WO2023093349A1 - 一种高频宽带巴伦匹配变换器及射频装置 - Google Patents

一种高频宽带巴伦匹配变换器及射频装置 Download PDF

Info

Publication number
WO2023093349A1
WO2023093349A1 PCT/CN2022/125269 CN2022125269W WO2023093349A1 WO 2023093349 A1 WO2023093349 A1 WO 2023093349A1 CN 2022125269 W CN2022125269 W CN 2022125269W WO 2023093349 A1 WO2023093349 A1 WO 2023093349A1
Authority
WO
WIPO (PCT)
Prior art keywords
balun
capacitor
coupling
stage
line
Prior art date
Application number
PCT/CN2022/125269
Other languages
English (en)
French (fr)
Inventor
李硕
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023093349A1 publication Critical patent/WO2023093349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing

Definitions

  • the utility model relates to the field of radio frequency technology, in particular to a high frequency broadband balun matching converter and a radio frequency device.
  • balun With the advancement of technology, the design of the balun has also undergone great changes.
  • the application fields involve driving differential antennas, balanced mixers, amplifiers, frequency multipliers, etc.
  • Some baluns have even-order signal rejection to reduce spurious signals in the mixer, some can be used for impedance transformation, and some are used to connect transmission lines with different impedances.
  • the balun for impedance change can achieve impedance matching, DC blocking and matching of balanced ports to single-ended.
  • the key indicators about the balun are: insertion loss, amplitude consistency, phase balance, and common-mode rejection ratio.
  • Amplitude consistency refers to the difference between the two output powers
  • the degree of phase balance means that the two balanced outputs are equal to the power, and the phase difference is 180°;
  • the common-mode rejection ratio refers to the attenuation generated during the transmission of two identical signals from a balanced port to an unbalanced port.
  • the common-mode rejection ratio depends on the vector addition result of the two signals, and the vector addition result depends on the balun Amplitude coherence and phase balance.
  • differential circuits and baluns have been widely used in communication base station products, mobile products, and chip design.
  • differential signals are used to eliminate common-mode noise
  • baluns are used to realize the conversion between single-ended signals and differential signals.
  • the balun needs to make corresponding improvements and improvements.
  • the transmission line had losses, and the matching needs to be improved. Therefore, phase imbalance and amplitude imbalance will occur when the differential signal is output. And the problem of high output loss seriously affects the performance of the balun.
  • the embodiment of the utility model proposes a high-frequency broadband balun matching converter and a radio frequency device for improving the phase balance and amplitude balance of the differential signal and reducing the output loss.
  • the embodiment of the utility model provides a high-frequency broadband balun matching converter, including a first-stage balun, a phase compensation capacitor, and a second-stage balun connected in sequence;
  • the first-stage balun is used to receive a single-ended unbalanced signal and convert it into two balanced differential signals for output;
  • the phase compensation capacitor is used to perform phase compensation on the two balanced differential signals before outputting;
  • the second-stage balun is used to receive the phase-compensated two-way balanced differential signal and improve the insertion loss, amplitude consistency, and balance of the differential signal, and output it.
  • the first stage balun includes a first coupling unit
  • the first coupling unit includes a first transmission line and a first coupling line coupled with the first transmission line
  • the first transmission line is connected with the first
  • the coupling lines are arranged parallel to each other and face to face, one end of the first transmission line is used as the first signal input end of the first-stage balun for receiving the single-ended unbalanced signal, and the other end of the first transmission line
  • the first output terminal of the first-stage balun and connected to the phase compensation capacitor one end of the first coupling line is grounded, and the other end of the first coupling line is used as the first-stage balun’s
  • the second output end is also connected to the phase compensation capacitor.
  • the input terminal of the second-stage balun includes a second signal input terminal and a third signal input terminal;
  • the phase compensation capacitor includes a first capacitor and a second capacitor, and the first terminal of the first capacitor is connected to the The first output terminal is connected, the second terminal of the first capacitor is connected to the second signal input terminal, the first terminal of the second capacitor is connected to the second output terminal, and the second capacitor The second terminal is connected to the third signal input terminal.
  • the second-stage balun includes a second coupling unit and a third coupling unit;
  • the second coupling unit includes two second transmission lines parallel to and opposite to each other and two second transmission lines parallel to each other and opposite to each other a second coupled line, the second transmission line and the second coupled line are arranged parallel to each other and facing each other;
  • One end of the two second transmission lines on the same side is connected to each other and serves as the second signal input end, and one end of the two second transmission lines on the other same side is connected to each other and serves as a third output end;
  • One end of the two second coupling lines on the same side is connected to each other and serves as the fourth output end; the other end of the two second coupling lines on the same side is commonly grounded;
  • the third coupling unit includes two third transmission lines parallel to and opposite to each other and two third coupling lines parallel to each other and opposite to each other, the third transmission lines and the third coupling lines are parallel to each other and opposite to each other. pair settings;
  • One end of the two third transmission lines on the same side is connected to each other and serves as the third signal input end, and one end of the two third transmission lines on the other same side is connected to the fourth output end;
  • One ends of the two third coupled lines located on the same side are connected to each other and connected to the third output end, and one ends of the two third coupled lines located on the other same side are commonly grounded.
  • the high-frequency broadband balun matching converter further includes a third capacitor, the third capacitor is connected to the second-stage balun, and is used to adjust the balance improved by the second-stage balun.
  • the operating frequency point of the above differential signal is not limited to the third capacitor.
