WO2023093460A1 - 一种单晶硅棒的拉制方法及单晶硅棒 - Google Patents

一种单晶硅棒的拉制方法及单晶硅棒 Download PDF

Info

Publication number
WO2023093460A1
WO2023093460A1 PCT/CN2022/128327 CN2022128327W WO2023093460A1 WO 2023093460 A1 WO2023093460 A1 WO 2023093460A1 CN 2022128327 W CN2022128327 W CN 2022128327W WO 2023093460 A1 WO2023093460 A1 WO 2023093460A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
silicon rod
single crystal
crystal silicon
horizontal magnetic
Prior art date
Application number
PCT/CN2022/128327
Other languages
English (en)
French (fr)
Inventor
宋振亮
宋少杰
Original Assignee
西安奕斯伟材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安奕斯伟材料科技有限公司 filed Critical 西安奕斯伟材料科技有限公司
Priority to JP2023569755A priority Critical patent/JP2024517314A/ja
Priority to KR1020237038383A priority patent/KR20230160943A/ko
Priority to DE112022002214.0T priority patent/DE112022002214T5/de
Publication of WO2023093460A1 publication Critical patent/WO2023093460A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the embodiments of the present application relate to the technical field of semiconductor manufacturing, and in particular to a method for drawing a single crystal silicon rod and the single crystal silicon rod.
  • Epitaxial silicon wafer is a single crystal layer (also called epitaxial layer) grown on the silicon wafer by vapor deposition reaction. Because the epitaxial layer has high crystalline integrity and almost no defects, epitaxial silicon wafers are currently It is widely used as a substrate material for semiconductor devices. However, the heavy metal impurities contained in silicon wafers have become an important factor affecting the quality of semiconductor devices, so the content of heavy metal impurities needs to be reduced as much as possible during the production of silicon wafers.
  • BMDs when enough BMDs are formed inside the silicon wafer, these BMDs have the function of intrinsic gettering (IG) to capture heavy metal impurities, which can greatly improve the problem of poor quality of semiconductor devices caused by heavy metal impurities , but during the epitaxial growth process, since the silicon wafer is exposed to a high temperature environment above 1000°C, the smaller BMD cores will be eliminated at this high temperature, so a sufficient number of BMD cores cannot be provided in the epitaxial silicon wafer, In this case, the BMD with sufficient density cannot be sufficiently induced when the above-mentioned epitaxial silicon wafers are used to manufacture semiconductor devices, and thus the quality of the manufactured semiconductor devices is not good.
  • IG intrinsic gettering
  • the embodiment of the present application expects to provide a single crystal silicon rod drawing method and a single crystal silicon rod; which can make the oxygen concentration of the single crystal silicon rod gradually decrease along the axial direction from the head to the tail.
  • the trend is that the BMD density distribution is more uniform in the axial direction of the single crystal silicon rod.
  • the embodiment of the present application provides a method for pulling a single crystal silicon rod, and the method for pulling includes:
  • the initial height of the horizontal magnetic field is set to be higher than the free surface of the silicon melt
  • the embodiment of the present application provides a single crystal silicon rod, which is prepared according to the pulling method described in the first aspect.
  • the embodiment of the present application provides a method for drawing a single crystal silicon rod and a single crystal silicon rod; by setting the horizontal magnetic field at a position higher than the free surface of the silicon melt during the initial stage of the equal-diameter growth of the single crystal silicon rod , and change the height or magnetic field strength of the horizontal magnetic field during the isometric growth process, so that the oxygen concentration of the single crystal silicon rod along the axial direction from the head to the tail gradually decreases, so as to suppress the segregation caused by the nitrogen concentration
  • the increase of BMD density finally makes the distribution of BMD density in the axial direction of the whole single crystal silicon rod more uniform.
  • FIG. 1 is a schematic diagram of a crystal pulling furnace equipment structure provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the variation trend of nitrogen concentration with the length of the single crystal silicon rod provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the change trend of oxygen concentration along the axial direction from the head to the tail of the related single crystal silicon rod provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram of a process flow of a method for pulling a single crystal silicon rod provided in an embodiment of the present application
  • Fig. 5 is a schematic diagram of the height of the horizontal magnetic field at the initial stage of the equal-diameter growth of the monocrystalline silicon rod provided by the embodiment of the present application;
