8 weeks or less.
  • hydrogen is injected into the glass member 10 (step ST10).
  • the hydrogen-injected glass member 10 is stored at a low temperature of ⁇ 10° C. or less in order to suppress the amount of hydrogen released from the glass member 10. (step ST15). Note that step ST15 (low-temperature storage step) is performed during the period shown from point A to point B in FIG.
  • the hydrogen-implanted glass member 10 is placed on the device mounting surface of the XYZ stage 40 immediately after step ST10 is completed, and is irradiated with femtosecond laser light (step ST20).
  • the controller 50 drives the laser so that the femtosecond laser 20 outputs femtosecond laser light having an energy amount that causes a light-induced refractive index change inside the glass member 10 and a repetition frequency of 10 kHz or more.
  • a femtosecond laser beam output from the femtosecond laser 20 is focused inside the glass member 10 by the beam shaping optical system 30 .
  • the beam shaping optical system 30 shapes the beam spot of the input femtosecond laser light into a predetermined shape.
  • a light-induced refractive index change is formed in the beam irradiation region at the focal point 35 of the femtosecond laser beam.
  • step ST30 by continuously or intermittently changing the installation position of the glass member 10 and/or the position of the condensing point 35 of the femtosecond laser beam, the glass member 10 The position of the focal point 35 of the femtosecond laser beam inside moves.
  • the change in the depth direction of the focal point 35 with respect to the glass member 10 is limited to the angle between the moving direction and the plane orthogonal to the thickness direction of the glass member 10 within the range of -20° to +20°.
  • step ST20 and the focal point moving step of step ST30 that is, the operation control of the laser driving unit 25 and the stage driving unit 45 by the control unit 50 are performed by an optical waveguide designed in advance inside the glass member 10.
  • the irradiation conditions are changed or repeated until the pattern is formed (step ST40).
  • step ST40 the formation of the refractive index changing region 15 as an optical waveguide in the glass member 10 is completed (step ST40)
  • the glass member 10 is subjected to aging treatment and residual hydrogen removal so that ⁇ n does not change for a long period of time. Annealed (step ST50).
  • steps ST10 to ST50 or steps ST10 to ST50 including step ST15 an optical component provided with an optical waveguide is obtained.
  • the beam shaping optical system 30 includes, for example, an optical system including an aspherical lens, an optical system combining a condenser lens and a cylindrical lens, and the like, as shown in FIG.
  • the upper part of FIG. 3 shows the configuration of an optical system including the aspherical lens 110 .
  • the lower part of FIG. 3 shows the configuration of an optical system in which the condensing lens and the cylindrical lens are combined.
  • the “aspherical lens” optical system (first optical system) shown in the upper part of FIG. 3 includes an aspherical lens 110 .
  • a beam diameter control mechanism 111 may be provided upstream or downstream of the aspherical lens 110 as necessary. Also, the beam diameter control mechanism 111 may be combined with an aspherical lens other than the aspherical lens 110 .
  • the light intensity distribution of the femtosecond laser light output from the aspherical lens 110 is defined on the beam waist BW where the condensing point 35 is located, and has a flat top shape.
  • the beam waist BW is included in the YZ plane.
  • the beam spot of femtosecond laser light corresponds to the beam irradiation area 350 having a width Y d along the Y-axis direction and a width Z d ( ⁇ Y d ) along the Z-axis direction.
  • the beam spot image of a square flat top beam shaped by the "aspherical lens" optical system is shown in the upper part of FIG. 4, and its light intensity distribution is shown in the lower part of FIG.
  • an optical system combining a cylindrical lens 122 and a cylindrical lens different from the cylindrical lens 122 is arranged in front of the condenser lens 121, and the beam diameter of the axis orthogonal to the spherical axis of the cylindrical lens is changed.
  • a collimated elliptical beam may be provided. In this case, by condensing with a condensing lens, it is possible to output femtosecond laser light with the minor axis and the major axis aligned on the BW.
  • FIG. 5 is a diagram for explaining the structure of the beam spot.
  • the upper part of FIG. 5 shows a plan view of the beam irradiation region 350 and the light intensity distribution for explaining the definition of the flat top region FT and its flatness. It is In the middle part of FIG. 5 (indicated as "formation of optical waveguide region” in FIG. 5), the process of forming the refractive index change region 15 in the glass member 10 and the positional relationship of the condensing point 35, the beam irradiation region 350, etc. It is shown.
  • the lower part of FIG. 5 (denoted as “beam spot length (depth direction)” in FIG. 5), there is a diagram for explaining the thickness adjustment (length adjustment) of the beam spot along the depth direction. It is shown.
  • the upper part of FIG. 5 shows femtosecond laser light beam-shaped by the "aspherical lens” optical system shown in the upper part of FIG. 3 and the "collecting lens + cylindrical lens” optical system shown in the lower part of FIG. is a conceptual diagram of a beam irradiation area 350 in FIG.
  • this beam irradiation region 350 is the YZ plane (beam waist) when the femtosecond laser beam is condensed, for example, at a depth of about 100 ⁇ m in the X-axis direction from the surface of the glass member 10 . BW).
  • the upper part of FIG. 5 further shows a flat-top light intensity distribution 350A along the Y-axis and a flat-top light intensity distribution 350B along the Z-axis direction. 350B defines the flat-top light intensity distribution of the beam irradiation region 350 .
  • the beam irradiation region 350 is defined by the contour of the region where the light intensity of the light intensity distributions 350A and 350B is 1/ e2 of the maximum light intensity, has a width of Yd along the Y axis, and The width along is Zd .
  • the flat top region FT is defined by the outline of the region where the light intensity of the light intensity distributions 350A and 350B is 1/2 of the maximum light intensity. It has an area of 45 times or more.
  • the flatness of the light intensity distribution of the beam irradiation area 350 defined by the light intensity distributions 350A and 350B is defined by the flatness of the central area AE of the light intensity distribution.
  • the central area AE has such flatness that the maximum light intensity and the minimum light intensity in the central area AE fall within the range of 55% or more and 145% or less of the average value of the light intensity in the central area AE.
  • the center area AE is an area that forms part of the flat top area FT, includes the center of gravity of the beam irradiation area 350, and occupies 50% of the area of the flat top area FT.
  • the width Zd is adjusted so that a predetermined amount of refractive index change is obtained in the beam irradiation region 350 .
  • a refractive index change region functioning as an optical waveguide as shown in the middle part of FIG. 5 can be obtained by one scanning. 15 is formed.
  • the width Yd in the Y-axis direction contributes to the width of the optical waveguide, while the width Zd in the Z-axis direction contributes to the amount of refractive index change in the glass member 10. Therefore, they can be treated as independent parameters.
  • the width Zd is a parameter that can adjust the change in the power density of the laser light in the X-axis direction corresponding to the thickness direction of the glass member 10 and the Rayleigh length Zr .
  • the thickness L of the optical waveguide can be adjusted in addition to the adjustment of the refractive index variation. Note that the thickness L is the length along the X-axis of the region where the refractive index is changed.
  • the angle ⁇ formed between the direction in which the width of the beam irradiation region 350 is maximized and the scanning direction is 70° or more and 110° or less, that is, 90° is used as a reference- It is in the range of 20° to +20°, and the angle formed by the plane orthogonal to the thickness direction of the glass member and the scanning direction should be 20° or less.
  • the roughness of the side surface of the optical waveguide to be formed is suppressed, and as a result of flattening the light intensity distribution of the width Yd in the Y-axis direction, propagation loss can be suppressed.
  • the details of flattening the light intensity distribution of the width Yd in the Y-axis direction will be described later with reference to FIG.
  • the Rayleigh length Zr means the distance between the position where the beam cross-sectional area is twice the beam cross-sectional area at the beam waist BW and the beam waist BW (condensing point), and is expressed by the following formula (1): where ⁇ is given by the beam radius. In order to obtain a predetermined thickness L of the optical waveguide, it is necessary to optimize the Rayleigh length Zr .
  • the thickness L of the optical waveguide When the thickness L of the optical waveguide is increased as described above, the power density of the femtosecond laser beam irradiated into the glass member 10 is lowered. Therefore, it is necessary to irradiate a femtosecond laser beam having a light intensity exceeding a power threshold (modification threshold: I th ) that causes a refractive index change.
  • a power threshold modification threshold: I th
  • the wavelength-converted wave is more effective than the fundamental wave. In some cases, it was difficult to secure Ith .