  • the third capacitor is arranged in series between the third output terminal and the fourth output terminal.
  • the first capacitor, the second capacitor and the third capacitor are all adjustable capacitors.
  • the first transmission line and the first coupled line have the same length and the same shape; the second transmission line, the third transmission line, the second coupled line and the third coupled line have the same length And the shape is consistent.
  • the length of the first transmission line and the first coupling line is 1300um when the operating frequency is 3.3G-4.2G; the second transmission line, the second coupling line, the third transmission line and the The length of the third coupling line mentioned above is 650um when the operating frequency is 3.3G ⁇ 4.2G
  • the embodiment of the present utility model also provides a radio frequency device, which includes the high-frequency broadband balun matching converter according to any one of claims 1 to 9; the radio frequency device is a hybrid frequency converter, push-pull amplifier, duplexer, and frequency doubler.
  • the unbalanced signal is converted into After the differential signal, the differential signal generated by the first-stage balun is improved through the second-stage balun, thereby improving the phase balance and amplitude balance of the differential signal, and making the phase difference of the final output differential signal closer to 180° , the amplitude tends to be more equal, and at the same time, the output loss is also reduced.
  • Fig. 1 is the circuit block diagram one of a kind of high-frequency broadband balun matching converter provided by the embodiment of the utility model;
  • Fig. 2 is the circuit block diagram two of a kind of high-frequency broadband balun matching converter provided by the embodiment of the utility model;
  • Fig. 3 is a schematic circuit diagram of a high-frequency broadband balun matching converter provided by an embodiment of the present invention.
  • Fig. 4 is the simulation curve diagram of the insertion loss of the balun in the embodiment of the present invention and the prior art at 3.3G ⁇ 4.2G;
  • Fig. 5 is the simulation curve diagram of the balun in the embodiment of the utility model and the 3.3G ⁇ 4.2G amplitude consistency in the prior art
  • Fig. 6 is a simulation curve of the phase balance degree of the balun in the embodiment of the present invention and the prior art at 3.3G-4.2G.
  • 1 to 3 are schematic circuit diagrams of a high-frequency broadband balun matching converter provided by the embodiment of the present invention.
  • a high-frequency broadband balun matching converter provided by an embodiment of the present invention includes a first-stage balun 10 , a phase compensation capacitor 30 and a second-stage balun 20 connected in sequence.
  • the first-stage balun 10 is used to receive a single-ended unbalanced signal and convert it into two balanced differential signals for output.
  • the phase compensation capacitor 30 is used to perform phase compensation on the two balanced differential signals before outputting.
  • the second-stage balun 20 is used to receive the phase-compensated two-way balanced differential signal and improve the insertion loss, amplitude consistency, and balance of the differential signal, and output it.
  • the balance is mainly reflected as Phase balance and amplitude balance.
  • the first stage balun 10 includes a first coupling unit 11, and the first coupling unit 11 includes a first transmission line 1 and a first coupling line 2 coupled with the first transmission line 1, and the first The transmission line 1 and the first coupling line 2 are arranged parallel to each other and face to face, and one end of the first transmission line 1 is used as the first signal input terminal T1 of the first-stage balun 10 for receiving the single-ended Balanced signal, the other end of the first transmission line 1 is used as the first output end T2 of the first stage balun 10 and connected to the phase compensation capacitor 30; one end of the first coupling line 2 is grounded, and the The other end of the first coupling line 2 serves as the second output end T3 of the first-stage balun 10 and is connected to the phase compensation capacitor 30 .
  • the input terminal of the second-stage balun 20 includes a second signal input terminal T4 and a third signal input terminal T5;
  • the phase compensation capacitor 30 includes a first capacitor C1 and a second capacitor C2, and the first The first terminal of the capacitor C1 is connected to the first output terminal T2, the second terminal of the first capacitor C1 is connected to the second signal input terminal T4, and the first terminal of the second capacitor C2 is connected to the The second output terminal T3 is connected, and the second terminal of the second capacitor C2 is connected to the third signal input terminal T5.
  • the second-level balun 20 includes a second coupling unit 21 and a third coupling unit 22;
  • the second coupling unit 21 includes two second transmission lines a parallel to and opposite to each other, and two parallel and
  • the second transmission line a and the second coupled line b are arranged parallel to each other and facing each other;
  • the ends of the two second transmission lines a on the same side are connected to each other and serve as the second signal input terminal T4, and the ends of the two second transmission lines a on the same side are connected to each other and serve as the third output end T8;
  • One end of the two second coupling lines b on the same side is connected to each other and serves as the fourth output terminal T9; the other end of the two second coupling lines b on the same side is commonly grounded;
  • the third coupling unit 22 includes two third transmission lines c parallel to each other and two third coupling lines d parallel to each other, the third transmission line c and the third coupling line d are arranged parallel to each other and facing each other;
  • One end of the two third transmission lines c located on the same side is connected to each other and serves as the third signal input terminal T5, and one end of the two third transmission lines c located on the other same side is connected to the fourth output terminal T9 connection;
  • One end of the two third coupling lines d on the same side is connected to each other and connected to the third output terminal T8, and one end of the two third coupling lines d on the other same side is commonly grounded.
  • the high-frequency broadband balun matching converter also includes a third capacitor C3, and the third capacitor C3 is connected to the second-stage balun 20 for adjusting The operating frequency point of the differential signal of the degree of balance.
  • the third capacitor C3 is arranged in series between the third output terminal T8 and the fourth output terminal T9. In this way, the operating frequency of the balun can be adjusted through the third capacitor C3, and the trend is that the larger the capacitor, the lower the frequency, and the smaller the capacitor, the higher the frequency.
