WO2023093447A1 - 氟代吡啶并吡咯类化合物的晶型及其制备方法 - Google Patents

氟代吡啶并吡咯类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2023093447A1
WO2023093447A1 PCT/CN2022/127979 CN2022127979W WO2023093447A1 WO 2023093447 A1 WO2023093447 A1 WO 2023093447A1 CN 2022127979 W CN2022127979 W CN 2022127979W WO 2023093447 A1 WO2023093447 A1 WO 2023093447A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
cancer
compound
formula
angles
Prior art date
Application number
PCT/CN2022/127979
Other languages
English (en)
French (fr)
Inventor
周建光
葛广存
李林
段吴平
李不鱼
Original Assignee
深圳市瓴方生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瓴方生物医药科技有限公司 filed Critical 深圳市瓴方生物医药科技有限公司
Publication of WO2023093447A1 publication Critical patent/WO2023093447A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of a fluoropyridopyrrole compound represented by formula (1) and a preparation method thereof.
  • the DNA damage response ensures the integrity of the genome in living cells through diverse signaling pathways. Intracellular proteins directly recognize abnormal DNA structures and activate the associated kinases of the DDR pathway in response to widespread DNA damage and increased replication stress within cancer cells.
  • the DDR pathway enables cells to survive in the face of genomic instability and replication stress, or mediates senescence or programmed death in irreparably damaged cells.
  • the defect of DDR gene can promote the mutation of driver gene, tumor heterogeneity and evasion of apoptosis through various ways, so as to promote tumor growth.
  • ATR ataxia telangiectasia mutated and RAD-3-related protein kinase belongs to the PIKKs (phosphatidylinositol-3-kinase-related kinase) family and is involved in DNA damage repair to maintain gene stability.
  • ATR protein kinases respond synergistically to DNA damage, replication stress, and cell cycle disruption.
  • ATR and ATM belong to the PIKK family of serine/threonine protein kinases, which are common components of the cell cycle and DNA damage repair, and others include Chkl, BRCA1, and p53.
  • ATR is mainly responsible for the repair of DNA replication stress (replication fork stagnation) and single-strand breaks.
  • ATR is activated by DNA single-strand structures when DNA double-strand breaks occur excision or replication fork stalls.
  • the DNA polymerase stays in the DNA replication process, and the replicative helicase continues to unwind at the front of the DNA replication fork, resulting in the generation of long single-stranded DNA (ssDNA), which is then bound by ssDNA and RPA (replication protein A).
  • RPA-ssDNA complexes activate RAD17/rfc2-5 complexes to bind to damage sites
  • DNA-ssDNA junctions Activates the Rad9-HUS1-RAD1 (9-1-1) heterotrimer, which in turn recruits TopBP1 to activate ATR.
  • ATR promotes DNA repair, stabilization and restart of stalled replication forks and transient cell cycle arrest through downstream targets. These functions are realized by ATR through mediating the downstream target Chk1.
  • ATR functions as a DNA damage cell cycle checkpoint during S phase.
  • ATR can mediate the degradation of CDC25A through Chk1, thereby delaying the process of DNA replication and providing time for the repair of replication forks.
  • ATR is also a master regulator of the G2/M cell cycle checkpoint, preventing cells from entering mitosis prematurely until DNA replication is complete or DNA damage occurs.
  • This ATR-dependent G2/M cell cycle arrest is mainly mediated by two mechanisms: 1. Degradation of CDC25A. 2. Phosphorylation of Cdc25C by Chk1 to bind to 14-3-protein. Binding of Cdc25C to 14-3-3 proteins promotes its export from the nucleus and sequestration into the cytoplasm, thereby inhibiting its ability to dephosphorylate and activate nuclear Cdc2, which in turn prevents entry into mitosis.
  • ATM gene is frequently mutated in tumor cells, suggesting that loss of ATM activity favors cancer cell survival.
  • Inactivation of ATM kinase makes cells more dependent on ATR-mediated signaling pathways, and combined inactivation of ATR and ATM induces synthetic lethality in cancer cells. Therefore, inhibition of ATR may be an effective approach in future cancer therapy.
  • the research of the present invention has found that the compound of formula (1) has strong inhibitory activity against ATR enzyme; at the same time, it has a good inhibitory effect on LoVo tumor cells with ATM signaling pathway deletion; The parameters are good and suitable for medication; in addition, the compound of the present invention can obviously inhibit the growth of human gastric cancer SNU-601 xenograft tumor, and is relatively tolerant to mice.
  • the compound of formula (1) of the present invention is prepared by Suzuki coupling reaction between compound 1-C and intermediate I.
  • the present invention provides the I crystal form of the compound of formula (1), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 9.35 ⁇ 0.20° and 18.81 ⁇ 0.2° 0.20°.
  • XRPD X-ray powder diffraction
  • the X-ray powder diffraction pattern of the above-mentioned I crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 9.35 ⁇ 0.20°, 12.05 ⁇ 0.20°, 12.40 ⁇ 0.20 °, 15.78 ⁇ 0.20°, 18.41 ⁇ 0.20°, 18.81 ⁇ 0.20°, 20.14 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned I crystal form has characteristic diffraction peaks at least at the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 9.35 ⁇ 0.20°, 12.05 ⁇ 0.20°, 12.40 ⁇ 0.20°, 15.78 ⁇ 0.20°, 16.13 ⁇ 0.20°, 16.48 ⁇ 0.20°, 17.73 ⁇ 0.20°, 18.41 ⁇ 0.20°, 18.81 ⁇ 0.20°, 20.14 ⁇ 0.20°, 20.63 ⁇ 0.20°, 22.61 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned I crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 9.35 ⁇ 0.20°, 12.05 ⁇ 0.20°, 12.40 ⁇ 0.20 °, 14.60 ⁇ 0.20°, 15.78 ⁇ 0.20°, 16.13 ⁇ 0.20°, 16.48 ⁇ 0.20°, 17.73 ⁇ 0.20°, 18.41 ⁇ 0.20°, 18.81 ⁇ 0.20°, 20.14 ⁇ 0.20°, 20.63 ⁇ 0.20°, 21.32 ⁇ 0.20 °, 22.04 ⁇ 0.20°, 22.61 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned I crystal form has characteristic diffraction peaks at least at the following 2 ⁇ angles: 7.90 ⁇ 0.20°, 9.35 ⁇ 0.20°, and/or 18.81 ⁇ 0.20°, and/or 12.05 ⁇ 0.20°, and/or 12.40 ⁇ 0.20°, and/or 15.78 ⁇ 0.20°, and/or 18.41 ⁇ 0.20°, and/or 20.14 ⁇ 0.20°, and/or 16.13 ⁇ 0.20°, and/or 16.48 ⁇ 0.20 °, and/or 17.73 ⁇ 0.20°, and/or 20.63 ⁇ 0.20°, and/or 22.61 ⁇ 0.20°, and/or 14.60 ⁇ 0.20°, and/or 21.32 ⁇ 0.20°, and/or 22.04 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form I has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.90°, 9.35°, 12.05°, 12.40°, 14.60°, 15.78°, 16.13°, 16.48°, 17.73°, 18.41°, 18.81°, 20.14°, 20.63°, 21.32°, 22.04°, 22.61°.
  • the differential scanning calorimetry curve of the above crystal form I has endothermic peaks at 64.8 ⁇ 3°C, 153.8 ⁇ 3°C and 252.4 ⁇ 3°C.
  • thermogravimetric analysis curve of the above crystal form I has a weight loss of about 6.71% at 180.0 ⁇ 3°C.
  • the present invention provides the II crystal form of the compound of formula (1), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.76 ⁇ 0.20°, 15.93 ⁇ 0.20° and 17.94 ⁇ 0.2° 0.20°.
  • XRPD X-ray powder diffraction
  • the X-ray powder diffraction pattern of the above-mentioned II crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.97 ⁇ 0.20°, 8.76 ⁇ 0.20°, 15.93 ⁇ 0.20°, 17.94 ⁇ 0.20 °, 18.61 ⁇ 0.20°, 24.53 ⁇ 0.20°, 25.10 ⁇ 0.20°, and 25.81 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned II crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.97 ⁇ 0.20°, 8.76 ⁇ 0.20°, 10.99 ⁇ 0.20°, 12.98 ⁇ 0.20 °, 14.70 ⁇ 0.20°, 15.93 ⁇ 0.20°, 16.47 ⁇ 0.20°, 17.94 ⁇ 0.20°, 18.61 ⁇ 0.20°, 20.45 ⁇ 0.20°, 21.98 ⁇ 0.20°, 22.40 ⁇ 0.20°, 22.90 ⁇ 0.20°, 23.87 ⁇ 0.20 °, 24.53 ⁇ 0.20°, 25.10 ⁇ 0.20°, 25.81 ⁇ 0.20°, 26.06 ⁇ 0.20°, 27.20 ⁇ 0.20°, 27.98 ⁇ 0.20°, 28.71 ⁇ 0.20°, 29.37 ⁇ 0.20°, 29.86 ⁇ 0.20°, 30.29 ⁇ 0.20 °, 31.56 ⁇ 0.20°, 32.14 ⁇ 0.20°, 35.
  • the X-ray powder diffraction pattern of the above-mentioned II crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.76 ⁇ 0.20°, 15.93 ⁇ 0.20°, and/or 17.94 ⁇ 0.20°, and/or 7.97 ⁇ 0.20°, and/or 18.61 ⁇ 0.20°, and/or 24.53 ⁇ 0.20°, and/or 25.10 ⁇ 0.20°, and/or 25.81 ⁇ 0.20°, and/or 10.99 ⁇ 0.20°, and/or or 12.98 ⁇ 0.20°, and/or 14.70 ⁇ 0.20°, and/or 16.47 ⁇ 0.20°, and/or 20.45 ⁇ 0.20°, and/or 21.98 ⁇ 0.20°, and/or 22.40 ⁇ 0.20°, and/or 22.90 ⁇ 0.20°, and/or 23.87 ⁇ 0.20°, and/or 26.06 ⁇ 0.20°, and/or 27.20 ⁇ 0.20°, and/or 27.98 ⁇ 0.2
  • the X-ray powder diffraction pattern of the above-mentioned II crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 7.97°, 8.76°, 10.99°, 12.98°, 14.70°, 15.93°, 16.47°, 17.94°, 18.61°, 20.45°, 21.98°, 22.40°, 22.90°, 23.87°, 24.53°, 25.10°, 25.81°, 26.06°, 27.20°, 27.98°, 28.71°, 29.37°, 29.86° , 30.29°, 31.56°, 32.14°, 35.31°, and 38.12°.
  • the XRPD pattern of the above-mentioned II crystal form is basically as shown in Fig. 3 .
  • the differential scanning calorimetry curve of the above-mentioned crystalline form II has an endothermic peak at 222.1 ⁇ 3°C and 256.5 ⁇ 3°C.
  • thermogravimetric analysis curve of the above-mentioned crystal form II has a weight loss of about 1.02% at 250 ⁇ 3°C.
  • the DSC curve and TGA curve of the above-mentioned II crystal form are shown in FIG. 4 .
  • the present invention provides the III crystal form of the compound of formula (1), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 14.848 ⁇ 0.20°, 17.653 ⁇ 0.20° and 19.135 ⁇ 0.20° 0.20°.
  • XRPD X-ray powder diffraction
  • the X-ray powder diffraction pattern of the above-mentioned III crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 10.518 ⁇ 0.20°, 12.262 ⁇ 0.20°, 14.848 ⁇ 0.20°, 17.146 ⁇ 0.20 °, 17.653 ⁇ 0.20°, 19.135 ⁇ 0.20°, 20.365 ⁇ 0.20°, and 25.798 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned III crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 10.518 ⁇ 0.20°, 12.262 ⁇ 0.20°, 14.848 ⁇ 0.20°, 15.854 ⁇ 0.20 °, 17.146 ⁇ 0.20°, 17.653 ⁇ 0.20°, 17.840 ⁇ 0.20°, 19.135 ⁇ 0.20°, 20.110 ⁇ 0.20°, 20.365 ⁇ 0.20°, 24.140 ⁇ 0.20°, and 25.798 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned III crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 6.125 ⁇ 0.20°, 7.266 ⁇ 0.20°, 7.911 ⁇ 0.20°, 8.682 ⁇ 0.20 °, 9.699 ⁇ 0.20°, 10.518 ⁇ 0.20°, 10.894 ⁇ 0.20°, 11.520 ⁇ 0.20°, 12.262 ⁇ 0.20°, 12.821 ⁇ 0.20°, 14.848 ⁇ 0.20°, 15.162 ⁇ 0.20°, 15.854 ⁇ 0.20°, 16. 280 ⁇ 0.20 °, 17.146 ⁇ 0.20°, 17.653 ⁇ 0.20°, 17.840 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned III crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 14.848 ⁇ 0.20°, 17.653 ⁇ 0.20°, and/or 19.135 ⁇ 0.20°, and/or 10.518 ⁇ 0.20°, and/or 12.262 ⁇ 0.20°, and/or 17.146 ⁇ 0.20°, and/or 20.365 ⁇ 0.20°, and/or 25.798 ⁇ 0.20°, and/or 6.130 ⁇ 0.20°, and/or or 7.270 ⁇ 0.20°, and/or 7.911 ⁇ 0.20°, and/or 8.682 ⁇ 0.20°, and/or 9.700 ⁇ 0.20°, and/or 10.890 ⁇ 0.20°, and/or 11.520 ⁇ 0.20°, and/or 12.821 ⁇ 0.20°, and/or 15.162 ⁇ 0.20°, and/or 15.854 ⁇ 0.20°, and/or 16.280 ⁇ 0.20°, and/or 17.840
  • the X-ray powder diffraction pattern of the above-mentioned III crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 6.125°, 7.266°, 7.911°, 8.682°, 9.699°, 10.518°, 10.894°,11.520°,12.262°,12.821°,14.848°,15.162°,15.854°,16.280°,17.146°,17.653°,17.840°,18.227°,18.536°,19.135°,19.679°,2 0.110°, 20.365° , 21.035°, 21.274°, 21.696°, 21.388°, 22.742°, 23.113°, 24.140°, 24.652°, 25.132°, 25.798°, 26.660°, 26.981°, 27.621°, 28.027°, 28.710° , 29.335°,
  • the XRPD spectrum of the above-mentioned III crystal form is basically as shown in Fig. 5 .
  • thermogravimetric analysis curve of the above-mentioned crystal form III has a weight loss of about 5.34% at 150 ⁇ 3°C.
  • the TGA curve of the above-mentioned III crystal form is shown in FIG. 6 .
  • the present invention provides the IV crystal form of the compound of formula (1), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.20°, 15.7523 ⁇ 0.20° and 17.5827 ⁇ 0.20°.
  • XRPD X-ray powder diffraction
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.20°, 8.4208 ⁇ 0.20°, 15.7523 ⁇ 0.20°, 16.3613 ⁇ 0.20 °, 17.5827 ⁇ 0.20°, 18.7041 ⁇ 0.20°, 24.7696 ⁇ 0.20°, and 24.9328 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.10°, 8.4208 ⁇ 0.10°, 15.7523 ⁇ 0.10°, 16.3613 ⁇ 0.10 °, 17.5827 ⁇ 0.10°, 18.7041 ⁇ 0.10°, 24.7696 ⁇ 0.10°, and 24.9328 ⁇ 0.10°.
