WO2023093469A1 - 面阵探测器、探测方法及相应的集装箱/车辆检查系统 - Google Patents

面阵探测器、探测方法及相应的集装箱/车辆检查系统 Download PDF

Info

Publication number
WO2023093469A1
WO2023093469A1 PCT/CN2022/128923 CN2022128923W WO2023093469A1 WO 2023093469 A1 WO2023093469 A1 WO 2023093469A1 CN 2022128923 W CN2022128923 W CN 2022128923W WO 2023093469 A1 WO2023093469 A1 WO 2023093469A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
detection data
area array
assemblies
assembly
Prior art date
Application number
PCT/CN2022/128923
Other languages
English (en)
French (fr)
Inventor
谈林霞
于昊
邹湘
朱维彬
王钧效
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2023093469A1 publication Critical patent/WO2023093469A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array

Definitions

  • the present disclosure relates to the field of ray scanning, and in particular to an area array detector used in a container/vehicle inspection system, a container/vehicle inspection system using the area array detector, and a corresponding detection method.
  • detectors for DR Digital Radiography, digital X-ray photography
  • detectors for CT Computerized Tomography
  • Detectors used for DR scanning have fewer rows of detectors, and each row of detectors is arranged continuously.
  • the detectors used in CT scans have a small overall size and use the same scintillator for each row of detectors.
  • Each detector device (detector for DR scan or detector for CT scan) supports one scan mode.
  • An embodiment of the present disclosure proposes an area array detector used in a container/vehicle inspection system, which carries a plurality of detector assemblies sparsely arranged through the bottom plate, wherein the first detector assembly is different from other second detector assemblies and can According to the needs of the scanning mode, the detection data of the first detector assembly or the detection data of all the detector assemblies are output for imaging in the corresponding scanning mode.
  • an area array detector supporting multiple scanning modes is realized.
  • Some embodiments of the present disclosure provide an area array detector for a container/vehicle inspection system, including: a plurality of detector assemblies arranged sparsely, wherein the first detector assembly is different from other second detector assemblies; a bottom plate , for carrying and installing the plurality of detector assemblies.
  • the first detector assembly has a different scintillator array than the second detector assembly.
  • the scintillator arrays of the first detector assembly and the second detector assembly are different in at least one of pixel size, material.
  • a preset number of detector assemblies arranged adjacently are arranged inside a detector housing to form an independent fully-sealed detector unit, and the detector unit is hermetically installed with the bottom plate.
  • the preset number includes two.
  • it also includes: a filler assembly, the filler assembly and the detector assemblies arranged adjacent to it are arranged inside a detector housing to form an independent fully-sealed detector unit, and the detector unit and Bottom plate seal installation.
  • the bottom plate is a flat bottom plate or a curved bottom plate.
  • the plurality of detector assemblies are arranged on the curved surface of the curved bottom plate, so that the detection sensitive surfaces of the plurality of detector assemblies are curved, and are aligned with the The ray source for the central region of the surface.
  • the first pixel size of the scintillator array of the first detector assembly is smaller than the second pixel size of the scintillator array of the second detector assembly.
  • multiple area array detectors are spliced into a larger area array detector.
  • it also includes: a data acquisition circuit board configured to collect the detection data of multiple detector assemblies, and output the detection data of the first detector assembly or the detection data of all detector assemblies according to different scanning modes The detection data are used for imaging in the corresponding scan mode.
  • the data acquisition circuit board is configured to output the detection data of the first detector assembly for DR imaging in the digital radiography DR scan mode, and in the computed tomography CT scan mode, Output detection data of all detector components for CT imaging.
  • Some embodiments of the present disclosure provide a container/vehicle inspection system, including the area array detector.
  • Some embodiments of the present disclosure propose a detection method, including:
  • the detection data of the first detector assembly or the detection data of all detector assemblies are output for imaging in corresponding scanning modes.
  • the detection data of the first detector assembly is output for DR imaging in case of DR scan mode, and the detection data of all detector assemblies are output for CT imaging in case of CT scan mode .
  • the DR scan mode is performed first, and then switched to the CT scan mode when suspicious substances that are difficult to identify are found.
  • Figure 1 shows a front view of an area array detector of some embodiments of the present disclosure.