  • the fundamental wave has a wavelength of 1.03 ⁇ m, for example, and the wavelength-converted wave has a wavelength of 515 nm, for example, a second harmonic: SHG.
  • the inventors investigated a method of injecting hydrogen into the glass member 10 in which the refractive index changing region 15 functioning as an optical waveguide is built.
  • FIG. 6 is a diagram for explaining an evaluation experiment for hydrogen-containing glass.
  • the upper part of FIG. 6 shows an experiment for evaluating the state of reforming in the glass sample 100 when the glass sample 100 contains hydrogen and when it does not contain hydrogen.
  • the structure of the system is shown.
  • a cross section (after polishing) of the glass sample 100 containing hydrogen along line I-I shown in the upper part of FIG. 6 is shown. It is shown.
  • the femtosecond laser beam with which the glass sample 100 is irradiated has a wavelength of 515 nm, a repetition frequency of 100 kHz or more and 1 MHz or less, a pulse width of 195 fs or more and 350 fs or less, and a pulse energy of 100 nJ or more and 500 nJ or less.
  • the femtosecond laser light is condensed at a depth position of 10 ⁇ m or more and 200 ⁇ m or less from the surface of the glass sample 100 .
  • the femtosecond laser beam was applied along the scanning direction shown in the upper part of FIG.
  • the cross section of the glass sample 100 shown in the middle of FIG. 6 is the cross section of the sample containing hydrogen, and the scanning speed of the femtosecond laser beam was changed from 0.1 mm/sec to 15.0 mm/sec.
  • Cross section On the other hand, the cross section of the glass sample 100 shown in the lower part of FIG. 6 is the cross section of the sample that does not contain hydrogen, and the scanning speed of the femtosecond laser beam was changed from 0.1 mm/sec to 10.0 mm/sec. This is a cross section of time. Formation of the modified region 150 was confirmed up to a scanning speed of 10.0 mm/sec regardless of the presence or absence of hydrogen. However, in the sample containing hydrogen shown in the middle of FIG.
  • the modified region 150 was confirmed up to a scanning speed of 15.0 mm/sec, which is different from the case of the sample containing no hydrogen shown in the bottom of FIG. It was found that the modified region 150 can be formed (written) even at a scanning speed of 1.5 times. That is, it was found that the reforming threshold value I th can be reduced by 1.5 times when using a glass member to which hydrogen implantation has been performed, as compared to the case of using a glass member which has not been subjected to hydrogen implantation. rice field. It was speculated that the reforming threshold I th could be further reduced by increasing the hydrogen content.
  • the hydrogen treatment increases the composition change of the glass member, and the optical waveguide width W larger than the beam width Yd can be formed.
  • the width Yd can be reduced, making it possible to compensate for the reduction in refractive index due to the reduction in power density.
  • Non-Patent Document 3 in order to obtain a width in the lateral direction (Y-axis direction) of a core serving as an optical waveguide with one condensed beam BL (laser light), a beam in the optical waveguide propagation direction (Z-axis direction) After scanning is completed, the beam spot is shifted by ⁇ y in the Y-axis direction, beam scanning is performed in the Z-axis direction in the same manner as the previous beam scanning, and multi-scanning is proposed in which this process is repeated multiple times.
  • This waveguide forming method is an effective method because the optical waveguide width as designed can be obtained.
  • the inventors formed an optical waveguide structure corresponding to the refractive index changing region 15 in the glass member 10 by this optical waveguide forming method, and observed the cross-sectional shape (XY cross section) of the optical waveguide by etching with HF or the like. .
  • a plurality of skew-like shapes were observed so as to overlap each other, and the number of bamboo skew-like shapes and the spacing of the bamboo skewers coincided with the number of scans of the laser light and the scanning interval ⁇ y. Therefore, it is presumed that processing traces reflecting the laser irradiation conditions (drawing conditions) were observed.
  • the length of each bamboo skewer and the etching depth are uneven.
  • the non-uniform length of the skewers is regarded as a fluctuation of the waveguide structure and causes an increase in propagation loss.
  • the etching depth represents the difference in etching rate, and the etching rate depends on the magnitude of modification (refractive index) modulation. Therefore, it can be read from the XY cross section shown in FIG. 7 that the inside of the waveguide has a large refractive index fluctuation, which causes an increase in propagation loss, similar to the waveguide structure fluctuation.
  • embodiments of the present disclosure are also effective in hydrogen-impregnated materials.
  • the timing of increasing the refractive index in the Y-axis direction is the same. Therefore, according to the embodiment of the present disclosure, hydrogen is consumed at the same timing, and as a result, uniform reforming of the glass member 10 can be expected as compared with the case where laser drawing is performed one by one.
  • the effect of containing hydrogen is greatly reduced or not obtained at all in the region of 1.6 ⁇ m with respect to the Y-axis direction. Since this causes an increase in refractive index fluctuation in the optical waveguide to be formed, multi-scanning is not suitable for laser irradiation to glass members containing hydrogen.
  • the modified state in the cross section of the refractive index change region 15 is uniform.
  • single-mode propagation was confirmed as a result of multi-scanning the glass member 10 mainly made of SiO 2 by shifting the laser beam irradiation position by ⁇ y.
  • the modification of the cross section of the waveguide was examined by etching, a skewer-shaped waveguide was obtained, and the propagation loss was 0.2 dB/cm or more and 10 dB/cm or less.
  • the modification inside the waveguide must be uniform.
  • FIG. 8 is a diagram showing a cross-sectional structure of a refractive index changing region functioning as an optical waveguide, obtained by a method for manufacturing an optical component according to a comparative example (referred to as “cross-sectional structure (comparative example)” in FIG. 8). ).
  • the upper part of FIG. 8 (denoted as “number of scans: 13 times” in FIG. 8) shows an example of multi-scanning in which laser light having light intensity of Gaussian distribution is irradiated 57 times.
  • FIG. 8 shows an example of multi-scanning in which laser light having light intensity of Gaussian distribution is irradiated 29 times.
  • the lower part of FIG. 8 shows an example of multi-scanning in which laser light having light intensity of Gaussian distribution is irradiated 13 times.
  • FIG. 9 shows a refractive index change region functioning as an optical waveguide, which is formed by one-time scanning of laser light having a flat-top light intensity distribution obtained by the method for manufacturing an optical component according to the present disclosure. It is a figure which shows a cross-sectional structure. The figures shown in FIGS.
  • FIGS. 8 and 9 are both SEM observation images of etched cross sections. Specifically, first, the cross section of the sample obtained by cutting the formed refractive index changing region 15 is polished. Subsequently, the cross section is etched by immersing the sample with the polished cross section in a solution obtained by diluting a BHF solution with pure water for 1 to 60 minutes. By observing the cross section etched in this way with an SEM, the modified state of the formed refractive index change region 15 can be evaluated.
  • the modified shape of the refractive index changing region 15 is a shape in which 13 skewered modified regions extending along the arrow LL are arranged along the Y-axis direction.
  • a plurality of skewed modified regions are periodically formed along the Y-axis direction.
  • the skewer-shaped modified regions are densely arranged.
  • the central portion of the refractive index change region 15 is in a substantially uniform modified state, so the propagation loss is about 0.2 dB/cm, which is shown in the upper and middle parts of FIG. It is reduced compared to the example.
  • the modified state of the refractive index is periodic along the axis RP that is 0° (parallel) to the Y axis or forms an angle of 10° or less with the Y axis. A periodic refractive index structure that fluctuates in a linear fashion was clearly confirmed, and it was difficult to further reduce the propagation loss.
  • Second harmonic generation (SHG) and third harmonic generation (THG) are effective in each wavelength range.
  • a pulse width of 500 fs or less is effective.
  • a repetition frequency of 100 kHz to 5 MHz is effective.
  • the beam spot diameter in the Z-axis direction of the irradiated laser light is 1 ⁇ m or is focused to the vicinity of the diffraction limit, the beam spot diameter in the Y-axis direction is 2 ⁇ m or more and 10 ⁇ m or less, and the light intensity distribution has a flat top shape. .
  • laser light having a flat-top light intensity distribution was scanned only once along the Z-axis direction while being focused inside the glass member 10 made of SiO 2 .
  • a refractive index change region 15 functioning as a wave path is formed.
  • the NA of the condenser lens is 0.40 or more and 0.55 or less.
