WO2023094765A1 - Procédé de fabrication d'une bobine d'un filament - Google Patents

Procédé de fabrication d'une bobine d'un filament Download PDF

Info

Publication number
WO2023094765A1
WO2023094765A1 PCT/FR2022/052159 FR2022052159W WO2023094765A1 WO 2023094765 A1 WO2023094765 A1 WO 2023094765A1 FR 2022052159 W FR2022052159 W FR 2022052159W WO 2023094765 A1 WO2023094765 A1 WO 2023094765A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
quenching
temperature
crystalline
binders
Prior art date
Application number
PCT/FR2022/052159
Other languages
English (en)
Inventor
Alexis THEZE
Sébastien Jean RICHARD
Alain Guinault
Gilles REGNIER
Original Assignee
Safran
Ecole Nationale Superieure D'arts Et Metiers (Ensam)
Centre National De La Recherche Scientifique
Conservatoire National Des Arts Et Metiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran, Ecole Nationale Superieure D'arts Et Metiers (Ensam), Centre National De La Recherche Scientifique, Conservatoire National Des Arts Et Metiers filed Critical Safran
Publication of WO2023094765A1 publication Critical patent/WO2023094765A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2059/00Use of polyacetals, e.g. POM, i.e. polyoxymethylene or derivatives thereof, as moulding material