  • Figure 2 shows a side view of an area array detector of some embodiments of the present disclosure.
  • Fig. 3 shows a schematic diagram of an area array detector according to some embodiments of the present disclosure having a detector assembly different from other detector assemblies.
  • Fig. 6 shows a schematic diagram of the installation of the detector unit and the base plate of some embodiments of the present disclosure.
  • Fig. 7 shows a schematic diagram of the arrangement of multiple detector assemblies on a curved bottom plate according to some embodiments of the present disclosure.
  • Fig. 8 shows a schematic diagram of splicing and combining arrangement of multiple area array detectors in some embodiments of the present disclosure.
  • Figure 1 shows a front view of an area array detector of some embodiments of the present disclosure.
  • Figure 2 shows a side view of an area array detector of some embodiments of the present disclosure.
  • the area detector of this embodiment includes, for example: a data acquisition circuit board 1 , a base plate 2 , and a plurality of detector assemblies 3 arranged sparsely.
  • the bottom plate 2 is used to carry and install the plurality of detector assemblies 3 and the data acquisition circuit board 1 .
  • the number of detector components and the spacing between different detector components can be configured and adjusted according to actual business needs.
  • the first detector assembly 32 is different from the other second detector assemblies 31 , for example, has a different scintillator array. At least one of pixel size and material of the scintillator arrays of the first detector assembly 32 and each second detector assembly 31 is different.
  • the first detector assembly 32 includes a scintillator array of a first pixel size and supporting optoelectronic devices
  • the second detector assembly 31 includes a scintillator array of a second pixel size and supporting optoelectronic devices, wherein,
  • the first pixel size is smaller than the second pixel size, for example, the first pixel size is 1/4 of the second pixel size, so that a detector assembly with a smaller pixel size can be used to achieve higher resolution imaging.
  • the scintillator array of the first detector assembly 32 is, for example, a GAGG (Gadolinium Aluminum Gallium Garnet, Gadolinium Aluminum Gallium Garnet) scintillator array.
  • the scintillator array of the second detector assembly 31 is, for example, a cesium iodide scintillator array. Referring to FIG. 3 , it shows a schematic diagram when the first detector assembly 32 is located in the first row. However, it can be understood that the present disclosure does not limit the arrangement position of the first detector assembly 32 .
  • a predetermined number (such as two) of detector assemblies 3 arranged adjacently are arranged inside a detector housing 4, and are sealed and installed through uniformly distributed sealing installation holes 6 to form an independent Fully sealed structure detector unit 5.
  • the detector unit 5 is also hermetically installed with the bottom plate 2 through the screw hole 7 of the sealing structure by means of the screw 8 .
  • the sealing structure isolates the scintillator array, photodiode and related electronic devices in the detector unit 5 from the water vapor and smog in the use environment, which can improve the reliability of the area array detector and enable it to be used in places such as coastal ports for a long time. operate reliably.
  • the detector unit 5 has an independent sealed structure, which can be increased, decreased, or replaced without affecting the function of the entire area array detector. It can be assembled into different structures, applied to different business system requirements, and more flexible and economical in manufacturing. .
  • the area array detector further includes a filling component 9 , and the filling can be, for example, a relatively light material such as plastic, but is not limited to the examples given.
  • the filler assembly 9 and the detector assemblies 3 arranged adjacent to it are arranged inside a detector housing 4 to form an independent fully-sealed detector unit 5 , and the detector unit 5 is also hermetically installed with the bottom plate 2 . If two detector assemblies 3 and their detector casings 4 arranged adjacently form an independent fully sealed structure detector unit 5, when the number of detector assemblies 3 is an odd number, a packing assembly 9 can be set, and the packing The assembly 9 and the detector assembly 3 arranged adjacent to it are arranged inside a detector casing 4 to form an independent fully sealed detector unit 5 .
  • the detector unit 5 may also include a multi-channel current input analog-to-digital converter (Analog-to-Digital Converter, ADC), which is used to collect and digitize the detection signals from each detector assembly 3 .
  • ADC Analog-to-Digital Converter
  • the base plates 2 shown in the foregoing embodiments are all flat base plates, and the base plate 2 may also be a curved base plate.