  • the wavelength of the irradiated laser light is 1030 nm or its SHG of 515 nm.
  • the pulse width is 100 fs or more and 450 fs or less.
  • the scanning speed is 0.01 mm/sec or more and 10 mm/sec or less. Pulse energy is 30 nJ or more and 1000 nJ or less.
  • the repetition frequency is 100 kHz or more and 5 MHz or less.
  • the laser irradiation position has a depth of 50 ⁇ m or more and 250 ⁇ m or less from the surface 10 a of the glass member 10 toward the back surface 10 b. Further, in FIG. 9, an arrow LL indicates the irradiation direction of the laser beam.
  • the width of the refractive index change region 15, that is, the width of the optical waveguide, can be controlled to 3 ⁇ m or more and 10 ⁇ m or less by changing the pulse energy.
  • the maximum width of the refractive index change region 15 was 9 ⁇ m.
  • On the back surface 10b side of the portion indicated by the arrow in FIG. It was found that the uniformity of the state was also improved.
  • a glass member having a surface irradiated with a laser beam and a back surface located on the opposite side of the surface; a continuous refractive index change region provided in a glass region between the front surface and the back surface; with In the cross section of the glass member perpendicular to the longitudinal direction of the refractive index changing region, the refractive index changing region has a refractive index period in which the refractive index periodically varies along an axis passing through the refractive index changing region. without structure, optical parts.
  • DESCRIPTION OF SYMBOLS 10 Glass member 10a... Front surface 10b... Back surface 15... Refractive index change area (optical waveguide) DESCRIPTION OF SYMBOLS 20... Femtosecond laser 25... Laser drive part 30... Beam shaping optical system 35... Focusing point 40... XYZ stage 45... Stage drive part 50... Control part 100... Glass sample 110... Aspherical lens 111... Beam diameter control mechanism 121 Condensing lens 122 Cylindrical lens 150 Modified region 350 Beam irradiation regions 350A, 350B Light intensity distribution FT Flat top region AE Central region BW Beam waist LL Arrow RP Axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Laser Beam Processing (AREA)

Abstract

本開示は、光部品内の光導波路の幅、厚みの制御を容易にする製造方法等に関する。当該製造方法は、ガラス部材の準備工程と、フェムト秒レーザ光のレーザ照射工程と、レーザ光集光点の集光点移動工程と、を備える。レーザ光は、ガラス部材に屈折率変化を起こさせるエネルギー量と、フラットトップ形状の光強度分布と、を有する。ビーム照射領域は、最大光強度の1/e2以上の領域の輪郭で定義される。フラットトップ領域は、最大光強度の1/2以上の領域の輪郭で定義され、ビーム照射領域の面積の0.45倍以上の面積を有する。ビーム照射領域と走査方向のなす角度は70°以上110°以下であり、ガラス部材の厚み方向に直交する面と走査方向のなす角度は、20°以下である。

Description

光部品の製造方法および光部品
 本開示は、光部品の製造方法および光部品に関するものである。
  本願は、2021年11月24日に出願された日本特許出願第2021-190291号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
 ガラス部材内に光導波路を設ける光部品の製造方法として、非特許文献1には、ホログラム光学素子を利用した多点照射により互いに光学的に独立した3本の光導波路をガラス部材内に同時に作製する製造方法が開示されている。非特許文献2には、5MHzの高速繰返し周波数を有するレーザ光による蓄熱効果により、ガラス部材内のレーザ集光領域に円形に近い断面を有する光導波路(コア)を形成する製造方法が開示されている。また、非特許文献3には、レーザ照射位置を光導波路の幅方向にずらしながらレーザ光を複数回照射することにより、正方形状の断面を有する光導波路をガラス部材内に作製する製造方法が開示されている。さらに、非特許文献4には、回折光学素子(以下、「DOE(Diffractive Optical Element)と記す」)や非球面レンズを利用したビーム整形技術が開示されている。
 なお、レーザ光として例えばフェムト秒レーザ光を利用したレーザ照射による屈折率増大メカニズムについては、以下の非特許文献5、非特許文献6、および非特許文献7に開示されている。
S. Masaaki, et al., "Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides," OPTICS LETTERS, Vol.36, No. 7, April 1, 2011, pp.1065-1067. A. Fuerbach, et al., "Fabrication of Novel Integrated Components for Next-Generation Optical Networks Using the Femtosecond-Laser Direct-Write Technique," ICTON2014, We.A2.2. Y. Nasu, et al., " Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit", Optics Letters, Vol.30, pp.723-725 (2005). Keiji Fuse, "Beam Shaping for Advanced Laser Materials Processing," Laser Technik Journal, pp.19-22 (2015). E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. Vol. 71, No. 7, pp.882-884 (1997). Y. Liu, et al., "Micromodification of element distribution in glass using femtosecond laser irradiation," OPTICS LETTERS, Vol. 34, No. 2, pp. 136-138 (2009). Y. Shimotsuma, et l., "Self-organized nanogratings in glass irradiated by ultrashort light pulses," PHYSICAL REVIEW LETTERS, Vol. 91, No. 24, pp.247405-1 to 247405-4 (2003).