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.20°, 8.4208 ⁇ 0.20°, 10.6855 ⁇ 0.20°, 12.3408 ⁇ 0.20 °, 13.0615 ⁇ 0.20°, 14.6650 ⁇ 0.20°, 15.7523 ⁇ 0.20°, 16.3613 ⁇ 0.20°, 17.5827 ⁇ 0.20°, 18.7041 ⁇ 0.20°, 20.0470 ⁇ 0.20°, 20.8774 ⁇ 0.20°, 21.7465 ⁇ 0.20°, 22.1529 ⁇ 0.20 °, 23.9930 ⁇ 0.20°, 24.7696 ⁇ 0.20°, 24.9238 ⁇ 0.20°, 26.2785 ⁇ 0.20°, 27.1454 ⁇ 0.20°, 28.2680 ⁇ 0.20°, 29.7925 ⁇ 0.20°, 30.8621 ⁇ 0.20°, 32.4019 ⁇ 0.20° and 33.3887 ⁇
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.10°, 8.4208 ⁇ 0.10°, 10.6855 ⁇ 0.10°, 12.3408 ⁇ 0.10 °, 13.0615 ⁇ 0.10°, 14.6650 ⁇ 0.10°, 15.7523 ⁇ 0.10°, 16.3613 ⁇ 0.10°, 17.5827 ⁇ 0.10°, 18.7041 ⁇ 0.10°, 20.0470 ⁇ 0.10°, 20.8774 ⁇ 0.10°, 21.7465 ⁇ 0.10°, 22.1529 ⁇ 0.10 °, 23.9930 ⁇ 0.10°, 24.7696 ⁇ 0.10°, 24.9238 ⁇ 0.10°, 26.2785 ⁇ 0.10°, 27.1454 ⁇ 0.10°, 28.2680 ⁇ 0.10°, 29.7925 ⁇ 0.10°, 30.8621 ⁇ 0.10°, 32.4019 ⁇ 0.10° and 33.3887 ⁇
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.20°, 15.7523 ⁇ 0.20°, and/or 17.5827 ⁇ 0.20°, and/or 8.4208 ⁇ 0.20°, and/or 16.3613 ⁇ 0.20°, and/or 18.7041 ⁇ 0.20°, and/or 24.7696 ⁇ 0.20°, and/or 24.9328 ⁇ 0.20°, and/or 10.6855 ⁇ 0.20°, and/or or 12.3408 ⁇ 0.20°, and/or 13.0615 ⁇ 0.20°, and/or 14.6650 ⁇ 0.20°, and/or 20.0470 ⁇ 0.20°, and/or 20.8774 ⁇ 0.20°, and/or 21.7465 ⁇ 0.20°, and/or 22.1529 ⁇ 0.20°, and/or 23.9930 ⁇ 0.20°, and/or 26.2785 ⁇ 0.20°, and/or 27.
  • the X-ray powder diffraction pattern of the above-mentioned IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794 ⁇ 0.10°, 15.7523 ⁇ 0.10°, and/or 17.5827 ⁇ 0.10°, and/or 8.4208 ⁇ 0.10°, and/or 16.3613 ⁇ 0.10°, and/or 18.7041 ⁇ 0.10°, and/or 24.7696 ⁇ 0.10°, and/or 24.9328 ⁇ 0.10°, and/or 10.6855 ⁇ 0.10°, and/or or 12.3408 ⁇ 0.10°, and/or 13.0615 ⁇ 0.10°, and/or 14.6650 ⁇ 0.10°, and/or 20.0470 ⁇ 0.10°, and/or 20.8774 ⁇ 0.10°, and/or 21.7465 ⁇ 0.10°, and/or 22.1529 ⁇ 0.10°, and/or 23.9930 ⁇ 0.10°, and/or 26.2785 ⁇ 0.10°, and/or 27.
  • the X-ray powder diffraction pattern of the above IV crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.2794°, 8.4208°, 10.6855°, 12.3408°, 13.0615°, 14.6650°, 15.7523°, 16.3613°, 17.5827°, 18.7041°, 20.0470°, 20.8774°, 21.7465°, 22.1529°, 23.9930°, 24.7696°, 24.9238°, 26.2785°, 27.1454°, 28.2 680°, 29.7925°, 30.8621°, 32.4019° and 33.3887°.
  • the XRPD pattern of the above-mentioned IV crystal form is basically as shown in Fig. 7 .
  • the present invention provides crystal form V of the compound of formula (1), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at least at the following 2 ⁇ angles: 8.4539 ⁇ 0.20°, 17.3745 ⁇ 0.20° and 25.1766 ⁇ 0.20°.
  • XRPD X-ray powder diffraction
  • the X-ray powder diffraction pattern of the above V crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.4539 ⁇ 0.20°, 16.1904 ⁇ 0.20°, 17.3745 ⁇ 0.20°, 18.2963 ⁇ 0.20 °, 23.3932 ⁇ 0.20°, 25.1766 ⁇ 0.20°, 26.1776 ⁇ 0.20°, and 27.0062 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above V crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.4539 ⁇ 0.20°, 9.4597 ⁇ 0.20°, 10.9365 ⁇ 0.20°, 11.9742 ⁇ 0.20 °, 15.7873 ⁇ 0.20°, 16.1904 ⁇ 0.20, 16.8510 ⁇ 0.20°, 17.3745 ⁇ 0.20°, 18.2963 ⁇ 0.20°, 18.6558 ⁇ 0.20°, 18.9325 ⁇ 0.20°, 19.9943 ⁇ 0.20°, 21.2656 ⁇ 0.20°, 22.1742 ⁇ 0.20° , 23.3932 ⁇ 0.20°, 24.0827 ⁇ 0.20°, 25.1766 ⁇ 0.20°, 26.1776 ⁇ 0.20°, 26.6250 ⁇ 0.20°, 27.0062 ⁇ 0.20°, 27.6261 ⁇ 0.20°, 28.5886 ⁇ 0.20°, 29.4495 ⁇ 0.20°, 31.7776 ⁇ 0.20° and 32.9126 ⁇ 0.20
  • the X-ray powder diffraction pattern of the above V crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.4539 ⁇ 0.20°, 17.3745 ⁇ 0.20°, and/or 25.1766 ⁇ 0.20°, and/or 16.1904 ⁇ 0.20°, and/or 18.2963 ⁇ 0.20°, and/or 23.3932 ⁇ 0.20°, and/or 26.1776 ⁇ 0.20°, and/or 27.0062 ⁇ 0.20°, and/or 9.4597 ⁇ 0.20°, and/or or 10.9365 ⁇ 0.20°, and/or 11.9742 ⁇ 0.20°, and/or 15.7873 ⁇ 0.20°, and/or 16.8510 ⁇ 0.20°, and/or 18.6558 ⁇ 0.20°, and/or 18.9325 ⁇ 0.20°, and/or 19.9943 ⁇ 0.20°, and/or 21.2656 ⁇ 0.20°, and/or 22.1742 ⁇ 0.20°, and/or 24.0827 ⁇ 0.20°, and/or 21.
  • the X-ray powder diffraction pattern of the above V crystal form has characteristic diffraction peaks at least at one or more of the following 2 ⁇ angles: 8.4539°, 9.4597°, 10.9365°, 11.9742°, 15.7873°, 16.1904°, 16.8510°, 17.3745°, 18.2963°, 18.6558°, 18.9325°, 19.9943°, 21.2656°, 22.1742°, 23.3932°, 24.0827°, 25.1766°, 26.1776°, 26.6250°, 27.0 062°, 27.6261°, 28.5886°, 29.4495° , 31.7776° and 32.9126°.
  • the XRPD pattern of the above-mentioned V crystal form is basically as shown in Fig. 8 .
  • the differential scanning calorimetry curve of the above crystal form V has an endothermic peak at 236.3 ⁇ 1°C and 256.3 ⁇ 3°C (starting temperature), and a 1 at 237.9 ⁇ 1°C.
  • An exothermic peak, the endothermic peak at 256.3 ⁇ 3°C (initial temperature) corresponds to an enthalpy of 99.61J/g, the endothermic peak near 236.3°C partially overlaps with the exothermic peak near 237.9°C, and the enthalpy value cannot be calculated .
  • thermogravimetric analysis curve of the above crystal form V has a weight loss of about 2.0% at 150 ⁇ 3°C.
  • the DSC curve and TGA curve of the above crystal form V are shown in FIG. 9 .
  • the present invention also provides the use of the above crystal form in the preparation of ATR enzyme inhibitors.
  • the present invention also provides the use of the crystal form in the preparation of products for treating diseases related to ATR enzyme activation.
  • ATR kinase is currently viewed as a potential cancer therapeutic target. Because contrary to normal cells, one of the basic characteristics of tumor cells is genome instability and susceptibility to mutation, which are usually accompanied by a large number of functional losses in stabilizing and repairing genomic DNA, so cancer cells are more dependent on ATR kinase for self-repair, ATR and its involved Signaling pathways are critical to genome stability as well as tumor initiation, progression and treatment. Previously, a large number of functional and preclinical experimental data showed that ATR kinase inhibitors can directly and efficiently kill tumor cells.
  • the related diseases caused by ATR enzyme activation are selected from cancer.
  • the present invention also provides the use of the above-mentioned crystal form and an ATMase inhibitor in the preparation of a combined drug for treating cancer.
  • the cancer is selected from breast cancer, cervical cancer, colon cancer, rectal cancer, liver cancer, gastric cancer, ovarian cancer, pancreatic cancer, testicular cancer, bladder cancer, myeloma, non-small cell lung cancer, leukemia, lymphoma, melanoma , Esophageal cancer, connective tissue cancer, mesothelial cancer, prostate cancer, bone cancer, kidney cancer.
  • the present invention also provides a pharmaceutical composition, which includes the above-mentioned crystal form.
  • the present invention also provides a preparation method of the compound I crystal form of the above-mentioned formula (1), which includes the following content:
  • the present invention also provides a preparation method of the compound II crystal form of the above-mentioned formula (1), which includes the following content:
  • the concentration and amount of ethanol only need to satisfy the dissolution of the compound and the precipitation of solid when the temperature is lowered.
  • the heating and crystallization can also be stopped when the solution is not clear, and the II crystal form can also be obtained.
  • the present invention also provides a preparation method for the crystal form of compound III of the above-mentioned formula (1), which includes the following content:
  • the present invention also provides a method for preparing crystal form IV of the compound of formula (1), which includes the following steps: take form II, heat to 240°C ⁇ 5°C, and obtain crystal form IV after cooling.
  • the present invention also provides a preparation method of the compound V crystal form of the above-mentioned formula (1), which includes the following content:
  • Method 1 Take the compound of formula (1) and stir it in 40-60% v/v ethanol at 60°C ⁇ 5°C to obtain the V crystal form;
  • Or method 2 under stirring, add the compound of formula (1) to ethanol, then add ethanol, reflux at 80°C ⁇ 5°C, add V crystal seed crystals under reflux state, continue stirring, and slowly cool down to 24-28°C °C, crystallization, and V crystal form was obtained.
  • the change of temperature in the present invention can be controlled by conventional equipment in experiments or production.
  • the II crystal form and the V crystal form respectively correspond to a kinetically stable crystal form and a thermodynamically relatively stable crystal form.
  • the II crystal form when the II crystal form is dissolved and precipitated, the II crystal form can be rapidly crystallized to obtain the II crystal form. V induction, slow crystallization can get V crystal form.
  • crystal form II is slurried in a solvent with a certain solubility. Since the saturated solubility of crystalline form V is lower than that of crystalline form II, when the solid-liquid equilibrium occurs, crystal form V will be precipitated from the solution, thereby realizing the process of beating and crystallization.
  • Crystalization means that when a substance is in a non-equilibrium state, another phase will be precipitated, and this phase will be precipitated in the form of crystals.
  • “Gradient elution” means that in the same elution cycle, elution is carried out by continuously changing the concentration ratio of the mobile phase to a certain extent.
  • Dissolve means to dissolve and make the solution clear. "Undissolved” refers to the state of being dissolved but not yet clear.
  • An appropriate amount of pharmaceutically acceptable excipients can be added to the product, pharmaceutical composition or combined drug of the present invention.
  • “Pharmaceutically acceptable” in the present invention refers to any substance that does not interfere with the effectiveness of the biological activity of the active ingredient and is non-toxic to the host.
  • the pharmaceutically acceptable adjuvant of the present invention is the general term for all additional materials in the drug except the main drug, and the adjuvant should have the following properties: (1) have no toxic effect on the human body, and have almost no side effects; (2) have stable chemical properties , not easily affected by temperature, pH, storage time, etc.; (3) no incompatibility with the main drug, does not affect the curative effect and quality inspection of the main drug; (4) does not interact with packaging materials.
  • auxiliary materials include but are not limited to fillers (diluents), lubricants (glidants or anti-adhesives), dispersants, wetting agents, adhesives, regulators, solubilizers, antioxidants, bacteriostats , emulsifier, disintegrant, etc.
  • Binders include syrup, gum arabic, gelatin, sorbitol, tragacanth, cellulose and its derivatives (such as microcrystalline cellulose, sodium carboxymethyl cellulose, ethyl cellulose or hydroxypropyl methyl cellulose, etc.) , gelatin slurry, syrup, starch slurry or polyvinylpyrrolidone, etc.; fillers include lactose, powdered sugar, dextrin, starch and its derivatives, cellulose and its derivatives, inorganic calcium salts (such as calcium sulfate, calcium phosphate, phosphoric acid Calcium hydrogen, precipitated calcium carbonate, etc.), sorbitol or glycine, etc.; lubricants include micropowder silica gel, magnesium stearate, talcum powder, aluminum hydroxide, boric acid, hydrogenated vegetable oil, polyethylene glycol, etc.; disintegrants include starch and Its derivatives (such as sodium carboxymethyl starch, sodium starch glycolate, pre
  • the administration method of the compound or pharmaceutical composition of the present invention is not particularly limited, and representative administration methods include (but are not limited to): oral, parenteral (intravenous, intramuscular or subcutaneous), and topical administration.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
  • the active compound is admixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with (a) fillers or extenders, for example, Starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders such as hydroxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, For example, glycerol; (d) disintegrants, such as agar, calcium carbonate, potato starch or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (e) slow agents, such as paraffin; (f) Absorption accelerators such as quaternary ammonium compounds; (g) wetting agents such as cetyl alcohol and glyceryl monostea, or
  • Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shell materials, such as enteric coatings and others well known in the art. They may contain opacifying agents and, in such compositions, the release of the active compound or compounds may be in a certain part of the alimentary canal in a delayed manner.
  • coatings and shell materials such as enteric coatings and others well known in the art. They may contain opacifying agents and, in such compositions, the release of the active compound or compounds may be in a certain part of the alimentary canal in a delayed manner.
  • Examples of usable embedding components are polymeric substances and waxy substances.
  • the active compounds can also be in microencapsulated form, if desired, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures.
  • Liquid dosage forms may contain, in addition to the active compound, inert diluents conventionally used in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1, 3-Butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil or mixtures of these substances, etc.
  • inert diluents conventionally used in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1, 3-Butanediol
  • compositions can also contain adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • Suspensions in addition to the active compounds, may contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances, and the like.
  • suspending agents for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances, and the like.
  • compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • Suitable aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols, and suitable mixtures thereof.
  • Dosage forms for topical administration of a compound of this invention include ointments, powders, patches, sprays and inhalants.
  • the active ingredient is mixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants which may be required, if necessary.
  • the compounds of the invention can likewise be used in injectable preparations.
  • the injection is selected from liquid injection (water injection), sterile powder for injection (powder injection) or tablet for injection (referring to molded tablet or machine-pressed tablet made by aseptic method of medicine, used for immediate use) Dissolved in water for injection, for subcutaneous or intramuscular injection).
  • the powder for injection contains at least excipients in addition to the above compounds.
  • the excipients mentioned in the present invention are ingredients intentionally added to the drug, which should not have pharmacological properties in the amount used, but the excipients can facilitate the processing, dissolution or dissolution of the drug, and pass through the target. Delivery to the route of administration may contribute to stability.
  • the excipient in the present invention can be selected from one or a combination of two or more of carbohydrates, inorganic salts and polymers.
  • Carbohydrates include monosaccharides, oligosaccharides, or polysaccharides.
  • Monosaccharides are sugars that can no longer be hydrolyzed. They are the basic units of molecules that make up various disaccharides and polysaccharides. They can be divided into triose, tetrose, pentose, hexose, etc. The monosaccharides in nature are mainly pentose and hexose , for example, glucose is aldohexose and fructose is ketohexose.
  • Oligosaccharides also known as oligosaccharides, are polymers condensed from a small number of monosaccharides (2-10).
  • Polysaccharides are polysaccharide polymeric carbohydrates composed of sugar chains bound by glycosidic bonds and at least more than 10 monosaccharides.
  • the sterile powder for injection described in the present invention can be obtained by conventional techniques such as aseptic subpackaging or freeze-drying.
  • the compound of formula (1) has strong inhibitory activity against ATR enzyme and certain anticancer activity.
  • the present invention prepares the compound of the formula (1) into various crystal forms to obtain a product form that is more stable than the amorphous compound and less affected by light, heat and humidity, and has a broader prospect of making medicine.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed herein, the embodiments formed by combining them with other chemical synthesis methods, and the methods described by those skilled in the art.
  • Known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method SXRD
  • the cultivated single crystal is collected with a BrukerD8venture diffractometer to collect diffraction intensity data
  • the light source is CuK ⁇ radiation
  • the scanning method is: ⁇ / ⁇ scanning.
  • the direct method (Shelxs97 ) analysis of the crystal structure the absolute configuration can be confirmed.
  • the solvent used in the present invention is commercially available.
  • Test method About 10-20 mg of sample is used for XRPD detection.
  • Phototube voltage 40kV
  • phototube current 40mA
  • Test method Take a sample ( ⁇ 1mg) and place it in a DSC aluminum pot for testing. Under the condition of 50mL/min N2, heat the sample from 30°C to 300°C at a heating rate of 10°C/min.
  • Test method Take a sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under the condition of 25mL/min N2, at a heating rate of 10°C/min, heat the sample from 30°C (room temperature) to 300°C or lose 20% of its weight .
  • Fig. 2 DSC curve and TGA curve atlas of the I crystal form of the compound of formula (1);
  • Fig. 4 DSC curve and TGA curve atlas of the II crystal form of the compound of formula (1);
  • Fig. 9 DSC curve and TGA curve atlas of the V crystal form of the compound of formula (1);
  • Fig. 10 Chromatogram of related substances of compound II crystal form of formula (I).
  • Embodiment 2 Preparation of I crystal form
  • silica gel column is a commercially available preparative column, which performs gradient elution by itself.
  • Embodiment 3 the preparation of II crystal form
  • the compound of formula (1) (2 g) was placed in a one-necked bottle, and ethanol (20 mL) was added. Heat to 50°C-60°C, stir, if it is not dissolved, stop heating, gradually lower to 25°C and stir for 14 hours, filter the suspension under reduced pressure, and dry the filter cake in a vacuum oven at 45°C for 4 hours to obtain the formula (1) Form II of the compound.
  • Embodiment 4 Preparation of II crystal form
  • the compound of formula (1) (5 g) was placed in a one-necked bottle, and ethanol (25 mL) was added. Heat to 50°C-60°C, stir, dissolve, stop heating, gradually drop to 25°C and stir for 12 hours, filter the suspension under reduced pressure, and dry the filter cake in a vacuum oven at 45°C for 4 hours to obtain the formula ( 1) Form II of the compound.
  • Embodiment 5 Preparation of III crystal form
  • Embodiment 6 Preparation of IV crystal form
  • Embodiment 7 Preparation of V crystal form
  • the compound of formula (1) was suspended and stirred in EtOH/H 2 O (1:2, v/v) at 60°C for 2 days to obtain crystal form V.
  • test compounds on human ATR kinase was evaluated by determining the IC50 value.
  • the culture plate was left at room temperature for 10 minutes to stabilize the luminescent signal.
  • Luminescent signals were detected on the SpectraMax i3x of Molecular Devices plate reader.
  • IR Inhibition rate
  • the purpose of this study is to determine the pharmacokinetic parameters of the compound of formula (1) and calculate its oral bioavailability in female Balb/c Nude mice.
  • the project used 4 female Balb/c Nude mice, two mice were administered intravenously, the dose was 1mg/kg, and the collected 0h (before administration) and after administration were 0.0833, 0.25, 0.5, 1, Plasma samples at 2, 4, 6, 8, and 24 hours, the other two mice were administered orally by gavage, and the dosage was 10 mg/kg or 25 mg/kg, collected at 0 h (before administration) and 0.25, 0.5 hours after administration.
  • 1, 2, 4, 6, 8, and 24 hours of plasma samples then LC/MS/MS analysis was performed on the collected samples and data was collected, and the collected analysis data was calculated with Phoenix WinNonlin 6.2.1 software to calculate relevant pharmacokinetic parameters .
  • C 0 (nM) is the drug concentration in the body at 0 minutes; Cl (mL/min/kg) is the clearance rate of the drug in the body; V dss (L/kg) is the distribution volume of the drug in the body; T 1/2 (h) is Half-life; AUC 0-t (nM.h) is the drug exposure in the body; Cmax (nM) is the highest concentration of the drug in the body.
  • the compound of the present invention has good in vivo pharmacokinetic properties such as exposure and bioavailability.
  • the main purpose of this study is to study the antitumor efficacy of the test substance on the human gastric cancer cell SNU-601 xenograft tumor model.
  • mice mouse; strain: CB17 SCID mice; supplier: Huafukang Experimental Animal Technology Co., Ltd.; age: 6-8 weeks; sex: female.
  • Human gastric cancer SNU-601 cells were derived from KCLB (Cat. No.: 00601), and maintained and passaged by Huiyuan Biotechnology (Shanghai) Co., Ltd.
  • the in vitro culture conditions are 10% fetal bovine serum, 25mM HEPES and 25mM sodium bicarbonate added to RPMI 1640 medium (containing 300mg/L L-glutamine), cultured in a 5% CO2 incubator at 37°C, and passaged two to three times a week. When the number of cells reaches the requirement, collect the cells and count them.
  • 0.2 mL (5 ⁇ 106 cells) of SNU-601 cells were subcutaneously inoculated on the right back of each mouse, and grouped administration began when the average tumor volume reached 147.61 mm3.
  • Dosage The compound of formula (1) was orally administered in three doses of 15 mg/kg (3 days off for 4 days), 10 mg/kg (3 days off 4 days) and 5 mg/kg (continuous administration).
  • Tumor diameters were measured with vernier calipers three times a week.
  • V1 and BW1 refer to the tumor volume and body weight of a certain animal on the day of group administration
  • Vt and BWt refer to the tumor volume and body weight of a certain animal measured at a certain time.
  • TGI total tumor proliferation rate
  • T/C relative tumor proliferation rate
  • TGI (%) reflects tumor growth inhibition rate.
  • TGI (%) [(1-(Average tumor volume at the end of administration of a certain treatment group-Average tumor volume at the beginning of administration of this treatment group))/(Average tumor volume at the end of treatment of the solvent control group-Start of treatment of the solvent control group Time-average tumor volume)] ⁇ 100.
  • Tweight and Cweight represent the tumor weights of the administration group and the vehicle control group, respectively.
  • the human gastric cancer cell SNU601 xenograft model was used to evaluate the in vivo efficacy of the test compound.
  • the efficacy test was ended on the 21st day after the administration.
  • the tumor volume of the vehicle group reached 890.01 ⁇ 184.62 mm 3 .
  • the compound of formula (1) exhibited certain antitumor effects at the dosages of 15 mg/kg, 10 mg/kg and 5 mg/kg.
  • the compound of the present invention can significantly inhibit the growth of human gastric cancer SNU-601 xenograft tumor, and is relatively resistant to mice.
  • the influencing factors and accelerated test conditions accurately weigh about 20 mg of the compound II crystal form of formula (I) and place it in a dry and clean glass bottle. Weigh 2 parts and mark them as S1 condition-time and S2 condition-time respectively, and then weigh 15mg is placed in a dry and clean glass bottle, marked as S3-condition-time, spread into a thin layer, as a formal test sample, placed under the test conditions of influencing factors (60°C, 25°C/92.5%RH (relative to Humidity), light, light control) and accelerated conditions (40°C/75%RH and 60°C/75%RH), the samples are fully exposed.
  • influencing factors 60°C, 25°C/92.5%RH (relative to Humidity), light, light control
  • accelerated conditions 40°C/75%RH and 60°C/75%RH
  • the crystalline form of the compound II of formula (1) has good physical stability during the 3-month solid influence factor and accelerated test, and the crystalline form of the raw material compound has not changed. In the analysis of related substances, the total amount of impurities did not increase significantly, and the content was stable.
  • the crystal form of the present invention has good stability, and is easy to store, transport and make medicine of the product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