  • Figure 6 shows that during the equal-diameter growth process of single-crystal silicon rods provided by the embodiment of the present application, the magnetic field strength of the horizontal magnetic field remains constant, and the prepared single-crystal silicon rods grow along the axis when the height of the horizontal magnetic field is gradually decreased.
  • Figure 7 shows that during the equal-diameter growth process of single-crystal silicon rods provided by the embodiment of the present application, the height of the horizontal magnetic field remains unchanged, and when the magnetic field strength of the horizontal magnetic field is gradually increased, the prepared single-crystal silicon rods grow along the axis Schematic diagram of the trend of oxygen concentration in the direction from head to tail.
  • this crystal pulling furnace equipment 1 mainly comprises quartz crucible 10 and graphite crucible 20, wherein graphite crucible 20 uses Used to support and fix the quartz crucible 10. It can be understood that the crystal pulling furnace equipment 1 shown in FIG. 1 may also include other structures not shown in FIG. 1 , such as a crucible lifting device, etc., which are not specifically described in this embodiment of the present application.
  • the nitrogen concentration at the initial stage of crystallization is the specified target concentration, but as the crystal growth process continues Carrying out, the nitrogen concentration (Nitrogen Concentration) in the single crystal silicon rod increases gradually with the increase of the single crystal silicon rod S length (Ingot Length) due to the segregation of nitrogen, as shown in Figure 2 specifically, so the single crystal silicon rod obtained by drawing The BMD density in the crystalline silicon rod S gradually increases along the axial direction from the head to the tail.
  • the oxygen concentration in the single crystal silicon rod S is generally adjusted by adjusting the crucible rotation of the quartz crucible or the flow rate of argon gas.
  • it is difficult for these processes to make the oxygen concentration show an opposite trend to the nitrogen concentration.
  • the oxygen concentration fluctuates up and down in a certain range from the head to the tail in the axial direction of the single crystal silicon rod S, specifically as As shown in Figure 3, there is also a limit to the reduction of the oxygen concentration.
  • FIG. 4 shows a method for pulling a single crystal silicon rod provided in an embodiment of the present application, the method comprising:
  • the initial height of the horizontal magnetic field is set to be higher than the free surface of the silicon melt
  • the head of the single crystal silicon rod S refers to the part of the single crystal silicon rod drawn in the initial stage of equal-diameter growth
  • the tail of the single crystal silicon rod S refers to the The part of the monocrystalline silicon rod obtained by drawing at the end of the isometric growth.
  • a pair of excitation coils 30 can be arranged on the periphery of the graphite crucible 20 to apply a horizontal magnetic field to the silicon melt MS in the quartz crucible 10, wherein the dotted line in the figure
  • the horizontal plane 40 representing the horizontal magnetic field in the embodiment of the present application, the distance H between the horizontal plane 40 and the free surface of the silicon melt MS is used to characterize the position of the horizontal magnetic field (Maximum Gauss Position, MGP), understandably, the horizontal magnetic field is Occupying a three-dimensional structure with a certain space, MGP refers to the middle position of the entire horizontal magnetic field.
  • the height of the horizontal magnetic field is 0; if the level 40 of the horizontal magnetic field is higher than that of the silicon melt MS free surface, then the height of the horizontal magnetic field is greater than 0, for example, when the horizontal plane 40 of the horizontal magnetic field is higher than the free surface 100mm of the silicon melt MS, the height of the horizontal magnetic field is +100mm; similarly, if the horizontal plane of the horizontal magnetic field 40 is lower than the free surface of the silicon melt MS, the height of the horizontal magnetic field is less than 0; for example, when the level 40 of the horizontal magnetic field is 100 mm lower than the free surface of the silicon melt MS, the height of the horizontal magnetic field is -100 mm.
  • control strength of the horizontal magnetic field on the convection of the silicon melt MS refers to the characterization of the degree of control of the horizontal magnetic field on the convection of the silicon melt MS.
  • the degree of convection of the silicon melt MS weakens, resulting in a decrease in the oxygen concentration at the free surface of the silicon melt MS, which in turn makes the oxygen concentration of the single crystal silicon rod S along the axial direction from the head to the tail. content gradually decreased.
  • the quartz crucible 10 is always in the process of rising, so that the free surface of the silicon melt MS remains basically at the same position.
  • the height of the horizontal magnetic field can be reduced or the strength of the magnetic field can be increased. Enhance the degree of control of the horizontal magnetic field P on the convection of the silicon melt MS.