  • a plurality of detector assemblies 31, 32 are arranged on the curved surface of the curved base plate, and the detection sensitive surfaces of the plurality of detector assemblies 31, 32 are in the form of surface, and aim the ray source at the center region of the surface.
  • the ray beam is directly irradiated at the center of each detection crystal pixel, reducing scattering crosstalk and improving imaging quality.
  • the data acquisition circuit board 1 is configured to collect the detection data of a plurality of detector assemblies, and output the detection data of the first detector assembly 32 or the detection data of all detector assemblies 3 for use in corresponding scanning modes according to different scanning modes imaging.
  • the data acquisition circuit board 1 is configured to output the detection data of the first detector assembly 32 for DR imaging in the DR scanning mode, which can realize fast high-quality imaging and can be used for higher-speed scanning.
  • the detection data of all detector components is output for CT imaging, and more detection data can be obtained in a shorter scanning time.
  • the scanning mode can be switched according to business needs. For example, DR scanning is performed first, and when there are suspicious substances that are difficult to distinguish in the image, then switch to CT mode for scanning, reconstruct the image, and discover more detailed material structures. Therefore, one set of equipment can realize the functions of two sets of equipment, and the working mode can be selected according to the characteristics of the inspected object, and the inspected object can be viewed and analyzed from two-dimensional and three-dimensional at the same time, and more comprehensive material information can be obtained from different dimensions, with more High substance recognition ability.
  • the data acquisition circuit board 1 is also configured to divide or Pixel merging processes the detection data of the first detector assembly 32 and the second detector assembly 31 into the same pixel size.
  • the first pixel size of the scintillator array of the first detector assembly 32 is 1/4 of the second pixel size of the scintillator array of the second detector assembly 31, the first detector can be The detection data of the component 32 is correspondingly merged into 1 pixel output every 4 pixels, so that it is consistent with the size of each pixel corresponding to the detection data of the second detector component 31, thus maintaining the integrity of the CT imaging data, And when DR imaging outputs pixels individually, the imaging is clearer because of the small pixel size.
  • the data acquisition circuit board 1 can be implemented based on FPGA (Field Programmable Gate Array) or other programmable devices, for example.
  • FPGA Field Programmable Gate Array
  • multiple area array detectors can also be combined to form a larger area array detector. As shown in Fig. 8, multiple area array detectors are seamlessly arranged horizontally to form an area array of sufficient length. Therefore, joint detection can obtain more detection data in a shorter scanning time, and has a higher ability to identify substances.
  • the area array detectors in the above embodiments or combinations thereof can be used in large-scale products such as container/vehicle inspection systems, such as CT/DR inspection equipment for X/Gamma ray containers/vehicles. That is, the container/vehicle inspection system includes the area array detectors in the above embodiments or combinations thereof. In addition to the area array detector or its combination, the container/vehicle inspection system may also include an accelerator that generates X-rays or Gamma rays with a certain dose and energy, and an image acquisition device that converts the electrical signal output by the area array detector into digital image signal.
  • an accelerator that generates X-rays or Gamma rays with a certain dose and energy
  • an image acquisition device that converts the electrical signal output by the area array detector into digital image signal.
  • Some embodiments of the present disclosure also propose a corresponding detection method, including: collecting detection data of multiple detector assemblies sparsely arranged, wherein the first detector assembly among the multiple detector assemblies is different from other second detector assemblies ; According to different scanning modes, output the detection data of the first detector assembly or the detection data of all detector assemblies for imaging in corresponding scanning modes. For example, in the case of a DR scan mode, output the detection data of the first detector assembly for DR imaging, and in the case of a CT scan mode, output the detection data of all detector assemblies for CT imaging.
  • the scanning mode can be switched according to business needs. For example, DR scanning is performed first, and when there are suspicious substances that are difficult to distinguish in the image, then switch to CT mode for scanning.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种面阵探测器、探测方法及集装箱/车辆检查系统。用于集装箱/车辆检查系统的面阵探测器包括:稀疏排列的多个探测器组件(3),其中的第一探测器组件(32)与其他的第二探测器组件(31)不同;底板(2),用于承载和安装多个探测器组件(3)。从而实现支持多种扫描模式的面阵探测器。