 本開示の光部品の製造方法は、準備工程と、レーザ照射工程と、集光点移動工程と、を備える。準備工程では、内部に連続した屈折率変化領域が設けられるガラス部材が用意される。レーザ照射工程では、ガラス部材内で集光するように、フェムト秒レーザ光がガラス部材内に照射される。集光点移動工程では、ガラス部材に対して集光点の位置が走査方向に沿って相対的に移動される。照射されるフェムト秒レーザ光は、ガラス部材に対して光誘起による屈折率変化を起こさせるエネルギー量を有する。フェムト秒レーザ光の集光点を含みガラス部材の厚み方向に対して直交する面上での光強度分布は、フラットトップ領域を有する。集光点を含みガラス部材の厚み方向に対して直交する面上でのビーム照射領域は、フェムト秒レーザ光のビームスポットである。また、ビーム照射領域は、光強度が最大光強度の1/e以上の領域の輪郭で定義される連続する一つの領域である。フラットトップ領域は、最大光強度の1/2以上の領域であり、ビーム照射領域の面積の0.45倍以上の面積を有する。さらに、ビーム照射領域の幅が最も大きくなる方向と走査方向のなす角度は、70°以上110°以下であり、ガラス部材の厚み方向に直交する面と走査方向のなす角度は、20°以下である。
図1は、本開示に係る光部品の製造方法を説明するためのフローチャートである。 図2は、本開示に係る光部品の製造方法を実施するための製造装置の構成を示す図である。 図3は、種々のビームシェーピング光学系およびビームスポット形状を説明するための図である。 図4は、矩形のフラットトップビームのビームスポット像およびフラットトップ光強度分布を示す図である。 図5は、ビームスポットの構造を説明するための図である。 図6は、水素含有ガラスの評価実験を説明するための図である。 図7は、本開示の実施形態と同様の効果が得られない一例を説明するための図である。 図8は、比較例に係る光部品の製造方法により得られた、光導波路として機能する屈折率変化領域の断面構造を示す図である。 図9は、本開示に係る光部品の製造方法により得られた、光導波路として機能する屈折率変化領域の断面構造を示す図である。
 [本開示が解決しようとする課題]
  発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、非特許文献1の製造方法では、ホログラム光学素子により生成された3本の回折光ビームが作製されるべき光導波路にそれぞれ割り振られる。しかしながら、非特許文献1の製造方法では、作製される光導波路それぞれの厚み(ガラス部材の厚み方向に沿った光導波路の断面長)、光導波路それぞれの幅は制御されていない。
 また、非特許文献2の製造方法は、繰り返し周波数が増大されたレーザ光の照射によりガラス部材内の所定位置を加熱することで、ガラス部材の厚み方向に沿った改質領域の長さ(光導波路の厚み)を上回る熱拡散を実現している。これにより、ガラス部材内に円形に近い断面形状の光導波路(コア)を実現している(光導波路幅の増大)。しかしながら、ガラス部材内における屈折率変化量と光導波路の断面サイズ(コア径)の制御は、非特許文献3と比較して独立パラメータとして取り扱うことが難しいため、精密な光導波路の幅制御が難しいという課題があった。
 非特許文献3の製造方法は、レーザ照射位置を光導波路の幅方向にずらしながらレーザ光を複数回、例えば20回照射することにより(マルチスキャン)、ガラス部材内に設けられる光導波路の幅制御を行っている。そのため、非特許文献3の製造方法では、1回のレーザ走査により光導波路を作製する場合と比較して製造時間が大幅に長くなるという課題があった。
 さらに、非特許文献4には、非球面レンズを含む光学系、集光レンズとシリンドリカルレンズを組み合わせた光学系等により実現されるビーム整形が提案されている。しかしながら、非特許文献4に開示されたレーザ整形技術が単純に適用された場合、ガラス部材に照射されるレーザ光のパワー密度の低下は避けられず、結果、ガラス部材の改質に必要なエネルギー量が得られない可能性があるという課題があった。
 本開示は、上述のような課題を解決するためになされたものであり、光部品内に設けられる光導波路の幅、厚みの制御を容易にするとともに伝搬ロスを効果的に抑制するための構造を備えた光導波路の作製を可能にする光部品の製造方法および光部品を提供することを目的としている。
 [本開示の効果]
  本開示の光部品の製造方法によれば、光部品内に設けられる光導波路の幅、厚みの制御が容易になるとともに、伝搬ロスを効果的に抑制するための構造を備えた光導波路の作製が可能になる。
 [本開示の実施形態の説明]
  最初に本開示の実施形態の内容をそれぞれ個別に列挙して説明する。
 本開示の光部品の製造方法は、
  (1) 準備工程と、レーザ照射工程と、集光点移動工程と、を備える。準備工程では、内部に連続した屈折率変化領域が設けられるガラス部材が用意される。レーザ照射工程では、ガラス部材内で集光するように、フェムト秒レーザ光がガラス部材内に照射される。集光点移動工程では、ガラス部材に対して集光点の位置が走査方向に沿って相対的に移動される。照射されるフェムト秒レーザ光は、ガラス部材に対して光誘起による屈折率変化を起こさせるエネルギー量を有する。構成1Aとして、フェムト秒レーザ光の集光点を含みガラス部材の厚み方向(X軸方向)に対して直交する面上での光強度分布は、フラットトップ領域を有する。集光点を含みX軸方向に対して直交する面上でのビーム照射領域は、フェムト秒レーザ光のビームスポットである。また、ビーム照射領域は、光強度が最大光強度の1/e以上の領域の輪郭で定義される連続する一つの領域である。フラットトップ領域は、最大光強度の1/2以上の領域であり、ビーム照射領域の面積の0.45倍以上の面積を有する。さらに、構成1Bとして、ビーム照射領域の幅が最も大きくなる方向(Y軸方向)と走査方向のなす角度は、70°以上110°以下であり、ガラス部材の厚み方向に直交する面と走査方向のなす角度は、20°以下である。
 構成1Aにより、ガラス部品内に設けられる光導波路の幅、厚みの制御が容易になる。また、構成1Bにより、形成される光導波路内面の屈折率揺らぎや側面の粗さが抑えられ、結果、伝搬ロスの抑制が可能になる。
 (2)上記(1)において、準備工程は、ガラス部材に対して水素を注入する水素注入工程を含んでもよい。この場合、レーザ照射に起因するガラス部材内の改質閾値を低減することが可能になる。なお、水素注入工程では、チャンバー内に、ガラス部材が設置された状態で100%水素ガスが導入され、当該チャンバー内の気圧が10気圧以上に維持される。水素注入期間は、1日以上、8週間以内である。これにより、ガラス部材に水素が注入される。
 (3)上記(1)または上記(2)において、光強度分布の中心領域は、該中心領域における光強度の平均値の75%以上125%以下の範囲内に、該中心領域内における最大光強度および最小光強度が収まる程度の平坦性を有してもよい。なお、中心領域は、フラットトップ領域の一部を構成し、ビーム照射領域の重心を含み、かつ、フラットトップ領域の面積の50%を占める領域である。光強度分布の中心領域において十分な平坦性が確保されることにより、ガラス部品内に設けられる光導波路の幅の制御がさらに容易になる。
 (4)上記(1)から上記(3)のいずれかにおいて、ビームスポットは、非球面レンズを含む第一光学系、または、集光レンズおよびシリンドリカルレンズを含む第二光学系により形成されてもよい。このように、第一光学系や第二光学系によりビームスポットを生成する場合、該フェムト秒レーザ光のビームスポット自体の形状を任意形状に整形できる。
 本開示の光部品は、
  (5)上記(1)から上記(4)のいずれかの製造方法により製造された光部品であって、走査方向に対して直交するガラス部材の断面において、屈折率変化領域は、該屈折率変化領域を通過する軸に沿って周期的に屈折率が変動する屈折率周期構造を含まないのがよい。屈折率変化領域が屈折率周期構造を含まないことは、該屈折率変化領域の断面の改質状態の均一性が確保されることを意味する。このように、屈折率変化領域における改質状態の均一性を確保することにより、伝搬ロスが0.2dB/cm未満に制御される。
 (6)上記(5)において、屈折率周期構造を確認するための軸は、走査方向およびレーザ光が照射される照射軸の双方に直交する基準軸(Y軸方向)に対して0°(平行)から10°までの角度をなす軸であるのがよい。なお、屈折率変化領域に屈折率周期構造が含まれる態様としては、例えば、光導波路として機能する屈折率変化領域の十分な幅を確保するため、Y軸方向に沿ってシフトしながらレーザ光を複数走査させるマルチスキャンによる光導波路形成が知られている。マルチスキャンの場合、屈折率変化領域内には、Y軸方向に沿って改質領域と、改質の不十分な領域を含む非改質領域と、が周期的に形成されるため、改質領域の均一性が確保できない。一方、Y軸方向に沿ってビームスポット形状の幅が十分に確保されたレーザ光であれば、1回のレーザ走査により屈折率変化領域の形成が可能になり、該屈折率変化領域における改質の均一性も確保される。このように、Y軸方向に沿って屈折率周期構造の有無を確認することにより、光導波路として機能する屈折率変化領域の製造方法の特定が可能になる。
 [本開示の実施形態の詳細]
  本開示に係る光部品の製造方法および光部品の具体例を、以下に添付の図面を参照しながら詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、本開示に係る光部品の製造方法を説明するためのフローチャートである。また、図2は、本開示に係る光部品の製造方法を実施するための製造装置の構成を示す図である。
 図2に示された製造装置は、フェムト秒レーザ20と、該フェムト秒レーザ20を駆動させるためのレーザ駆動部25と、フェムト秒レーザ光のビームスポットを任意形状に整形するためのビームシェーピング光学系30と、XYZステージ40と、該XYZステージ40を駆動させるためのステージ駆動部45と、これら各部の動作を制御するための制御部50と、を備える。