  • the horizontal magnetic field for reducing the height of the horizontal magnetic field, in some possible implementation manners, during the isometric growth process of the single crystal silicon rod, by changing the horizontal magnetic field to the The control intensity of the convection of the silicon melt so that the oxygen concentration of the single crystal silicon rod in the axial direction from the head to the tail shows a downward trend, including:
  • the magnetic field strength of the horizontal magnetic field remains constant, and the control of the horizontal magnetic field on the convection of the silicon melt is increased by gradually decreasing the height of the horizontal magnetic field Strength, so that the oxygen concentration of the single crystal silicon rod S in the axial direction from the head to the tail tends to decrease.
  • the crystal pulling furnace equipment 1 also includes a magnetic field moving unit 50, which is used to move the excitation coil 30 during the pulling process of the single crystal silicon rod S to change the horizontal magnetic field the height of.
  • the rate of decline of the horizontal magnetic field is 0.02 mm/h to 0.12 mm/h.
  • the pulling method further includes:
  • the level of the horizontal magnetic field is not lower than the free surface of the silicon melt. That is to say, at the end stage of the equal-diameter growth of the single crystal silicon rod S, the horizontal plane 40 of the horizontal magnetic field coincides with the free surface of the silicon melt MS at the lowest, that is to say, the height of the horizontal magnetic field is at least 0.
  • the height of the horizontal magnetic field may also be greater than zero.
  • control intensity of the convection of the silicon melt so that the oxygen concentration of the single crystal silicon rod in the axial direction from the head to the tail shows a downward trend including:
  • the height of the horizontal magnetic field remains constant, and the control of the horizontal magnetic field on the convection of the silicon melt is increased by gradually increasing the magnetic field strength of the horizontal magnetic field. Strength, so that the oxygen concentration of the single crystal silicon rod in the axial direction from the head to the tail tends to decrease.
  • the input current of the exciting coil 30 may be increased.
  • the frequency of increasing the magnetic field strength of the horizontal magnetic field is 0.2G/h to 0.6G/h.
  • the magnetic field strength of the horizontal magnetic field is not greater than 4000 Gauss (G), that is to say, in the embodiment of the present application , in order to facilitate the growth of the single crystal silicon rod S, the magnetic field strength of the horizontal magnetic field is not greater than 4000G at the end stage of the single crystal silicon rod S being equal in diameter.
  • the initial height of the horizontal magnetic field is set to be +100 mm to +200mm
  • the magnetic field strength of the horizontal magnetic field is 3000G to 4000G.
  • the initial height of the horizontal magnetic field can be set to +100 mm to +200 mm in the initial stage of equal-diameter growth, and the magnetic field of the horizontal magnetic field The strength is between 3000G and 4000G.
  • the magnetic field strength of the horizontal magnetic field remains unchanged, and the horizontal magnetic field is gradually reduced by a rate of 0.02mm/h to 0.12mm/h, so that the horizontal plane 40 of the horizontal magnetic field is gradually approaching the silicon melt
  • the free surface of the liquid MS in order to enhance the control strength of the horizontal magnetic field on the convection of the silicon melt MS, weaken the degree of convection of the silicon melt MS, and then make the oxygen concentration of the single crystal silicon rod S along the axial direction from the head to the tail. Gradually decreases.
  • the horizontal plane 40 of the horizontal magnetic field coincides with the free surface of the silicon melt MS at the lowest.
  • the initial height of the horizontal magnetic field is set to +100 mm to +200 mm in the initial stage of equal diameter growth, and the horizontal magnetic field
  • the magnetic field strength is between 3000G and 4000G.
  • the height of the horizontal magnetic field remains unchanged, and the magnetic field strength of the horizontal magnetic field is gradually increased by increasing the frequency from 0.2G/h to 0.6G/h, so that the horizontal magnetic field has no effect on silicon melting.
  • the control strength of liquid MS convection is enhanced, and the degree of convection of silicon melt MS is weakened, thereby gradually reducing the oxygen concentration of single crystal silicon rod S along the axial direction from the head to the tail.
  • the magnetic field strength of the horizontal magnetic field is not greater than 4000G.
  • the embodiment of the present application also provides a single crystal silicon rod, which is prepared according to the drawing method described in the foregoing technical solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种单晶硅棒的拉制方法及单晶硅棒,所述拉制方法包括:在单晶硅棒的等径生长初始阶段,设置水平磁场的起始高度高于硅熔液的自由表面;在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。