Description

面阵探测器、探测方法及相应的集装箱/车辆检查系统
相关申请的交叉引用
本申请是以CN申请号为202111422301.X,申请日为2021年11月26的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及射线扫描领域,特别涉及一种用于集装箱/车辆检查系统的面阵探测器,采用该面阵探测器的集装箱/车辆检查系统,以及相应的探测方法。
背景技术
相关技术有用于DR(Digital Radiography,数字化X射线摄影)扫描的探测器,还有用于CT(Computed Tomography,计算机断层)扫描的探测器。用于DR扫描的探测器,探测器排数较少,且各排探测器之间连续排列。用于CT扫描的探测器,总体尺寸小,且各排探测器使用相同的闪烁体。每种探测器设备(用于DR扫描的探测器或者用于CT扫描的探测器)支持一种扫描模式。
发明内容
本公开实施例提出一种用于集装箱/车辆检查系统的面阵探测器,通过底板承载稀疏排列的多个探测器组件,其中的第一探测器组件与其他的第二探测器组件不同,可以根据扫描模式的需要输出第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。从而,实现支持多种扫描模式的面阵探测器。
本公开一些实施例提出一种用于集装箱/车辆检查系统的面阵探测器,包括:稀疏排列的多个探测器组件,其中的第一探测器组件与其他的第二探测器组件不同;底板,用于承载和安装所述多个探测器组件。
在一些实施例中,所述第一探测器组件与所述第二探测器组件具有不同的闪烁体阵列。
在一些实施例中,所述第一探测器组件与所述第二探测器组件的闪烁体阵列的像素尺寸、材料中的至少一项不同。
在一些实施例中,相邻排列的预设数量的探测器组件设置于一个探测器外壳内 部,形成一个独立的全密封结构探测器单元,探测器单元与底板密封安装。
在一些实施例中,所述预设数量包括2。
在一些实施例中,还包括:填充物组件,所述填充物组件和与其相邻排列的探测器组件设置于一个探测器外壳内部,形成一个独立的全密封结构探测器单元,探测器单元与底板密封安装。
在一些实施例中,所述底板是平面底板或曲面底板。
在一些实施例中,在曲面底板的情况下,所述多个探测器组件排布在所述曲面底板的曲面上,使得所述多个探测器组件的探测灵敏面呈曲面,并对准位于曲面中心区域的射线源。
在一些实施例中,所述第一探测器组件的闪烁体阵列的第一像素尺寸小于所述第二探测器组件的闪烁体阵列的第二像素尺寸。
在一些实施例中,多个面阵探测器拼接成一个更大的面阵探测器。
在一些实施例中,还包括:数据采集电路板,被配置为采集多个探测器组件的探测数据,根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。
在一些实施例中,所述数据采集电路板,被配置为在数字化X射线摄影DR扫描模式时,输出所述第一探测器组件的探测数据用于DR成像,在计算机断层CT扫描模式时,输出全部探测器组件的探测数据用于CT成像。
本公开一些实施例提出一种集装箱/车辆检查系统,包括所述的面阵探测器。
本公开一些实施例提出一种探测方法,包括:
采集稀疏排列的多个探测器组件的探测数据,其中,多个探测器组件中的第一探测器组件与其他的第二探测器组件不同;
根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。
在一些实施例中,在DR扫描模式的情况下,输出所述第一探测器组件的探测数据用于DR成像,在CT扫描模式的情况下,输出全部探测器组件的探测数据用于CT成像。
在一些实施例中,先进行DR扫描模式,当发现难以辨别的可疑物质时,再切换到CT扫描模式。
附图说明
下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍。根据下面参照附图的详细描述,可以更加清楚地理解本公开。
