WO2023093307A1 - 一种抑制机车低速空转的控制方法 - Google Patents

一种抑制机车低速空转的控制方法 Download PDF

Info

Publication number
WO2023093307A1
WO2023093307A1 PCT/CN2022/123463 CN2022123463W WO2023093307A1 WO 2023093307 A1 WO2023093307 A1 WO 2023093307A1 CN 2022123463 W CN2022123463 W CN 2022123463W WO 2023093307 A1 WO2023093307 A1 WO 2023093307A1
Authority
WO
WIPO (PCT)
Prior art keywords
locomotive
idling
speed
axis
inverter
Prior art date
Application number
PCT/CN2022/123463
Other languages
English (en)
French (fr)
Inventor
余丹
侯强
王莹
张彦民
李娟虹
陈宇阳
Original Assignee
中车大连机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连机车车辆有限公司 filed Critical 中车大连机车车辆有限公司
Publication of WO2023093307A1 publication Critical patent/WO2023093307A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of locomotives, in particular to a control method for suppressing low-speed idling of locomotives.
  • the locomotive will change significantly.
  • the adhesion between the wheels and rails is less than the axle traction generated by the wheels of the locomotive, the locomotive will idling, causing the locomotive to run at low speed due to insufficient traction, which will directly affect the performance of the locomotive. Safe operation will scratch the wheels and rails, which is extremely harmful.
  • How to make full use of the ground wheel-rail adhesion and effectively suppress the low-speed idling of the locomotive when the locomotive can work on the rail surface has become a smooth progress of heavy-duty traction and railway speed-up. the key to.
  • the acceleration axis In the current locomotive idling control method, the acceleration axis only uses its own speed to calculate the acceleration, and is not affected by other axes. If this kind of failure occurs on a 6-axis locomotive, it is equivalent to low-speed idling of the whole vehicle, and due to this idling control method The absence of the locomotive will lead to excessive loss of traction force of the locomotive, which will affect the adhesion utilization of the locomotive and make the locomotive unable to pull normally.
  • the invention provides a control method for suppressing low-speed idling of a locomotive, which solves the problem that the locomotive loses too much traction force when idling failure occurs and the whole locomotive cannot be towed.
  • control method for suppressing low-speed idling of the locomotive includes the following steps:
  • the shaft speed will be judged as abnormal speed:
  • the shaft speed will be judged as abnormal speed:
  • the acceleration axis of S1 and the creep control axis of S2 are judged to be abnormal in speed
  • the speed of the acceleration axis or creep control axis of other axes is abnormal through the communication transmission inside the converter system, and the acceleration axis or creep control axis is abnormal.
  • Slip control axis speed will not participate in the reference speed judgment logic.
  • the torque current command value of the motor is preferably 16A, 24A, 30A, 36A, 45A.
  • the number of idling for acceleration detection is 2-5 times, preferably 3 times.
  • the number of idling for the other axis is preferably 1, and the number of idling for the self-axis is preferably 8, 13, 28, 34, or 56 times.
  • the detection of the current output by the motor in S12 is performed by a motor current detection instrument, the model of which is AC-1211.
  • the detection of S1 and S2 can be performed simultaneously, or the detection of S2 can be performed sequentially after the detection of S1 is completed.
  • control method for suppressing locomotive idling at low speed provided by the present invention has the following beneficial effects:
  • the invention provides a control method for suppressing low-speed idling of a locomotive. After the abnormal speed signal of the locomotive is detected, the reference speed of the locomotive and the traction force of other axles are no longer affected by the abnormal speed signal of the faulty axle, and the traction force of the whole locomotive decreases. It is greatly reduced, and the traction can be exerted normally, which ensures the normal operation of the locomotive, solves the problem that the locomotive cannot start normally due to insufficient traction due to false detection of idling by other axles, and effectively improves the safety and reliability of the locomotive.