Description

一种单晶硅棒的拉制方法及单晶硅棒
相关申请的交叉引用
本申请主张在2021年11月25日在中国提交的中国专利申请号No.202111411291.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请实施例涉及半导体制造技术领域,尤其涉及一种单晶硅棒的拉制方法及单晶硅棒。
背景技术
近年来,随着半导体器件制造过程中细微化的发展,对所需要的硅片的要求越来越高,不仅要求硅片表面区域缺陷很少甚至无缺陷,而且要求硅片具有足够的体微缺陷(Bulk Micro Defects,BMD),以保护设置电子元件的硅片区域不被重金属杂质污染。
外延硅片是在硅片上通过气相沉积反应生长一层单晶层(也称之为外延层),由于外延层具有高的结晶完整性,且几乎没有缺陷的特性,因此目前外延硅片被作为半导体器件的基板材料而广泛使用。但是,硅片中含有的重金属杂质已然成为影响半导体器件品质的重要因素,因此重金属杂质的含量需要在硅片生产过程中极力减少。目前,已知当在硅片内部形成足够多的BMD时,这些BMD具有捕捉重金属杂质的本征吸杂(Intrinsic Gettering,IG)作用,能够极大改善由于重金属杂质导致的半导体器件品质不良的问题,但是在外延生长过程中,由于硅片暴露在1000℃以上的高温环境中,在此高的温度下较小的BMD核心会被消除,因此外延硅片中不能够提供足够数量的BMD核心,这种情况下导致利用上述外延硅片制造半导体器件时无法充分引起足够密度的BMD,进而使得制造得到的半导体器件品质不佳。
为了解决外延硅片中BMD密度降低的问题,通常会在单晶硅棒拉制过程中进行掺氮处理以获得稳定的BMD核心,但是目前掺氮的单晶硅棒中BMD的密度会随着氮浓度的提高而提高。根据客户半导体器件工艺要求的不 同,对BMD密度均匀性的要求也越来越严格,在这种情况下会导致整根单晶硅棒无法无损失地满足特定客户的工艺要求,导致生产率低,出货成本高。
发明内容
有鉴于此,本申请实施例期望提供一种单晶硅棒的拉制方法及单晶硅棒;能够使得单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈逐渐下降的变化趋势,以在单晶硅棒的轴向方向上BMD密度分布更加均匀。
本申请实施例的技术方案是这样实现的:
第一方面,本申请实施例提供了一种单晶硅棒的拉制方法,所述拉制方法包括:
在单晶硅棒的等径生长初始阶段,设置水平磁场的起始高度高于硅熔液的自由表面;
在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场的高度或磁场强度以改变对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
第二方面,本申请实施例提供了一种单晶硅棒,所述单晶硅棒根据由第一方面所述的拉制方法制备得到。
本申请实施例提供了一种单晶硅棒的拉制方法及单晶硅棒;通过在单晶硅棒的等径生长初始阶段,将水平磁场设置在高于硅熔液自由表面的位置处,并在等径生长过程中通过改变水平磁场的高度或磁场强度,以使得单晶硅棒沿轴向自头部至尾部方向上的氧浓度逐渐降低,以此来抑制由氮浓度偏析引起的BMD密度增加,最终使得整根单晶硅棒轴向方向上BMD密度分布更加均匀。
附图说明
图1为本申请实施例提供的一种拉晶炉设备结构的示意图;
图2为本申请实施例提供的氮浓度随单晶硅棒长度变化趋势的示意图;
图3为本申请实施例提供的相关的单晶硅棒沿轴向自头部至尾部方向上氧浓度变化趋势的示意图;
图4为本申请实施例提供的一种单晶硅棒的拉制方法流程的示意图;
图5为本申请实施例提供的在单晶硅棒的等径生长初始阶段,水平磁场的高度示意图;
图6为本申请实施例提供的在单晶硅棒的等径生长过程中,水平磁场的磁场强度保持不变,通过逐渐下降水平磁场的高度的情况下,制备得到的单晶硅棒沿轴向自头部至尾部方向上的氧浓度变化趋势的示意图;
图7为本申请实施例提供的在单晶硅棒的等径生长过程中,水平磁场的高度保持不变,通过逐渐增加水平磁场的磁场强度的情况下,制备得到的单晶硅棒沿轴向自头部至尾部方向上的氧浓度变化趋势的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