Definitions

  • This document relates to a method of manufacturing a coil of a filament with a high charge rate in metal or ceramic powder.
  • This filament is intended for an additive manufacturing device.
  • FFF Fused Filament Fabrication
  • this FFF process consists of building a part layer by layer using a printer 5, by depositing a molten plastic or composite filament. This filament then solidifies on cooling.
  • This printer consists of a platform 6, a material support 7, an extrusion head 8 and a part of filament 10.
  • the plastic binders of the filament serve only as a shaping vector. These plastic binders are then removed by so-called debinding operations. A part called “brown part” is then obtained. Then after a sintering operation, a final sintered part is obtained.
  • This FFF process uses a coil of filament whose diameter is between 1.75 mm and 2.85 mm.
  • a composition of a mixture of metal powder and plastic binder is used to obtain said filament.
  • This composition comprises 9% by mass of polyoxymethylene copolymer (POM-C), 1% by mass of polypropylene (PP) and 90% by mass or 60% by volume of a metallic powder.
  • FIG. 2 includes two graphs: a first graph illustrating bending stress in MPa 12 versus percentage elongation 14 and a second graph illustrating coil radius in mm 16 versus said elongation 18.
  • a first type of curves 20 corresponds to bending tests carried out at ambient temperature
  • a second type of curve 22 corresponds to bending tests carried out at 80°C. It is thus noted that at 80° C., an elongation at break of the material is greater than 5% whereas at ambient temperature, the elongation at break of the material does not exceed 0.5%.
  • the present invention aims to remedy this problem in a simple and inexpensive way.
  • This document relates to a method for manufacturing a coil of a filament, said method comprising the steps:
  • the quenching step the level of crystallinity in said binders is lowered, which has the effect of making the filament more flexible. Indeed, a modulus of elasticity is lowered and a ductility is increased compared to the methods of the prior art. Thus, the risk of filament breakage during handling during winding or unwinding is avoided.
  • This process makes it possible to avoid having to reheat said filament during winding during manufacture and/or during its use on a printer at the time of unwinding during the FFF process. It also avoids the need for a heated compartment in which the filament is softened before entering the build chamber and thus simplifies the design of the printer.
  • the quenching temperature can be between 10°C and 80°C.
  • This temperature makes it possible to reduce the degree of crystallinity and thus to promote flexibility of the filament.
  • the quenching may comprise a cooling bath with water or with another thermostatically controlled liquid or a flow of gas at controlled temperature.
  • the semi-crystalline binder may comprise a copolymer of polyoxymethylene (POM-C) and polypropylene (PP).
  • POM-C polyoxymethylene
  • PP polypropylene
  • the filament can advance in a quenching bath with a mass flow rate of between 100 g/min and 140 g/min.
  • This mass flow rate is decided on a criterion of the cooling rate of said filament so as to ensure that a crystallinity rate lower than a target value is obtained, guaranteeing the properties of the material.
  • a filament advance speed in a quenching bath can be between 7 m/min and 10 m/min.
  • a quenching time can be between 2 seconds and 20 seconds.
  • This quenching time favors the reduction of the degree of crystallinity. Indeed, the faster the cooling, the lower the crystallinity rate.
  • the filament may have a diameter of between 1.5 mm and 3 mm, preferably between 1.75 mm and 2.0 mm.
  • the winding spool may comprise as dimensions: an external diameter comprised between 60 mm and 160 mm, preferentially 130 mm and a height comprised between 20 mm and 80 mm, preferentially 52 mm.
  • FIG. 1 shows a printer used in an FFF process.
  • FIG. 2 shows a first graph illustrating three-point bending tests on a filament at room temperature and at 80°C, this first graph being aligned with a second graph illustrating a coil radius in mm as a function of a deformation in %.
  • FIG. 3 shows an additive manufacturing machine with a heated compartment for a spool of filament.
  • FIG. 4 shows a flowchart representing a method of manufacturing a filament reel, according to the invention.
  • FIG. 5 shows an extrusion line of filament A.
  • FIG. 6 shows an extrusion line of filament B.
  • FIG. 7 shows three-point bending tests in the form of a graph with a bending stress in MPa on the ordinate and a deformation on the abscissa.
  • FIG. 8 shows an example illustrating a flexibility of filament B.
  • FIG. 9 shows a differential scanning calorimetric analysis performed on filament B.
  • FIG. 10 shows a differential scanning calorimetric analysis performed on a mixture of crystalline or semi-crystalline binder and metallic or ceramic powder.
  • FIG. 11 shows bending tests performed on B filaments with and without recrystallization.
  • FIG. 12 shows an influence of quenching on bending properties achieved on specimens.
  • this document relates to a method of manufacturing a coil of a filament 1.
  • This process comprises a first step 2 of extrusion of a mixture of crystalline or semi-crystalline binders and at least 90% by mass or 60% by volume of metallic or ceramic powder so as to obtain a filament.
  • Semi-crystalline binders include polyoxymethylene copolymer (POM-C) which is a semi-crystalline copolymer and polypropylene (PP).
  • Said method comprises a second step of producing a quench 3 of said filament.
  • quenching is meant rapid cooling.
  • rapid is meant a quenching time of between 2 seconds and 20 seconds.
  • Quenching is carried out with a mass flow rate of between 100 and 140 g/min. This amounts to a speed of advance of the filament in the quenching bath of between 7 m/min and 10 m/min.
  • a diameter of the filament is between 1.5 mm and 3 mm and is preferably between 1.75 mm and 2.0 mm.
  • This quenching step is configured to reduce the degree of crystallinity in said binders by 5% to 15%.
  • a tempering temperature is between 10°C and 80°C.
  • This quenching step includes a cooling bath with water or with another thermostatically controlled liquid or a gas flow at controlled temperature.
  • This method includes a third step of winding said filament 4 around the spool. This winding is carried out at a temperature between 10° C. and a temperature below the quenching temperature. It is then possible to unwind said coil at a temperature between 10° C. and a temperature below the quenching temperature of said process, preferably at room temperature.
  • - filament A extruded and wound according to the prior art, that is to say with a hot winding at 80°C.
  • - filament B extradited, then quenched at the exit of the extruder by staying in a tank of water at a temperature of between 70° C. and 80° C. before winding.
  • Said filaments A and B have the same composition: 9% by mass of polyoxymethylene copolymer (POM-C), 1% by mass of polypropylene (PP) and 90% by mass or 60% by volume of a metal powder .
  • POM-C polyoxymethylene copolymer
  • PP polypropylene
  • the filament A follows a line comprising: a single-screw extruder 26, a drawing belt 28 configured to stretch the filament and reduce a diameter of said filament A from 2 mm to 1.75 mm, and a winder 30 configured to rotate said filament A and wind it.
  • the filament B follows a line comprising: an extruder 26, a cooling bath 32 configured to carry out quenching, ovens 34, a drawing belt 28, means for controlling a diameter filament B and a winder configured to rotate said filament B and wind it.
  • FIG. 7 illustrates a graph representing a bending stress in MPa 36 as a function of a deformation 38 during three-point bending tests on filament A illustrated by curves X and on filament B illustrated by curves Y.
  • the filament B has a lower modulus of elasticity than the filament A and a ductility three times greater than the filament A. This ductility of the filament B 40 is easily observable in figure 8 by the ease of handling of said filament B.
  • DSC Differential scanning calorimetry
  • the first cycle is configured to analyze the state of filament B during heating, similar to what happens during the extrusion step.
  • the slow cooling at the end of the first cycle is configured to achieve crystallization of the semi-crystalline POM-C binder.
  • the measurement of a melting peak during the heating of the second cycle is configured to establish the properties of the filament B having undergone the slow cooling at the end of the first cycle and to compare them with those of the filament as at the end of the extrusion step of the method for manufacturing a coil of filament according to the invention.
  • Figure 9 illustrates the results of the DSC tests on filament B in the form of a graph with the ordinate a heat flux in mW 42 and the abscissa a temperature in °C 44.
  • the first cycle and the second cycle are represented giving rise to two heating curves 46, 48 and a single cooling curve 50, the cooling of the first cycle and of the second cycle being combined.
  • the second heating cycle 46 requires more energy than the first heating cycle 48: an enthalpy of fusion is 14% higher on the second cycle than on the first cycle.
  • the enthalpy of fusion is 12.4 J/g whereas during the second heating cycle, the enthalpy of fusion goes to 14.3 J/g.
  • This difference in enthalpy of fusion indicates a difference in crystallinity rate between the first heat and the second heat, showing that when filament B is cooled slowly, this filament crystallizes more than when it is not cooled slowly.
  • the enthalpy of fusion of this mixture is around 14.4 J/g.
  • Figure 11 illustrates three-point bending tests by a curve with a bending stress 36 on the ordinate and a bending strain 38 on the abscissa.
  • Two types of curve are represented: the curves Z represent bending tests on a filament B having undergone a recrystallization isotherm at 145° C. for 20 minutes, whereas the curves Z' represent the filament B having received a quenching step in accordance with the invention.
  • This figure 11 shows that after recrystallization, an average value of strain at break is divided by approximately one third compared to filament B if we compare the Z curves with the Z' curves. This confirms the link between crystallinity rate and mechanical properties.
  • the relative degree of crystallinity of the mixture of binders and tempered metal or ceramic powder denoted by x c can be calculated from the following formula:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Of Metal (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Le présent document concerne un procédé de fabrication d'une bobine d'un filament (1), ledit procédé comprenant les étapes : - extruder (2) un mélange de liants cristallins ou semi-cristallins et d'au moins 90% en masse ou 60% en volume de poudre métallique ou céramique de sorte à obtenir un filament; - réaliser une trempe (3) dudit filament à une température de trempe déterminée pour abaisser entre 5% et 15% un taux de cristallinité dans lesdits liants; - enrouler ledit filament (4), autour de la bobine, à une température comprise entre 10°C et une température inférieure à la température de trempe.