公开了式(1)所示的氟代吡啶并吡咯类化合物的晶型及其制备方法和用途。式(1)化合物针对ATR酶有较强的抑制活性,具有一定的抗癌活性,将式(1)化合物制备成各种晶型,用以取得比无定型化合物更稳定、受光热湿度影响较小的产品形态。

Description

氟代吡啶并吡咯类化合物的晶型及其制备方法
交叉引用
本申请要求申请日为2021年11月26日的中国专利申请CN2021114201773的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及式(1)所示氟代吡啶并吡咯类化合物的晶型及其制备方法。
背景技术
DNA损伤应答(DDR)由多种多样的信号通路确保活细胞基因组的完整性。细胞内的蛋白质会直接识别异常的DNA结构并激活DDR通路的相关激酶,以应对广泛的DNA损伤和癌细胞内增加的复制压力。DDR通路能够使细胞在面对基因组不稳定和复制压力时存活,或者介导不可修复的损伤细胞衰老或程序性死亡。DDR基因的缺陷通过多种途径促进驱动基因变异、肿瘤异质性以及逃避凋亡,达到促进肿瘤生长作用。
ATR(毛细管扩张共济失调突变和RAD-3相关蛋白激酶)属于PIKKs(磷脂酰肌醇-3-激酶-相关激酶)家族,参与DNA的损伤修复以维护基因的稳定。ATR蛋白激酶对DNA的损伤,复制压力应激和细胞周期的干扰产生协同应答。ATR和ATM同属于丝氨酸/苏氨酸蛋白激酶的PIKK家族,他们是细胞周期和DNA损伤修复的共同组成部分,其他还包括,Chkl,BRCAl,p53。ATR主要负责DNA复制应激(复制叉停滞)、单链断裂的修复工作。
当DNA双链断裂出现切除或复制叉停滞时,ATR被DNA单链结构所激活。DNA聚合酶停留在DNA复制过程中,复制解旋酶继续在DNA复制叉前端解旋,导致长的单链DNA(ssDNA)的产生,然后由单链DNA和RPA(复制蛋白A)结合。复制应激或DNA损伤时由RPA招募的ATR/ATR作用蛋白的复合物到损伤位点,RPA-单链DNA复合物激活RAD17/rfc2-5复合物结合到损伤位点,DNA-ssDNA连接处活化Rad9-HUS1-RAD1(9-1-1)异源三聚体,9-1-1反过来招募TopBP1激活ATR。一旦ATR被激活,ATR通过下游目标促进DNA修复、稳定和重新启动停滞的复制叉和短暂的细胞周期阻滞。这些功能是ATR通过介导下游靶Chk1来得以实现。ATR在S期起着DNA损伤细胞周期检查点的作用。它能通过Chk1介导CDC25A的降解,从而延缓DNA的复制进程,给修复复制叉提供了时间。ATR也是G2/M细胞周期检查点的主要调控者,在DNA复制完成或DNA损伤之前,阻止细胞过早进入有丝分裂。这种依赖ATR的G2/M细胞周期阻滞主要是通过两种机制介导:1。CDC25A的降解。2.通过Chk1磷酸化Cdc25C使之与14-3-蛋白结合。Cdc25C与14-3-3蛋白的结合促进其从细胞核的输出和细胞质隔离,从而抑制其去磷酸化和激活核Cdc2的能力,这进而阻止进入有丝分裂。
ATM基因在肿瘤细胞中常发生突变,表明ATM活性丧失有利于癌细胞的存活。ATM激酶失活会使细胞更依赖ATR介导的信号通路,ATR和ATM的联合失活可以诱导癌细胞的合成致死性。因此,抑制ATR可能是未来的癌症治疗中一种有效的方法。
发明内容
本发明研究发现,式(1)化合物针对ATR酶有较强的抑制活性;同时针对ATM信号通路缺失的LoVo肿瘤细胞有较好的抑制作用;同时,本发明化合物暴露量、生物利用度等PK参数良好,适于用药;另外,本发明化合物可以明显抑制人胃癌SNU-601异种移植瘤的生长,且对小鼠相对耐受。
Figure PCTCN2022127979-appb-000001
本发明式(1)化合物,是由化合物1-C与中间体I,发生Suzuki偶联反应,制备得到。
Figure PCTCN2022127979-appb-000002
本发明提供了式(1)化合物的I晶型,其X射线粉末衍射(XRPD)图谱至少在下列2θ角一处或多处具有特征衍射峰:7.90±0.20°、9.35±0.20°和18.81±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.90±0.20°、9.35±0.20°、12.05±0.20°、12.40±0.20°、15.78±0.20°、18.41±0.20°、18.81±0.20°、20.14±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:7.90±0.20°、9.35±0.20°、12.05±0.20°、12.40±0.20°、15.78±0.20°、16.13±0.20°、16.48±0.20°、17.73±0.20°、18.41±0.20°、18.81±0.20°、20.14±0.20°、20.63±0.20°、22.61±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.90±0.20°、9.35±0.20°、12.05±0.20°、12.40±0.20°、14.60±0.20°、15.78±0.20°、16.13±0.20°、16.48±0.20°、17.73±0.20°、18.41±0.20°、18.81±0.20°、20.14±0.20°、20.63±0.20°、21.32±0.20°、22.04±0.20°、22.61±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:7.90±0.20°,9.35±0.20°,和/或18.81±0.20°,和/或12.05±0.20°,和/或12.40±0.20°,和/或15.78±0.20°,和/或18.41±0.20°,和/或20.14±0.20°,和/或16.13±0.20°,和/或16.48±0.20°,和/或17.73±0.20°,和/或20.63±0.20°,和/或22.61±0.20°,和/或14.60±0.20°,和/或21.32±0.20°,和/或22.04±0.20°。
本发明的一些方案中,上述I晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.90°、9.35°、12.05°、12.40°、14.60°、15.78°、16.13°、16.48°、17.73°、18.41°、18.81°、20.14°、20.63°、21.32°、22.04°、22.61°。
本发明的一些方案中,上述I晶型,其XRPD图谱基本上如附图1所示。
本发明的一些方案中,上述I晶型的XRPD图谱解析数据如表1所示:
表1式(1)化合物I晶型的XRPD解析数据
Figure PCTCN2022127979-appb-000003
Figure PCTCN2022127979-appb-000004
在本发明的一些方案中,上述I晶型的差示扫描量热曲线在64.8±3℃、153.8±3℃以及252.4±3℃处具有吸热峰的峰值。
在本发明的一些方案中,上述I晶型的热重分析曲线在180.0±3℃处失重约6.71%。
在本发明的一些方案中,上述I晶型的DSC曲线和TGA曲线如附图2所示。
本发明提供了式(1)化合物的II晶型,其X射线粉末衍射(XRPD)图谱至少在下列2θ角一处或多处具有特征衍射峰:8.76±0.20°、15.93±0.20°和17.94±0.20°。
本发明的一些方案中,上述II晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.97±0.20°、8.76±0.20°、15.93±0.20°、17.94±0.20°、18.61±0.20°、24.53±0.20°、25.10±0.20°和25.81±0.20°。
本发明的一些方案中,上述II晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.97±0.20°、8.76±0.20°、10.99±0.20°、12.98±0.20°、14.70±0.20°、15.93±0.20°、16.47±0.20°、17.94±0.20°、18.61±0.20°、20.45±0.20°、21.98±0.20°、22.40±0.20°、22.90±0.20°、23.87±0.20°、24.53±0.20°、25.10±0.20°、25.81±0.20°、26.06±0.20°、27.20±0.20°、27.98±0.20°、28.71±0.20°、29.37±0.20°、29.86±0.20°、30.29±0.20°、31.56±0.20°、32.14±0.20°、35.31±0.20°和38.12±0.20°。
本发明的一些方案中,上述II晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.76±0.20°,15.93±0.20°,和/或17.94±0.20°,和/或7.97±0.20°,和/或18.61±0.20°,和/或24.53±0.20°,和/或25.10±0.20°,和/或25.81±0.20°,和/或10.99±0.20°,和/或12.98±0.20°,和/或14.70±0.20°,和/或16.47±0.20°,和/或20.45±0.20°,和/或21.98±0.20°,和/或22.40±0.20°,和/或22.90±0.20°,和/或23.87±0.20°,和/或26.06±0.20°,和/或27.20±0.20°,和/或27.98±0.20°,和/或28.71±0.20°,和/或29.37±0.20°,和/或29.86±0.20°,和/或30.29±0.20°,和/或31.56±0.20°,和/或32.14±0.20°,和/或35.31±0.20°,和/或38.12±0.20°。
本发明的一些方案中,上述II晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:7.97°、8.76°、10.99°、12.98°、14.70°、15.93°、16.47°、17.94°、18.61°、20.45°、21.98°、22.40°、22.90°、23.87°、24.53°、25.10°、25.81°、26.06°、27.20°、27.98°、28.71°、29.37°、29.86°、30.29°、31.56°、32.14°、35.31°和38.12°。
本发明的一些方案中,上述II晶型,其XRPD图谱基本上如附图3所示。
本发明的一些方案中,上述II晶型的XRPD图谱解析数据如表2所示:
表2式(1)化合物II晶型的XRPD解析数据
Figure PCTCN2022127979-appb-000005
Figure PCTCN2022127979-appb-000006
在本发明的一些方案中,上述II晶型的差示扫描量热曲线在222.1±3℃及256.5±3℃处各具有一个吸热峰。
在本发明的一些方案中,上述II晶型的热重分析曲线在250±3℃处失重约1.02%。
在本发明的一些方案中,上述II晶型的DSC曲线和TGA曲线如图4所示。
本发明提供了式(1)化合物的III晶型,其X射线粉末衍射(XRPD)图谱至少在下列2θ角一处或多处具有特征衍射峰:14.848±0.20°、17.653±0.20°和19.135±0.20°。
本发明的一些方案中,上述III晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:10.518±0.20°、12.262±0.20°、14.848±0.20°、17.146±0.20°、17.653±0.20°、19.135±0.20°、20.365±0.20°和25.798±0.20°。
本发明的一些方案中,上述III晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:10.518±0.20°、12.262±0.20°、14.848±0.20°、15.854±0.20°、17.146±0.20°、17.653±0.20°、17.840±0.20°、19.135±0.20°、20.110±0.20°、20.365±0.20°、24.140±0.20°和25.798±0.20°。
本发明的一些方案中,上述III晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:6.125±0.20°、7.266±0.20°、7.911±0.20°、8.682±0.20°、9.699±0.20°、10.518±0.20°、10.894±0.20°、11.520±0.20°、12.262±0.20°、12.821±0.20°、14.848±0.20°、15.162±0.20°、15.854±0.20°、16.280±0.20°、17.146±0.20°、17.653±0.20°、17.840±0.20°。18.227±0.20°、18.536±0.20°、19.135±0.20°、19.679±0.20°、20.110±0.20°、20.365±0.20°、21.035±0.20°、21.274±0.20°、21.696±0.20°、21.388±0.20°、22.742±0.20°、23.113±0.20°、24.140±0.20°、24.652±0.20°、25.132±0.20°、25.798±0.20°、26.660±0.20°、26.981±0.20°、27.621±0.20°、28.027±0.20°、28.710±0.20°、29.335±0.20°、29.921±0.20°、30.613±0.20°、31.184±0.20°、31.916±0.20°、32.705±0.20°、33.293±0.20°、34.064±0.20°、36.932±0.20°和38.188±0.20°。