  • the size of the balun will lead to changes in the operating frequency, but by adjusting the third capacitor C3, it can play a role in frequency modulation. If the size of the balun is just suitable for the required frequency band, then adjusting the third capacitor C3 can be adjusted to a certain extent. Improve balun performance.
  • the second-stage balun 20 also includes a first differential output terminal T6 and a second differential output terminal T7, the first differential output terminal T6 is connected to the third output terminal T8, and the second differential output terminal T7 is connected to the second differential output terminal T8.
  • the four output terminals T9 are connected. This can facilitate the output of the signal.
  • the first capacitor C1 , the second capacitor C2 and the third capacitor C3 are all adjustable capacitors. This can adjust the operating frequency of the balun, which mainly affects the insertion loss and phase of the balun.
  • the first transmission line 1 and the first coupled line 2 have the same length and the same shape; the second transmission line a, the third transmission line c, the second coupled line b and the The third coupled lines d have the same length and the same shape. This can improve the phase balance and amplitude balance of the balun.
  • the length of the first transmission line 1 and the first coupling line 2 is 1300um when the operating frequency is 3.3G-4.2G; the second transmission line a, the second coupling line b, The lengths of the third transmission line c and the third coupling line d are both 650um when operating at a frequency of 3.3G-4.2G.
  • This can not only make the area of the balun smaller and the application wider, but also improve the phase balance and amplitude balance of the differential signal, so that the phase difference of the final output differential signal is closer to 180°, and the amplitude tends to be more equal. , to reduce the insertion loss of the output.
  • the most important factor affecting the working frequency band and working bandwidth of the balun is the length of the coupling coil, in other words, the area of the balun.
  • the coupled coil is the length of the first coupled line 2 , the second coupled line b and the third coupled line d.
  • the input unbalanced signal is input from the first signal input terminal T1 of the first coupling unit 11 to the first transmission line 1, and at the same time, coupled to the first coupling line 2, thereby generating a differential signal. That is, two signals with a phase difference of 180° and an equal amplitude can be output, so a first signal input terminal T1 , a first output terminal T2 and a second output terminal T3 need to be provided in the first-stage balun 10 .
  • the two balanced differential signals are respectively transmitted from the first output terminal T2 and the second output terminal T3 to the second signal input terminal T4 and the third signal input terminal T5 through the first capacitor C1 and the second capacitor C2, and then pass through the second coupling unit 21 and the third coupling unit 22 for processing, and transmit the processed signal to the first differential output terminal and the second differential output terminal through the third output terminal T8 and the fourth output terminal T9 respectively. Therefore, it is necessary to set the second signal input terminal T4 and the third signal input terminal T5 in the second-stage balun 20, and after the differential signal is processed by the second signal input terminal T4 and the third signal input terminal T5, the output differential Signal bandwidth, insertion loss, amplitude consistency and phase balance can be greatly improved.
  • the amplitude of the signal during transmission will be affected by metal loss, dielectric loss and parasitic parameters in practical applications.
  • the attenuation and phase will lag, which will lead to a deviation in the consistency of the amplitude and phase when the signal is transmitted to the first output terminal T2 and the second output terminal T3 through the first coupling unit 11 .
  • the introduction of the first capacitor C1 and the second capacitor C2 can adjust the above deviation to a certain extent. Compensation, secondly, the introduction of the second-stage balun 20 makes the signal transmission paths in the second coupling unit 21 and the third coupling unit 22 completely symmetrical, and the metal loss, dielectric loss and The influence of parasitic parameters and the influence of metal loss, dielectric loss and parasitic parameters produced in the second-stage balun 20 can be offset, so that the amplitude and phase consistency of the balun structure of the present utility model can be compared with traditional The balun structure has been greatly improved, and at the same time, its performance in the 5G frequency band is guaranteed.
  • this embodiment also provides The simulation curve diagram of the loss, the simulation curve diagram of the embodiment of the utility model and the balun in the prior art at 3.3G ⁇ 4.2G amplitude consistency, and the embodiment of the utility model and the balun in the prior art at 3.3G ⁇ 4.2G Simulation graph of phase balance degree.
  • the simulation curve diagram of the insertion loss of the balun in the embodiment of the utility model and the prior art at 3.3G ⁇ 4.2G is shown in Figure 4; the embodiment of the utility model and the balun in the prior art are at 3.3G ⁇ 4.2G
  • the simulation curve diagram of G amplitude consistency is shown in FIG. 5 ; the simulation curve diagram of the 3.3G-4.2G phase balance between the embodiment of the utility model and the balun in the prior art is shown in FIG. 6 .
  • the high-frequency broadband balun matching converter of the present invention sets the first-stage balun 10 and the second-stage balun 20, so that the unbalanced signal is converted into a differential signal through the first-stage balun 10
  • the differential signal generated by the first-stage balun 10 is improved through the second-stage balun 20, thereby improving the phase balance and amplitude balance of the differential signal, so that the phase difference of the final output differential signal is closer to 180° , the amplitude tends to be more equal, and at the same time, the output loss is also reduced.
  • the above-mentioned high-frequency broadband balun matching converter can be applied to a radio frequency device, wherein the radio frequency device includes one of a mixer, a push-pull amplifier, a duplexer and a frequency multiplier, and the effect achieved by it is the same as the above-mentioned high
  • the effect achieved by the frequency-bandwidth balun matching converter is the same, so details will not be repeated here.
  • the above-mentioned high frequency broadband balun matching converter can also be applied to other radio frequency devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本实用新型提供了一种高频宽带巴伦匹配变换器,包括依次连接的第一级巴伦、相位补偿电容以及第二级巴伦;所述第一级巴伦用于接收单端的不平衡信号,并将其转化为两路平衡的差分信号后输出;所述相位补偿电容用于对两路平衡的所述差分信号进行相位补偿后输出;所述第二级巴伦用于接收经相位补偿后的两路平衡的所述差分信号并改善所述差分信号的插损、幅度一致性及平衡度,并输出。与现有技术相比,本实用新型可以提高差分信号的相位平衡度和幅度平衡度,使最终输出的差分信号相位差更加接近180°,幅度更趋于相等,同时,还降低了输出的损耗。