 レーザ駆動部25は、制御部50からの指示に従って、フェムト秒レーザ20から出力されるパルスレーザ光(フェムト秒レーザ光)のパワーおよび繰り返し周波数を制御する。これにより、フェムト秒レーザ20から、数百フェムト秒以下のパルス幅を有するフェムト秒レーザ光が出力可能である。特に、パルス幅が数百フェムト秒以下に設定されたフェムト秒レーザ光は、そのピークパワーを10W以上にすることができるため有効である。また、出力されるフェムト秒レーザ光の繰り返し周波数は、ガラス材料の内部に形成される光導波路の屈折率および構造を滑らかにするためには10kHz以上であればよい。XYZステージ40のデバイス搭載面上には、光部品となるべきガラス部材10が置かれる。ガラス部材10は、レーザ光が照射される表面10aと、該表面10aの反対側に位置する裏面10bと、を備える。また、ガラス部材10は、表面10aと裏面10bに挟まれた領域内においてレーザ光照射により圧力由来の屈折率変化Δnと構造由来の屈折率変化Δnの双方を生じさせるため、Geを含む。より具体的には、Ge以外のドーパントを含まないガラス、BおよびGeが共添加されたガラスからなる。あるいは、Δnの効果が最大化される不純物が添加されていないガラス等も有効である。また、これらのガラスは、石英系ガラス、リン酸塩系ガラス、ハロゲン化物ガラス、および硫化物ガラスである。ガラス部材10には、あらかじめHが注入されていてもよい。フェムト秒レーザ20から出力されたフェムト秒レーザ光は、ビームシェーピング光学系30により、XYZステージ40上に設置されたガラス部材10の内部、すなわちYZ平面上に位置する集光点35に集光される。これにより、ガラス部材10の内部に光導波路として機能する屈折率変化領域15が形成される。
 ステージ駆動部45は、制御部50からの指示に従って、XYZステージ40のデバイス搭載面が、X軸方向、Y軸方向、およびZ軸方向それぞれに沿って移動するよう、XYZステージ40を駆動させる。この構成により、ガラス部材10に対してフェムト秒レーザ光の集光点35の位置が相対的に移動することになる。制御部50は、上述のようにレーザ駆動部25およびステージ駆動部45の各動作を制御することによりレーザ描画を行う。なお、レーザ描画は、ガラス部材10の内部に任意パターンの屈折率変化領域15が作り込まれる。なお、屈折率変化領域15の任意パターンは、X軸の深さ方向情報を加味したYZ平面上に投影された光導波路の形状に一致にする。
 次に、上述のような構造を有する製造装置を利用して光導波路が設けられた光部品を製造する、本開示の光部品の製造方法を図1のフローチャートに沿って説明する。なお、以下の説明では、一例として、任意パターンの光導波路として機能する屈折率変化領域15が作り込まれた光部品である三次元光導波路デバイスを製造する場合について説明する。
 本開示の光部品の製造方法は、準備工程と、光導波路製造工程により、構成されている。まず、準備工程では、三次元光導波路デバイスとなるべきガラス部材10、例えば平行平板ガラスが用意され、一旦、チャンバー内に設置される。ガラス部材10が設置された状態で、チャンバー内には100%水素ガスが導入され、当該チャンバー内の気圧が10気圧以上に維持される。水素注入期間は、1日以上、8週間以内である。これにより、ガラス部材10に水素が注入される(ステップST10)。なお、ステップST10の水素注入工程直後に光導波路製造工程が行われない場合は、ガラス部材10から抜け出る水素量を抑制するため、該水素が注入されたガラス部材10が-10℃以下で低温保管される(ステップST15)。なお、ステップST15(低温保管工程)は、図1中のA点からB点まで示された期間に実施される。
 光導波路製造工程では、水素が注入されたガラス部材10の内部に任意パターンの光導波路である屈折率変化領域15が作りこまれる。具体的に、水素が注入されたガラス部材10は、ステップST10の完了後、直ちにXYZステージ40のデバイス搭載面上に設置され、フェムト秒レーザ光が照射される(ステップST20)。制御部50は、フェムト秒レーザ20から、ガラス部材10の内部において光誘起による屈折率変化を起こさせるエネルギー量を有するとともに10kHz以上の繰返し周波数を有するフェムト秒レーザ光が出力されるよう、レーザ駆動部25を制御する。フェムト秒レーザ20から出力されたフェムト秒レーザ光は、ビームシェーピング光学系30により、ガラス部材10の内部に集光される。なお、ビームシェーピング光学系30は、入力されるフェムト秒レーザ光のビームスポットを所定形状に整形する。このフェムト秒レーザ光の集光点35におけるビーム照射領域において光誘起による屈折率変化が形成される。ガラス部材10における所定部位のレーザ照射が完了すると、制御部50は、ステージ駆動部45を制御し、XYZステージ40のデバイス搭載面上に設置されたガラス部材10の位置を移動させる(ステップST30)。このように、集光点移動工程(ステップST30)では、ガラス部材10の設置位置および/またはフェムト秒レーザ光の集光点35の位置を連続的または断続的に変更することにより、ガラス部材10の内部におけるフェムト秒レーザ光の集光点35の位置が移動する。ガラス部材10に対する集光点35の深さ方向の変動は、ガラス部材10の厚み方向に直交する面と移動方向のなす角度が-20°から+20°の範囲内に制限される。
 なお、ステップST20のレーザ照射工程およびステップST30の集光点移動工程、すなわち、制御部50によるレーザ駆動部25およびステージ駆動部45の動作制御は、ガラス部材10の内部に予め設計された光導波路パターンが形成されるまで、図1中のC点で示された時点に戻って、照射条件を変更しながら、または同条件で繰り返し行われる(ステップST40)。ガラス部材10への光導波路である屈折率変化領域15の作り込みが完了すると(ステップST40)、長期間、Δnが変化しないように、エージング処理や、残留水素を除去するため、ガラス部材10はアニールされる(ステップST50)。以上の工程、すなわちステップST10からステップST50、または、ステップST15を含むステップST10からステップST50を経て、内部に光導波路が設けられた光部品が得られる。
 ビームシェーピング光学系30は、例えば図3に示されたように、非球面レンズを含む光学系、集光レンズとシリンドリカルレンズを組み合わせた光学系等が挙げられる。なお、図3の上段(図3中、「非球面レンズ」と記す)には、非球面レンズ110を含む光学系の構成が示されている。図3の下段(図3中、「集光レンズ+シリンドリカルレンズ」と記す)には、集光レンズとシリンドリカルレンズを組み合わせた光学系の構成が示されている。
 図3の上段に示された「非球面レンズ」光学系(第一光学系)は、非球面レンズ110を含む。なお、必要に応じて、非球面レンズ110の上流側または下流側にビーム径制御機構111が設けられてもよい。また、ビーム径制御機構111は、非球面レンズ110以外の非球面レンズと組み合わされてもよい。非球面レンズ110から出力されたフェムト秒レーザ光の光強度分布は、集光点35が位置するビームウエストBW上において定義され、フラットトップ形状を有する。ビームウエストBWは、YZ平面に含まれる。また、フェムト秒レーザ光のビームスポットは、Y軸方向に沿った幅がY、Z軸方向に沿った幅がZ(≦Y)のビーム照射領域350に相当する。比較のため、「非球面レンズ」光学系によりビーム整形された正方形状のフラットトップビームのビームスポット像が図4の上段に示され、その光強度分布が図4の下段に示されている。この正方形状のフラットトップビームのビームスポット像は、Z=Yに設定されたビーム照射領域350に相当する。
 図3の下段に示された「集光レンズ+シリンドリカルレンズ」光学系(第二光学系)は、集光レンズ121と、シリンドリカルレンズ122と、を含み、上記「非球面レンズ」光学系と同様に、Y軸方向に沿った幅がY、Z軸方向に沿った幅がZ(≦Y)のビーム照射領域350に相当するビームスポットを有するフェムト秒レーザ光を出力する。あるいは、集光レンズ121の前に、シリンドリカルレンズ122とシリンドリカルレンズ122とは異なるシリンドリカルレンズとを組み合わせた光学系を配置し、シリンドリカルレンズの球面軸のビーム径と直交する軸のビーム径を変化させた楕円ビームの平行光が用意されてもよい。この場合、集光レンズで集光することでBW上に短径、長径を一致させたフェムト秒レーザ光が出力可能になる。
 図5は、ビームスポットの構造を説明するための図である。図5の上段(図5中、「フラットトップ領域の定義」と記す)には、フラットトップ領域FTおよびその平坦性の定義を説明するためのビーム照射領域350の平面図および光強度分布が示されている。図5の中段(図5中、「光導波路領域の形成」と記す)には、ガラス部材10内における屈折率変化領域15の形成過程とともに、集光点35、ビーム照射領域350等の位置関係が示されている。図5の下段(図5中、「ビームスポットの長さ(深さ方向)」と記す)には、深さ方向に沿ったビームスポットの厚み調整(長さ調整)を説明するための図が示されている。
 図5の上段は、図3の上段に示された「非球面レンズ」光学系や図3の下段に示された「集光レンズ+シリンドリカルレンズ」光学系によりビーム整形された、フェムト秒レーザ光のビーム照射領域350の概念図である。このビーム照射領域350は、図5の中段に示されたように、ガラス部材10の表面からX軸方向に例えば深さ100μm程度にフェムト秒レーザ光が集光されたときのYZ平面(ビームウエストBW)上の領域である。図5の上段には、さらに、Y軸に沿ったフラットトップ形状の光強度分布350Aと、Z軸方向に沿ったフラットトップ形状の光強度分布350Bが示されており、これら光強度分布350Aおよび350Bによりビーム照射領域350のフラットトップ形状の光強度分布が定義される。