本发明的一些方案中,上述III晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:14.848±0.20°,17.653±0.20°,和/或19.135±0.20°,和/或10.518±0.20°,和/或12.262±0.20°,和/或17.146±0.20°,和/或20.365±0.20°,和/或25.798±0.20°,和/或6.130±0.20°,和/或7.270±0.20°,和/或7.911±0.20°,和/或8.682±0.20°,和/或9.700±0.20°,和/或10.890±0.20°,和/或11.520±0.20°,和/或12.821±0.20°,和/或15.162±0.20°,和/或15.854±0.20°,和/或16.280±0.20°,和/或17.840±0.20°,和/或18.227±0.20°,和/或18.536±0.20°,和/或19.679±0.20°,和/或20.110±0.20°,和/或21.035±0.20°,和/或21.274±0.20°,和/或21.696±0.20°,和/或21.388±0.20°,和/或22.742±0.20°,和/或23.113±0.20°,和/或24.14±0.20°,和/或24.652±0.20°,和/或25.132±0.20°,和/或26.660±0.20°,和/或26.981±0.20°,和/或27.621±0.20°,和/或28.027±0.20°,和/或28.710±0.20°,和/或29.335±0.20°,和/或29.921±0.20°,和/或30.613±0.20°,和/或31.184±0.20°,和/或31.916±0.20°,和/或32.710±0.20°,和/或33.290±0.20°,和/或34.064±0.20°,和/或36.932±0.20°,和/或38.190±0.20°。
本发明的一些方案中,上述III晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:6.125°、7.266°、7.911°、8.682°、9.699°、10.518°、10.894°、11.520°、12.262°、12.821°、14.848°、15.162°、15.854°、16.280°、17.146°、17.653°、17.840°、18.227°、18.536°、19.135°、19.679°、20.110°、20.365°、21.035°、21.274°、21.696°、21.388°、22.742°、23.113°、 24.140°、24.652°、25.132°、25.798°、26.660°、26.981°、27.621°、28.027°、28.710°、29.335°、29.921°、30.613°、31.184°、31.916°、32.705°、33.293°、34.064°、36.932°和38.188°。
本发明的一些方案中,上述III晶型,其XRPD图谱基本上如附图5所示。
本发明的一些方案中,上述III晶型的XRPD图谱解析数据如表3所示:
表3式(1)化合物III晶型的XRPD解析数据
Figure PCTCN2022127979-appb-000007
在本发明的一些方案中,上述III晶型的热重分析曲线在150±3℃处失重约5.34%。
在本发明的一些方案中,上述III晶型的TGA曲线如图6所示。
本发明提供了式(1)化合物的IV晶型,其X射线粉末衍射(XRPD)图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.20°、15.7523±0.20°和17.5827±0.20°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.20°、8.4208±0.20°、15.7523±0.20°、16.3613±0.20°、17.5827±0.20°、18.7041±0.20°、24.7696±0.20°和24.9328±0.20°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.10°、8.4208±0.10°、15.7523±0.10°、16.3613±0.10°、17.5827±0.10°、18.7041±0.10°、24.7696±0.10°和24.9328±0.10°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.20°、8.4208±0.20°、10.6855±0.20°、12.3408±0.20°、13.0615±0.20°、14.6650±0.20°、15.7523±0.20°、16.3613±0.20°、17.5827±0.20°、18.7041±0.20°、20.0470±0.20°、20.8774±0.20°、21.7465±0.20°、22.1529±0.20°、23.9930±0.20°、24.7696±0.20°、24.9238±0.20°、26.2785±0.20°、27.1454±0.20°、28.2680±0.20°、29.7925±0.20°、30.8621±0.20°、32.4019±0.20°和33.3887±0.20°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.10°、8.4208±0.10°、10.6855±0.10°、12.3408±0.10°、13.0615±0.10°、14.6650±0.10°、15.7523±0.10°、16.3613±0.10°、17.5827±0.10°、18.7041±0.10°、20.0470±0.10°、20.8774±0.10°、21.7465±0.10°、22.1529±0.10°、23.9930±0.10°、24.7696±0.10°、24.9238±0.10°、26.2785±0.10°、27.1454±0.10°、28.2680±0.10°、29.7925±0.10°、30.8621±0.10°、32.4019±0.10°和33.3887±0.10°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.20°,15.7523±0.20°,和/或17.5827±0.20°,和/或8.4208±0.20°,和/或16.3613±0.20°,和/或18.7041±0.20°,和/或24.7696±0.20°,和/或24.9328±0.20°,和/或10.6855±0.20°,和/或12.3408±0.20°,和/或13.0615±0.20°,和/或14.6650±0.20°,和/或20.0470±0.20°,和/或20.8774±0.20°,和/或21.7465±0.20°,和/或22.1529±0.20°,和/或23.9930±0.20°,和/或26.2785±0.20°,和/或27.1454±0.20°,和/或28.2680±0.20°,和/或29.7925±0.20°,和/或30.8621±0.20°,和/或32.4019±0.20°,和/或33.3887±0.20°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794±0.10°,15.7523±0.10°,和/或17.5827±0.10°,和/或8.4208±0.10°,和/或16.3613±0.10°,和/或18.7041±0.10°,和/或24.7696±0.10°,和/或24.9328±0.10°,和/或10.6855±0.10°,和/或12.3408±0.10°,和/或13.0615±0.10°,和/或14.6650±0.10°,和/或20.0470±0.10°,和/或20.8774±0.10°,和/或21.7465±0.10°,和/或22.1529±0.10°,和/或23.9930±0.10°,和/或26.2785±0.10°,和/或27.1454±0.10°,和/或28.2680±0.10°,和/或29.7925±0.10°,和/或30.8621±0.10°,和/或32.4019±0.10°,和/或33.3887±0.10°。
本发明的一些方案中,上述IV晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.2794°、8.4208°、10.6855°、12.3408°、13.0615°、14.6650°、15.7523°、16.3613°、17.5827°、18.7041°、20.0470°、20.8774°、21.7465°、22.1529°、23.9930°、24.7696°、24.9238°、26.2785°、27.1454°、28.2680°、29.7925°、30.8621°、32.4019°和33.3887°。
本发明的一些方案中,上述IV晶型,其XRPD图谱基本上如附图7所示。
本发明的一些方案中,上述IV晶型的XRPD图谱解析数据如表4所示:
表4式(1)化合物IV晶型的XRPD解析数据
Figure PCTCN2022127979-appb-000008
Figure PCTCN2022127979-appb-000009
本发明提供了式(1)化合物的V晶型,其X射线粉末衍射(XRPD)图谱至少在下列2θ角处具有特征衍射峰:8.4539±0.20°、17.3745±0.20°和25.1766±0.20°。
本发明的一些方案中,上述V晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.4539±0.20°、16.1904±0.20°、17.3745±0.20°、18.2963±0.20°、23.3932±0.20°、25.1766±0.20°、26.1776±0.20°和27.0062±0.20°。
本发明的一些方案中,上述V晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.4539±0.20°、9.4597±0.20°、10.9365±0.20°、11.9742±0.20°、15.7873±0.20°、16.1904±0.20、16.8510±0.20°、17.3745±0.20°、18.2963±0.20°、18.6558±0.20°、18.9325±0.20°、19.9943±0.20°、21.2656±0.20°、22.1742±0.20°、23.3932±0.20°、24.0827±0.20°、25.1766±0.20°、26.1776±0.20°、26.6250±0.20°、27.0062±0.20°、27.6261±0.20°、28.5886±0.20°、29.4495±0.20°、31.7776±0.20°和32.9126±0.20°。
本发明的一些方案中,上述V晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.4539±0.20°,17.3745±0.20°,和/或25.1766±0.20°,和/或16.1904±0.20°,和/或18.2963±0.20°,和/或23.3932±0.20°,和/或26.1776±0.20°,和/或27.0062±0.20°,和/或9.4597±0.20°,和/或10.9365±0.20°,和/或11.9742±0.20°,和/或15.7873±0.20°,和/或16.8510±0.20°,和/或18.6558±0.20°,和/或18.9325±0.20°,和/或19.9943±0.20°,和/或21.2656±0.20°,和/或22.1742±0.20°,和/或24.0827±0.20°,和/或26.6250±0.20°,和/或27.6261±0.20°,和/或28.5886±0.20°,和/或29.4495±0.20°,和/或31.7776±0.20°,和/或32.9126±0.20°。
本发明的一些方案中,上述V晶型的X射线粉末衍射图谱至少在下列2θ角一处或多处具有特征衍射峰:8.4539°、9.4597°、10.9365°、11.9742°、15.7873°、16.1904°、16.8510°、17.3745°、18.2963°、18.6558°、18.9325°、19.9943°、21.2656°、22.1742°、23.3932°、24.0827°、25.1766°、26.1776°、26.6250°、27.0062°、27.6261°、28.5886°、29.4495°、31.7776°和32.9126°。
本发明的一些方案中,上述V晶型,其XRPD图谱基本上如附图8所示。
本发明的一些方案中,上述V晶型的XRPD图谱解析数据如表5所示:
表5式(1)化合物V晶型的XRPD解析数据
Figure PCTCN2022127979-appb-000010
Figure PCTCN2022127979-appb-000011
在本发明的一些方案中,上述V晶型的差示扫描量热曲线在236.3±1℃以及256.3±3℃(起始温度)处各具有一个吸热峰,在237.9±1℃处有1个放热峰,256.3±3℃(起始温度)的吸热峰对应焓值为99.61J/g,236.3℃附近的吸热峰与237.9℃附近的放热峰有部分重叠,无法计算焓值。
在本发明的一些方案中,上述V晶型的热重分析曲线在150±3℃处失重约2.0%。
在本发明的一些方案中,上述V晶型的DSC曲线和TGA曲线如图9所示。
本发明还提供了上述晶型在制备ATR酶抑制剂中的用途。
本发明还提供了述晶型在制备治疗ATR酶活化所致相关疾病的产品中的用途。