显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开一些实施例的面阵探测器的正视图。
图2示出本公开一些实施例的面阵探测器的侧视图。
图3示出本公开一些实施例的面阵探测器具有与其他探测器组件不同的探测器组件的示意图。
图4和图5示出本公开一些实施例的探测器单元的示意图。
图6示出本公开一些实施例的探测器单元与底板的安装示意图。
图7示出本公开一些实施例的多个探测器组件在曲面底板的排布示意图。
图8示出本公开一些实施例的多个面阵探测器拼接组合排布的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。
除非特别说明,否则,本公开中的“第一”“第二”等描述用来区分不同的对象,并不用来表示大小或时序等含义。
图1示出本公开一些实施例的面阵探测器的正视图。
图2示出本公开一些实施例的面阵探测器的侧视图。
如图1和图2所示,该实施例的面阵探测器例如包括:数据采集电路板1,底板2,以及稀疏排列的多个探测器组件3等。底板2,用于承载和安装所述多个探测器组件3以及所述数据采集电路板1。探测器组件的数量和不同探测器组件之间的间距可以根据实际业务需求进行配置和调整。
在稀疏排列的多个探测器组件3中,其中的第一探测器组件32与其他的第二探测器组件31不同,例如具有不同的闪烁体阵列。第一探测器组件32与各第二探测器组件31的闪烁体阵列的像素尺寸、材料中的至少一项不同。例如,所述第一探测器组件32包括第一像素尺寸的闪烁体阵列及配套的光电器件,所述第二探测器组件31包括第二像素尺寸的闪烁体阵列及配套的光电器件,其中,第一像素尺寸小于第二像 素尺寸,例如,第一像素尺寸为第二像素尺寸的1/4,从而,利用像素尺寸更小的探测器组件实现更高分辨率的成像。所述第一探测器组件32的闪烁体阵列例如为GAGG(Gadolinium Aluminum Gallium Garnet,钆铝镓石榴石)闪烁体阵列。所述第二探测器组件31的闪烁体阵列例如为碘化铯闪烁体阵列。参见图3,示出了所述第一探测器组件32位于第一排时的示意图,然而,可理解的,本公开对所述第一探测器组件32的排布位置并不限定。
如图4~6所示,相邻排列的预设数量(如两个)的探测器组件3设置于一个探测器外壳4内部,并通过均匀分布的密封安装孔6密封安装,形成一个独立的全密封结构探测器单元5。探测器单元5还利用螺钉8通过密封结构的螺钉孔7与底板2密封安装。
密封结构使探测器单元5中的闪烁体阵列、光电二极管及相关电子学器件与使用环境中的水气烟雾等隔绝,可提高面阵探测器的可靠性,使其在例如沿海港口等地长期可靠地运行。探测器单元5具有独立的密封结构,可增可减可拆换,而不影响整个面阵探测器的功能,可组装成不同的结构,应用于不同的业务系统需求,生产制造上更加灵活节省。
如图6所示,面阵探测器还包括填充物组件9,填充物例如可以是塑料等比较轻的物质,但不限于所举示例。填充物组件9和与其相邻排列的探测器组件3设置于一个探测器外壳4内部,形成一个独立的全密封结构探测器单元5,探测器单元5还与底板2密封安装。如果相邻排列的两个探测器组件3及其探测器外壳4形成一个独立的全密封结构探测器单元5,当探测器组件3的数量为奇数时,可以设置一个填充物组件9,填充物组件9和与其相邻排列的探测器组件3设置于一个探测器外壳4内部,形成一个独立的全密封结构探测器单元5。
此外,探测器单元5中还可以包括多通道电流输入模拟数字转换器(Analog-to-Digital Converter,ADC),用来采集来自各个探测器组件3的探测信号并数字化。