  • Fig. 1 is a locomotive idling control strategy module diagram of a preferred embodiment of the control method for suppressing low-speed idling of the locomotive provided by the present invention
  • Fig. 2 is the acceleration shaft idling test data of the control method that suppresses locomotive low-speed idling that the present invention provides;
  • Fig. 3 is the creep control shaft idling test data of the control method that suppresses locomotive low-speed idling that the present invention provides;
  • Fig. 4 is the idling test data of the prior art of the control method that suppresses locomotive low-speed idling that the present invention provides;
  • Fig. 5 is the block diagram of the prior art creep control of the control method that suppresses locomotive low-speed idling that the present invention provides;
  • Fig. 6 is the block diagram of the prior art acceleration idling detection of the control method for suppressing low-speed idling of the locomotive provided by the present invention
  • Fig. 7 is a schematic diagram of the locomotive idling strategy axis position in the prior art of the control method for suppressing low-speed idling of the locomotive provided by the present invention.
  • Fig. 1 is a locomotive idling control strategy module diagram of a preferred embodiment of the control method for suppressing locomotive low-speed idling provided by the present invention
  • Fig. 2 is the locomotive idling control strategy provided by the present invention
  • FIG. 3 is the creep control shaft idling test data of the control method for suppressing low-speed idling of the locomotive provided by the present invention.
  • a control method for suppressing low-speed idling of a locomotive comprising the following steps:
  • the acceleration axis of S1 and the creep control axis of S2 are judged to be abnormal in speed, the speed of the acceleration axis or creep control axis of other axes is abnormal through the communication transmission inside the converter system, and the acceleration axis or creep control axis The speed will not participate in the reference speed judgment logic.
  • the motor torque current command value is preferably 16A, 24A, 30A, 36A, 45A.
  • the number of idling for acceleration detection is 2-5 times, preferably 3 times.
  • the number of idling for other axes is preferably 1 time, and the number of idling for self-axis is preferably 8 times, 13 times, 28 times, 34 times, 56 times.
  • the current output by the motor in S12 is detected by a motor current detection instrument, the model of which is AC-1211.
  • the detection of the S1 and the S2 can be carried out simultaneously or the detection of S2 can be performed sequentially after the S1 detection is completed.
  • the detection of S1 and S2 can be performed at the same time, which can shorten the detection time.
  • a single test can also be performed, which can make the test more detailed and accurate, thereby ensuring the accuracy of the data.
  • the existing anti-idling control method is to calculate the speed difference reference, acceleration reference and other parameters by detecting the speed and current of each traction motor of the locomotive, and set the limit value of the parameter. When it exceeds or falls below these limit values, it is judged as idling.
  • the speed difference benchmark is the difference between the maximum speed of the wheel set and the reference speed of the locomotive, which can directly reflect the current creep situation of the locomotive;
  • the acceleration benchmark is the speed increment of each wheel set per unit time, which makes up for the inability of the speed difference
  • the sensitivity of detecting the defect of multi-axis idling at the same time is also higher than that of the speed difference benchmark.
  • the locomotive adopts two control methods shown in Table 1.
  • the VVVF inverter can output a torque equivalent to T*.
  • T* torque command
  • the sticky characteristic N depends on the state of the track.
  • the maximum sticking is obtained in the tiny idling state called "creeping state".
  • N is smaller than T*, that is, when idling occurs, the TCU still maintains the creeping state and outputs torque to maximize Use available adhesive.
  • the shaft speed is calculated by the motor frequency of each shaft, and it is also faster than the actual speed when idling.
  • the creep speed ( ⁇ ) formula is as follows:
  • ⁇ r and ⁇ a denote the actual shaft speed and the estimated locomotive speed.
  • the TCU controls the torque according to ⁇ , and the locomotive can maximize the use of sticking under various track states.
  • the idling control strategy of the locomotive is:
  • the 1st axis, 2nd axis, 4th axis, and 5th axis adopt creep control, and the 3rd axis and 6th axis adopt acceleration idling detection control;
  • axes 3 and 6 of the locomotive are selected as acceleration axes, and axes 1, 2, 4, and 5 are creep control axes; according to the current locomotive idling control method, the acceleration axes only use their own speed to calculate the acceleration without being affected by other axes; the creep control axis is controlled with reference to the speed of the reference axis, and the speed of the reference axis during traction is the lowest speed among the 1-6 axes, so once the The feedback from the speed sensor is abnormal, and the locomotive microcomputer thinks that idling has occurred through logical judgment, and will take measures to reduce traction and speed to suppress idling; at this time, the speed of the faulty acceleration axis will be directly adopted as the reference speed due to the reduction; the remaining 4 Affected by the speed drop of the reference shaft, the creep control shafts were misjudged to be idling. At the same time, they were also controlled to reduce the traction force. Therefore, at this time, the traction
  • the software is installed on the acceleration axis (4-axis) of the locomotive, and it is turned into an abnormal speed state through software simulation, and the 4-axis idling of the locomotive is manually simulated;
  • test data installed on the creep control axis is shown in Figure 3.