ATR激酶目前被视为潜在的癌症治疗靶点。因为与正常细胞相反,肿瘤细胞的一个基本特征是基因组不稳定性和易突变,它们通常伴随着大量稳定和修复基因组DNA的功能缺失,因此癌细胞更依赖ATR激酶自我修复,ATR及其参与的信号通路对基因组稳定以及肿瘤的发生、发展和治疗至关重要。此前,大量功能和临床前的实验数据表明,ATR激酶抑制剂能直接高效杀死肿瘤细胞。
基于本发明晶型对于ATR酶的抑制活性,所述ATR酶活化所致相关疾病选自癌症。
本发明还提供了上述晶型与ATM酶抑制剂在制备治疗癌症的联合用药物中的用途。
其中,所述癌症选自乳腺癌、宫颈癌、结肠癌、直肠癌、肝癌、胃癌、卵巢癌、胰腺癌、睾丸癌、膀胱癌、骨髓瘤、非小细胞肺癌、白血病、淋巴瘤、黑色素瘤、食道癌、结缔组织癌、间皮癌、前列腺癌、骨癌、肾癌。
本发明还提供了一种药物组合物,它包括如上所述的晶型。
本发明还提供了上述式(1)化合物I晶型的制备方法,它包括如下内容:
式(1)化合物上硅胶柱,先用10~60%四氢呋喃/石油醚梯度洗脱纯化,再用0~10%甲醇/二氯甲烷梯度洗脱纯化,得到式(1)化合物的I晶型。
本发明还提供了上述式(1)化合物II晶型的制备方法,它包括如下内容:
取式(1)化合物,加入乙醇,加热至40-65℃溶解,再降至25℃±2℃,析晶,所得固形物即为II晶型。
II晶型的制备中,乙醇的浓度和用量只要满足使化合物溶解溶清、降温有固体析出即可。
II晶型的制备中,加热溶解时,亦可在未溶清时停止加热、析晶,同样可以得到II晶型。
本发明还提供了上述式(1)化合物III晶型的制备方法,它包括如下内容:
取式(1)化合物,经硅胶柱纯化,洗脱液依次为石油醚:乙酸乙酯=1:1,石油醚:四氢呋喃=2:1,二氯甲烷:甲醇=25:1;纯化产品,加入甲醇,回流,降温至28℃±2℃,析晶,得到III晶型。
本发明还提供了上述式(1)化合物IV晶型的制备方法,它包括如下内容:取II晶型,加热至240℃±5℃,冷却后得到IV晶型。
本发明还提供了上述式(1)化合物V晶型的制备方法,它包括如下内容:
方法一:取式(1)化合物,在40-60%v/v乙醇中,60℃±5℃下搅拌,得到V晶型;
或方法二:搅拌下,向乙醇中加入式(1)化合物,再加入乙醇,在80℃±5℃下回流,在回流状态下加入V晶型晶种,继续搅拌,缓慢降温至24~28℃,析晶,得V晶型。
本发明中温度的变化,可以采用实验或生产中常规设备进行操控。
本发明中各种不同的晶型制备,可以使用溶液溶清析晶、溶剂打浆转晶和未完全溶清而外加另一种晶种诱导析晶等不同方法。
本发明中,II晶型和V晶型,分别对应动力学稳定晶型和热力学相对稳定晶型,根据结晶理论基本原理,II晶型溶清析出时,快速析晶得到II晶型,加晶种V诱导,缓慢析晶可以得到V晶型。另外,II晶型在具有一定溶解度的溶剂中打浆,由于V晶型饱和溶解度低于II晶型,固液平衡时,会发生溶液析出得到V晶型,从而实现打浆转晶的过程。
“析晶”,是指当物质在处于非平衡态时,会析出另外的相,该相以晶体的形式被析出。
“梯度洗脱”,是指在同一个洗脱周期中,按一定程度不断改变流动相的浓度配比进行洗脱。
“溶清”,是指溶解并使溶液清澈。“未溶清”,是指溶解、但还未到溶液清澈的状态。
本发明所述的产品、药物组合物或者联合用药物中,可以加入适量的药学上可接受的辅料。
本发明中所述“药学上可接受的”是指包括任意不干扰活性成分的生物活性的有效性、且对宿主无毒性的物质。
本发明所述药学上可接受的辅料,是药物中除主药以外的一切附加材料的总称,辅料应当具备如下性质:(1)对人体无毒害作用,几无副作用;(2)化学性质稳定,不易受温度、pH、保存时间等的影响;(3)与主药无配伍禁忌,不影响主药的疗效和质量检查;(4)不与包装材料相互发生作用。
本发明中辅料包括但不仅限于填充剂(稀释剂)、润滑剂(助流剂或抗粘着剂)、分散剂、湿润剂、粘合剂、调节剂、增溶剂、抗氧剂、抑菌剂、乳化剂、崩解剂等。粘合剂包含糖浆、阿拉伯胶、明胶、山梨醇、黄芪胶、纤维素及其衍生物(如微晶纤维素、羧甲基纤维素钠、乙基纤维素或羟丙甲基纤维素等)、明胶浆、糖浆、淀粉浆或聚乙烯吡咯烷酮等;填充剂包含乳糖、糖粉、糊精、淀粉及其衍生物、纤维素及其衍生物、无机钙盐(如硫酸钙、磷酸钙、磷酸氢钙、沉降碳酸钙等)、山梨醇或甘氨酸等;润滑剂包含微粉硅胶、硬脂酸镁、滑石粉、氢氧化铝、硼酸、氢化植物油、聚乙二醇等;崩解剂包含淀粉及其衍生物(如羧甲基淀粉钠、淀粉乙醇酸钠、预胶化淀粉、改良淀粉、羟丙基淀粉、玉米淀粉等)、聚乙烯吡咯烷酮或微晶纤维素等;湿润剂包含十二烷基硫酸钠、水或醇等;抗氧剂包含亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠、二丁基苯酸等;抑菌剂包含0.5%苯酚、0.3%甲酚、0.5%三氯叔丁醇等;调节剂包含盐酸、枸橼酸、氢氧化钾(钠)、枸橼酸钠及缓冲剂(包括磷酸二氢钠和磷酸氢二钠)等;乳化剂包含聚山梨酯-80、没酸山梨坦、普流罗尼克F-68,卵磷酯、豆磷脂等;增溶剂包含吐温-80、胆汁、甘油等。
本发明化合物或药物组合物的施用方式没有特别限制,代表性的施用方式包括(但并不限于):口服、肠胃外(静脉内、肌肉内或皮下)、和局部给药。
用于口服给药的固体剂型包括胶囊剂、片剂、丸剂、散剂和颗粒剂。在这些固体剂型中,活性化合物与至少一种常规惰性赋形剂(或载体)混合,如柠檬酸钠或磷酸二钙,或与下述成分混合:(a)填料或增容剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇和硅酸;(b)粘合剂,例如,羟甲基纤维素、藻酸盐、明胶、聚乙烯基吡咯烷酮、蔗糖和阿拉伯胶;(c)保湿剂,例如,甘油;(d)崩解剂,例如,琼脂、碳酸钙、马铃薯淀粉或木薯淀粉、藻酸、某些复合硅酸盐、和碳酸钠;(e)缓溶剂,例如石蜡;(f)吸收加速剂,例如,季胺化合物;(g)润湿剂,例如鲸蜡醇和单硬脂酸甘油酯;(h)吸附剂,例如,高岭土;和(i)润滑剂,例如,滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠,或其混合物。胶囊剂、片剂和丸剂中, 剂型也可包含缓冲剂。
固体剂型如片剂、糖丸、胶囊剂、丸剂和颗粒剂可采用包衣和壳材制备,如肠衣和其它本领域公知的材料。它们可包含不透明剂,并且,这种组合物中活性化合物或化合物的释放可以延迟的方式在消化道内的某一部分中释放。可采用的包埋组分的实例是聚合物质和蜡类物质。必要时,活性化合物也可与上述赋形剂中的一种或多种形成微胶囊形式。
用于口服给药的液体剂型包括药学上可接受的乳液、溶液、悬浮液、糖浆或酊剂。除了活性化合物外,液体剂型可包含本领域中常规采用的惰性稀释剂,如水或其它溶剂,增溶剂和乳化剂,例如,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、丙二醇、1,3-丁二醇、二甲基甲酰胺以及油,特别是棉籽油、花生油、玉米胚油、橄榄油、蓖麻油和芝麻油或这些物质的混合物等。
除了这些惰性稀释剂外,组合物也可包含助剂,如润湿剂、乳化剂和悬浮剂、甜味剂、矫味剂和香料。
除了活性化合物外,悬浮液可包含悬浮剂,例如,乙氧基化异十八烷醇、聚氧乙烯山梨醇和脱水山梨醇酯、微晶纤维素、甲醇铝和琼脂或这些物质的混合物等。
用于肠胃外注射的组合物可包含生理上可接受的无菌含水或无水溶液、分散液、悬浮液或乳液,和用于重新溶解成无菌的可注射溶液或分散液的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或赋形剂包括水、乙醇、多元醇及其适宜的混合物。
用于局部给药的本发明化合物的剂型包括软膏剂、散剂、贴剂、喷射剂和吸入剂。活性成分在无菌条件下与生理上可接受的载体及任何防腐剂、缓冲剂,或必要时可能需要的推进剂一起混合。
本发明化合物同样可以用于注射制剂。其中,所述注射剂选自液体注射剂(水针)、注射用无菌粉末(粉针)或注射用片剂(系指药物用无菌操作法制成的模印片或机压片,临用时用注射用水溶解,供皮下或肌肉注射之用)。
其中,所述注射用粉剂的中除含有上述化合物外,还至少含有赋形剂。本发明中所述赋形剂,为有意加到药物中的成分,其在所用的量上不应具有药理学特性,但是,赋形剂可以有助于药物的加工、溶解或溶出、通过靶向给药途径递药或有助于稳定性。
本发明所述赋形剂可以选自碳水化合物、无机盐、聚合物中的一种或两种以上的组合。其中碳水化合物包括单糖、寡糖或多糖类等。
单糖就是不能再水解的糖类,是构成各种二糖和多糖的分子的基本单位,可分为丙糖、丁糖、戊糖、己糖等,自然界的单糖主要是戊糖和己糖,例如,葡萄糖为己醛糖,果糖为己酮糖。
寡糖又称为低聚糖,是少数单糖(2-10个)缩合的聚合物。
多糖是由糖苷键结合的糖链,至少要超过10个的单糖组成的聚合糖高分子碳水化合物。
本发明中所述注射用无菌粉末可通过常规的无菌分装或冷冻干燥等工艺获得。
本发明中,式(1)化合物针对ATR酶有较强的抑制活性,具有一定的抗癌活性。本发明将式(1)化合物制备成各种晶型,用以取得比无定型化合物更稳定、受光热湿度影响较小的产品形态,成药前景更加广阔。
除非另有说明,本文所用的术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括本文列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用BrukerD8venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:φ/ω扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。
仪器及分析方法
1.粉末X-射线衍射(X-ray powder diffractometer,XRPD)
仪器型号:布鲁克D8 advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2022127979-appb-000012
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
2.差热分析(Differential Scanning Calorimeter,DSC)
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N2条件下,以10℃/min的升温速率,加热样品从30℃到300℃。
3.热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Q5000热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N2条件下,以10℃/min的升温速率,加热样品从30℃室温)到300℃或失重20%。
附图说明
图1:式(1)化合物的I晶型的XRPD图谱;
图2:式(1)化合物的I晶型的DSC曲线和TGA曲线图谱;
图3:式(1)化合物的II晶型的XRPD图谱;
图4:式(1)化合物的II晶型的DSC曲线和TGA曲线图谱;
图5:式(1)化合物的III晶型的XRPD图谱;
图6:式(1)化合物的III晶型的TGA图谱;
图7:式(1)化合物的IV晶型的XRPD图谱;
图8:式(1)化合物的V晶型的XRPD图谱;
图9:式(1)化合物的V晶型的DSC曲线和TGA曲线图谱;
图10:式(I)化合物II晶型有关物质色谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
中间体I
Figure PCTCN2022127979-appb-000013
步骤1:化合物I-2的合成
向化合物I-1(500mg,3.67mmol)的四氢呋喃(30mL)溶液中加入钠氢(220.36mg,5.51mmol,60%),在室温20℃下反应1小时。加入三异丙基硅烷(849.80mg,4.41mmol),室温20℃反应2.5小时。反应结束后,向反应液中加入10mL饱和氯化铵水溶液淬灭反应。加入60mL水,用乙酸乙酯210mL(70mL×3)萃取。有机相经饱和食盐水洗涤一次,用无水硫酸钠干燥,过滤得滤液并减压干燥。粗品经柱层析分离(乙酸乙酯/石油醚:0-20%)得到化合物I-2。
MS m/z:293.0[M+H] +
步骤2:化合物I的合成
将化合物I-2(200mg,683.84μmol)置于三口瓶中,加入无水四氢呋喃(12mL),氮气置换。将反应液冷却至-78℃,加入二异丙基氨基锂(2M,683.84μL,2eq),并搅拌30分钟,加入硼酸三甲脂(99.48mg,957.38μmol,108.13μL,1.4eq),升至室温18℃搅拌1小时。反应结束后,向反应液中加入10mL饱和氯化铵水溶液,搅拌15分钟。用乙酸乙酯90mL(30mL×3)萃取,有机相用饱和食盐水洗涤一次,用无水硫酸钠干燥,过滤得滤液并减压干燥。得中间体I。
MS m/z:337.1[M+H] +
实施例1
Figure PCTCN2022127979-appb-000014
步骤1:化合物1-B的合成
在室温下向式化合物1-A(3.22g,11.76mmol,1eq)的N,N-二甲基甲酰胺(20.00mL)溶液中加入(R)-3-甲基吗啡啉(2.38g,23.51mmol,2eq),碳酸钾(3.25g,23.51mmol,63.60μL,2eq),然后在130℃,氮气氛围搅拌18小时。反应体系用水(60mL)稀释,乙酸乙酯150mL(50mL×3)洗涤,饱和食盐水(50mL)洗涤,无水硫酸钠干燥。滤去干燥剂后,减压除去溶剂得到粗品。粗品用柱层析(石油醚/乙酸乙酯:0%~20%)纯化得到式化合物1-B。MS-ESI m/z:339.0[M+H] +步骤2:化合物1-C的合成