Description

一种高频宽带巴伦匹配变换器及射频装置 技术领域
本实用新型涉及射频技术领域,尤其涉及一种高频宽带巴伦匹配变换器及射频装置。
背景技术
随着科技的进步,巴伦的设计也发生了很大的变化,应用领域涉及到驱动差分天线、平衡混频器、放大器、倍频器等。一些巴伦具有偶数阶信号抑制作用,可降低混频器中的杂散信号,一些可用于阻抗变换,一些用来连接阻抗不同的传输线。用于阻抗变化的巴伦能实现阻抗匹配,隔直和平衡端口到单端的匹配。
关于巴伦的关键指标有:插损、幅度一致性、相位平衡度以及共模抑制比。
1)幅度一致性是指两输出功率之间的差值;
2)相位平衡度是指两个平衡输出与功率相等,相位相差180°;
3)共模抑制比是指两个相同信号从平衡端口传输至不平衡端口过程中所产生的衰减,共模抑制比决定于两信号的矢量相加结果,矢量相加结果取决于巴伦的幅度一致性和相位平衡度。
在微波射频领域,差分电路和巴伦已广泛应用于通讯基站产品、移动产品以及芯片设计,一般用差分信号消除共模噪声,并通过巴伦实现单端信号与差分信号之间的转化。
现今,射频及微波集成电路正在向宽频带,小型化发展,而5G发展已经成为时代的趋势,为满足用户的通信体验,智能终端则必须具备相关能力。
那么作为重要环节的巴伦就要做出相应的提升和进步,过去的 巴伦因本身结构限制,传输线存在损耗,匹配需要提升改善,所以差分信号输出时就会出现相位不平衡、幅度不平衡以及输出损耗过高的问题,严重影响巴伦的性能。
实用新型内容
针对以上现有技术的不足,本实用新型实施例提出了一种用于提高差分信号的相位平衡度以及幅度平衡度,并降低输出损耗的高频宽带巴伦匹配变换器及射频装置。
第一方面,本实用新型实施例提供了一种高频宽带巴伦匹配变换器,包括依次连接的第一级巴伦、相位补偿电容以及第二级巴伦;
所述第一级巴伦用于接收单端的不平衡信号,并将其转化为两路平衡的差分信号后输出;
所述相位补偿电容用于对两路平衡的所述差分信号进行相位补偿后输出;
所述第二级巴伦用于接收经相位补偿后的两路平衡的所述差分信号并改善所述差分信号的插损、幅度一致性及平衡度,并输出。
优选的,所述第一级巴伦包括第一耦合单元,所述第一耦合单元包括第一传输线以及与所述第一传输线耦合的第一耦合线,所述第一传输线与所述第一耦合线相互平行且正对设置,所述第一传输线的一端作为所述第一级巴伦的第一信号输入端,用于接收单端的所述不平衡信号,所述第一传输线的另一端作为所述第一级巴伦的第一输出端并连接至所述相位补偿电容;所述第一耦合线的一端接地,所述第一耦合线的另一端作为所述第一级巴伦的第二输出端并连接至所述相位补偿电容。
优选的,所述第二级巴伦的输入端包括第二信号输入端和第三信号输入端;所述相位补偿电容包括第一电容和第二电容,所述第一电容的第一端与所述第一输出端连接,所述第一电容的第二端与所述第二信号输入端连接,所述第二电容的第一端与所述第二输出端连接, 所述第二电容的第二端与所述第三信号输入端连接。
优选的,所述第二级巴伦包括第二耦合单元以及第三耦合单元;所述第二耦合单元包括相互平行且正对设置的两根第二传输线以及相互平行且正对设置的两根第二耦合线,所述第二传输线与所述第二耦合线相互平行且正对设置;
两根所述第二传输线位于其中同一侧的一端相互连接并作为所述第二信号输入端,两根所述第二传输线位于其中另外同一侧的一端相互连接并作为第三输出端;
两根所述第二耦合线位于其中同一侧的一端相互连接并作为第四输出端;两根所述第二耦合线位于其中另外同一侧的一端共同接地;
所述第三耦合单元包括相互平行且正对设置的两根第三传输线以及相互平行且正对设置的两根第三耦合线,所述第三传输线与所述第三耦合线相互平行且正对设置;
两根所述第三传输线位于其中同一侧的一端相互连接并作为所述第三信号输入端,两根所述第三传输线位于其中另外同一侧的一端均与所述第四输出端连接;
两根所述第三耦合线位于其中同一侧的一端相互连接并与所述第三输出端连接,两根所述第三耦合线位于其中另外同一侧的一端共同接地。
优选的,所述高频宽带巴伦匹配变换器还包括第三电容,所述第三电容与所述第二级巴伦连接,用于调节经所述第二级巴伦改善平衡度的所述差分信号的工作频点。
优选的,所述第三电容串联设置于所述第三输出端与所述第四输出端之间。
优选的,所述第一电容、所述第二电容以及所述第三电容均为可调节电容。
优选的,所述第一传输线和所述第一耦合线的长度相同且形状一致;所述第二传输线、所述第三传输线、所述第二耦合线以及所述第 三耦合线的长度相同且形状一致。
优选的,所述第一传输线及所述第一耦合线在3.3G~4.2G的工作频率时,长度均为1300um;所述第二传输线所述第二耦合线、所述第三传输线以及所述第三耦合线在3.3G~4.2G的工作频率时,长度均为650um