 なお、ビーム照射領域350は、光強度分布350Aおよび350Bの光強度が最大光強度の1/eとなる領域の輪郭によって定義され、Y軸に沿った幅がYであり、Z軸に沿った幅がZである。また、フラットトップ領域FTは、光強度分布350Aおよび350Bの光強度が最大光強度の1/2となる領域の輪郭によって定義され、該フラットトップ領域FTは、ビーム照射領域350の面積の0.45倍以上の面積を有する。さらに、光強度分布350Aおよび350Bにより定義されるビーム照射領域350の光強度分布の平坦性は、該光強度分布の中心領域AEの平坦性により定義される。すなわち、中心領域AEは、該中心領域AEにおける光強度の平均値の55%以上145%以下の範囲内に、該中心領域AE内における最大光強度および最小光強度が収まる程度の平坦性を有する。なお、中心領域AEは、フラットトップ領域FTの一部を構成し、ビーム照射領域350の重心を含み、かつ、フラットトップ領域FTの面積の50%を占める領域である。
 図5の上段および中段に示されたビーム照射領域350のY軸に沿った幅Yは、形成されるべき光導波路幅Wが得られるように調整され、ビーム照射領域350のZ軸に沿った幅Zは、ビーム照射領域350において所定の屈折率変化量が得られるように調整される。フェムト秒レーザ光の集光点35を走査方向に相当するZ軸方向に沿って移動させることにより、一度の走査により、図5の中段に示されたような光導波路として機能する屈折率変化領域15が形成される。なお、上述のように、図4には「非球面レンズ」光学系によりビーム整形されたフェムト秒レーザ光の正方形状のビームスポット像(Y=Z)およびフラットトップ形状の光強度分布が示されている。Y軸方向の幅Yは光導波路幅に寄与する一方、Z軸方向の幅Zはガラス部材10内における屈折率変化量に寄与するため、それぞれを独立パラメータとして取り扱うことができる。幅Zは、図5の下段に示されたように、ガラス部材10の厚み方向に相当するX軸方向のレーザ光のパワー密度の変化、レイリー長Zを調整することができるパラメータであり、屈折率変化量の調整の他に、光導波路の厚みLも調整することができる。なお、厚みLは、屈折率変化した領域のX軸に沿った長さである。例えば、Z=Yの場合、集光点35におけるビーム照射領域350のパワー密度が低下することになるため、照射されるフェムト秒レーザ光の光強度を増大させる必要がある。一方、Z<Yの場合、正方形状のビーム照射領域(Z=Y)の場合と比較して、照射されるレーザ光のパワー密度の低下が抑制されるため、ガラス部材10の改質のための必要光強度を低減することが可能になる。したがって、正方形状の場合よりもZ<Yの場合が有効である。
 さらに、ガラス部材10内に曲線光導波路を形成する場合、ビーム照射領域350の幅が最も大きくなる方向と走査方向のなす角度θは、70°以上110°以下、すなわち90°を基準とした-20°から+20°の範囲であり、ガラス部材の厚み方向に直交する面と走査方向のなす角度は、20°以下であればよい。この場合、形成される光導波路側面の粗さが抑えられ、また、Y軸方向の幅Yの光強度分布の平坦化の結果、伝搬ロスの抑制が可能になる。なお、Y軸方向の幅Yの光強度分布の平坦化の詳細は図7で後述する。
 レイリー長Zは、ビーム断面積がビームウエストBWにおけるビーム断面積の2倍になる位置と該ビームウエストBW(集光点)との間の距離を意味し、以下の式(1):
Figure JPOXMLDOC01-appb-M000001
ここで、ω:ビーム半径
で与えられる。所定の光導波路の厚みLを得るためには、レイリー長Zの適切化が必要であり、ZrはLの2倍以下に調整してもよく、1倍以下であってもよい。
 なお、上述のように光導波路の厚みLを伸ばす場合、ガラス部材10内に照射されるフェムト秒レーザ光のパワー密度の低下が生じる。そのため、屈折率変化を生じさせるパワー閾値(改質閾値:Ith)を超える光強度を有するフェムト秒レーザ光の照射が必要にある。一方で、多光子吸収を効率的に誘発させるためには、基本波よりも波長変換波は有効であるが、繰り返し周波数の増大に伴う波長変換効率の低下は避けられず、必要な改質閾値Ithを確保することが困難なケースがあった。なお、基本波は、例えば波長1.03μmであり、波長変換波は、例えば波長515nmの第二高調波:SHGである。
 そこで、発明者らは、光導波路として機能する屈折率変化領域15が作り込まれるガラス部材10に水素を注入する方法を検討した。なお、上述の先行技術文献には水素含侵材料に対するフェムト秒レーザ光の照射によるレーザ描画に関する報告例はない。加えて、水素含侵材料に適したビーム整形に関する報告例はない。
 図6は、水素含有ガラスの評価実験を説明するための図である。図6の上段(図6中、「実験系」と記す)には、ガラス試料100が水素含有状態の場合と水素を含まない場合について該ガラス試料100内の改質状態を評価するための実験系の構造が示されている。図6の中段(図6中、「断面(水素含有)」と記す)には、図6の上段に示されたI-I線に沿った、水素を含有するガラス試料100の断面(研磨後)が示されている。図6の下段(図6中、「断面(水素含まず)」と記す)には、図6の上段に示されたI-I線に沿った、水素を含まないガラス試料100の断面(研磨後)が示されている。
 この評価実験では、図6の上段に示されたように、ガラス試料100(水素注入処理が施された部材と水素注入処理が施されていない部材)が用意され、走査速度を変えながらこのガラス試料100内における改質領域150の形成状態が観察された。改質領域150が屈折率変化領域15に相当する。具体的に、このガラス試料100に対して照射されるフェムト秒レーザ光は、波長:515nm、繰り返し周波数:100kHz以上1MHz以下、パルス幅:195fs以上350fs以下、パルスエネルギー:100nJ以上500nJ以下を有する。また、フェムト秒レーザ光は、ガラス試料100の表面から10μm以上200μm以下の深さ位置に集光される。フェムト秒レーザ光は、図6の上段に示された走査方向に沿って照射された。
 図6の中段に示されたガラス試料100の断面は、水素を含有する試料の断面であって、フェムト秒レーザ光の走査速度を0.1mm/secから15.0mm/secまで変えたときの断面である。一方、図6の下段に示されたガラス試料100の断面は、水素を含まない試料の断面であって、フェムト秒レーザ光の走査速度を0.1mm/secから10.0mm/secまで変えたときの断面である。水素含有の有無に拘わらず走査速度が10.0mm/secまでは改質領域150の形成が確認された。しかしながら、図6の中段に示された水素を含有する試料では、15.0mm/secの走査速度まで改質領域150が確認され、図6の下段に示された水素を含有しない試料の場合と比較して1.5倍の走査速度においても改質領域150の形成(書込み)が可能であることが判明した。すなわち、水素注入処理が施されたガラス部材が利用される場合、水素注入処理が施されていないガラス部材を利用する場合と比較して、改質閾値Ithを1.5倍低減できることが分かった。水素含有量を増大させることで改質閾値Ithは更に低減できることが推測された。また、改質に必要とされるエネルギー量においては、水素処理されたことでガラス部材の組成変化を増大させビームの幅Ydよりも大きい光導波路幅Wを形成できることから所望の光導波路幅Wに対して幅Ydを低減することができ、パワー密度低下による屈折率低減を補償することが可能となる。このように、フェムト秒レーザ光のビーム整形に起因した改質閾値Ithの低減は、水素を含有するガラス部材を利用することで補償可能であることが分かる。換言すれば、一度のレーザ照射でも所定の改質領域の形成が可能である。
 図7に示された例は、本開示の実施形態と同様な効果が得られない例である。非特許文献3には、1本の集光ビームBL(レーザ光)で光導波路となるコアの横方向(Y軸方向)の幅を得るために、光導波路伝搬方向(Z軸方向)のビーム走査が完了した後に、ビームスポットをY軸方向にΔyずらして前のビーム走査と同様にZ軸方向にビーム走査を行い、その工程を複数回繰り返すマルチスキャンが提案されている。この導波路形成方法は、設計通りの光導波路幅が得られることから有効な方法である。発明者らは、この光導波路形成方法によりガラス部材10内に、屈折率変化領域15に相当する光導波路構造を形成し、HF等によるエッチングによってその光導波路の断面形状(XY断面)を観察した。その結果、図7に示されたように、竹串状の様な形状が重なり合うように複数本観察され、その本数や竹串状の間隔は、レーザ光の走査回数、走査間隔Δyと一致していたことから、レーザ照射条件(描画条件)を反映した加工痕が観察されていることが推定される。そのエッチング後のXY断面は、一つ一つの竹串状の長さや、エッチング深さは不均一である。竹串状の長さの不均一さは、導波路構造の揺らぎと見做され、伝搬ロスの増大要因となる。エッチング深さはエッチングレートの違いを表しているが、そのエッチングレートは改質(屈折率)変調の大小に依存している。そのため、図7に示されたXY断面からは導波路内部は屈折率揺らぎが大きいことが読み取れ、導波路構造揺らぎと同様に、伝搬ロスの増大要因となる。一方、本開示の実施形態は、水素含侵材料においても有効である。すなわち、本開示の実施形態では、Y軸方向に対して屈折率を増大させるタイミングが同一である。そのため、本開示の実施形態によれば、水素が同じタイミングで消費させられ、その結果、1本ずつでレーザ描画する場合と比較してガラス部材10の均一な改質が見込める。