前述各个实施例所示出的底板2均是平面底板,底板2还可以是曲面底板。如图7所示,在所述底板2是曲面底板的情况下,多个探测器组件31,32排布在所述曲面底板的曲面上,多个探测器组件31,32的探测灵敏面呈曲面,并对准位于曲面中心区域的射线源。使得射线束直射于每个探测晶体像素中心,减少散射串扰,提高成像质量。
数据采集电路板1,被配置为采集多个探测器组件的探测数据,根据不同的扫描模式,输出第一探测器组件32的探测数据或者全部探测器组件3的探测数据用于相应扫描模式的成像。
例如,数据采集电路板1,被配置为在DR扫描模式时,输出所述第一探测器组件32的探测数据用于DR成像,能够实现快速高质量成像,可以用于更高速的扫描,在CT扫描模式时,输出全部探测器组件的探测数据用于CT成像,能够在较短的扫描时间获得更多的探测数据。
扫描模式可以根据业务需要进行切换。例如,先进行DR扫描,当图像中有难以辨别的可疑物质时,再切换到CT模式进行扫描,重建图像,发现更细节的物质结构。从而,一套设备可以实现两套设备的功能,可以根据被检物特点选择工作模式,也可同时从二维、三维上查看分析被检物,从不同维度获取更全面的物质信息,具有更高的物质识别能力。
在第一探测器组件32与第二探测器组件31的闪烁体阵列的像素尺寸不同的情况下,数据采集电路板1还被配置为在输出全部探测器组件的探测数据之前,通过像素分割或像素合并,将第一探测器组件32与第二探测器组件31的探测数据处理成相同像素尺寸。
例如,所述第一探测器组件32的闪烁体阵列的第一像素尺寸是所述第二探测器组件31的闪烁体阵列的第二像素尺寸的1/4,可以将所述第一探测器组件32的探测数据相应的每4个像素合并成1个像素输出,使其与所述第二探测器组件31的探测数据相应的每个像素的尺寸一致,这样保持CT成像数据的完整性,并且在DR成像单独输出像素时,因为像素尺寸小可以使成像更清晰。
数据采集电路板1例如可以基于FPGA(Field Programmable Gate Array现场可编程门阵列)或其他可编程器件实现。
在一些实施例中,还可以将多个面阵探测器组合起来使用,将多个面阵探测器拼接成一个更大的面阵探测器。如图8所示,多个面阵探测器横向无缝排布成足够长度的面阵。从而,联合起来进行探测,在较短的扫描时间获得更多的探测数据,具有更高的物质识别能力。
上述各实施例中的面阵探测器或其组合,能够用于集装箱/车辆检查系统等大型产品,例如用于X/Gamma射线集装箱/车辆的CT/DR检查设备。也即,集装箱/车辆检查系统包括上述各实施例中的面阵探测器或其组合。除了面阵探测器或其组合之外, 集装箱/车辆检查系统还可以包括加速器,产生一定剂量和一定能量的X射线或Gamma射线,以及图像获取装置,把面阵探测器输出的电信号转换成数字图像信号。
本公开一些实施例还提出相应的探测方法,包括:采集稀疏排列的多个探测器组件的探测数据,其中,多个探测器组件中的第一探测器组件与其他的第二探测器组件不同;根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。例如,在DR扫描模式的情况下,输出所述第一探测器组件的探测数据用于DR成像,在CT扫描模式的情况下,输出全部探测器组件的探测数据用于CT成像。此外,如前所述,扫描模式可以根据业务需要进行切换。例如,先进行DR扫描,当图像中有难以辨别的可疑物质时,再切换到CT模式进行扫描。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种用于集装箱/车辆检查系统的面阵探测器,包括:
    稀疏排列的多个探测器组件,其中的第一探测器组件与其他的第二探测器组件不同;
    底板,用于承载和安装所述多个探测器组件。
  2. 根据权利要求1所述的面阵探测器,其中,所述第一探测器组件与所述第二探测器组件具有不同的闪烁体阵列。
  3. 根据权利要求1所述的面阵探测器,其中,所述第一探测器组件与所述第二探测器组件的闪烁体阵列的像素尺寸、材料中的至少一项不同。