Description

Description
Titre : Procédé de fabrication d’une bobine d’un filament
Domaine technique
[0001 ] Le présent document concerne un procédé de fabrication d’une bobine d’un filament à haut taux de charge en poudre métallique ou céramique. Ce filament est destiné à un dispositif de fabrication additive.
Technique antérieure
[0002] Classiquement, une Fabrication de Filaments Fondus (FFF), aussi appelé « Fused Filament Fabrication » en anglais, est un procédé de dépôt de fil fondu très employé pour mettre en forme des pièces en polymère, chargées en poudre métallique ou pas.
[0003] Comme illustré en figure 1 , ce procédé FFF consiste à construire une pièce couche par couche à l’aide d’une imprimante 5, par dépôt d’un filament de plastique ou composite fondu. Ce filament se solidifie ensuite en refroidissant. Cette imprimante est constituée d’une plateforme 6, un support matériel 7, une tête d’extrusion 8 et une partie de filament 10.
[0004] Les liants plastiques du filament ne servent que de vecteur de mise en forme. Ces liants plastiques sont ensuite ôtés par des opérations dites de déliantage. Une pièce dite « pièce brune » est alors obtenue. Puis après une opération de frittage, une pièce finale frittée est obtenue.
[0005] Ce procédé FFF utilise une bobine de filament dont le diamètre est compris entre 1 ,75 mm et 2,85 mm. Une composition d’un mélange de poudre métallique et de liant plastique est utilisée pour obtenir ledit filament. Cette composition comprend 9% en masse de polyoxymethylène copolymère (POM-C), 1% en masse de polypropylène (PP) et 90% en masse ou 60% en volume d’une poudre métallique.
[0006] Des essais sur une ligne d’extrusion montrent qu’un tel filament extrudé est très cassant à froid. Il en résulte que l’enroulage dudit filament sur une bobine ne peut être réalisé qu’en le maintenant à une température comprise entre 70°C et 90°C pour laquelle le filament reste suffisamment souple.
[0007] Comme illustré en figure 2, cette température de chauffe a un effet sur un module d’élasticité et une ductilité du matériau. La figure 2 comprend deux graphiques : un premier graphique illustrant une contrainte de flexion en MPa 12 en fonction d’un allongement en pourcentage 14 et un second graphique illustrant un rayon de bobine en mm 16 en fonction dudit allongement 18. Dans le premier graphique, un premier type de courbes 20 correspond à des essais de flexion réalisé à une température ambiante alors qu’un second type de courbes 22 correspond à des essais de flexion réalisés à 80°C. On note ainsi qu’à 80°C, un allongement à la rupture du matériau est supérieur à 5% alors qu’à température ambiante, l’allongement à la rupture du matériau n’excède pas 0,5%. Ces deux graphiques démontrent que l’enroulage sur une bobine ayant un rayon interne de 70 mm doit être réalisé à une température comprise entre 70°C et 90°C.
[0008] Ces observations concernant un enroulage de filament sont également valables pour un déroulage de filament. Le déroulage de filament doit donc être réalisé à chaud dans la même gamme de température. Cela est difficile à mettre en œuvre et génère des contraintes notables sur ledit procédé. Comme illustré en figure 3, il faut, en effet, une imprimante permettant un réchauffage 24 de la bobine dans cette même gamme de température.
[0009] La présente invention vise à remédier à cette problématique de façon simple et peu coûteuse.
Résumé
[0010] Le présent document concerne un procédé de fabrication d’une bobine d’un filament, ledit procédé comprenant les étapes :
- extruder un mélange de liants cristallins ou semi-cristallins et d’au moins 90% en masse ou 60% en volume de poudre métallique ou céramique de sorte à obtenir un filament ;
- réaliser une trempe dudit filament à une température de trempe déterminée pour abaisser entre 5% et 15% un taux de cristallinité dans lesdits liants ;
- enrouler ledit filament, autour de la bobine, à une température comprise entre 10°C et une température inférieure à la température de trempe.
[0011] Grâce à l’étape de trempe, le taux de cristallinité dans lesdits liants est abaissé, ce qui a pour conséquence de rendre le filament plus souple. En effet, un module d’élasticité est abaissé et une ductilité est augmentée par rapport aux méthodes de l’art antérieur. Ainsi, les risques de casse du filament lors d’une manipulation au cours de l’enroulage ou du déroulage sont évités.
[0012] Grâce au procédé selon l’invention, aucune modification de composition du mélange de liants et de poudre métallique ou céramique n’est nécessaire. En effet, une modification de la composition du mélange obligerait à recommencer les études relatives au déliantage et au frittage qui sont deux étapes intervenant postérieurement à l’obtention dudit filament. Ainsi, une augmentation de la teneur en liant pour rendre le filament plus souple augmente un retrait en frittage. Aucune des étapes actuelles du procédé FFF ne nécessite de réajustement, ce qui facilite la mise en place des nouvelles étapes du procédé de fabrication de la bobine de filament.