参见图1,其示出了能够实施本申请实施例的一种拉晶炉设备1,如图1所示,该拉晶炉设备1主要包括石英坩埚10和石墨坩埚20,其中石墨坩埚20用于支撑和固定石英坩埚10。可以理解地,图1所示的拉晶炉设备1中还可以包括其他图1中未示出的结构,比如,坩埚升降装置等,本申请实施例不作具体的阐述。
利用上述拉晶炉设备1进行掺氮的单晶硅棒S拉制时,单晶硅棒S在结晶生长过程中,结晶初始阶段氮浓度为规定的目标浓度,但随着结晶生长过程的持续进行,由于氮的偏析导致单晶硅棒中的氮浓度(Nitrogen Concentration)随着单晶硅棒S长度(Ingot Length)的增加而逐渐增加,具体如图2所示,因此拉制得到的单晶硅棒S中的BMD密度沿轴向自头部至尾部方向上呈逐渐增加的变化趋势。从相关技术中可知,单晶硅棒S中的氧浓度越高,则其内部含有的BMD密度越高,因此可以通过控制单晶硅棒S中氧浓度的变化趋势来抑制单晶硅棒S轴向方向上BMD密度的增加趋势。
目前,在基于直拉(Czochralski,CZ)法的单晶硅棒S的拉制方法中,一般通过调整石英坩埚的埚转或者氩气流量等工艺方法来调节单晶硅棒S中氧浓度的变化趋势,而这些工艺方法很难使得氧浓度呈现出与氮浓度相反的 变化趋势,一般氧浓度在单晶硅棒S沿轴向自头部至尾部方向呈一定范围上下波动的趋势,具体如图3所示,而且氧浓度的降低也是有限度的。
基于上述阐述,参见图4,其示出了本申请实施例提供的一种单晶硅棒的拉制方法,所述方法包括:
S401、在单晶硅棒的等径生长初始阶段,设置水平磁场的起始高度高于硅熔液的自由表面;
S402、在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
对于图4所示的技术方案,通过在单晶硅棒S的等径生长初始阶段,将水平磁场设置在高于硅熔液MS自由表面的位置处,并在等径生长过程中通过改变水平磁场对硅熔液MS对流的控制强度,减弱硅熔液的对流程度,导致硅熔液MS自由表面处的氧浓度降低,使得单晶硅棒S沿轴向自头部至尾部方向上的氧浓度逐渐降低,以此来抑制由氮浓度偏析引起的BMD密度增加,最终使得在整根单晶硅棒S轴向方向上BMD密度分布更加均匀。
需要说明的是,在本申请实施例中,单晶硅棒S的头部指的是在等径生长初始阶段拉制得到的单晶硅棒部分,单晶硅棒S的尾部指的是在等径生长结束阶段拉制得到的单晶硅棒部分。
可以理解地,为了实施本申请实施例,具体如图5所示,在石墨坩埚20外周可以设置一对激励线圈30以对石英坩埚10中的硅熔液MS施加水平磁场,其中图中的虚线代表水平磁场的水平面40,在本申请实施例中,水平面40与硅熔液MS自由表面之间的距离H用于表征水平磁场的位置(Maximum Gauss Position,MGP),可以理解地,水平磁场是占据有一定空间的立体结构,MGP指的是整个水平磁场的中间位置。
需要说明的是,在本申请实施例中规定:若水平磁场的水平面40与硅熔液MS的自由表面重合,则水平磁场的高度为0;若水平磁场的水平面40高于硅熔液MS的自由表面,则水平磁场的高度大于0,举例来说,当水平磁场的水平面40高于硅熔液MS的自由表面100mm时,即水平磁场的高度为+100mm;类似地,若水平磁场的水平面40低于硅熔液MS的自由表面,则 水平磁场的高度小于0;举例来说,当水平磁场的水平面40低于硅熔液MS的自由表面100mm时,即水平磁场的高度为-100mm。
此外,需要说明的是,在本申请实施例中,水平磁场对硅熔液MS对流的控制强度指的是水平磁场对硅熔液MS对流控制程度的表征量,当水平磁场对硅熔液MS对流的控制强度增大时,硅熔液MS的对流程度减弱,导致硅熔液MS自由表面处的氧浓度降低,进而使得单晶硅棒S沿轴向自头部至尾部方向上的氧浓度含量逐渐降低。举例来说,在本申请实施例中,如图5所示,在单晶硅棒S的等径生长初始阶段,当水平磁场的水平面40高于硅熔液MS的自由表面时,在单晶硅棒S的拉制过程中,石英坩埚10一直处于上升过程,以使得硅熔液MS的自由表面基本保持在同一位置,在这种情况下可以通过降低水平磁场的高度或者增大磁场强度以增强水平磁场P对硅熔液MS对流的控制程度。