  4. 根据权利要求1所述的面阵探测器,其中,相邻排列的预设数量的探测器组件设置于一个探测器外壳内部,形成一个独立的全密封结构探测器单元,探测器单元与底板密封安装。
  5. 根据权利要求4所述的面阵探测器,其中,所述预设数量包括2。
  6. 根据权利要求4所述的面阵探测器,其中,还包括:填充物组件,所述填充物组件和与其相邻排列的探测器组件设置于一个探测器外壳内部,形成一个独立的全密封结构探测器单元,探测器单元与底板密封安装。
  7. 根据权利要求1所述的面阵探测器,其中,所述底板是平面底板或曲面底板。
  8. 根据权利要求7所述的面阵探测器,其中,在曲面底板的情况下,所述多个探测器组件排布在所述曲面底板的曲面上,使得所述多个探测器组件的探测灵敏面呈曲面,并对准位于曲面中心区域的射线源。
  9. 根据权利要求3所述的面阵探测器,其中,所述第一探测器组件的闪烁体阵 列的第一像素尺寸小于所述第二探测器组件的闪烁体阵列的第二像素尺寸。
  10. 根据权利要求1-9任一项所述的面阵探测器,其中,多个面阵探测器拼接成一个更大的面阵探测器。
  11. 根据权利要求1-9任一项所述的面阵探测器,还包括:数据采集电路板,被配置为采集多个探测器组件的探测数据,根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。
  12. 根据权利要求11所述的面阵探测器,其中,所述数据采集电路板,被配置为在数字化X射线摄影DR扫描模式时,输出所述第一探测器组件的探测数据用于DR成像,在计算机断层CT扫描模式时,输出全部探测器组件的探测数据用于CT成像。
  13. 根据权利要求11所述的面阵探测器,其中,所述数据采集电路板,被配置为被配置为在输出全部探测器组件的探测数据之前,通过像素分割或像素合并,将第一探测器组件与第二探测器组件的探测数据处理成相同像素尺寸。
  14. 一种集装箱/车辆检查系统,包括权利要求1-13任一项所述的面阵探测器。
  15. 一种探测方法,包括:
    采集稀疏排列的多个探测器组件的探测数据,其中,多个探测器组件中的第一探测器组件与其他的第二探测器组件不同;
    根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像。
  16. 根据权利要求15所述的方法,其中,根据不同的扫描模式,输出所述第一探测器组件的探测数据或者全部探测器组件的探测数据用于相应扫描模式的成像包括:
    在DR扫描模式的情况下,输出所述第一探测器组件的探测数据用于DR成像,在CT扫描模式的情况下,输出全部探测器组件的探测数据用于CT成像。
  17. 根据权利要求16所述的方法,其中,
    先进行DR扫描模式,当发现难以辨别的可疑物质时,再切换到CT扫描模式。
  18. 根据权利要求15所述的方法,还包括:
    在输出全部探测器组件的探测数据之前,通过像素分割或像素合并,将第一探测器组件与第二探测器组件的探测数据处理成相同像素尺寸。
PCT/CN2022/128923 2021-11-26 2022-11-01 面阵探测器、探测方法及相应的集装箱/车辆检查系统 WO2023093469A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111422301.XA CN116183639A (zh) 2021-11-26 2021-11-26 面阵探测器、探测方法及相应的集装箱/车辆检查系统
CN202111422301.X 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093469A1 true WO2023093469A1 (zh) 2023-06-01