[0013] Ce procédé permet d’éviter d’avoir recours au réchauffage dudit filament lors de l’enroulage au cours de la fabrication et/ou lors de son utilisation sur une imprimante au moment du déroulage au cours du procédé FFF. Il évite aussi d’avoir recours à un compartiment chauffé dans lequel le filament est assoupli avant de pénétrer dans la chambre de fabrication et simplifie ainsi la conception de l’imprimante.
[0014] La température de trempe peut être comprise entre 10°C et 80°C.
[0015] Cette température permet de diminuer le taux de cristallinité et ainsi de favoriser une souplesse du filament.
[0016] La trempe peut comprendre un bain de refroidissement à eau ou avec un autre liquide thermostaté ou un flux de gaz à température contrôlée.
[0017] Le liant semi-cristallin peut comprendre un copolymère de polyoxymethylène (POM- C) et du polypropylène (PP).
[0018] Le filament peut avancer dans un bain de trempe avec un débit massique compris entre 100 g/min et 140 g/min.
[0019] Ce débit massique est décidé sur un critère de vitesse de refroidissement dudit filament de façon à assurer l’obtention d’un taux de cristallinité inférieur à une valeur cible, garantissant les propriétés du matériau.
[0020] Une vitesse d’avance du filament dans un bain de trempe peut être comprise entre 7 m/min et 10 m/min.
[0021] Une durée de la trempe peut être comprise entre 2 secondes et 20 secondes.
[0022] Cette durée de trempe favorise la diminution du taux de cristallinité. En effet, plus le refroidissement sera rapide et moins le taux de cristallinité sera élevé.
[0023] Le filament peut avoir un diamètre compris entre 1 ,5 mm et 3 mm, préférablement entre 1 ,75 mm et 2,0 mm.
[0024] La bobine d’enroulage peut comprendre comme dimensions : un diamètre externe compris entre 60 mm et 160 mm, préférentiellement 130 mm et une hauteur comprise entre 20 mm et 80 mm, préférentiellement 52 mm.
Brève description des dessins [0025] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0026] [Fig. 1] montre une imprimante utilisée dans un procédé FFF.
Fig. 2
[0027] [Fig. 2] montre un premier graphique illustrant des essais flexions trois points sur un filament à température ambiante et à 80°C, ce premier graphique étant aligné sur un second graphique illustrant un rayon de bobine en mm en fonction d’une déformation en %.
Fig. 3
[0028] [Fig. 3] montre une machine de fabrication additive avec un compartiment chauffé pour une bobine de filament.
Fig. 4
[0029] [Fig. 4] montre un logigramme représentant un procédé de fabrication d’une bobine de filament, selon l’invention.
Fig. 5
[0030] [Fig. 5] montre une ligne d’extrusion d’un filament A.
Fig. 6
[0031] [Fig. 6] montre une ligne d’extrusion d’un filament B.
Fig. 7
[0032] [Fig. 7] montre des essais flexions trois points sous forme d’un graphique ayant en ordonnée une contrainte de flexion en MPa et en abscisse une déformation.
Fig. 8
[0033] [Fig. 8] montre un exemple illustrant une souplesse du filament B.
Fig. 9
[0034] [Fig. 9] montre une analyse calorimétrique différentielle à balayage réalisée sur le filament B.
Fig. 10
[0035] [Fig. 10] montre une analyse calorimétrique différentielle à balayage réalisée sur un mélange de liant cristallin ou semi-cristallin et de poudre métallique ou céramique.
Fig. 11 [0036] [Fig. 11] montre des essais de flexion réalisés sur des filaments B avec et sans recristallisation.
Fig. 12
[0037] [Fig. 12] montre une influence de la trempe sur des propriétés en flexion réalisés sur des éprouvettes.
Description des modes de réalisation
[0038] Comme illustré en figure 4, le présent document concerne un procédé de fabrication d’une bobine d’un filament 1 .
[0039] Ce procédé comprend une première étape d’extrusion 2 d’un mélange de liants cristallins ou semi-cristallins et d’au moins 90% en masse ou 60% en volume de poudre métallique ou céramique de sorte à obtenir un filament. Les liants semi-cristallins comprennent un copolymère polyoxymethylène (POM-C) qui est un copolymère semi- cristallin et du polypropylène (PP).
[0040] Ledit procédé comprend une deuxième étape de réalisation d’une trempe 3 dudit filament. Par trempe, on entend un refroidissement rapide. Par rapide, on entend une durée de la trempe comprise entre 2 secondes et 20 secondes. La trempe est réalisée avec un débit massique compris entre 100 et 140 g/min. Cela revient à une vitesse d’avance du filament dans le bain de trempe comprise entre 7 m/min et 10 m/min. Un diamètre du filament est compris entre 1 ,5 mm et 3 mm et est préférablement compris entre 1 .75 mm et 2.0 mm. Cette étape de trempe est configurée pour diminuer de 5% à 15% un taux de cristallinité dans lesdits liants. Une température de trempe est comprise entre 10°C et 80°C. Cette étape de trempe comprend un bain de refroidissement à eau ou avec un autre liquide thermostaté ou un flux de gaz à température contrôlée.