可选地,在本申请实施例中,对于降低水平磁场的高度,在一些可能的实现方式中,所述在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势,包括:
在所述单晶硅棒的等径生长过程中,所述水平磁场的磁场强度保持不变,通过逐渐下降所述水平磁场的高度以增大所述水平磁场对所述硅熔液对流的控制强度,从而使得所述单晶硅棒S沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
具体来说,为了改变水平磁场的高度,如图5所示,拉晶炉设备1中还包括磁场移动单元50,用于在单晶硅棒S的拉制过程中移动激励线圈30以改变水平磁场的高度。
具体地,如图6所示,在水平磁场的磁场强度保持不变的情况下,通过逐渐下降水平磁场的过程中,单晶硅棒S沿轴向自头部至尾部方向上的氧浓度呈下降的变化趋势。
对于上述可能的实现方式,在一些示例中,所述水平磁场的下降速率为0.02mm/h至0.12mm/h。
对于上述可能的实现方式,在一些示例中,所述拉制方法还包括:
在所述单晶硅棒的等径生长结束阶段,所述水平磁场的水平面不低于所述硅熔液的自由表面。也就是说,在单晶硅棒S的等径生长结束阶段,水平磁场的水平面40最低与硅熔液MS的自由表面相重合,也就是说水平磁场的高度最低为0,当然在在单晶硅棒S的等径生长结束阶段,水平磁场的高度也可以大于0。
可选地,在本申请实施例中,对于增大水平磁场的磁场强度,在一些可能的实现方式中,所述在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势,包括:
在所述单晶硅棒的等径生长过程中,所述水平磁场的高度保持不变,通过逐渐增加所述水平磁场的磁场强度以增大所述水平磁场对所述硅熔液对流的控制强度,从而使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
举例来说,在本申请实施例中,为了增加水平磁场的磁场强度,可以增大激励线圈30的输入电流。
具体地,如图7所示,在水平磁场的高度保持不变的情况下,通过逐渐增加水平磁场的磁场强度的过程中,单晶硅棒S沿轴向自头部至尾部方向上的氧浓度呈下降的变化趋势。
对于上述可能的实现方式,在一些示例中,所述水平磁场的磁场强度增加频率为0.2G/h至0.6G/h。
对于上述可能的实现方式,在一些示例中,在所述单晶硅棒的等径生长结束阶段,所述水平磁场的磁场强度不大于4000高斯(G),也就是说,在本申请实施例中,为了利于单晶硅棒S的生长,在单晶硅棒S的等径结束阶段,水平磁场的磁场强度不大于4000G。
可选地,在本申请实施例中,对于直径为300mm的所述单晶硅棒,在所述单晶硅棒的等径生长初始阶段,设置所述水平磁场的起始高度为+100mm至+200mm,所述水平磁场的磁场强度为3000G至4000G。
一方面,在本申请实施例中,可以在拉制直径为300mm的单晶硅棒S时,在等径生长初始阶段,设置水平磁场的起始高度为+100mm至+200mm, 水平磁场的磁场强度在3000G至4000G,在等径生长过程中,水平磁场的磁场强度维持不变,通过0.02mm/h至0.12mm/h的下降速率逐渐下降水平磁场,使得水平磁场的水平面40逐渐靠近硅熔液MS的自由表面,以增强水平磁场对硅熔液MS对流的控制强度,减弱硅熔液MS的对流程度,进而使得单晶硅棒S沿轴向自头部至尾部方向上的氧浓度含量逐渐降低。在等径生长结束阶段,水平磁场的水平面40最低与硅熔液MS的自由表面相重合。
另一方面,在本申请实施例中,也可以在拉制直径为300mm的单晶硅棒S时,在等径生长初始阶段,设置水平磁场的起始高度为+100mm至+200mm,水平磁场的磁场强度在3000G至4000G,在等径生长过程中,水平磁场的高度维持不变,通过0.2G/h至0.6G/h的增加频率逐渐增加水平磁场的磁场强度,使得水平磁场对硅熔液MS对流的控制强度增强,减弱硅熔液MS的对流程度,进而使得单晶硅棒S沿轴向自头部至尾部方向上的氧浓度含量逐渐降低。在等径生长结束阶段,水平磁场的磁场强度不大于4000G。