向化合物1-B(0.75g,2.22mmol,1eq),1,4-二甲基-1H-1,2,3-三氮唑(258.16mg,2.66mmol,1.2eq)和碳酸钾(918.48mg,6.65mmol,3eq)的N,N-二甲基乙酰胺(2mL)溶液中加入醋酸钯 (34.81mg,155.06μmol,0.07eq)和三环己基膦(93.18mg,332.28μmol,107.72μL,0.15eq),用氮气鼓泡,反应在微波110℃搅拌1小时。待反应液冷却后,过滤,减压浓缩得到粗品,粗品经柱层析(石油醚/乙酸乙酯:8%~50%)纯化得到化合物1-C。MS-ESI m/z:308.1[M+H] +步骤3:式(1)化合物的合成
将1-C(160mg,519.86μmol)置于微波反应器中,加入乙二醇二甲醚(5mL),加入中间体I(174.82mg,519.86μmol),碳酸钠的水溶液(2M,1.82mL)和[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(42.45mg,51.99μmol),氮气鼓泡2分钟,微波加热至110℃搅拌0.5小时。反应结束后,向反应液中加入60mL水,用210mL(70mL×3)乙酸乙酯萃取反应液,有机相用饱和食盐水洗涤一次,用无水硫酸钠干燥,过滤得滤液,并减压干燥。粗品经柱层析分离(四氢呋喃/石油醚:20-80%)得到式(1)化合物。
MS m/z:408.2[M+H] +
1H NMR(400MHz,CDCl 3)δppm 1.37(br d,J=6.27Hz,3H)2.42(s,3H)3.27-3.40(m,1H)3.67(br t,J=10.92Hz,1H)3.84(br s,2H)4.00-4.13(m,5H)4.38(br d,J=4.02Hz,1H)6.46(br s,1H)7.08(br s,1H)7.14(br s,1H)7.54(br s,1H)8.40(br s,1H)8.85(br s,1H)
实施例2:I晶型的制备
取式(1)化合物,经硅胶柱(
Figure PCTCN2022127979-appb-000015
40g
Figure PCTCN2022127979-appb-000016
Silica Flash Column,Eluent of10~60%四氢呋喃/石油醚@40mL/min,梯度洗脱)纯化,再用(
Figure PCTCN2022127979-appb-000017
25g
Figure PCTCN2022127979-appb-000018
Silica Flash Column,Eluent of 0~10%甲醇/二氯甲烷@35mL/min,梯度洗脱)再次纯化,浓缩得到式(1)化合物的I晶型。
上述硅胶柱为市售制备柱,其自行进行梯度洗脱。
实施例3:II晶型的制备
将式(1)化合物(2g)置于单口瓶中,加入乙醇(20mL)。加热至50℃-60℃,搅拌,未溶清,停止加热,逐渐降至25℃搅拌14小时,将悬浊液减压抽滤,滤饼在真空干燥箱中45℃干燥4小时,得到式(1)化合物的II晶型。
实施例4:II晶型的制备
将式(1)化合物(5g)置于单口瓶中,加入乙醇(25mL)。加热至50℃-60℃,搅拌,溶清,停止加热,逐渐降至25℃搅拌12小时,将悬浊液减压抽滤,滤饼在真空干燥箱中45℃干燥4小时,得到式(1)化合物的II晶型。
实施例5:III晶型的制备
取上述式(1)化合物(5g)置于单口瓶中,加入甲醇(25mL),加热至开始回流,回流0.5小时后将停止加热,开始降温。降至约28℃左右,搅拌2小时,后将悬浊液过滤,得到式(1)化合物的III晶型。
实施例6:IV晶型的制备
将式(1)化合物的II晶型(5~10mg),加热到240℃,冷却后得到IV晶型。
实施例7:V晶型的制备
方法一:
式(1)化合物,在EtOH/H 2O(1:2,v/v)中60℃下悬浮搅拌2天得到V晶型。
方法二:
搅拌下,向乙醇(15mL)中加入式(1)化合物(2g),再加入乙醇(9mL),将温度升至80℃(回流),搅拌2h。在回流状态下加入V晶型晶种(40mg),继续搅拌1h,缓慢降温至24~28℃,并搅拌约100小时。过滤,滤饼用乙醇洗涤(5mL),收集固体,固体在50℃下真空干燥16小时,得式(1)化合物的V晶型。
实验例1:体外细胞活性实验
通过测定IC 50值来评价受试化合物对人的ATR激酶的抑制活性.
将ATR/ATRIP(h)在含有50nM GST-cMyc-p53和Mg/ATP(10uM)的测定缓冲液中培育。反应通过添加Mg/ATP混合物来引发。在室温下培育30分钟后,加入含有EDTA的 终止溶液终止反应。最后,加入含有d 2标记的抗GST单克隆抗体的检测缓冲液和抗磷酸化p53的铕标记的抗磷酸Ser15抗体。然后以时间分辨荧光模式读取平板并进行均相时间分辨。根据公式HTRF=10000×(Em665nm/Em620nm)确定荧光(HTRF)信号。
表6体外ATR酶活性实验结果
化合物编号 IC 50(nM)
式(1)化合物 33
实验结果表明,本发明化合物针对ATR酶有较强的抑制活性。同时,本发明以BAY1895344为参比对照,发现本发明式(1)化合物的酶学活性比参比对照高出20倍左右。
实验例2:体外细胞活性实验
本实验通过检测化合物在肿瘤细胞系LoVo中对体外细胞活性的影响而研究化合物抑制细胞增殖的作用。
CellTiter-Glo发光法细胞活性检测
以下步骤按照PromegaCellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1).将CellTiter-Glo缓冲液融化并放置至室温。
(2).将CellTiter-Glo底物放置至室温。
(3).在一瓶CellTiter-Glo底物中加入CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在SpectraMax i3x of Molecular Devices读板器上检测发光信号。
数据分析
用下列公式来计算检测化合物的抑制率(Inhibition rate,IR):IR(%)=(1–(RLU化合物–RLU空白对照)/(RLU溶媒对照–RLU空白对照))*100%。在Excel中计算不同浓度化合物的抑制率,然后用GraphPad Prism软件作抑制曲线图和计算相关参数,包括最小抑制率,最大抑制率及IC 50
实验结果见表7:
表7体外LoVo细胞抑制增殖实验结果
化合物编号 LoVo细胞增殖IC 50(μM)
式(1)化合物 0.102
实验结果表明,本发明化合物针对ATM信号通路缺失的LoVo肿瘤细胞有较好的抑制作用。
实验例3:体内药代动力学性质研究
供试样品:在上述实验的基础上,选择式(1)化合物开展进一步实验。
实验方法:该研究的目的是为了测定该式(1)化合物药代动力学参数,并计算其在雌性Balb/c Nude小鼠中的口服生物利用度。该项目使用4只雌性Balb/c Nude小鼠,两只小鼠进 行静脉注射给药,给药剂量为1mg/kg,收集0h(给药前)和给药后0.0833,0.25,0.5,1,2,4,6,8,24h的血浆样品,另外两只小鼠口服灌胃给药,给药剂量为10mg/kg或者25mg/kg,收集0h(给药前)和给药后0.25,0.5,1,2,4,6,8,24h的血浆样品,然后对收集的样品进行LC/MS/MS分析并采集数据,采集的分析数据用Phoenix WinNonlin 6.2.1软件计算相关药代动力学参数。
实验结果见表8、9:
表8体内药代动力学——静脉注射给药结果
C 0(nM) Cl(mL/min/kg) V dss(L/kg) T 1/2(h) AUC 0-t(nM.h)
2804 15.8 1.65 1.32 2549
表9体内药代动力学——口服给药结果
给药剂量(mg/kg) C max(nM) T 1/2(h) AUC 0-t(nM.h) F(%)
10 9565 1.4 22992 91.6
25 17396 3.8 82019 -
注:C 0(nM)为0分钟时体内药物浓度;Cl(mL/min/kg)为药物体内清除率;V dss(L/kg)为药物体内分布容积;T 1/2(h)为半衰期;AUC 0-t(nM.h)为体内药物暴露量;Cmax(nM)为体内药物最高浓度。
实验结论:本发明化合物有良好的暴露量和生物利用度等体内药代动力学性质。
实验例4:人胃癌细胞SNU-601CDX体内药效研究
实验目的:
本研究主要目的是在人胃癌细胞SNU-601异种移植瘤模型上研究受试物的抗肿瘤药效。实验方法:
1.实验动物
种属:小鼠;品系:CB17 SCID小鼠;供应商:华阜康实验动物技术有限公司;周龄:6-8周龄;性别:雌性。
2.细胞培养
人胃癌SNU-601细胞,来源KCLB(货号:00601),由辉源生物科技(上海)有限公司保种维持传代。体外培养条件为RPMI 1640培养基(含有300mg/L L-谷氨酰胺)中加入10%胎牛血清、25mM HEPES和25mM碳酸氢钠,37℃5%CO2孵箱培养,一周两到三次传代。当细胞数量到达要求时,收取细胞,计数。将0.2mL(5×106个)SNU-601细胞(重悬于DPBS:Matrigel=1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到147.61mm3时开始分组给药。
3.受试物的给药剂量
给药剂量:式(1)化合物分别采用15mg/kg(给3天休4天),10mg/kg(给3天休4天)和5mg/kg(连续给药)三个剂量口服给药。
4.肿瘤测量和实验指标
每周三次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5×a×b 2,a和b分别表示肿瘤的长径和短径。相对肿瘤体积(RTV)的计算公式为:RTV(%)=(Vt/V1)×100;动物体重变化(BWC)的计算公式为:BWC(%)=(BWt–BW1)/BW1×100,其中,V1和BW1指某只动物分组给药当天的肿瘤体积和体重,Vt和BWt指某只动物某一次测量的肿瘤体积和体重。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=TRTV/CRTV×100(TRTV:治疗组平均RTV;CRTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=Vt/V1,其中V1是分组给药时(即D1)测量所得肿瘤体积,Vt为某一次测量时的肿瘤体积,TRTV与CRTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100。
在实验结束后将检测肿瘤重量,并计算Tweight/Cweight百分比,Tweight和Cweight分别表示给药组和溶媒对照组的瘤重。
5.实验结果
本次实验,采用人胃癌细胞SNU601异种移植瘤模型,评价受试物化合物的体内药效。在整个给药期间,并无动物因体重下降超过10%而停药,给药后第21天,结束药效试验。在给药后第21天,溶媒组的肿瘤体积达到890.01±184.62mm 3。与溶媒对照组相比,式(1)化合物在15mg/kg、10mg/kg及5mg/kg给药剂量下均表现出一定的抗肿瘤效果。它们对应的肿瘤体积分别为108.74±9.67mm 3、136.74±14.46mm3及229.99±24.42mm 3,抑瘤率TGI分别为104.81%(p<0.01)、101.08%(p<0.01))及88.61%(p<0.01))。在整个实验期间,式(1)化合物给药组动物体重均无明显下降,动物状态无异常。综上,本发明化合物可以明显抑制人胃癌SNU-601异种移植瘤的生长,且对小鼠相对耐受。
实验例5:式(I)化合物II晶型在高温,高湿,光照条件下的固体稳定性试验
根据影响因素和加速试验条件,准确称重式(I)化合物II晶型约20mg置于干燥洁净的玻璃瓶中,称2份,分别标记为S1条件-时间和S2条件-时间,再称取15mg置于干燥洁净的玻璃瓶中,标记为S3-条件-时间,摊成薄薄一层,作为正式供试样品,放置于影响因素试验条件下(60℃,25℃/92.5%RH(相对湿度),光照,光照对照)和加速条件下(40℃/75%RH和60℃/75%RH),其样品为完全暴露放样。60℃,25℃/92.5%RH,光照,光照对照在5天、10天取样分析。40℃/75%RH和60℃/75%RH在1个月,2个月,3个月取样分析。有关物质的高效液相色谱分析方法见表10,色谱图参见图10。式(1)化合物II晶型固体稳定性样品含量和有关物质分析结果见表11。
表10有关物质的高效液相色谱分析方法
Figure PCTCN2022127979-appb-000019
Figure PCTCN2022127979-appb-000020
表11式(1)化合物II晶型固体稳定性样品含量和有关物质分析结果(5天、10天、1月)
稳定性条件 时间 实验后晶型 总杂质(%) 含量(%)
60℃ 0天 II晶型 0.35 100.0
60℃ 5天 II晶型 0.35 100.4
60℃ 10天 II晶型 0.34 101.1
25℃,92.5%湿度 5天 II晶型 0.30 101.0
25℃,92.5%湿度 10天 II晶型 0.35 101.3
光照 10天 II晶型 0.39 101.2
避光 10天 II晶型 0.35 103.5
40℃-75%湿度 1个月 II晶型 0.51 100.3
60℃-75%湿度 1个月 II晶型 0.50 100.0
40℃-75%湿度 2个月 II晶型 0.53 100.2
60℃-75%湿度 2个月 II晶型 0.54 100.4
40℃-75%湿度 3个月 II晶型 0.47 99.9
60℃-75%湿度 3个月 II晶型 0.48 100.1
结论:式(1)化合物II晶型在为期3个月的固体影响因素和加速试验中,原料化合物晶型未发生改变,有良好的物理稳定性。在有关物质分析中,杂质总量无明显增长,含量稳定。
实验结论:本发明晶型稳定性好,易于产品的贮存、运输和成药。