[0041] Ce procédé comprend une troisième étape d’enroulage dudit filament 4 autour de la bobine. Cet enroulage est réalisé à une température comprise entre 10°C et une température inférieure à la température de trempe. Il est possible, par la suite, de dérouler ladite bobine à une température comprise entre 10°C et une température inférieure à la température de trempe dudit procédé, préférentiellement à température ambiante.
[0042] Des explications sur la modification des propriétés mécaniques à la suite d’une étape de trempe sont données ci-dessous.
[0043] Afin de comparer les effets d’une étape de trempe sur ledit filament, deux filaments sont considérés :
- filament A : extrudé et enroulé selon l’art antérieur, c’est-à-dire avec un enroulage à chaud à 80°C. - filament B : extradé, puis trempé en sortie d’extrudeuse par séjour dans un bac d’eau de température comprise entre 70°C et 80°C avant enroulage.
[0044] Lesdits filaments A et B comportent la même composition : 9% en masse de polyoxymethylène copolymère (POM-C), 1% en masse de polypropylène (PP) et 90% en masse ou 60% en volume d’une poudre métallique.
[0045] Comme illustré en figure 5, le filament A suit une ligne comprenant : une extrudeuse 26 mono-vis, un tapis de tirage 28 configuré pour étirer le filament et réduire un diamètre dudit filament A de 2 mm à 1 ,75 mm, et un enrouleur 30 configuré pour entrainer en rotation ledit filament A et l’enrouler.
[0046] Comme illustré en figure 6, le filament B suit une ligne comprenant : une extrudeuse 26, un bain de refroidissement 32 configuré pour réaliser une trempe, des fours 34, un tapis de tirage 28, des moyens de contrôle d’un diamètre du filament B et un enrouleur configuré pour entrainer en rotation ledit filament B et l’enrouler.
[0047] Une unique différence entre la ligne du filament A et la ligne du filament B est que le filament A est enroulé à chaud alors que le filament B est refroidi lors d’une étape de trempe. La figure 7 illustre un graphique représentant une contrainte de flexion en MPa 36 en fonction d’une déformation 38 lors d’essais de flexion trois points sur le filament A illustrés par des courbes X et sur le filament B illustrés par des courbes Y. Comme illustré sur cette figure 7, il résulte de cette différence que le filament B comporte un module d’élasticité plus faible que le filament A et une ductilité trois fois supérieure au filament A. Cette ductilité du filament B 40 est facilement observable sur la figure 8 par la facilité de manipulation dudit filament B.
[0048] Des essais de calorimétrie à balayage différentiel (DSC) ont été réalisés sur le filament B. Le filament B a subi le protocole suivant :
- un premier cycle où le filament B est chauffé de 20°C à 200°C à une vitesse de 10°C/min puis refroidi à une vitesse de 10°C/min jusqu’à 20°C ;
- un second cycle, identique au premier.
[0049] Le premier cycle est configuré pour analyser pendant la chauffe l’état du filament B de façon analogue à ce qui se passe lors de l’étape d’extrusion. Le refroidissement lent en fin de premier cycle est configuré pour réaliser une cristallisation du liant semi-cristallin POM-C. La mesure d’un pic de fusion lors de la chauffe du second cycle est configurée pour établir les propriétés du filament B ayant subi le refroidissement lent à l’issue du premier cycle et les comparer à celles du filament tel qu’à l’issue de l’étape d’extrusion du procédé de fabrication d’une bobine de filament selon l’invention. [0050] La figure 9 illustre les résultats des essais de DSC sur le filament B sous forme de graphique avec en ordonnée un flux de chaleur en mW 42 et en abscisse une température en °C 44. Le premier cycle et le second cycle sont représentés donnant lieu à deux courbes de chauffe 46, 48 et une unique courbe de refroidissement 50, les refroidissements du premier cycle et du second cycle étant confondus. On constate que le second cycle de chauffe 46 demande plus d’énergie que le premier cycle de chauffe 48 : une enthalpie de fusion est 14% plus élevée sur le second cycle que sur le premier cycle. En effet, pour le premier cycle de chauffe l’enthalpie de fusion est de 12,4 J/g alors que lors du second cycle de chauffe, l’enthalpie de fusion passe à 14,3 J/g. Cette différence d’enthalpie de fusion indique une différence de taux de cristallinité entre la première chauffe et la seconde chauffe, montrant que lorsque le filament B est refroidi lentement, ce filament cristallise plus que lorsqu’il n’est pas refroidi lentement. Comme illustré en figure 10 sur le résultat DSC d’un mélange de liant cristallin ou semi-cristallin et de poudre métallique ou céramique n’ayant donc pas subi d’étape de trempe, l’enthalpie de fusion de ce mélange se situe autour de 14,4 J/g.