第二方面,本实用新型实施例还提供了一种射频装置,所述射频装置中包括如权利要求1至9任一项所述的高频宽带巴伦匹配变换器;所述射频装置为混频器、推挽放大器、双工器以及倍频器中的任意一种。
与现有技术相比,本实用新型的高频宽带巴伦匹配变换器及射频装置中,通过设置第一级巴伦和第二级巴伦,使不平衡信号通过第一级巴伦转换为差分信号后,再通过第二级巴伦将第一级巴伦产生的差分信号进行改善,从而提高了差分信号的相位平衡度和幅度平衡度,使最终输出的差分信号相位差更加接近180°,幅度更趋于相等,同时,还降低了输出的损耗。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中:
图1为本实用新型实施例提供的一种高频宽带巴伦匹配变换器的电路框图一;
图2为本实用新型实施例提供的一种高频宽带巴伦匹配变换器的电路框图二;
图3为本实用新型实施例提供的一种高频宽带巴伦匹配变换器的电路示意图;
图4为本实用新型实施例与现有技术中巴伦在3.3G~4.2G插入损耗的仿真曲线图;
图5为本实用新型实施例与现有技术中巴伦在3.3G~4.2G幅度一致性的仿真曲线图;
图6为本实用新型实施例与现有技术中巴伦在3.3G~4.2G相位平衡度的仿真曲线。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于实用新型权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
以下各实施例的说明是参考附加的图式,用以例示本实用新型可用以实施的特定实施例。本实用新型所提到的方向用语,例如上、下、前、后、左、右、内、外、侧面等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本实用新型,而非用以限制本实用新型。
结合图1至图3所示,均为本实用新型实施例提供的一种高频宽带巴伦匹配变换器的电路示意图。
本实用新型实施例提供的一种高频宽带巴伦匹配变换器,包括依次连接的第一级巴伦10、相位补偿电容30以及第二级巴伦20。
其中,所述第一级巴伦10用于接收单端的不平衡信号,并将其转化为两路平衡的差分信号后输出。
所述相位补偿电容30用于对两路平衡的所述差分信号进行相位补偿后输出。
所述第二级巴伦20用于接收经相位补偿后的两路平衡的所述差 分信号并改善所述差分信号的插损、幅度一致性及平衡度,并输出,该平衡度主要体现为相位平衡度和幅度平衡度。
具体地,所述第一级巴伦10包括第一耦合单元11,所述第一耦合单元11包括第一传输线1以及与所述第一传输线1耦合的第一耦合线2,所述第一传输线1与所述第一耦合线2相互平行且正对设置,所述第一传输线1的一端作为所述第一级巴伦10的第一信号输入端T1,用于接收单端的所述不平衡信号,所述第一传输线1的另一端作为所述第一级巴伦10的第一输出端T2并连接至所述相位补偿电容30;所述第一耦合线2的一端接地,所述第一耦合线2的另一端作为所述第一级巴伦10的第二输出端T3并连接至所述相位补偿电容30。
具体地,所述第二级巴伦20的输入端包括第二信号输入端T4和第三信号输入端T5;所述相位补偿电容30包括第一电容C1和第二电容C2,所述第一电容C1的第一端与所述第一输出端T2连接,所述第一电容C1的第二端与所述第二信号输入端T4连接,所述第二电容C2的第一端与所述第二输出端T3连接,所述第二电容C2的第二端与所述第三信号输入端T5连接。
具体地,所述第二级巴伦20包括第二耦合单元21以及第三耦合单元22;所述第二耦合单元21包括相互平行且正对设置的两根第二传输线a以及相互平行且正对设置的两根第二耦合线b,所述第二传输线a与所述第二耦合线b相互平行且正对设置;
两根所述第二传输线a位于其中同一侧的一端相互连接并作为所述第二信号输入端T4,两根所述第二传输线a位于其中另外同一侧的一端相互连接并作为第三输出端T8;
两根所述第二耦合线b位于其中同一侧的一端相互连接并作为第四输出端T9;两根所述第二耦合线b位于其中另外同一侧的一端共同接地;
所述第三耦合单元22包括相互平行且正对设置的两根第三传输线c以及相互平行且正对设置的两根第三耦合线d,所述第三传输线c 与所述第三耦合线d相互平行且正对设置;
两根所述第三传输线c位于其中同一侧的一端相互连接并作为所述第三信号输入端T5,两根所述第三传输线c位于其中另外同一侧的一端均与所述第四输出端T9连接;
两根所述第三耦合线d位于其中同一侧的一端相互连接并与所述第三输出端T8连接,两根所述第三耦合线d位于其中另外同一侧的一端共同接地。
具体地,所述高频宽带巴伦匹配变换器还包括第三电容C3,所述第三电容C3与所述第二级巴伦20连接,用于调节经所述第二级巴伦20改善平衡度的所述差分信号的工作频点。