最后,本申请实施例还提供了一种单晶硅棒,所述单晶硅棒根据由前述技术方案所述的拉制方法制备得到。
需要说明的是:本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种单晶硅棒的拉制方法,所述拉制方法包括:
    在单晶硅棒的等径生长初始阶段,设置水平磁场的起始高度高于硅熔液的自由表面;
    在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
  2. 根据权利要求1所述的拉制方法,其中,所述在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势,包括:
    在所述单晶硅棒的等径生长过程中,所述水平磁场的磁场强度保持不变,通过逐渐下降所述水平磁场的高度以增大所述水平磁场对所述硅熔液对流的控制强度,从而使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
  3. 根据权利要求2所述的拉制方法,其中,所述水平磁场的下降速率为0.02mm/h至0.12mm/h。
  4. 根据权利要求2所述的拉制方法,所述拉制方法还包括:
    在所述单晶硅棒的等径生长结束阶段,所述水平磁场的高度不低于所述硅熔液的自由表面。
  5. 根据权利要求1所述的拉制方法,其中,所述在所述单晶硅棒的等径生长过程中,通过改变所述水平磁场对所述硅熔液对流的控制强度以使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势,包括:
    在所述单晶硅棒的等径生长过程中,所述水平磁场的高度保持不变,通过逐渐增加所述水平磁场的磁场强度以增大所述水平磁场对所述硅熔液对流的控制强度,从而使得所述单晶硅棒沿轴向自头部至尾部方向上的氧浓度呈下降趋势。
  6. 根据权利要求5所述的拉制方法,其中,所述水平磁场的磁场强度增加频率为0.2G/h至0.6G/h。
  7. 根据权利要求5所述的拉制方法,所述拉制方法还包括:
    在所述单晶硅棒的等径生长结束阶段,所述水平磁场的磁场强度不大于4000G。
  8. 根据权利要求1至7任一项所述的拉制方法,其中,对于直径为300mm的所述单晶硅棒,在所述单晶硅棒的等径生长初始阶段,设置所述水平磁场的起始高度为+100mm至+200mm,所述水平磁场的磁场强度为3000G至4000G。
  9. 一种单晶硅棒,所述单晶硅棒根据由权利要求1至8任一项所述的拉制方法制备得到。
PCT/CN2022/128327 2021-11-25 2022-10-28 一种单晶硅棒的拉制方法及单晶硅棒 WO2023093460A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023569755A JP2024517314A (ja) 2021-11-25 2022-10-28 単結晶シリコンロッドの引張方法及び単結晶シリコンロッド
KR1020237038383A KR20230160943A (ko) 2021-11-25 2022-10-28 단결정 실리콘 잉곳 그로잉 방법 및 단결정 실리콘 잉곳
DE112022002214.0T DE112022002214T5 (de) 2021-11-25 2022-10-28 Verfahren zum Züchten von einkristallinen Siliziumblöcken und einkristalline Siliziumblöcke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111411291.X 2021-11-25
CN202111411291.XA CN114086241B (zh) 2021-11-25 2021-11-25 一种单晶硅棒的拉制方法及单晶硅棒