[0051] Cette diminution du taux de cristallinité influence directement les propriétés mécaniques du filament. Cela est démontré par comparaison de résultats d’essais de flexion entre le filament A et le filament B. On fait subir, en plus, au filament B un isotherme de recristallisation à 145°C pendant 20 minutes.
[0052] La figure 11 illustre des essais de flexion trois points par une courbe avec en ordonnée une contrainte de flexion 36 et en abscisse une déformation de flexion 38. Deux types de courbe sont représentées : les courbes Z représentent des essais flexions sur un filament B ayant subi un isotherme de recristallisation à 145°C pendant 20 minutes alors que les courbes Z’ représentent le filament B ayant reçu une étape de trempe conformément à l’invention. Cette figure 11 montre qu’après recristallisation, une valeur moyenne de déformation à la rupture est divisée d’environ un tiers par rapport au filament B si l’on compare les courbes Z aux courbes Z’. Cela confirme le lien entre taux de cristallinité et propriété mécaniques.
[0053] Ainsi, en augmentant la température de l’isotherme, il est possible d’augmenter les propriétés mécaniques du filament B pour atteindre celles du filament A qui est rigide et cassant.
[0054] L’effet de la trempe réalisée dans le procédé de fabrication de la bobine de filament selon l’invention a été mis en évidence par des essais de flexion sur des éprouvettes. Ces éprouvettes sont réalisés avec le mélange de poudre de liant cristallin ou semi-cristallin et de la poudre métallique ou céramique selon l’invention. Ces essais de flexion sont illustrés en figure 12 représentant la contrainte de flexion en MPa 36 en fonction de la déformation de flexion 38. T rois types de courbes ont été réalisés : les courbes T pour lesquelles aucune trempe n’a été effectuée, les courbes T’ pour lesquelles une trempe à 20°C a été effectuée et les courbes T” pour lesquelles une trempe à 60°C a été effectuée.
[0055] On constate que la réalisation d’une trempe multiplie en moyenne par 5 la déformation à la rupture. La température de l’eau à laquelle est effectuée la trempe joue un rôle sur les propriétés du mélange des liants ou semi-liants cristallins et de la poudre métallique ou céramique.
[0056] Cette solution, permettant l’enroulage et/ou le déroulage du filament chargé au moins à 90% en masse ou 60% en volume de poudre métallique ou céramique sans casse et consistant à réaliser une trempe, n’est pas évident pour l’homme du métier car rien ne l’inciterait à faire une trempe pour permettre l’enroulement dudit filament puisque la trempe réalisée lors de l’extrusion de thermoplastiques a un but différent. En effet, un bain de refroidissement dans lequel le filament passe après l’extrusion est présente sur les lignes d’extrusion polymères car ces matériaux mettent du temps à se refroidir. Il est alors primordial que ces polymères soient refroidis pour les enrouler autour d’une bobine tout en conservant une section circulaire. En accélérant le refroidissement, on augmente la cadence de production. Mais dans le cas d’un mélange de liants cristallins ou semi- cristallins et de poudre métallique ou céramique hautement chargé extrudé à des vitesses relativement lentes de l’ordre de quelques mètres par minute par rapport à plusieurs dizaines de mètres de filament par minute pour les polymères, un bain de refroidissement ne présente pas un intérêt pour la cadence de production.
[0057] Le taux de cristallinité relatif du mélange de liants et de poudre métallique ou céramique trempé notée xc peut être calculée à partir de la formule suivante :
Figure imgf000010_0001
[0058] Avec :
- Hmeiange, l’enthalpie de fusion mesurée en DSC sur l’échantillon du mélange de liants cristallins ou semi-cristallins et de poudre métallique ou céramique,
- WP0M, fraction massique de liant POM dans le mélange, H°POM, I enthalpie de fusion théorique du liant pur,
[0059] Avec H°P0M= 320J/g selon la littérature, nous obtenons un taux de cristallinité égal à 43% pour le mélange trempé. Pour le mélange non trempé, le taux de cristallinité est proche de 50%. Le taux de cristallinité du liant contenu dans le mélange trempé à 60°C est donc 7% plus faible que celui du mélange non trempé. [0060] Avec H°P0M= 240 J/g selon la littérature, nous obtenons un taux de cristallinité égal à 57% pour le mélange trempé. Pour le mélange non trempé, le taux de cristallinité est proche de 66%. Le taux de cristallinité du liant contenu dans le mélange trempé à 60°C est donc 10% plus faible que celui du mélange non trempé avec H°P0M= 240 J/g.