具体地,所述第三电容C3串联设置于所述第三输出端T8与所述第四输出端T9之间。这样可以通过第三电容C3调节巴伦的工作频点,其趋势为电容越大,频率越低,电容越小,频率越高。
巴伦尺寸的大小会导致工作频率的变化,但通过调节第三电容C3便可以起到调频的作用,如果巴伦尺寸刚好适合所需的频段,那么调节第三电容C3便能够在一定程度上提高巴伦性能。
在本实施例中,第二级巴伦20还包括第一差分输出端T6和第二差分输出端T7,第一差分输出端T6与第三输出端T8连接,第二差分输出端T7与第四输出端T9连接。这样可以方便信号的输出。
在本实施例中,所述第一电容C1、所述第二电容C2以及所述第三电容C3均为可调节电容。这样可以调节巴伦的工作频点,其主要影响巴伦的插损和相位。
在本实施例中,所述第一传输线1和所述第一耦合线2的长度相同且形状一致;所述第二传输线a、所述第三传输线c、所述第二耦合线b以及所述第三耦合线d的长度相同且形状一致。这样可以提升巴伦的相位平衡度和幅度平衡度。
在本实施例中,所述第一传输线1及所述第一耦合线2在3.3G~4.2G的工作频率时,长度均为1300um;所述第二传输线a所述第二耦 合线b、所述第三传输线c以及所述第三耦合线d在3.3G~4.2G的工作频率时,长度均为650um。这样不仅可以使巴伦的面积更小,应用面更广,还可以提高差分信号的相位平衡度和幅度平衡度,使最终输出的差分信号相位差更加接近180°,幅度更趋于相等,同时,降低输出的插损。
影响该巴伦的工作频段和工作带宽的最主要因素为耦合线圈的长度,换而言之就是巴伦的面积,面积越大,巴伦越能实现在低频的工作需求,面积越小,工作频率越高。其中,耦合线圈便是第一耦合线2、第二耦合线b以及第三耦合线d的长度。
使用时,输入的不平衡信号从第一耦合单元11的第一信号输入端T1输入至第一传输线1,同时,耦合至第一耦合线2上,从而产生差分信号。即可以输出两个相位相差180°而幅度相等的信号,所以需要在第一级巴伦10中设置一个第一信号输入端T1、一个第一输出端T2以及一个第二输出端T3。
两平衡的差分信号分别由第一输出端T2和第二输出端T3经过第一电容C1和第二电容C2传输至第二信号输入端T4和第三信号输入端T5,然后通过第二耦合单元21和第三耦合单元22进行处理,并将处理后的信号分别经过第三输出端T8和第四输出端T9传输至第一差分输出端和第二差分输出端。所以需要在第二级巴伦20中设置第二信号输入端T4和第三信号输入端T5,并且,差分信号在经过第二信号输入端T4和第三信号输入端T5处理后,输出的差分信号带宽、插损、幅度一致性和相位平衡度都可以得到大幅度的提升。
本实用新型的输入信号由第一信号输入端T1进入到第一级巴伦10后,由于实际应用中耦合线会受金属损耗、介质损耗和寄生参数的影响,信号在传输过程中的幅度会衰减、相位会滞后,这就会导致信号通过第一耦合单元11传输至第一输出端T2和第二输出端T3时的幅度和相位的一致性产生偏差。
第一级巴伦10的输出信号经过第一电容C1和第二电容C2传输 到第二级巴伦20后,首先,第一电容C1和第二电容C2的引入,可以对上述偏差进行一定的补偿,其次,第二级巴伦20的引入,使得第二耦合单元21和第三耦合单元22中的信号传输路径完全对称,信号在第一级巴伦10中产生的金属损耗、介质损耗和寄生参数的影响与第二级巴伦20中产生的金属损耗、介质损耗和寄生参数的影响是能够抵消的,从而可以使本实用新型的巴伦结构的幅度和相位的一致性相较于传统的巴伦结构具有大幅度的提升,同时,保障其在5G频段的性能。
为了能更好的理解本实用新型的高频宽带巴伦匹配变换器所带来的技术效果,本实施例还提供了本实用新型实施例与现有技术中巴伦在3.3G~4.2G插入损耗的仿真曲线图、本实用新型实施例与现有技术中巴伦在3.3G~4.2G幅度一致性的仿真曲线图以及本实用新型实施例与现有技术中巴伦在3.3G~4.2G相位平衡度的仿真曲线图。
其中,本实用新型实施例与现有技术中巴伦在3.3G~4.2G插入损耗的仿真曲线图,如图4所示;本实用新型实施例与现有技术中巴伦在3.3G~4.2G幅度一致性的仿真曲线图,如图5所示;本实用新型实施例与现有技术中巴伦在3.3G~4.2G相位平衡度的仿真曲线图,如图6所示。
与现有技术相比,本实用新型的高频宽带巴伦匹配变换器通过设置第一级巴伦10和第二级巴伦20,使不平衡信号通过第一级巴伦10转换为差分信号后,再通过第二级巴伦20将第一级巴伦10产生的差分信号进行改善,从而提高了差分信号的相位平衡度和幅度平衡度,使最终输出的差分信号相位差更加接近180°,幅度更趋于相等,同时,还降低了输出的损耗。
上述的高频宽带巴伦匹配变换器可应用于射频装置,其中,射频装置包括混频器、推挽放大器、双工器以及倍频器中的一种,其所达到的效果与上述的高频宽带巴伦匹配变换器所达到的效果相同,因此,不再进行赘述。当然,根据实际需求,上述的高频宽带巴伦匹配变换器还可以应用于其它的射频装置。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种高频宽带巴伦匹配变换器,其特征在于,包括依次连接的第一级巴伦、相位补偿电容以及第二级巴伦;
    所述第一级巴伦用于接收单端的不平衡信号,并将其转化为两路平衡的差分信号后输出;
    所述相位补偿电容用于对两路平衡的所述差分信号进行相位补偿后输出;
    所述第二级巴伦用于接收经相位补偿后的两路平衡的所述差分信号并改善所述差分信号的插损、幅度一致性及平衡度,并输出。
  2. 如权利要求1所述的高频宽带巴伦匹配变换器,其特征在于,所述第一级巴伦包括第一耦合单元,所述第一耦合单元包括第一传输线以及与所述第一传输线耦合的第一耦合线,所述第一传输线与所述第一耦合线相互平行且正对设置,所述第一传输线的一端作为所述第一级巴伦的第一信号输入端,用于接收单端的所述不平衡信号,所述第一传输线的另一端作为所述第一级巴伦的第一输出端并连接至所述相位补偿电容;所述第一耦合线的一端接地,所述第一耦合线的另一端作为所述第一级巴伦的第二输出端并连接至所述相位补偿电容。
  3. 如权利要求2所述的高频宽带巴伦匹配变换器,其特征在于,所述第二级巴伦的输入端包括第二信号输入端和第三信号输入端;所述相位补偿电容包括第一电容和第二电容,所述第一电容的第一端与所述第一输出端连接,所述第一电容的第二端与所述第二信号输入端连接,所述第二电容的第一端与所述第二输出端连接,所述第二电容的第二端与所述第三信号输入端连接。
  4. 如权利要求3所述的高频宽带巴伦匹配变换器,其特征在于,所述第二级巴伦包括第二耦合单元以及第三耦合单元;所述第二耦合单元包括相互平行且正对设置的两根第二传输线以及相互平行且正对设置的两根第二耦合线,所述第二传输线与所述第二耦合线相互平行 且正对设置;
    两根所述第二传输线位于其中同一侧的一端相互连接并作为所述第二信号输入端,两根所述第二传输线位于其中另外同一侧的一端相互连接并作为第三输出端;
    两根所述第二耦合线位于其中同一侧的一端相互连接并作为第四输出端;两根所述第二耦合线位于其中另外同一侧的一端共同接地;
    所述第三耦合单元包括相互平行且正对设置的两根第三传输线以及相互平行且正对设置的两根第三耦合线,所述第三传输线与所述第三耦合线相互平行且正对设置;
    两根所述第三传输线位于其中同一侧的一端相互连接并作为所述第三信号输入端,两根所述第三传输线位于其中另外同一侧的一端均与所述第四输出端连接;
    两根所述第三耦合线位于其中同一侧的一端相互连接并与所述第三输出端连接,两根所述第三耦合线位于其中另外同一侧的一端共同接地。
  5. 如权利要求4所述的高频宽带巴伦匹配变换器,其特征在于,所述高频宽带巴伦匹配变换器还包括第三电容,所述第三电容与所述第二级巴伦连接,用于调节经所述第二级巴伦改善平衡度的所述差分信号的工作频点。
  6. 如权利要求5所述的高频宽带巴伦匹配变换器,其特征在于,所述第三电容串联设置于所述第三输出端与所述第四输出端之间。
  7. 如权利要求6所述的高频宽带巴伦匹配变换器,其特征在于,所述第一电容、所述第二电容以及所述第三电容均为可调节电容。
  8. 如权利要求4所述的高频宽带巴伦匹配变换器,其特征在于,所述第一传输线和所述第一耦合线的长度相同且形状一致;所述第二传输线、所述第三传输线、所述第二耦合线以及所述第三耦合线的长度相同且形状一致。
  9. 如权利要求8所述的高频宽带巴伦匹配变换器,其特征在于, 所述第一传输线及所述第一耦合线在3.3G~4.2G的工作频率时,长度均为1300um;所述第二传输线所述第二耦合线、所述第三传输线以及所述第三耦合线在3.3G~4.2G的工作频率时,长度均为650um。
  10. 一种射频装置,其特征在于,所述射频装置中包括如权利要求1至9任一项所述的高频宽带巴伦匹配变换器;所述射频装置为混频器、推挽放大器、双工器以及倍频器中的任意一种。
PCT/CN2022/125269 2021-11-24 2022-10-14 一种高频宽带巴伦匹配变换器及射频装置 WO2023093349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122911047.1 2021-11-24
CN202122911047.1U CN216390912U (zh) 2021-11-24 2021-11-24 一种高频宽带巴伦匹配变换器及射频装置

Publications (1)

Publication Number Publication Date
WO2023093349A1 true WO2023093349A1 (zh) 2023-06-01

Family

ID=81218110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125269 WO2023093349A1 (zh) 2021-11-24 2022-10-14 一种高频宽带巴伦匹配变换器及射频装置

Country Status (2)

Country Link
CN (1) CN216390912U (zh)
WO (1) WO2023093349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117353693A (zh) * 2023-12-04 2024-01-05 宜确半导体(苏州)有限公司 一种差分阻抗变换器及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216390912U (zh) * 2021-11-24 2022-04-26 深圳飞骧科技股份有限公司 一种高频宽带巴伦匹配变换器及射频装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867072A (en) * 1997-07-29 1999-02-02 Merrimac Industries, Inc. Biphase modulator with balun design
CN111130469A (zh) * 2019-11-15 2020-05-08 西安电子科技大学 宽带cmos二阶有源巴伦放大器
CN112073023A (zh) * 2020-09-02 2020-12-11 成都芯川电子有限公司 新型宽带高平衡度巴伦
CN216390912U (zh) * 2021-11-24 2022-04-26 深圳飞骧科技股份有限公司 一种高频宽带巴伦匹配变换器及射频装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867072A (en) * 1997-07-29 1999-02-02 Merrimac Industries, Inc. Biphase modulator with balun design
CN111130469A (zh) * 2019-11-15 2020-05-08 西安电子科技大学 宽带cmos二阶有源巴伦放大器
CN112073023A (zh) * 2020-09-02 2020-12-11 成都芯川电子有限公司 新型宽带高平衡度巴伦
CN216390912U (zh) * 2021-11-24 2022-04-26 深圳飞骧科技股份有限公司 一种高频宽带巴伦匹配变换器及射频装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117353693A (zh) * 2023-12-04 2024-01-05 宜确半导体(苏州)有限公司 一种差分阻抗变换器及电子设备
CN117353693B (zh) * 2023-12-04 2024-02-23 宜确半导体(苏州)有限公司 一种差分阻抗变换器及电子设备

Also Published As

Publication number Publication date
CN216390912U (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2023093349A1 (zh) 一种高频宽带巴伦匹配变换器及射频装置
CN104241795B (zh) Marchand平衡‑不平衡转换器和使用Marchand平衡‑不平衡转换器的功率放大器
WO2024087853A1 (zh) 变压器耦合式巴伦结构及射频模组
CN109379049A (zh) 高本振抑制度宽带混频器
CN108551331A (zh) 一种基于变压器耦合匹配的毫米波低损耗倍频器
WO2023221541A1 (zh) 一种5g毫米波双频带双模混频器及无线通信终端
CN112563712B (zh) 具有谐波抑制功能的端接复阻抗定向耦合器及设计方法
CN113809989B (zh) 一种基于GaAs工艺的宽带低变频损耗双平衡混频器芯片
CN112543002B (zh) 宽带差分Doherty功率放大器及其设计方法和应用
WO2023088005A1 (zh) 输出匹配网络、射频功率放大器及无线通信装置
Liu et al. A 60-GHz millimeter-wave CMOS Marchand balun
CN110460310A (zh) 一种超宽带高谐波抑制太赫兹倍频器
WO2024051381A1 (zh) 匹配网络可重构的功率放大器及通信设备
CN108011168B (zh) 一种可端接复数阻抗的新型Wilkinson功率分配器
CN113904628A (zh) 宽带Doherty功率放大器和实现方法
CN116455355B (zh) 一种双向矢量调制有源移相器及电子设备
CN112073023A (zh) 新型宽带高平衡度巴伦
CN106571786B (zh) 一种宽带双平衡大动态自动增益控制电路
CN111987993A (zh) 宽带高谐波抑制太赫兹三平衡式二倍频器及方法
CN106067768A (zh) 宽带内匹配功率放大器
JP2012029280A (ja) 広帯域バラン
CN209607898U (zh) 一种Ka频段平面魔T
CN112019192B (zh) 一种基于变压器的高阶耦合正交信号产生电路及其应用
CN201364941Y (zh) 半模基片集成波导双平衡混频器
CN209419579U (zh) 高本振抑制度宽带混频器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897432

Country of ref document: EP

Kind code of ref document: A1