  • the results are consistent with the test data of the acceleration axis. They all affect the traction force output of other axes before the fault is detected, causing other axes to idle. After the fault is detected, the other axes The traction of is restored to normal and is no longer affected by the faulty axle.
  • control method for suppressing locomotive idling at low speed provided by the present invention has the following beneficial effects:
  • the reference speed of the locomotive and the traction force of other axles are no longer affected by the abnormal speed signal of the faulty axle, and the drop range of the traction force of the whole vehicle is greatly reduced, and the traction force can be normally exerted, thereby ensuring the normal operation of the locomotive , which solves the problem that other axles are falsely detected as idling and the locomotive cannot start normally due to insufficient traction, and effectively improves the safety and reliability of the locomotive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种抑制机车低速空转的控制方法,包括以下步骤:S1:对于加速度控制轴的检测,S11:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围;S13:检测加速度控制轴的空转次数;本发明通过在机车速度信号异常被检测出后,机车的基准速度及其他轴牵引力不再受故障轴的异常速度信号影响,整车牵引力下降幅度大大缩小,可以正常发挥牵引力,保证了机车正常运行,解决了造成他轴被误检测空转而导致机车因牵引力不足无法正常启动的问题,有效的提高机车行驶的安全性和可靠性。

Description

一种抑制机车低速空转的控制方法 技术领域
本发明涉及机车技术领域,尤其涉及一种抑制机车低速空转的控制方法。
背景技术
随着我国经济迅猛发展,货物流通呈现快速增长,铁路运量运能之间的矛盾日渐突出,其中,影响机车运能最为突出的问题就是机车的空转问题,在轮轨交通运输中,机车动轮和钢轨之间的粘着力是驱动机车运行的最终动力,牵引力与制动力的形成、牵引与制动功率的发挥均受到轮轨粘着的控制。
然而,根据轨道状况、轨道断面、轨道起伏不平、起皱、道岔高度、曲率和天气情况或其他污染(如雨、雪、冰、霜、阴、晴、树叶和昆虫聚集)等的不同,机车在同一地方可获得的粘着会显著变化,当轮轨间的粘着力小于机车轮对产生的轮轴牵引力时就会使机车发生空转,导致机车因牵引力不足,只能低速运行,会直接影响机车的安全运行,会擦伤轮轨,危害极大,机车能够工作在轨面上如何更为充分的利用地轮轨粘着力,有效的抑制机车的低速空转,已经成为重载牵引和铁路提速顺利进行的关键所在。
现在机车的空转控制方法,加速度轴只使用自己的速度来计算加速度,不受其他轴影响,若6轴机车发生这种故障,就相当于整车发生了低速空转,并且由于这种空转控制方式的缺失,将导致机车牵引力损失过大,影响机车的粘着利用,使机车无法正常牵引。
因此,有必要提供一种抑制机车低速空转的控制方法解决上述技术问题。
发明内容
本发明提供一种抑制机车低速空转的控制方法,解决了机车在发生空转故障时损失过多的牵引力造成整车无法牵引的问题。
为解决上述技术问题,本发明提供的抑制机车低速空转的控制方法,包括以下步骤:
S1:对于加速度控制轴的检测
S11:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围;
S13:检测加速度控制轴的空转次数;
S2:对于蠕滑控制轴的检测
S21:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
S22:在一定时间内检测它轴空转次数和自轴空转次数。
优选的,所述S1中,若满足以下条件时,该轴速度将被判定为速度异常:
S11:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围小于等于50A;
S13:检测加速度控制轴的空转次数到达三次;