Claims

Revendications
[Revendication 1] Procédé de fabrication d’une bobine d’un filament (1), ledit procédé comprenant les étapes :
- extruder (2) un mélange de liants cristallins ou semi-cristallins et d’au moins 90% en masse ou 60% en volume de poudre métallique ou céramique de sorte à obtenir un filament ;
- réaliser une trempe (3) dudit filament à une température de trempe déterminée pour abaisser entre 5% et 15% un taux de cristallinité dans lesdits liants ;
- enrouler ledit filament (4) , autour de la bobine, à une température comprise entre 10°C et une température inférieure à la température de trempe.
[Revendication 2] Procédé selon la revendication 1 , dans lequel la température de trempe est comprise entre 10°C et 80°C.
[Revendication 3] Procédé selon l’une des revendications précédentes, dans lequel la trempe comprend un bain de refroidissement à eau ou avec un autre liquide thermostaté ou un flux de gaz à température contrôlée.
[Revendication 4] Procédé selon l’une des revendications précédentes, dans lequel le liant semi-cristallin comprend un copolymère de polyoxymethylène (POM-C) et du polypropylène (PP).
[Revendication 5] Procédé selon l’une des revendications précédentes, dans lequel le filament avance dans un bain de trempe avec un débit massique compris entre 100 g/min et 140 g/min.
[Revendication 6] Procédé selon l’une des revendications précédentes, dans lequel une vitesse d’avance du filament dans un bain de trempe est comprise entre 7 m/min et 10m/rnin.
[Revendication 7] Procédé selon l’une des revendications précédentes, dans lequel une durée de la trempe est comprise entre 2 secondes et 20 secondes.
[Revendication 8] Procédé selon l’une des revendications précédentes, dans lequel le filament a un diamètre compris entre 1 ,5 mm et 3 mm, préférablement compris entre 1.75 mm et 2.0 mm.
[Revendication 9] Procédé selon l’une des revendications précédentes, dans lequel la bobine d’enroulage comprend comme dimensions : un diamètre externe compris entre 60 mm et 160 mm, préférentiellement 130 mm et une hauteur comprise entre 20 mm et 80 mm, préférentiellement 52 mm.
PCT/FR2022/052159 2021-11-23 2022-11-23 Procédé de fabrication d'une bobine d'un filament WO2023094765A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2112406 2021-11-23
FR2112406A FR3129316B1 (fr) 2021-11-23 2021-11-23 Procédé de fabrication d’une bobine d’un filament