 なお、非特許文献3のマルチスキャンによる製造方法は、ビームスポット径:2μm以下、Δy=0.4μmずつ照射点をY軸方向に沿ってずらしながらレーザ照射が行われている。n回目のビーム照射エリアと(n+1)回目のビーム照射エリアはY軸方向に沿って1.6μm程度オーバーラップする計算になる。例えば、水素含有に起因する改質効果(水素含有効果)がビームスポット径と同等と仮定した場合、1回目では水素が最大充填されていることから、水素含有効果を最大限活用できる。ただし、2回目では、Y軸方向に対して1.6μmの領域は水素含有効果が大幅に低減、若しくは全く得られない。これは、形成される光導波路内の屈折率揺らぎを増大させる要因となることから、水素を含有するガラス部材へのレーザ照射に対しては、マルチスキャンは不向きである。
 伝搬ロスの低減には、屈折率変化領域15の断面における改質状態が均一であるのがよい。上述の図7には、SiOを主材料とするガラス部材10に対してΔyずつレーザ光照射位置をずらしたマルチスキャンが行われた結果、シングルモード伝搬が確認された。ただし、導波路断面の改質をエッチングで調査したところ、竹串状の導波路形状が得られ、伝搬ロスは、0.2dB/cm以上10dB/cm以下であった。伝搬ロスを0.2dB/cm未満の導波路を獲得するには、必要な導波路サイズの他にも、導波路内部の改質が均一である必要がある。
 そこで、発明者らは、光導波路として機能する屈折率変化領域15における改質状態を調査すべく、以下のような実験を行った。なお、この実験結果が図8および図9に示されている。図8は、比較例に係る光部品の製造方法により得られた、光導波路として機能する屈折率変化領域の断面構造を示す図である(図8中、「断面構造(比較例)」と記す)。図8の上段(図8中、「走査回数:13回」と記す)には、ガウシアン分布の光強度を有するレーザ光を57回照射するマルチスキャンの例が示されている。図8の中段(図8中、「走査回数:29回」と記す)には、ガウシアン分布の光強度を有するレーザ光を29回照射するマルチスキャンの例が示されている。図8の下段(図8中、「走査回数:57回」と記す)には、ガウシアン分布の光強度を有するレーザ光を13回照射するマルチスキャンの例が示されている。また、図9は、本開示に係る光部品の製造方法により得られた、フラットトップ形状の光強度分布を有するレーザ光の1回走査により形成された、光導波路として機能する屈折率変化領域の断面構造を示す図である。図8および図9に示された図は、いずれもエッチングされた断面のSEM観察像である。具体的には、まず、形成された屈折率変化領域15を切断することで得られたサンプルの断面が研磨される。続いて、断面が研磨されたサンプルを、BHF溶液を純水で希釈した溶液内に1分から60分間の液浸することで断面をエッチングする。このようにエッチングされた断面をSEMによる観察することで、形成された屈折率変化領域15の改質状態が評価される。
 図8に示された比較例の実験は、図7と同様の条件(非特許文献3)で実施された。図8に上段から下段に示された比較例において、矢印LLは、レーザ光の照射方向を示す。また、各比較例とも、ΔyずつY軸方向に沿って照射点をずらしながら、Z軸方向に沿ったレーザ光走査が複数回実施されている。
 例えば、図8の上段の比較例の場合、屈折率変化領域15の改質形状は、矢印LLに沿って伸びる竹串状の改質領域がY軸方向に沿って13本並んだ形状であることが分かる。また、図8の中段および下段それぞれに示された比較例においても、Y軸方向に沿って複数の竹串状の改質領域が周期的に形成されていることが分かる。特に、レーザ光の走査回数の増大に伴い、その竹串状の改質領域が密に配列される。例えば図8の下段の例では、屈折率変化領域15の中央部分は、おおよそ均一な改質状態となるため、伝搬ロスは0.2dB/cm程度と、図8の上段および中段に示された例と比較して低減している。ただし、図8の上段から下段に示されたいずれの例においても、Y軸に0°(平行)またはY軸と10°以下の角度をなす軸RPに沿って屈折率の改質状態が周期的に変動する屈折率周期構造がはっきりと確認でき、更なる伝搬ロスの低減は困難であった。
 一方、図9に示された本開示の実験で使用されるレーザ光の波長は、1030nmを基準とした-10nm以上+10nm以下の波長範囲、1060nmを基準とした-10nm以上+10nm以下の波長範囲、それぞれの波長範囲における第二高調波発生(SHG)、第三高調波発生(THG)が有効である。パルス幅は、500fs以下が有効である。繰返し周波数は、100kHz~5MHzが有効である。照射されるレーザ光のZ軸方向のビームスポット径は1μmあるいは回折限界付近にまで集光され、Y軸方向のビームスポット径は2μm以上10μm以下であり、その光強度分布はフラットトップ形状を有する。本開示の実験では、フラットトップ形状の光強度分布を有するレーザ光がSiOからなるガラス部材10の内部に集光された状態でZ軸方向に沿って1回だけ走査されることにより、光導波路として機能する屈折率変化領域15が形成されている。なお、図9の実験においても、集光レンズのNAは、0.40以上0.55以下である。照射されるレーザ光の波長は、1030nm、あるいはそのSHGの515nmである。パルス幅は100fs以上450fs以下である。走査速度は、0.01mm/sec以上10mm/sec以下である。パルスエネルギーは、30nJ以上1000nJ以下である。繰返し周波数は、100kHz以上5MHz以下である。レーザ照射位置は、ガラス部材10の表面10aから裏面10bに向かって深さ50μm以上250μm以下である。また、図9中、矢印LLはレーザ光の照射方向を示す。
 実際の実験では、屈折率変化領域15の幅、すなわち光導波路幅は、パルスエネルギーを変えることで3μm以上10μm以下に制御可能であり、図9に示された例では、上記のレーザ光照射条件では、屈折率変化領域15の最大幅は9μmであった。図9の矢印で示された部位よりも裏面10bの側は、上述の図8の上段から下段の各比較例のような屈折率周期構造は見られず、屈折率変化領域の内部における改質状態の均一性も向上していることが分かった。
 なお、図9の例では、屈折率変化領域15のうち裏面10bの側の平坦性を制御することは困難であるが、照射されるレーザ光の光強度分布を制御することで、平坦化は可能であり、そのような適切な断面形状の屈折率変化領域15を用意することで、0.2dB/cm未満の伝搬ロスが得られることは予測できる。このことから、屈折率変化領域15の断面内部の改質形状は、Y軸に対して0°から10°までの角度をなす軸に沿って屈折率変動の周期性がないことが伝搬ロスの低減には有効である。
 [付記]
  レーザ光が照射される表面と、前記表面の反対側に位置する裏面と、を有するガラス部材と、
  前記表面と前記裏面との間にガラス領域内に設けられた、連続する屈折率変化領域と、
  を備え、
  前記屈折率変化領域の長手方向に対して直交する前記ガラス部材の断面において、前記屈折率変化領域は、前記屈折率変化領域を通過する軸に沿って周期的に屈折率が変動する屈折率周期構造を含まない、
  光部品。
10…ガラス部材
10a…表面
10b…裏面
15…屈折率変化領域(光導波路)
20…フェムト秒レーザ
25…レーザ駆動部
30…ビームシェーピング光学系
35…集光点
40…XYZステージ
45…ステージ駆動部
50…制御部
100…ガラス試料
110…非球面レンズ
111…ビーム径制御機構
121…集光レンズ
122…シリンドリカルレンズ
150…改質領域
350…ビーム照射領域
350A、350B…光強度分布
FT…フラットトップ領域
AE…中心領域
BW…ビームウエスト
LL…矢印
RP…軸。

Claims (6)

  1.  内部に連続した屈折率変化領域が設けられるガラス部材を用意する準備工程と、
     前記ガラス部材内で集光するようにフェムト秒レーザ光を前記ガラス部材内に照射するレーザ照射工程と、
     前記ガラス部材に対して前記フェムト秒レーザ光の集光点の位置を走査方向に沿って相対的に移動させる集光点移動工程と、
     を備え、
     前記フェムト秒レーザ光は、前記ガラス部材に対して光誘起による屈折率変化を起こさせるエネルギー量を有し、
     前記フェムト秒レーザ光の前記集光点を含み前記ガラス部材の厚み方向に対して直交する面上での光強度分布は、フラットトップ領域を有し、
     前記集光点を含み前記ガラス部材の厚み方向に直交する前記面上のビーム照射領域は、前記フェムト秒レーザ光のビームスポットであり、かつ、前記光強度分布における光強度が最大光強度の1/e以上の領域の輪郭で定義される連続する一つの領域であり、
     前記フラットトップ領域は、前記最大光強度の1/2以上の領域であり、
     前記フラットトップ領域の面積は、前記ビーム照射領域の面積の0.45倍以上であり、
     前記ビーム照射領域の幅が最も大きくなる方向と前記走査方向のなす角度は、70°以上110°以下であり、
     前記ガラス部材の厚み方向に直交する前記面と前記走査方向のなす角度は、20°以下である、
     光部品の製造方法。
  2.  前記準備工程は、前記ガラス部材に対して水素を注入する水素注入工程を含むことを特徴とする請求項1に記載の光部品の製造方法。
  3.  前記光強度分布は、前記フラットトップ領域の一部を構成し、前記ビーム照射領域の重心を含み、かつ、前記フラットトップ領域の面積の50%を占める中心領域を有し、
     前記中心領域は、前記中心領域における光強度の平均値の55%以上145%以下の範囲内に前記中心領域内における最大光強度および最小光強度が収まる平坦性を有する、
     請求項1または請求項2に記載の光部品の製造方法。
  4.  前記ビームスポットは、非球面レンズを含む第一光学系、または、集光レンズおよびシリンドリカルレンズを含む第二光学系により形成されている、