优选的,所述S2中,若若满足以下条件时,该轴速度将被判定为速度异常:
S21:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
S22:对10s内加速度检测他轴空转次数小于2次而自轴空转次数大于等于5次。
优选的,所述S1的加速度轴和所述S2的蠕滑控制轴被判断为速度异常时,通过变流系统内部的通讯传送告知其它轴加速度轴或者蠕滑控制轴速度异常,加速度轴或者蠕滑控制轴速度将不参与基准速度判定逻辑。
优选的,所述第一步中,对电机转矩电流指令值优选为16A、24A、30A、36A、45A。
优选的,所述第一步中,对加速度检测空转的次数为2-5次,优选为3次。
优选的,所述第二步中,对它轴空转的次数优选为1次,自轴空转次数优选为8次、13次、28次、34次、56次。
优选的,所述S12中对电机输出的电流进行检测是通过电机电流检测仪器进行检测,型号为AC-1211。
优选的,所述S1和所述S2的检测可以同时进行或者由S1检测完成后再至S2的依次检测。
与相关技术相比较,本发明提供的抑制机车低速空转的控制方法具有如下有益效果:
本发明提供一种抑制机车低速空转的控制方法,本发明通过在机车速度信号异常被检测出后,机车的基准速度及其他轴牵引力不再受故障轴的异常速度信号影响,整车牵引力下降幅度大大缩小,可以正常发挥牵引力,保证了机车正常运行,解决了造成他轴被误检测空转而导致机车因牵引力不足无法正常启动的问题,有效的提高机车行驶的安全性和可靠性。
附图说明
图1为本发明提供的抑制机车低速空转的控制方法的一种较佳实施例的机车空转控制策略模块图;
图2为本发明提供的抑制机车低速空转的控制方法的加速度轴空转试验数据;
图3为本发明提供的抑制机车低速空转的控制方法的蠕滑控制轴空转试验数据;
图4为本发明提供的抑制机车低速空转的控制方法的现有技术的空转试验数据;
图5为本发明提供的抑制机车低速空转的控制方法的现有技术的蠕滑控制的方框图;
图6为本发明提供的抑制机车低速空转的控制方法的现有技术的加速度空转检测的方框图;
图7为本发明提供的抑制机车低速空转的控制方法的现有技术的机车空转策略轴位示意图。
具体实施方式
下面结合附图和实施方式对本发明作进一步说明。
请结合参阅图1、图2、图3,其中,图1为本发明提供的抑制机车低速空转的控制方法的一种较佳实施例的机车空转控制策略模块图;图2为本发明提供的抑制机车低速空转的控制方法的加速度轴空转试验数据;图3为本发明提供的抑制机车低速空转的控制方法的蠕滑控制轴空转试验数据。一种抑制机车低速空转的控制方法,包括以下步骤:
S1:对于加速度控制轴的检测
S11:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围;
S13:检测加速度控制轴的空转次数;
S2:对于蠕滑控制轴的检测
S21:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
S22:在一定时间内检测它轴空转次数和自轴空转次数;
所述S1中,若满足以下条件时,该轴速度将被判定为速度异常:
S11:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围小于等于50A;
S13:检测加速度控制轴的空转次数到达三次;
所述S2中,若若满足以下条件时,该轴速度将被判定为速度异常:
S21:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
S22:对10s内加速度检测他轴空转次数小于2次而自轴空转次数大于等于5次。
所述S1的加速度轴和所述S2的蠕滑控制轴被判断为速度异常时,通过变流系统内部的通讯传送告知其它轴加速度轴或者蠕滑控制轴速度异常,加速度轴或者蠕滑控制轴速度将不参与基准速度判定逻辑。
所述第一步中,对电机转矩电流指令值优选为16A、24A、30A、36A、45A。
所述第一步中,对加速度检测空转的次数为2-5次,优选为3次。
所述第二步中,对它轴空转的次数优选为1次,自轴空转次数优选为8次、13次、28次、34次、56次。
所述S12中对电机输出的电流进行检测是通过电机电流检测仪器进行检测,型号为AC-1211。
所述S1和所述S2的检测可以同时进行或者由S1检测完成后再至S2的依 次检测。
对S1和S2的检测时,可以同时进行,同时进行可以缩短检测的时间。
也可以进行单一的检测,单一的检测可以对检测的更加细致更加准确,进而保证数据的准确性。
现有技术的技术方案
现有的防空转控制方法为,通过检测机车各个牵引电机转速和电流,计算速度差基准、加速度基准等参数,并且设定参数的限定值,当超过或低于这些限定值时,及判断为空转。
速度差基准为轮对的最大速度与机车基准速度的差值,它可以直观反映机车当前的蠕滑情况;加速度基准为每个轮对在单位时间内的速度增量,它弥补了速度差无法检测多轴同时空转的缺点,灵敏度也较速度差基准要高。
根据空转程度的不同,机车采用表1所示的2种控制方法。
表1
Figure PCTCN2022123463-appb-000001
(1)蠕滑控制
请参阅图5,粘着特性(N)大于来自司控器的扭矩指令(T*)时,VVVF逆变 器可以输出相当于T*的扭矩,但是,如果粘着特性N比T*小,则发生空转。在此,粘着特性N依赖于轨道的状态。