Publications (1)

Publication Number Publication Date
WO2023094765A1 true WO2023094765A1 (fr) 2023-06-01

Family

ID=80595319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052159 WO2023094765A1 (fr) 2021-11-23 2022-11-23 Procédé de fabrication d'une bobine d'un filament

Country Status (2)

Country Link
FR (1) FR3129316B1 (fr)
WO (1) WO2023094765A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314741A1 (fr) * 2008-08-12 2011-04-27 Idemitsu Kosan Co., Ltd. Procédé de fabrication d une fibre élastique en polypropylène et fibre élastique en polypropylène
WO2018108639A1 (fr) * 2016-12-13 2018-06-21 Basf Se Filaments destinés à être utilisés en tant que matériau de support dans un dépôt de filament fondu
US20190389090A1 (en) * 2018-06-26 2019-12-26 Markforged, Inc. Flexible feedstock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314741A1 (fr) * 2008-08-12 2011-04-27 Idemitsu Kosan Co., Ltd. Procédé de fabrication d une fibre élastique en polypropylène et fibre élastique en polypropylène
WO2018108639A1 (fr) * 2016-12-13 2018-06-21 Basf Se Filaments destinés à être utilisés en tant que matériau de support dans un dépôt de filament fondu
US20190389090A1 (en) * 2018-06-26 2019-12-26 Markforged, Inc. Flexible feedstock

Also Published As

Publication number Publication date
FR3129316A1 (fr) 2023-05-26
FR3129316B1 (fr) 2023-10-27

Similar Documents

Publication Publication Date Title
FR2651246A1 (fr) Feuille fine et fil fin en alliage a base d'aluminium et procede pour leur production.
Smith et al. Drawing of virgin ultrahigh molecular weight polyethylene: An alternative route to high strength/high modulus materials: Part 2 Influence of polymerization temperature
FR2459845A1 (fr) Filaments d'une resistance a la traction et d'un module eleves et un procede de fabrication de ces filaments
EP2152495B1 (fr) Procédé et machine pour la fabrication de récipients permettant d'améliorer leur tenue mécanique
CH636648A5 (fr) Procede de preparation de fibres creuses et microporeuses de polypropylene.
KR100441172B1 (ko) 고분자량폴리올레핀다공필름및그제조방법
FR3062399A1 (fr) Procede et formulation pour la preparation de fibres de lignine
Butler et al. Deformation of spherulitic polyethylene thin films
JPH0332821A (ja) 高分子物質
CN105315533A (zh) 聚烯烃系多层复合多孔膜的制造方法
EP0910554A1 (fr) Fond de filiere a tetons rapportes
WO2023094765A1 (fr) Procédé de fabrication d'une bobine d'un filament
JP2021120501A (ja) 高強度ポリエチレンテレフタレート原糸の製造方法
EP2517286A1 (fr) Film de separateur, son procede de fabrication, supercondensateur, batterie et condensateur munis du film
CA3131981A1 (fr) Utilisation d'une composition comprenant un taux eleve de materiau(x) inorganique(s) et un elastomere thermoplastique dans un procede de fabrication additive
EP0832730B1 (fr) Procédé de traitement d'une matière thermoplastique semi-cristalline
CA2419433C (fr) Procede de fabrication d'une piece de revolution par rotomoulage et piece obtenue
FR2624887A1 (fr) Procede de fabrication de fibres de polyester par filage
KR100994144B1 (ko) 용융방사 및 연신법에 의한 폴리비닐리덴플루오라이드중공사막 제조방법
JP7083983B2 (ja) ポリエチレン製フィルムの製造方法
NO20023310L (no) Apparat for fremstilling av optiske fibre laget av semi- krystallinske polymere
CN114481353A (zh) 聚乙醇酸纤维及其制造方法
EP2162273A2 (fr) Récipient en polymère présentant un gradient de cristallinité
WO2010120964A2 (fr) Fibres, tubes et structures poreuses en métal et en oxyde métallique
Suzuki et al. High temperature zone‐drawing of nylon 66 microfiber prepared by CO2 laser‐thinning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826148

Country of ref document: EP

Kind code of ref document: A1