Claims (20)

  1. 式(1)化合物的II晶型,通过Cu-kα辐射,其X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:8.76±0.20°、15.93±0.20°和17.94±0.20°:
    Figure PCTCN2022127979-appb-100001
  2. 根据权利要求1所述的II晶型,其特征在于:其X射线粉末衍射图谱还包括在下列2θ角处具有特征衍射峰:7.97±0.20°、18.61±0.20°、24.53±0.20°。
  3. 根据权利要求1或2所述的II晶型,其特征在于:其X射线粉末衍射图谱还包括在下列2θ角处具有特征衍射峰:10.99±0.20°、12.98±0.20°、14.70±0.20°、16.47±0.20°、20.45±0.20°、25.10±0.20°、25.81±0.20°。
  4. 根据权利要求3所述的II晶型,其特征在于:其X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:7.97°、8.76°、10.99°、12.98°、14.70°、15.93°、16.47°、17.94°、18.61°、20.45°、21.98°、22.40°、22.90°、23.87°、24.53°、25.10°、25.81°、26.06°、27.20°、27.98°、28.71°、29.37°、29.86°、30.29°、31.56°、32.14°、35.31°和38.12°。
  5. 根据权利要求4所述的II晶型,其特征在于:其XRPD图谱基本如附图3所示。
  6. 根据权利要求1所述的II晶型,其特征在于:II晶型的差示扫描量热曲线在222.1±3℃、256.5±3℃处有吸热峰;热重分析曲线在250±3℃处失重。
  7. 式(1)化合物的V晶型,通过Cu-kα辐射,其X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:8.45±0.20°、9.46±0.20°、17.37±0.20°、18.30±0.20°和25.18±0.20°:
    Figure PCTCN2022127979-appb-100002
  8. 根据权利要求7所述的V晶型,其特征在于:其X射线粉末衍射图谱还包括在下列2θ角处具有特征衍射峰:15.79±0.20°、16.19±0.20°、16.85±0.20°、17.37±0.20°、21.27±0.20°、23.39±0.20°、26.63±0.20°。
  9. 根据权利要求7或8所述的V晶型,其特征在于:其X射线粉末衍射图谱还包括在下列2θ角处具有特征衍射峰:10.94±0.20°、11.97±0.20°、18.66±0.20°、18.93±0.20°、19.99±0.20°、22.17±0.20°、24.08±0.20°、26.18±0.20°、27.01±0.20°。
  10. 根据权利要求9所述的V晶型,其特征在于:其X射线粉末衍射图谱至少在下列2θ角处具有特征衍射峰:8.45°、9.46°、10.94°、11.97°、15.79°、16.19°、16.85°、17.37°、18.30°、18.66°、18.93°、19.99°、21.27°、22.17°、23.39°、24.08°、25.18°、26.18°、26.63°、27.01°、27.63°、28.59°、29.45°、31.78°和32.91°。
  11. 根据权利要求10所述的V晶型,其特征在于:其XRPD谱图基本上如图8所示。
  12. 根据权利要求7所述的V晶型,其特征在于:差示扫描量热曲线在236.3±1℃、256.3±3℃处有吸热峰,在237.9±1℃处有放热峰;热重分析曲线在150±3℃处有失重。
  13. 权利要求1-12任意一项所述晶型在制备ATR酶抑制剂中的用途。
  14. 权利要求1-12任意一项所述晶型在制备治疗ATR酶活化所致相关疾病的产品中的用途。
  15. 根据权利要求14所述的用途,其特征在于:所述ATR酶活化所致相关疾病选自癌症。
  16. 权利要求1-12任意一项所述晶型与ATM酶抑制剂在制备治疗癌症的联合用药物中的用途。
  17. 根据权利要求15或16所述的用途,其特征在于:所述癌症选自乳腺癌、宫颈癌、结肠癌、直肠癌、肝癌、胃癌、卵巢癌、胰腺癌、睾丸癌、膀胱癌、骨髓瘤、非小细胞肺癌、白血病、淋巴瘤、黑色素瘤、食道癌、结缔组织癌、间皮癌、前列腺癌、骨癌、肾癌。
  18. 一种药物组合物,其特征在于:它包括权利要求1-12任意一项所述的晶型。
  19. 权利要求1-6任意一项所述式(1)化合物II晶型的制备方法,其特征在于:它包括如下内容:
    取式(1)化合物,加入乙醇,加热至40-65℃溶解,再降至25℃±2℃,析晶,所得固形物即为II晶型。
  20. 权利要求7-12任意一项所述式(1)化合物V晶型的制备方法,其特征在于:它包括如下内容:
    方法一:取(1)化合物,在40-60%v/v乙醇中,60℃±5℃下搅拌,得到V晶型;
    或方法二:搅拌下,向乙醇中加入(1)化合物,再加入乙醇,在80℃±5℃下回流,在回流状态下加入V晶型晶种,继续搅拌,缓慢降温至24~28℃,析晶,得V晶型。
PCT/CN2022/127979 2021-11-26 2022-10-27 氟代吡啶并吡咯类化合物的晶型及其制备方法 WO2023093447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420177.3 2021-11-26
CN202111420177.3A CN116178366A (zh) 2021-11-26 2021-11-26 氟代吡啶并吡咯类化合物的晶型及其制备方法

Publications (1)

Publication Number Publication Date
WO2023093447A1 true WO2023093447A1 (zh) 2023-06-01

Family

ID=86438810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127979 WO2023093447A1 (zh) 2021-11-26 2022-10-27 氟代吡啶并吡咯类化合物的晶型及其制备方法

Country Status (2)

Country Link
CN (1) CN116178366A (zh)
WO (1) WO2023093447A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230212165A1 (en) * 2020-05-29 2023-07-06 Shenzhen Lingfang Biotech Co., Ltd. Fluoropyrrolopyridine compound and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019154365A1 (zh) * 2018-02-07 2019-08-15 南京明德新药研发有限公司 一种atr抑制剂及其应用
CN111655688A (zh) * 2017-09-08 2020-09-11 蓝谷制药有限责任公司 经取代的吡咯并吡啶类化合物作为atr抑制剂
CN111886224A (zh) * 2017-08-17 2020-11-03 德州大学系统董事会 Atr激酶的杂环抑制剂
WO2021023272A1 (zh) * 2019-08-06 2021-02-11 石家庄智康弘仁新药开发有限公司 一种atr抑制剂的晶型及其应用
WO2021238999A1 (zh) * 2020-05-29 2021-12-02 深圳市瓴方生物医药科技有限公司 氟代吡咯并吡啶类化合物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886224A (zh) * 2017-08-17 2020-11-03 德州大学系统董事会 Atr激酶的杂环抑制剂
CN111655688A (zh) * 2017-09-08 2020-09-11 蓝谷制药有限责任公司 经取代的吡咯并吡啶类化合物作为atr抑制剂
WO2019154365A1 (zh) * 2018-02-07 2019-08-15 南京明德新药研发有限公司 一种atr抑制剂及其应用
WO2021023272A1 (zh) * 2019-08-06 2021-02-11 石家庄智康弘仁新药开发有限公司 一种atr抑制剂的晶型及其应用
WO2021238999A1 (zh) * 2020-05-29 2021-12-02 深圳市瓴方生物医药科技有限公司 氟代吡咯并吡啶类化合物及其应用

Also Published As

Publication number Publication date
CN116178366A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
ES2833576T3 (es) Inhibidores de glutaminasa novedosos
WO2021190467A1 (zh) 含螺环的喹唑啉化合物
KR102322794B1 (ko) 핵수송 조절인자 및 이의 용도
KR101806346B1 (ko) 티피라실 염산염의 안정형 결정 및 그 결정화 방법
US10472349B2 (en) Salt of pyridinyl amino pyrimidine derivative, preparation method therefor, and application thereof
TW200409754A (en) 3-z-[1-(4-(N-((4-methyl-piperazin-1-yl)-methylcarbonyl)-N-methyl-amino)-anilino)-1-phenyl-methylene]-6-methoxycarbonyl-2-indolinone-monoethanesulphonate and the use thereof as a pharmaceutical composition
AU2015330554B2 (en) Crystal form of bisulfate of JAK inhibitor and preparation method therefor
CN112010839B (zh) 靶向丝/苏氨酸激酶抑制剂的晶型
JP2019526605A (ja) 置換2−h−ピラゾール誘導体の結晶形、塩型及びその製造方法
WO2023093447A1 (zh) 氟代吡啶并吡咯类化合物的晶型及其制备方法
WO2022188846A1 (zh) 一种三氮唑类衍生物及其制备方法和应用
WO2021023272A1 (zh) 一种atr抑制剂的晶型及其应用
WO2021098859A1 (zh) 氮杂七元环类抑制剂及其制备方法和应用
EP3812386A1 (en) Crystal form of compound for inhibiting the activity of cdk4/6 and use thereof
US20240025908A1 (en) Compound used as kinase inhibitor and use thereof
WO2018072742A1 (zh) 一种咪唑并异吲哚类衍生物的游离碱的结晶形式及其制备方法
US20230095530A1 (en) Compound used as ret kinase inhibitor and application thereof
CN113966332A (zh) Cdk9抑制剂的多晶型物及其制法和用途
JP2015157867A (ja) 1−(2’−シアノ−2’−デオキシ−β−D−アラビノフラノシル)シトシン・一塩酸塩の新規安定形結晶
CN106608869B (zh) 一类组蛋白去甲基化酶jmjd3抑制剂及其制备方法和用途
WO2022242688A1 (zh) 一种含氰基取代的大环类化合物的晶型及其制备方法
WO2022022735A1 (zh) 成纤维细胞生长因子受体抑制剂的晶型及其制备方法
CA3147322C (en) Crystalline form of atr inhibitor and use thereof
WO2022127904A1 (zh) 一种吲唑类衍生物的药学上可接受的盐、结晶形式及其制备方法
WO2023025164A1 (zh) 芳基磷氧化合物的晶型、制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897530

Country of ref document: EP

Kind code of ref document: A1