一般来说,最大粘着是在称作「蠕滑状态」的微小空转状态下得来的,当N比T*小,即发生空转时,TCU仍保持蠕滑状态,并输出扭矩,最大限度地使用可利用的粘着。
轴速度是由各轴的电机频率计算得出,空转时也比实际的速度快,在牵引状态下,蠕滑速度(Δω)公式如下:
Δω=ωr-ωa
在此,ωr和ωa表示轴实际速度和所推测的机车速度。
如图5所示,TCU根据Δω控制扭矩,机车在各种轨道状态下能够最大限度地利用粘着。
(2)加速度空转检测
请参阅图6产生较大空转和滑行时,通过电机频率计算出的轴速度瞬时增加,机车加速度αr采用轴速度的微分来计算。
机车的空转控制策略为:
前进方向为1时:1轴、2轴、4轴、5轴采用蠕滑控制,3轴、6轴采用加速度空转检测控制;
前进方向为2时:2轴、3轴、5轴、6轴采用蠕滑控制,1轴、4轴采用加速度空转检测控制,如图7所示。
现有技术的缺点:
如果机车使用前端司机室牵引时,机车的3、6轴被选做加速度轴,1、2、4、5为为蠕滑控制轴;根据现在机车的空转控制方法,加速度轴只使用自己的速度来计算加速度,不受其他轴影响;蠕滑控制轴是参考基准轴的速度来进行控制,牵引时的基准轴速度采用的是1-6轴中最低的速度,所以一旦3轴或者6轴的速度传感器反馈异常,机车微机通过逻辑判断认为其发生了空转,将会采取降低牵引力,降低速度的措施来抑制空转;此时,故障加速度轴的速度由于降低将直接被采用为基准速度;其余4个蠕滑控制轴,受基准轴速度下降 的影响也被误判断发生了空转,同时也都进行了降牵引力的控制,所以此时机车将有五个轴存在牵引力不能正常发挥的情况,机车无法正常提速。
如果6轴机车发生这种故障,就相当于整车发生了低速空转,并且由于这种空转控制方式的缺失,将导致机车牵引力损失过大,影响机车的粘着利用,使机车无法正常牵引。
为了验证新型空转控制策略的效果,将软件安装在了机车的加速度轴(4轴),并且通过软件仿真将其变成速度异常状态,手动模拟机车4轴空转;
如图2所示,通过图中可以看出,2、3、5、6轴在4轴被检测出故障前被4轴的异常速度影响,在故障检出后,不被4轴的速度异常影响,牵引力恢复正常;
安装在蠕滑控制轴的试验数据如图3所示,结果同加速度轴的试验数据一致,均为故障检测出之前影响其他轴的牵引力输出,造成其他轴空转,在故障检测出之后,其余轴的牵引力恢复正常,不再受故障轴影响。
为了验证本发明提出的抑制机车低速空转的控制方法的优越性,将它应用到了出口乌兹别克斯坦12轴电力机车粘着利用控制系统中,图2、图3为加速度轴和蠕滑控制轴采集的空转保护波形,为了对比,图4给出了采用传统方案的波形,从图中可以明显看出,在空转程度相同的情况下,新方案中只有速度异常的轴进行了牵引力下降,其余轴牵引力均正常,相比较旧方案而言,其整车牵引力下降幅度大大缩小,保证了机车正常运行,足见其巨大的优越性。
与相关技术相比较,本发明提供的抑制机车低速空转的控制方法具有如下有益效果:
本发明通过在机车速度信号异常被检测出后,机车的基准速度及其他轴牵引力不再受故障轴的异常速度信号影响,整车牵引力下降幅度大大缩小,可以正常发挥牵引力,保证了机车正常运行,解决了造成他轴被误检测空转而导致机车因牵引力不足无法正常启动的问题,有效的提高机车行驶的安全性和可靠性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种抑制机车低速空转的控制方法,其特征在于,包括以下步骤:
    S1:对于加速度控制轴的检测;
    S11:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
    S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围;
    S13:检测加速度控制轴的空转次数;
    S2:对于蠕滑控制轴的检测;
    S21:检测在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,判断逆变器门极是否可以进行正常的动作;
    S22:在一定时间内检测它轴空转次数和自轴空转次数。
  2. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述S1中,若满足以下条件时,该轴速度将被判定为速度异常:
    S11:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
    S12:对电机输出的电流进行检测,检测电机转矩电流指令值的范围小于等于50A;
    S13:检测加速度控制轴的空转次数到达三次。
  3. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述S2中,若若满足以下条件时,该轴速度将被判定为速度异常;
    S21:在一次逆变器IGBT门极动作条件成立时,也就是机车变流系统接到微机指令要进行整车的牵引动作,并且逆变器门极可进行正常动作;
    S22:对10s内加速度检测他轴空转次数小于2次而自轴空转次数大于等于5次。
  4. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于, 所述S1的加速度轴和所述S2的蠕滑控制轴被判断为速度异常时,通过变流系统内部的通讯传送告知其它轴加速度轴或者蠕滑控制轴速度异常,加速度轴或者蠕滑控制轴速度将不参与基准速度判定逻辑。