     請求項1から請求項3のいずれか一項に記載の光部品の製造方法。
  5.  請求項1から請求項4のいずれか一項に記載の光部品の製造方法により製造された光部品であって、
     前記走査方向に対して直交する前記ガラス部材の断面において、前記屈折率変化領域は、前記屈折率変化領域を通過する軸に沿って周期的に屈折率が変動する屈折率周期構造を含まない、
     光部品。
  6.  前記屈折率周期構造を確認するための軸は、前記走査方向および前記レーザ光が照射される照射方向の双方に直交する基準軸に対して0°から10°までの角度をなす軸である、
     請求項5に記載の光部品。
PCT/JP2022/035509 2021-11-24 2022-09-22 光部品の製造方法および光部品 WO2023095432A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190291 2021-11-24
JP2021190291 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023095432A1 true WO2023095432A1 (ja) 2023-06-01

Family

ID=86539167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035509 WO2023095432A1 (ja) 2021-11-24 2022-09-22 光部品の製造方法および光部品

Country Status (1)

Country Link
WO (1) WO2023095432A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332971A (ja) * 1997-06-04 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> 光回路の製造方法
JP2000305039A (ja) * 1999-04-16 2000-11-02 Sumitomo Heavy Ind Ltd ビーム整形装置
JP2001311847A (ja) * 2000-02-22 2001-11-09 Nec Corp 屈折率の修正方法、屈折率の修正装置、及び光導波路デバイス
JP2003255262A (ja) * 2002-03-05 2003-09-10 Tokyo Instruments Inc フェムト秒レーザーを用いた特殊光学系
JP2003279758A (ja) * 2002-03-25 2003-10-02 Hoya Photonics Corp フェムト秒レーザ伝送用ファイバ,フェムト秒レーザ伝送用ファイバを使用したレーザ加工装置及びレーザ加工方法。
JP2005205464A (ja) * 2004-01-23 2005-08-04 Okamoto Glass Co Ltd レーザ加工法、構造物および光学素子
JP2007079161A (ja) * 2005-09-14 2007-03-29 Toyota Motor Corp 超短パルスレーザー加工用光学系、材料微細加工方法、及び微細加工装置
US20120039560A1 (en) * 2009-01-08 2012-02-16 President & Fellows Of Harvard College All-optical logic gates and methods for their fabrication
WO2019138821A1 (ja) * 2018-01-11 2019-07-18 住友電気工業株式会社 光デバイスおよび光デバイスの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332971A (ja) * 1997-06-04 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> 光回路の製造方法
JP2000305039A (ja) * 1999-04-16 2000-11-02 Sumitomo Heavy Ind Ltd ビーム整形装置
JP2001311847A (ja) * 2000-02-22 2001-11-09 Nec Corp 屈折率の修正方法、屈折率の修正装置、及び光導波路デバイス
JP2003255262A (ja) * 2002-03-05 2003-09-10 Tokyo Instruments Inc フェムト秒レーザーを用いた特殊光学系
JP2003279758A (ja) * 2002-03-25 2003-10-02 Hoya Photonics Corp フェムト秒レーザ伝送用ファイバ,フェムト秒レーザ伝送用ファイバを使用したレーザ加工装置及びレーザ加工方法。
JP2005205464A (ja) * 2004-01-23 2005-08-04 Okamoto Glass Co Ltd レーザ加工法、構造物および光学素子
JP2007079161A (ja) * 2005-09-14 2007-03-29 Toyota Motor Corp 超短パルスレーザー加工用光学系、材料微細加工方法、及び微細加工装置
US20120039560A1 (en) * 2009-01-08 2012-02-16 President & Fellows Of Harvard College All-optical logic gates and methods for their fabrication
WO2019138821A1 (ja) * 2018-01-11 2019-07-18 住友電気工業株式会社 光デバイスおよび光デバイスの製造方法

Similar Documents

Publication Publication Date Title
US11471980B2 (en) Method and system for ultrafast laser-based material removal, figuring and polishing
US11548093B2 (en) Laser apparatus for cutting brittle material
EP1063049B1 (en) Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same
US6884960B2 (en) Methods for creating optical structures in dielectrics using controlled energy deposition
JP4171399B2 (ja) レーザ照射装置
JP2008004694A (ja) 表面改質方法
JP5188764B2 (ja) レーザ加工装置およびレーザ加工方法
KR20130089145A (ko) 레이저 어닐 방법 및 장치
WO2023095432A1 (ja) 光部品の製造方法および光部品
US7257294B2 (en) Method for processing transparent material, apparatus for processing the same and optical function device
KR101259580B1 (ko) 펄스 레이저의 분산 조절을 이용한 레이저 가공장치 및 가공방법
JP2001236644A (ja) 固体材料の屈折率を変化させる方法
JP2003215376A (ja) 導波路の製造方法
JP4373163B2 (ja) 光学用構造体の製造方法
JP2007288219A (ja) レーザ照射装置
KR20160001818U (ko) 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공을 위한 레이저 가공 장치
US20230167001A1 (en) Systems and methods for fabricating an article with an angled edge using a laser beam focal line
JP2005136365A (ja) レーザ照射装置及びレーザ照射方法
JPH04142030A (ja) 半導体膜の製造方法
US20230373034A1 (en) Method for separating a workpiece
Lipatiev et al. Writing LaBGeO5 Crystal-in-Glass Waveguide and Tailoring Its Cross-Section by Femtosecond Laser Beam
CN109455917B (zh) 玻璃基板的残余应力降低方法及残余应力降低装置
EP3967439A1 (en) Laser forming non-square edges in transparent workpieces using modified airy beams
US20220081342A1 (en) Laser forming non-square edges in transparent workpieces using low intensity airy beams
Yeremyan et al. Fabrication of Uniform Phase Structures in the Bulk of a N-BK7 Glass Using Ultrashort Laser Pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898217

Country of ref document: EP

Kind code of ref document: A1