Publications (1)

Publication Number Publication Date
WO2023093460A1 true WO2023093460A1 (zh) 2023-06-01

Family

ID=80304386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128327 WO2023093460A1 (zh) 2021-11-25 2022-10-28 一种单晶硅棒的拉制方法及单晶硅棒

Country Status (6)

Country Link
JP (1) JP2024517314A (zh)
KR (1) KR20230160943A (zh)
CN (1) CN114086241B (zh)
DE (1) DE112022002214T5 (zh)
TW (1) TWI812402B (zh)
WO (1) WO2023093460A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086241B (zh) * 2021-11-25 2023-03-28 西安奕斯伟材料科技有限公司 一种单晶硅棒的拉制方法及单晶硅棒
CN114855263A (zh) * 2022-04-01 2022-08-05 上海新昇半导体科技有限公司 一种晶体生长方法及生长装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359959A (en) * 1990-05-25 1994-11-01 Shin-Etsu Handotai Co., Ltd. Method for pulling up semi-conductor single crystal
JP2004196569A (ja) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd シリコン単結晶引上方法
JP2007204312A (ja) * 2006-02-01 2007-08-16 Sumco Corp シリコン単結晶の製造方法
CN111615569A (zh) * 2017-11-29 2020-09-01 胜高股份有限公司 单晶硅及其制造方法以及硅晶片
CN114086241A (zh) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 一种单晶硅棒的拉制方法及单晶硅棒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763265A (zh) * 2005-09-29 2006-04-26 天津市环欧半导体材料技术有限公司 磁场直拉硅单晶的制备方法
JP5228671B2 (ja) * 2008-07-24 2013-07-03 株式会社Sumco シリコン単結晶の育成方法
CN109811403A (zh) * 2017-11-22 2019-05-28 上海新昇半导体科技有限公司 一种拉晶系统和拉晶方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359959A (en) * 1990-05-25 1994-11-01 Shin-Etsu Handotai Co., Ltd. Method for pulling up semi-conductor single crystal
JP2004196569A (ja) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd シリコン単結晶引上方法
JP2007204312A (ja) * 2006-02-01 2007-08-16 Sumco Corp シリコン単結晶の製造方法
CN111615569A (zh) * 2017-11-29 2020-09-01 胜高股份有限公司 单晶硅及其制造方法以及硅晶片
CN114086241A (zh) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 一种单晶硅棒的拉制方法及单晶硅棒

Also Published As

Publication number Publication date
TWI812402B (zh) 2023-08-11
KR20230160943A (ko) 2023-11-24
DE112022002214T5 (de) 2024-03-21
CN114086241A (zh) 2022-02-25
JP2024517314A (ja) 2024-04-19
CN114086241B (zh) 2023-03-28
TW202302933A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2023093460A1 (zh) 一种单晶硅棒的拉制方法及单晶硅棒
KR100840751B1 (ko) 고품질 실리콘 단결정 잉곳 제조 방법, 성장 장치 및그로부터 제조된 잉곳 , 웨이퍼
KR100793950B1 (ko) 실리콘 단결정 잉곳 및 그 성장방법
JP5269384B2 (ja) チョクラルスキー法を用いた半導体単結晶製造方法
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JP2010100474A (ja) シリコン単結晶引上げ水平磁場の最適化方法およびシリコン単結晶の製造方法
WO2006117939A1 (ja) シリコンウェーハの製造方法
JP2009114054A (ja) 酸素濃度特性が改善した半導体単結晶の製造方法
JPWO2008146371A1 (ja) シリコン単結晶引上装置
JP2019206451A (ja) シリコン単結晶の製造方法、エピタキシャルシリコンウェーハ及びシリコン単結晶基板
US7048796B2 (en) Silicon single crystal wafer fabricating method and silicon single crystal wafer
WO2004101868A1 (ja) 単結晶の製造方法及び単結晶
KR101193786B1 (ko) 단결정 성장장치, 단결정 성장방법 및 이에 의해 성장된 단결정 잉곳
KR101120615B1 (ko) 단결정의 제조방법 및 실리콘 단결정 웨이퍼
JP4151148B2 (ja) シリコン単結晶の製造方法
KR101723739B1 (ko) 단결정 잉곳 성장장치 및 그 성장방법
JP4345585B2 (ja) シリコン単結晶の製造方法、およびこれに用いる覗き窓ガラス、結晶観察用窓ガラス、シリコン単結晶製造装置
JP2007210820A (ja) シリコン単結晶の製造方法
JP4007193B2 (ja) シリコン単結晶の製造方法
KR100831052B1 (ko) 실리콘 단결정 잉곳의 산소농도 조절방법, 이를 사용하여제조된 잉곳
KR100829061B1 (ko) 커습 자기장을 이용한 실리콘 단결정 성장 방법
WO2007007479A1 (ja) 単結晶の製造方法
WO2001081661A1 (fr) Tranche de silicium monocristallin, son procede d'elaboration et procede d'obtention d'une tranche de silicium monocristallin
KR100784585B1 (ko) 비대칭 자기장을 이용한 반도체 단결정 제조 방법 및 그장치
KR20070048002A (ko) 실리콘 단결정 잉곳의 산소농도 조절방법, 이를 사용하여제조된 잉곳 및 웨이퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237038383

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038383

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023569755

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18564904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002214

Country of ref document: DE