  5. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述第一步中,对电机转矩电流指令值优选为16A、24A、30A、36A、45A。
  6. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述第一步中,对加速度检测空转的次数为2-5次,优选为3次。
  7. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述第二步中,对它轴空转的次数优选为1次,自轴空转次数优选为8次、13次、28次、34次、56次。
  8. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述S12中对电机输出的电流进行检测是通过电机电流检测仪器进行检测,型号为AC-1211。
  9. 根据权利要求1所述的抑制机车低速空转的控制方法,其特征在于,所述S1和所述S2的检测可以同时进行或者由S1检测完成后再至S2的依次检测。
PCT/CN2022/123463 2021-11-24 2022-09-30 一种抑制机车低速空转的控制方法 WO2023093307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111407914.6A CN113942399B (zh) 2021-11-24 2021-11-24 一种抑制机车低速空转的控制方法
CN202111407914.6 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023093307A1 true WO2023093307A1 (zh) 2023-06-01

Family

ID=79338634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123463 WO2023093307A1 (zh) 2021-11-24 2022-09-30 一种抑制机车低速空转的控制方法

Country Status (2)

Country Link
CN (1) CN113942399B (zh)
WO (1) WO2023093307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117439446A (zh) * 2023-12-13 2024-01-23 西南交通大学 一种基于轮轨摩擦磨损试验机的轮轨打滑控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942399B (zh) * 2021-11-24 2023-08-04 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法
CN114407940B (zh) * 2022-02-18 2024-03-26 中车大连电力牵引研发中心有限公司 一种机车空转调节方法
CN117341489B (zh) * 2023-09-05 2024-04-16 西南交通大学 一种永磁牵引系统列车无级联预测黏着控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997822A (en) * 1974-12-18 1976-12-14 General Motors Corporation Method of controlling locomotive wheel slip
CN1535862A (zh) * 2003-04-10 2004-10-13 株式会社日立制作所 列车控制系统、车上通信网络系统和列车控制装置
CN104527659A (zh) * 2014-12-29 2015-04-22 北京二七轨道交通装备有限责任公司 用于列车牵引的传动系统
CN112339727A (zh) * 2019-08-07 2021-02-09 中车唐山机车车辆有限公司 一种轨道车辆防滑控制方法、装置及轨道车辆系统
CN112406559A (zh) * 2020-11-25 2021-02-26 中车大连电力牵引研发中心有限公司 一种大功率电力机车空转快速恢复控制方法
CN113942399A (zh) * 2021-11-24 2022-01-18 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106007B2 (ja) * 1985-01-21 1995-11-13 株式会社日立製作所 鉄道車両の粘着制御装置
US5392716A (en) * 1993-07-28 1995-02-28 General Electric Company Locomotive traction motor control system
JPH1189006A (ja) * 1997-09-02 1999-03-30 Mitsubishi Electric Corp 電気車の空転再粘着制御装置
JP3374730B2 (ja) * 1997-11-10 2003-02-10 日産自動車株式会社 ハイブリッド車両