Family

ID=84363139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128923 WO2023093469A1 (zh) 2021-11-26 2022-11-01 面阵探测器、探测方法及相应的集装箱/车辆检查系统

Country Status (5)

Country Link
US (1) US20230168397A1 (zh)
EP (1) EP4187287A3 (zh)
JP (1) JP2023079208A (zh)
CN (1) CN116183639A (zh)
WO (1) WO2023093469A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242519A (zh) * 1999-07-23 2000-01-26 清华大学 一种大型客体数字辐射成象检测装置
EP1176432A2 (en) * 2000-07-26 2002-01-30 Siemens Medical Systems, Inc. X-ray scintillator compositions for X-ray imaging applications
CN1460849A (zh) * 2003-06-27 2003-12-10 清华大学 箱包或行李的γ辐射成像无损检测系统
CN2677923Y (zh) * 2004-03-05 2005-02-09 清华大学 箱包或行李的γ辐射成像无损检测装置
WO2013165396A1 (en) * 2012-05-01 2013-11-07 Analogic Corporation Determination of z-effective value for set of voxels using ct density image and sparse multi-energy data
CN105807329A (zh) * 2016-05-30 2016-07-27 公安部第研究所 一种用于识别包裹中危险液体的x射线检测装置与方法
CN108240997A (zh) * 2016-12-26 2018-07-03 同方威视技术股份有限公司 检查设备和对集装箱进行检查的方法
CN111157555A (zh) * 2019-12-20 2020-05-15 北京航星机器制造有限公司 一种高能稀疏的ct探测器、ct检测系统及检测方法
CN211749672U (zh) * 2019-12-16 2020-10-27 于红林 兼具dr和ct功能的成像装置
CN113133772A (zh) * 2020-01-20 2021-07-20 上海交通大学 Pet-ct系统及扫描方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467830B2 (ja) * 2009-09-18 2014-04-09 浜松ホトニクス株式会社 放射線検出装置
CN202948145U (zh) * 2012-09-26 2013-05-22 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置
CN104240270B (zh) * 2013-06-14 2017-12-05 同方威视技术股份有限公司 Ct成像方法和系统
CN105242322A (zh) * 2014-06-25 2016-01-13 清华大学 探测器装置、双能ct系统和使用该系统的检测方法
MX2018013244A (es) * 2016-05-03 2019-08-12 Rapiscan Systems Inc Sistema de procesamiento de señal de radiacion.
CN109471185A (zh) * 2018-12-17 2019-03-15 同方威视技术股份有限公司 Ct系统和用于ct系统的探测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242519A (zh) * 1999-07-23 2000-01-26 清华大学 一种大型客体数字辐射成象检测装置
EP1176432A2 (en) * 2000-07-26 2002-01-30 Siemens Medical Systems, Inc. X-ray scintillator compositions for X-ray imaging applications
CN1460849A (zh) * 2003-06-27 2003-12-10 清华大学 箱包或行李的γ辐射成像无损检测系统
CN2677923Y (zh) * 2004-03-05 2005-02-09 清华大学 箱包或行李的γ辐射成像无损检测装置
WO2013165396A1 (en) * 2012-05-01 2013-11-07 Analogic Corporation Determination of z-effective value for set of voxels using ct density image and sparse multi-energy data
CN105807329A (zh) * 2016-05-30 2016-07-27 公安部第研究所 一种用于识别包裹中危险液体的x射线检测装置与方法
CN108240997A (zh) * 2016-12-26 2018-07-03 同方威视技术股份有限公司 检查设备和对集装箱进行检查的方法
CN211749672U (zh) * 2019-12-16 2020-10-27 于红林 兼具dr和ct功能的成像装置
CN111157555A (zh) * 2019-12-20 2020-05-15 北京航星机器制造有限公司 一种高能稀疏的ct探测器、ct检测系统及检测方法
CN113133772A (zh) * 2020-01-20 2021-07-20 上海交通大学 Pet-ct系统及扫描方法

Also Published As

Publication number Publication date
US20230168397A1 (en) 2023-06-01
CN116183639A (zh) 2023-05-30
EP4187287A2 (en) 2023-05-31
JP2023079208A (ja) 2023-06-07
EP4187287A3 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
US7649178B2 (en) Solid state detector packaging technique
US7613274B2 (en) Method and system of energy integrating and photon counting using layered photon counting detector
CN104391316B (zh) 三维空间曲面多能量闪烁探测器的探测方法
US7193217B2 (en) X-ray detector
GB2496777A (en) X-ray scanners
AU2015281626A1 (en) Detector device, dual energy CT system and detection method using same
US10413259B2 (en) Gap resolution for linear detector array
JP2005539232A (ja) 複数の検出器ユニットを有するx線検出器
CN1320373C (zh) 辐射检测器
JPH08211199A (ja) X線撮像装置
JP2019507335A (ja) 電離放射線の層状画素検出器
WO2023093469A1 (zh) 面阵探测器、探测方法及相应的集装箱/车辆检查系统
US20110297837A1 (en) Radiation detection module and radiation image-capturing device
Bueno et al. High-resolution digital radiography and three-dimensional computed tomography
US9841514B2 (en) X-ray detector arrangement
JP4464998B2 (ja) 半導体検出器モジュール、および該半導体検出器モジュールを用いた放射線検出装置または核医学診断装置
CN204241697U (zh) 三维空间曲面多能量闪烁探测器
JPH0868768A (ja) X線荷物検査装置
CN113960086B (zh) 一种补偿式背散射探测器栅格准直成像系统及方法
AU2018250678A1 (en) Improved temperature performance of a scintillator-based radiation detector system
CN219810870U (zh) 多层x射线探测器
US20230162880A1 (en) Multi-layer x-ray detector
WO2024007285A1 (en) Scanning of objects with radiation detectors
CN117916039A (zh) 具有空隙填充的3d(三维)打印
KR20210045766A (ko) 컴프턴 영상 장치 및 이를 포함하는 단일 광자 및 양전자 단층 촬영 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897552

Country of ref document: EP

Kind code of ref document: A1