JP3347039B2 (ja) * 1997-12-02 2002-11-20 三菱電機株式会社 電気車の空転再粘着制御装置
JP2002096658A (ja) * 2000-07-17 2002-04-02 Hitachi Ltd 自動車の制御方法、および制御装置
JP3510574B2 (ja) * 2000-08-24 2004-03-29 川崎重工業株式会社 鉄道車両の主回路システムの保護装置
JP4058732B2 (ja) * 2001-05-16 2008-03-12 株式会社日立製作所 電気車の制御装置
JP3931852B2 (ja) * 2003-07-22 2007-06-20 トヨタ自動車株式会社 電気自動車およびその制御方法
WO2005030550A1 (en) * 2003-08-26 2005-04-07 Railpower Technologies Corp. A method for monitoring and controlling locomotives
CN102381211B (zh) * 2007-06-27 2014-07-23 三菱电机株式会社 电车的控制装置
CN101801712B (zh) * 2007-09-18 2012-08-15 三菱电机株式会社 电车用控制装置
WO2010055572A1 (ja) * 2008-11-13 2010-05-20 株式会社 東芝 電気車制御装置
JP5391456B2 (ja) * 2009-11-25 2014-01-15 公益財団法人鉄道総合技術研究所 電動機制御方法及び電動機制御装置
CA2729512A1 (en) * 2010-01-28 2011-07-28 Frank W. Donnelly Industrial locomotive construction
CN101830231B (zh) * 2010-04-30 2012-12-12 株洲南车时代电气股份有限公司 一种机车空转滑行保护控制方法
JP5443294B2 (ja) * 2010-07-29 2014-03-19 公益財団法人鉄道総合技術研究所 電動機制御方法及び電動機制御装置
CN102050122B (zh) * 2010-12-16 2012-09-05 中国北车集团大连机车车辆有限公司 机车防空转滑行控制方法
JP5673938B2 (ja) * 2011-01-18 2015-02-18 国立大学法人長岡技術科学大学 電気車制御装置
CN103183037B (zh) * 2011-12-29 2016-03-02 中国北车股份有限公司 电力机车粘着控制方法及装置
CN103010229B (zh) * 2012-12-13 2015-01-21 中国北车集团大连机车车辆有限公司 基于转速控制的机车防空转滑行方法
CN103231714B (zh) * 2013-04-22 2015-07-01 西南交通大学 基于牵引电机在线监测的电力机车空转滑行识别方法
CN104029688B (zh) * 2014-05-30 2016-09-28 南车株洲电力机车研究所有限公司 一种轮对空转检测方法
KR101610120B1 (ko) * 2014-09-30 2016-04-08 현대자동차 주식회사 하이브리드 차량의 크립 토크 제어 장치 및 방법
CN104760600B (zh) * 2015-03-31 2017-10-13 株洲南车时代电气股份有限公司 一种牵引控制方法、装置及系统
CN106444373A (zh) * 2016-08-30 2017-02-22 中铁第四勘察设计院集团有限公司 一种动车组列车安全高效运行主动粘着控制方法和系统
US10392031B2 (en) * 2016-11-03 2019-08-27 Ge Global Sourcing Llc System and method for controlling a vehicle
CN107395081B (zh) * 2017-09-06 2023-06-16 湖南工业大学 一种重载机车滑模极值搜索最优粘着控制系统及方法
CN108944963B (zh) * 2018-07-03 2020-01-07 西南交通大学 基于动态轴重转移补偿和多轴协调的机车粘着控制方法
CN109131342B (zh) * 2018-08-28 2020-03-31 株洲中车时代电气股份有限公司 加速度传感器和轮轴速度传感器的融合测速方法及装置
CN111376731B (zh) * 2018-12-28 2021-09-10 中车大连电力牵引研发中心有限公司 轨道列车轮轨粘着控制方法
CN109878538B (zh) * 2019-03-22 2020-03-06 西南交通大学 一种重载机车智能撒砂控制系统及控制方法
CN110450794B (zh) * 2019-08-26 2020-06-23 西南交通大学 一种基于最优蠕滑速度搜寻与跟踪的优化粘着控制方法
CN110955146A (zh) * 2019-12-13 2020-04-03 中国铁道科学研究院集团有限公司 基于分布式模型预测控制的重载机车粘着控制方法及装置
CN111267914B (zh) * 2020-02-20 2021-08-17 山东科技大学 动车组轮对间歇蠕滑超限检测及分离方法
JP6990278B2 (ja) * 2020-07-20 2022-01-12 公益財団法人鉄道総合技術研究所 電動機制御方法および制御装置
CN112896200B (zh) * 2021-01-27 2022-04-12 株洲中车时代电气股份有限公司 一种降低igbt模块寿命损耗的机车牵引力分配方法及装置
US20210354566A1 (en) * 2021-06-21 2021-11-18 Jacob Ben-Ari Scalable Tractive-Power System For Electric Railway-Vehicles Integrated into All-Wheel Electric Steering and Electric Braking Systems, Deriving 90% To 99% Traction and Dynamic Efficiency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997822A (en) * 1974-12-18 1976-12-14 General Motors Corporation Method of controlling locomotive wheel slip
CN1535862A (zh) * 2003-04-10 2004-10-13 株式会社日立制作所 列车控制系统、车上通信网络系统和列车控制装置
CN104527659A (zh) * 2014-12-29 2015-04-22 北京二七轨道交通装备有限责任公司 用于列车牵引的传动系统
CN112339727A (zh) * 2019-08-07 2021-02-09 中车唐山机车车辆有限公司 一种轨道车辆防滑控制方法、装置及轨道车辆系统
CN112406559A (zh) * 2020-11-25 2021-02-26 中车大连电力牵引研发中心有限公司 一种大功率电力机车空转快速恢复控制方法
CN113942399A (zh) * 2021-11-24 2022-01-18 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117439446A (zh) * 2023-12-13 2024-01-23 西南交通大学 一种基于轮轨摩擦磨损试验机的轮轨打滑控制方法
CN117439446B (zh) * 2023-12-13 2024-02-20 西南交通大学 一种基于轮轨摩擦磨损试验机的轮轨打滑控制方法

Also Published As

Publication number Publication date
CN113942399A (zh) 2022-01-18
CN113942399B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2023093307A1 (zh) 一种抑制机车低速空转的控制方法
CN108944963B (zh) 基于动态轴重转移补偿和多轴协调的机车粘着控制方法
CN110143196A (zh) 一种车及车辆防溜车的控制方法和系统
CN103231714B (zh) 基于牵引电机在线监测的电力机车空转滑行识别方法
CN104029688B (zh) 一种轮对空转检测方法
CN106650057B (zh) 基于车辆侧翻侧滑虚拟试验的公路平曲线半径设计方案安全性评价方法
CN106379366A (zh) 一种机车及其自动联挂控制方法与装置
CN112406559B (zh) 一种大功率电力机车空转快速恢复控制方法
CN104401392B (zh) 一种车辆跑偏方向校正系统及方法
CN108621859A (zh) 一种纯电动汽车的驱动控制方法
CN103034129A (zh) 一种适用于轨道车辆牵引控制的仿真方法
CN112061177A (zh) 基于最优牵引转矩在线搜寻的机车黏着控制方法
CN110442984A (zh) 一种基于跨座式单轨列车的黏着控制仿真方法
CN114750602A (zh) 车辆能量回收控制方法、装置、可读存储介质及电子设备
CN109760683A (zh) 一种分布式驱动的纯电动车辆爬坡扭矩控制方法及系统
CN109733350B (zh) 基于多模型控制的拖挂式房车制动力控制系统及方法
CN107219775A (zh) 一种重载机车多级空转故障检测方法
CN114371689A (zh) 一种车辆控制策略测试系统及方法
Pichlík et al. Extended Kalman filter utilization for a railway traction vehicle slip control
CN115179912B (zh) 一种列车电制动至零速控制装置及方法
CN114889618A (zh) 一种商用车amt变速箱坡度及车重解耦方法、系统、设备和可读存储介质
JP4402980B2 (ja) 鉄道車両用トラクション制御装置
CN105416094B (zh) 自卸车轴间功率分配及差速控制的方法
CN111688718B (zh) 一种车辆减速器的故障识别方法、车辆控制方法和装置
JP2008029109A (ja) 列車制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE