CN106444373A - 一种动车组列车安全高效运行主动粘着控制方法和系统 - Google Patents

一种动车组列车安全高效运行主动粘着控制方法和系统 Download PDF

Info

Publication number
CN106444373A
CN106444373A CN201610764234.2A CN201610764234A CN106444373A CN 106444373 A CN106444373 A CN 106444373A CN 201610764234 A CN201610764234 A CN 201610764234A CN 106444373 A CN106444373 A CN 106444373A
Authority
CN
China
Prior art keywords
adhesion
torque
wheel
lim
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610764234.2A
Other languages
English (en)
Inventor
廖文豪
陈小梅
张敏慧
沈志凌
郭勇
习博
杜广宇
朱春芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Siyuan Survey and Design Group Co Ltd
Original Assignee
China Railway Siyuan Survey and Design Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Siyuan Survey and Design Group Co Ltd filed Critical China Railway Siyuan Survey and Design Group Co Ltd
Priority to CN201610764234.2A priority Critical patent/CN106444373A/zh
Publication of CN106444373A publication Critical patent/CN106444373A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及一种动车组列车安全高效运行主动粘着控制方法,包括以下步骤:S1、根据单轴动力学模型和全维状态观测器原理设计粘着力矩观测器,用于实时估算列车轮轨间的粘着力矩S2、根据粘着力矩车体加速度值a和变步长算法推导计算出牵引电机的自适应限制转矩Tlim;S3、根据牵引电机的自适应限制转矩Tlim和上级牵引控制系统所给定的电机输出转矩指令值Tm *,设计出粘着控制器,协调牵引控制和粘着控制。本发明有效提高列车牵引制动效率,降低轮轨磨耗,这对加强列车安全稳定运行,延长轮轨使用寿命,改善旅客乘车舒适度,减少列车能源消耗。

Description

一种动车组列车安全高效运行主动粘着控制方法和系统
技术领域
本发明涉及铁路及轨道交通领域,更具体的说,是涉及一种动车组列车安全高效运行主动粘着控制方法和系统。
背景技术
轮轨间相互作用所产生的粘着力是轨道车辆动力系统的一个关键组成部分,其为轨道车辆提供实际的牵引或制动力。然而轮轨间的粘着是一个具有较大不确定性的复杂过程,受机车设计、轮轨条件、车辆速度、线路状况、气候条件等诸多因素影响。随着动车组列车的运行速度和范围的不断增加,列车运行环境也变得更为复杂多变。为保证列车在这种高速度远距离的条件下能安全有效运行,其对动车组列车粘着控制性能提出了更高的要求与挑战。
目前实际应用于动车组列车上的粘着控制方法均属于再粘着控制方法,其工作原理是当检测到牵引制动工作点进入到空转或打滑区后再采取相应动作将其拉回到蠕滑区。近年来一些学者,从理论上提出一些优化粘着控制方法(如基于最优蠕滑率/蠕滑速度/粘着斜率的优化粘着控制方法),试图将其工作点一直保持在最大粘着点附近。然而这些方法在应对“低粘着”所导致的打滑空转问题时都属于事后补偿控制方法,且其需要测量精确的车体速度和获取轮轨表面的粘着特性以保证控制的有效性。而在目前的实际应用中,精确的车体速度和轮轨表面粘着特性的获取存在一定的难度。
发明内容
有鉴于此,有必要针对上述问题,提供一种动车组列车安全高效运行主动粘着控制方法和系统,有效提高列车牵引制动效率,降低轮轨磨耗,这对加强列车安全稳定运行,延长轮轨使用寿命,改善旅客乘车舒适度,减少列车能源消耗。
为了实现上述目的,本发明的技术方案如下:
一种动车组列车安全高效运行主动粘着控制方法,包括以下步骤:
S1、根据单轴动力学模型和全维状态观测器原理设计粘着力矩观测器,用于实时估算列车轮轨间的粘着力矩
S2、根据粘着力矩车体加速度值a和变步长算法推导计算出牵引电机的自适应限制转矩Tlim
S3、根据牵引电机的自适应限制转矩Tlim和上级牵引控制系统所给定的电机输出转矩指令值Tm *,设计出粘着控制器,协调牵引控制和粘着控制。
作为优选的,所述步骤S1中,所述单轴动力学模型的动力学方程为:
Fr=M·(a0+b0V+c0V2)
式中,M表示单轴平均质量,Jw表示轮对平均旋转惯量,N表示单轴轴重,Tm表示电机输出转矩,r表示车轮半径,Fa表示轮轨间切向方向的粘着力,TL表示粘着力矩,ω表示车轮旋转角速度,V表示车体速度,Vw表示车轮轮周速度,a表示车体加速度,μ表示粘着系数,Fr表示列车运行阻力,a0,b0,c0表示单位质量列车运行阻力系数。
作为优选的,根据单轴动力学方程,推出一阶状态空间表达式:
Y=ω,u=Tm,C=[1 0];上述表达式改写为:
计算可得矩阵的秩为2。
作为优选的,所述粘着力矩观测器的设计表达式为:
其中,反馈矩阵为L=[l1 l2]T,通过合理配置反馈矩阵L,使得系统矩阵A-LC的所有特征值具有负实部及所期望的衰减速度,则可实现状态估计值渐进逼近被估计系统的状态X。
作为优选的,所述步骤S2中具体包括:
S201、根据积分的基本性质,得引理1:不等式是不等式的充分不必要条件;其中,不等式为列车在牵引加速工况下,保证车轮处在蠕滑状态时,蠕滑率λ必须满足的条件;
S202、
将车体加速度代入不等式可得其中为粘着力矩观测器所估计的粘着力矩,a为车体加速度计所测量得到的车体加速度值;;
移项化简可得:
根据引理1可推导出上式是不等式成立的充分不必要条件;
S203、在Tm的取值范围内定义一个自适应限制转矩为:
λx的值在初始启动阶段采用设置的经验值;当列车遭遇“低粘着”条件后,轮轨间粘着力矩TL产生突降,此时以粘着力矩观测器所估计的的突降为触发条件,强制将λx赋值为0,以快速抑制轮对的空转现象;恢复稳定后,启动变步长算法:λx(i+1)=λx(i)+α,其中更新λx的值,当不再增加时,算法自动停止工作,此时实现低粘着条件下的最大化粘着利用。
作为优选的,所述步骤S3中,采用自适应限制转矩Tlim对牵引控制系统所给定的电机转矩指令值Tm *进行动态限制,以实现主动粘着控制;其饱和限制型控制逻辑关系如下式所述:
当给定电机转矩指令值Tm *的绝对值小于自适应限制转矩值Tlim绝对值时,实际电机输出转矩Tm等于给定电机转矩指令值Tm *,满足牵引控制目标要求;当给定电机转矩指令值Tm *绝对值大于自适应限制转矩值Tlim绝对值时,此时±Tlim作为Tm的饱和值,限制住Tm,使其等于±Tlim,满足粘着控制目标要求。
一种根据上述方法进行动车组列车的主动粘着控制系统,包括粘着控制器、数据处理模块;
所述数据处理模块用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,并通过估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
所述粘着控制器通过数据处理模块中所计算的自适应限制转矩Tlim和上级牵引控制系统所给定牵引电机转矩指令值Tm *,在一定的控制逻辑下,产生电机输出转矩的控制指令Tm
作为优选的,所述数据处理模块包括粘着力矩观测器、变步长算法模块和自适应限制转矩计算模块;
所述粘着力矩观测器用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,为下一步信号处理提供可用的粘着力矩值;
所述变步长算法模块和自适应限制转矩计算模块用于根据估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
作为优选的,所述轮轴转速信号由安装在轮轴端的车轴转速传感器输出,车体加速度信号由安装在转向架上的车加速度传感器输出,牵引电机输出转矩信号由粘着控制器输出,上级给定牵引电机转矩信号由列车通信网络传输进来。
与现有技术相比,本发明的有益效果在于:本发明在无需获取车体速度和轮轨粘着特性的条件下,采用观测器和变步长算法实时计算出牵引电机的自适应限制转矩,利用该转矩对牵引电机输出转矩进行在线动态监控,从而能以主动事先预防而非消极事后补偿机制来实现轮对的粘着控制。该控制方法能更有效地解决再粘着控制方法和优化粘着控制方法所难以应对的“低粘着”问题,实现在轨面突变的瞬间,快速有效地抑制空转打滑现象,并在系统恢复稳定后,完成“低粘着”条件下的最大化粘着利用。本发明的应用将优化粘着力的控制性能,这将更有效提高列车牵引制动效率,降低轮轨磨耗,这对加强列车安全稳定运行,延长轮轨使用寿命,改善旅客乘车舒适度,减少列车能源消耗等方面具有重要意义。
附图说明
图1为本发明实施例的方法流程图;
图2为本发明实施例的系统结构框图;
图3为本发明实施例的粘着力矩观测器结构图;
图4为本发明实施例的变步长算法流程图;
图5为本发明实施例的饱和限制型控制逻辑示意图;
图6为本发明实施例不同控制方法下蠕滑率变化对比图;
图7为本发明实施例主动粘着控制下各力矩变化曲线图。
具体实施方式
下面结合附图和实施例对本发明所述的一种动车组列车安全高效运行主动粘着控制方法和系统作进一步说明。
以下是本发明所述的一种动车组列车安全高效运行主动粘着控制方法和系统的最佳实例,并不因此限定本发明的保护范围。
图1示出一种动车组列车安全高效运行主动粘着控制方法流程图,包括以下步骤:
S1、根据单轴动力学模型和全维状态观测器原理设计粘着力矩观测器,用于实时估算列车轮轨间的粘着力矩
S2、根据粘着力矩车体加速度值a和变步长算法推导计算出牵引电机的自适应限制转矩Tlim
S3、根据牵引电机的自适应限制转矩Tlim和上级牵引控制系统所给定的电机输出转矩指令值Tm *,设计出粘着控制器,协调牵引控制和粘着控制。
在本实施例中,所述步骤S1中,所述单轴动力学模型的动力学方程为:
Fr=M·(a0+b0V+c0V2)
式中,M表示单轴平均质量,Jw表示轮对平均旋转惯量,N表示单轴轴重,Tm表示电机输出转矩,r表示车轮半径,Fa表示轮轨间切向方向的粘着力,TL表示粘着力矩,ω表示车轮旋转角速度,V表示车体速度,Vw表示车轮轮周速度,a表示车体加速度,μ表示粘着系数,Fr表示列车运行阻力,a0,b0,c0表示单位质量列车运行阻力系数。
由上式可推出一阶状态空间表达式:
Y=ω,u=Tm,C=[1 0];上述表达式改写为:
计算可得矩阵的秩为2。
根据系统的可观性判断法则,可知上述线性稳定系统是完全可观的,,所述粘着力矩观测器的设计表达式为:
其中,反馈矩阵为L=[l1 l2]T,通过合理配置反馈矩阵L,使得系统矩阵A-LC的所有特征值具有负实部及所期望的衰减速度,则可实现状态估计值渐进逼近被估计系统的状态X。
作为优选的,所述步骤S2中,无需获取精确车体速度和轮轨粘着特性的条件下牵引电机的自适应限制转矩Tlim的推导和计算:具体包括:
S201、根据积分的基本性质,得引理1:不等式是不等式的充分不必要条件;其中,不等式为列车在牵引加速工况下,保证车轮处在蠕滑状态时,蠕滑率λ必须满足的条件;
S202、将车体加速度代入不等式可得其中为粘着力矩观测器所估计的粘着力矩,a为车体加速度计所测量得到的车体加速度值;移项化简可得:
根据引理1可推导出上式是不等式成立的充分不必要条件,即若牵引电机输出转矩Tm在上述不等式所表示的范围内时,车轮处于蠕滑状态,保证车轮不出现空转或打滑现象;
S203、在Tm的取值范围内定义一个自适应限制转矩为:
λx的值在初始启动阶段采用设置的经验值;当列车遭遇“低粘着”条件后,轮轨间粘着力矩TL产生突降,此时以粘着力矩观测器所估计的的突降为触发条件,强制将λx赋值为0,以快速抑制轮对的空转现象;恢复稳定后,启动变步长算法:λx(i+1)=λx(i)+α,其中更新λx的值,当不再增加时,算法自动停止工作,此时实现低粘着条件下的最大化粘着利用。
作为优选的,所述步骤S3中,采用自适应限制转矩Tlim对牵引控制系统所给定的电机转矩指令值Tm *进行动态限制,以实现主动粘着控制;其饱和限制型控制逻辑关系如下式所述:
当给定电机转矩指令值Tm *的绝对值小于自适应限制转矩值Tlim绝对值时,实际电机输出转矩Tm等于给定电机转矩指令值Tm *,满足牵引控制目标要求;当给定电机转矩指令值Tm *绝对值大于自适应限制转矩值Tlim绝对值时,此时±Tlim作为Tm的饱和值,限制住Tm,使其等于±Tlim,满足粘着控制目标要求。
图2示出了一种根据上述方法进行动车组列车的主动粘着控制系统,包括粘着控制器、数据处理模块;输入信号包括轮轴转速信号、牵引电机输出转矩信号、车体加速度信号、上级给定牵引电机转矩信号。
在本实施例中,所述轮轴转速信号由安装在轮轴端的车轴转速传感器输出,车体加速度信号由安装在转向架上的车加速度传感器输出,牵引电机输出转矩信号由粘着控制器输出,上级给定牵引电机转矩信号由列车通信网络传输进来。
所述数据处理模块用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,并通过估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
所述粘着控制器通过数据处理模块中所计算的自适应限制转矩Tlim和上级牵引控制系统所给定牵引电机转矩指令值Tm *,在一定的控制逻辑下,产生电机输出转矩的控制指令Tm
作为优选的,所述数据处理模块包括粘着力矩观测器、变步长算法模块(即图2中的变步长算法)和自适应限制转矩计算模块(即图2中的Tlim计算);
所述粘着力矩观测器用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,为下一步信号处理提供可用的粘着力矩值;如图3所示,图为粘着力矩观测器结构图,该观测器的特征方程为:s2-l1s+akl2=0,选择合理L的取值来保证特征方程的所有极点均在复平面的左侧,这样当由于建模误差或噪声干扰导致估计状态不等于实际状态X时,该观测器可将误差通过矩阵L进行反馈调节,使之以一定的收敛速度和精度趋近于实际状态X,这样设计出来的观测器满足估计精确性和实时性的要求。
所述变步长算法模块和自适应限制转矩计算模块用于根据估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
图4为变步长算法流程图,通过上述粘着力矩观测器检测到粘着力矩值发生突降后,设置短暂的延时时间,使得车轮空转现象被彻底抑制,系统恢复稳定后,启动变步长算法,变步长公式λx(i+1)=λx(i)+α,其中该步长α由初始步长α0和变步长组成,初始步长α0和变步长比例常数k根据试验经验值设定。变步长可以根据粘着力变化斜率而改变,当粘着力变化大时变步长也相应增大,以缩短到达最优粘着工作点的时间,根据当前算法中所更新的λx(i+1)=λx(i)+α,相应更新自适应限制转矩Tlim的值。当检测到时,结束变步长算法,不再更新自适应限制转矩Tlim的值,此时表明系统到达最优粘着工作点。
如图5所示饱和限制型控制逻辑示意图。采用自适应限制转矩Tlim对牵引控制系统所给定的电机转矩指令值Tm *进行动态限制,当给定电机转矩指令值Tm *的绝对值小于当前自适应限制转矩值Tlim绝对值时,实际电机输出转矩Tm等于给定电机转矩指令值Tm *,满足牵引控制目标要求;当给定电机转矩指令值Tm *绝对值大于当前自适应限制转矩值Tlim绝对值时,此时±Tlim作为Tm的饱和值,限制住Tm,使其等于±Tlim,满足粘着控制目标要求,自适应限制转矩Tlim在一定的范围内动态变化时,若给定电机转矩指令值Tm *大于当前自适应限制转矩值Tlim绝对值时,实际电机输出转矩Tm也将跟随自适应限制转矩Tlim进行动态变化,此时系统形成闭环自动控制。
如图6所示在不同控制方法下蠕滑率变化对比图。在t=2s时遭遇“低粘着”轨面条件,无粘着控制条件下,蠕滑率迅速增大到1,这表明车轮发生了严重的空转;在再粘着控制条件下,蠕滑率在所设置的阀值影响下,蠕滑率的值在最优蠕滑率附近上下跳变,此时轮对发生局部短暂的空转现象;在主动粘着控制条件下,蠕滑率平滑稳定地逼近最优蠕滑率,在t=2.5s时达到最优蠕滑率λ=0.2,并保持不变,这实现在低粘着条件下,车轮不发生空转且最大化利用粘着力。
从图7我们可以看到,在主动粘着控制中,在轨道突变为低粘着条件下,电机输出转矩、自适应限制转矩、实际粘着力矩的变化情况。初始时为保证列车在普通轨面条件下以恒转矩加速启动,我们根据恒转矩指令大小对λx设置一个初始经验值,使得自适应限制转矩Tlim大于电机输出转矩Tm,此时粘着力矩稳定在加速所需要的值上。在t=2s时,轨面条件突变为“低粘着”,此时粘着力矩产生必然突降,如果牵引电机输出力矩仍保持原值,那么车轮将会马上出现空转现象。在这种情况下,抑制车轮空转的重要性要远远大于追求最大加速。所以当检测到粘着力矩突降后,马上令λx=0,则从图中我们也可看到自适应限制转矩Tlim也随着发生了大范围的突降.此时,车轮的旋转加速度等于车体运行加速度,车轮空转现象将被抑制。经过短暂的延时(0.1s)后,车轮再恢复稳定状态,为了实现在“低粘着”条件下最大化粘着利用,需在蠕滑范围内,尽可能提高Tlim值以增大被限制的Tm值。我们采用变步长公式λx(i+1)=λx(i)+α,其中逐步增加λx,此时Tlim相应增加。在未到达最大粘着点时即实际蠕滑率λ<λopt时,TL也会随着Tlim的增加而相应增加。在t=2.5s时,粘着力矩观测器检测到不再增加时,变步长算法自动停止工作,此时轮轨间粘着力达到了该轨面条件下所能提供的最大值,实现最大化粘着利用。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种动车组列车安全高效运行主动粘着控制方法,其特征在于,包括以下步骤:
S1、根据单轴动力学模型和全维状态观测器原理设计粘着力矩观测器,用于实时估算列车轮轨间的粘着力矩
S2、根据粘着力矩车体加速度值a和变步长算法推导计算出牵引电机的自适应限制转矩Tlim
S3、根据牵引电机的自适应限制转矩Tlim和上级牵引控制系统所给定的电机输出转矩指令值Tm *,设计出粘着控制器,协调牵引控制和粘着控制。
2.根据权利要求1所述的动车组列车安全高效运行主动粘着控制方法,其特征在于,所述步骤S1中,所述单轴动力学模型的动力学方程为:
J w ω · = T m - T L
M V · = F a - F r = M a
Fr=M·(a0+b0V+c0V2)
式中,M表示单轴平均质量,Jw表示轮对平均旋转惯量,N表示单轴轴重,Tm表示电机输出转矩,r表示车轮半径,Fa表示轮轨间切向方向的粘着力,TL表示粘着力矩,ω表示车轮旋转角速度,V表示车体速度,Vw表示车轮轮周速度,a表示车体加速度,μ表示粘着系数,Fr表示列车运行阻力,a0,b0,c0表示单位质量列车运行阻力系数。
3.根据权利要求2所述的动车组列车安全高效运行主动粘着控制方法,其特征在于,根据单轴动力学方程,推出一阶状态空间表达式:
ω · T · L = 0 - 1 / J w 0 0 ω T L + 1 / J w 0 T m
ω = 1 0 ω T L
Y=ω,u=Tm,C=[1 0];上述表达式改写为:
X · = A X + B u Y = C X
计算可得矩阵的秩为2。
4.根据权利要求3所述的动车组列车安全高效运行主动粘着控制方法,其特征在于,所述粘着力矩观测器的设计表达式为:
X ^ · = A X ^ + B u + L ( C X - C X ^ )
其中,反馈矩阵为L=[l1 l2]T,通过配置反馈矩阵L,使得系统矩阵A-LC的所有特征值具有负实部及所期望的衰减速度,实现状态估计值渐进逼近被估计系统的状态X。
5.根据权利要求4所述的动车组列车安全高效运行主动粘着控制方法,其特征在于,所述步骤S2中具体包括:
S201、根据积分的基本性质,得引理1:不等式是不等式的充分不必要条件;其中,不等式为列车在牵引加速工况下,保证车轮处在蠕滑状态时,蠕滑率λ必须满足的条件;
S202、将车体加速度代入不等式可得其中为粘着力矩观测器所估计的粘着力矩,a为车体加速度计所测量得到的车体加速度值;
移项化简可得:
根据引理1可推导出上式是不等式成立的充分不必要条件;
S203、在Tm的取值范围内定义一个自适应限制转矩为:
T lim = T ^ L + J w a ( 1 - λ x ) r , λ x ∈ [ 0 , λ o p t ] ;
λx的值在初始启动阶段采用设置的经验值;当列车遭遇“低粘着”条件后,轮轨间粘着力矩TL产生突降,此时以粘着力矩观测器所估计的的突降为触发条件,强制将λx赋值为0,以快速抑制轮对的空转现象;恢复稳定后,启动变步长算法:λx(i+1)=λx(i)+α,其中更新λx的值,当不再增加时,算法自动停止工作,此时实现低粘着条件下的最大化粘着利用。
6.根据权利要要求1所述的动车组列车安全高效运行主动粘着控制方法,其特征在于,所述步骤S3中,采用自适应限制转矩Tlim对牵引控制系统所给定的电机转矩指令值Tm *进行动态限制,以实现主动粘着控制;其饱和限制型控制逻辑关系如下式所述:
T m = - | T lim | , T m * &le; - | T lim | T m = T m * , - | T lim | < T m * < | T lim | T m = | T lim | , T m * &GreaterEqual; | T lim |
当给定电机转矩指令值Tm *的绝对值小于自适应限制转矩值Tlim绝对值时,实际电机输出转矩Tm等于给定电机转矩指令值Tm *,满足牵引控制目标要求;当给定电机转矩指令值Tm *绝对值大于自适应限制转矩值Tlim绝对值时,此时±Tlim作为Tm的饱和值,限制住Tm,使其等于±Tlim,满足粘着控制目标要求。
7.一种根据权利要求1至6任一所述方法进行动车组列车的主动粘着控制系统,其特征在于,包括粘着控制器、数据处理模块;
所述数据处理模块用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,并通过估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
所述粘着控制器通过数据处理模块中所计算的自适应限制转矩Tlim和上级牵引控制系统所给定牵引电机转矩指令值Tm *,在一定的控制逻辑下,产生电机输出转矩的控制指令Tm
8.根据权利要求7所述的动车组列车的主动粘着控制系统,其特征在于,所述数据处理模块包括粘着力矩观测器、变步长算法模块和自适应限制转矩计算模块;
所述粘着力矩观测器用于通过反馈回来的轮轴转速信号和牵引电机输出转矩信号估计出实时的轮轨间粘着力矩,为下一步信号处理提供可用的粘着力矩值;
所述变步长算法模块和自适应限制转矩计算模块用于根据估计出实时的轮轨间粘着力矩和车体加速度值,在无需车体速度和轮轨粘着特性的条件下,实时计算出能够适应当前轨面条件的牵引电机输出转矩限制值,为粘着控制器提供牵引电机的自适应限制转矩Tlim
9.根据权利要求7所述的动车组列车的主动粘着控制系统,其特征在于,所述轮轴转速信号由安装在轮轴端的车轴转速传感器输出,车体加速度信号由安装在转向架上的车加速度传感器输出,牵引电机输出转矩信号由粘着控制器输出,上级给定牵引电机转矩信号由列车通信网络传输进来。
CN201610764234.2A 2016-08-30 2016-08-30 一种动车组列车安全高效运行主动粘着控制方法和系统 Pending CN106444373A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610764234.2A CN106444373A (zh) 2016-08-30 2016-08-30 一种动车组列车安全高效运行主动粘着控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610764234.2A CN106444373A (zh) 2016-08-30 2016-08-30 一种动车组列车安全高效运行主动粘着控制方法和系统

Publications (1)

Publication Number Publication Date
CN106444373A true CN106444373A (zh) 2017-02-22

Family

ID=58090345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610764234.2A Pending CN106444373A (zh) 2016-08-30 2016-08-30 一种动车组列车安全高效运行主动粘着控制方法和系统

Country Status (1)

Country Link
CN (1) CN106444373A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108944963A (zh) * 2018-07-03 2018-12-07 西南交通大学 基于动态轴重转移补偿和多轴协调的机车粘着控制方法
CN109606397A (zh) * 2018-12-12 2019-04-12 怀化学院 列车运行控制方法、装置、计算机设备和存储介质
CN109799702A (zh) * 2017-11-17 2019-05-24 株洲中车时代电气股份有限公司 一种轨道交通车辆的粘着控制方法及系统
CN110095979A (zh) * 2018-01-29 2019-08-06 湖南工业大学 一种基于非对称Barrier Lyapunov函数高速列车粘着防滑控制方法
CN110450794A (zh) * 2019-08-26 2019-11-15 西南交通大学 一种基于最优蠕滑速度搜寻与跟踪的优化粘着控制方法
CN110955146A (zh) * 2019-12-13 2020-04-03 中国铁道科学研究院集团有限公司 基于分布式模型预测控制的重载机车粘着控制方法及装置
CN111376731A (zh) * 2018-12-28 2020-07-07 中车大连电力牵引研发中心有限公司 轨道列车轮轨粘着控制方法
US20200369305A1 (en) * 2016-04-05 2020-11-26 Faiveley Transport Italia S.P.A. Vehicle control system
CN112104284A (zh) * 2020-09-18 2020-12-18 成都运达科技股份有限公司 一种基于架控模式下的城轨列车黏着控制方法及系统
CN112883322A (zh) * 2021-03-10 2021-06-01 资阳中车电力机车有限公司 一种齿轨列车粘着与齿轨动力分配计算方法
CN113378376A (zh) * 2021-06-08 2021-09-10 杭州电子科技大学 一种城市轨道交通车站客流量的混合触发控制方法
CN113942399A (zh) * 2021-11-24 2022-01-18 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148445A (ja) * 2006-12-11 2008-06-26 Fuji Electric Systems Co Ltd 鉄道車両の駆動制御装置
US20110029179A1 (en) * 2009-07-31 2011-02-03 Hitachi Automotive Systems, Ltd. Motor Control Device and Motor System Equipped with Motor Control Device
CN202499141U (zh) * 2011-12-29 2012-10-24 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制装置
CN103183037A (zh) * 2011-12-29 2013-07-03 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制方法及装置
CN104035325A (zh) * 2014-05-23 2014-09-10 南车株洲电力机车研究所有限公司 一种防空转防滑行保护阈值确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148445A (ja) * 2006-12-11 2008-06-26 Fuji Electric Systems Co Ltd 鉄道車両の駆動制御装置
US20110029179A1 (en) * 2009-07-31 2011-02-03 Hitachi Automotive Systems, Ltd. Motor Control Device and Motor System Equipped with Motor Control Device
CN202499141U (zh) * 2011-12-29 2012-10-24 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制装置
CN103183037A (zh) * 2011-12-29 2013-07-03 中国北车股份有限公司大连电力牵引研发中心 电力机车粘着控制方法及装置
CN104035325A (zh) * 2014-05-23 2014-09-10 南车株洲电力机车研究所有限公司 一种防空转防滑行保护阈值确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖文豪: "基于力观测器的高速列车牵引及粘着控制研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200369305A1 (en) * 2016-04-05 2020-11-26 Faiveley Transport Italia S.P.A. Vehicle control system
US11529982B2 (en) * 2016-04-05 2022-12-20 Faiveley Transport Italia S.P.A. Vehicle control system
CN109799702A (zh) * 2017-11-17 2019-05-24 株洲中车时代电气股份有限公司 一种轨道交通车辆的粘着控制方法及系统
CN110095979B (zh) * 2018-01-29 2022-08-30 湖南工业大学 一种基于非对称Barrier Lyapunov函数高速列车粘着防滑控制方法
CN110095979A (zh) * 2018-01-29 2019-08-06 湖南工业大学 一种基于非对称Barrier Lyapunov函数高速列车粘着防滑控制方法
CN108944963A (zh) * 2018-07-03 2018-12-07 西南交通大学 基于动态轴重转移补偿和多轴协调的机车粘着控制方法
CN109606397A (zh) * 2018-12-12 2019-04-12 怀化学院 列车运行控制方法、装置、计算机设备和存储介质
CN111376731A (zh) * 2018-12-28 2020-07-07 中车大连电力牵引研发中心有限公司 轨道列车轮轨粘着控制方法
CN111376731B (zh) * 2018-12-28 2021-09-10 中车大连电力牵引研发中心有限公司 轨道列车轮轨粘着控制方法
CN110450794A (zh) * 2019-08-26 2019-11-15 西南交通大学 一种基于最优蠕滑速度搜寻与跟踪的优化粘着控制方法
CN110955146A (zh) * 2019-12-13 2020-04-03 中国铁道科学研究院集团有限公司 基于分布式模型预测控制的重载机车粘着控制方法及装置
CN112104284A (zh) * 2020-09-18 2020-12-18 成都运达科技股份有限公司 一种基于架控模式下的城轨列车黏着控制方法及系统
CN112883322A (zh) * 2021-03-10 2021-06-01 资阳中车电力机车有限公司 一种齿轨列车粘着与齿轨动力分配计算方法
CN113378376A (zh) * 2021-06-08 2021-09-10 杭州电子科技大学 一种城市轨道交通车站客流量的混合触发控制方法
CN113378376B (zh) * 2021-06-08 2024-02-13 杭州电子科技大学 一种城市轨道交通车站客流量的混合触发控制方法
CN113942399A (zh) * 2021-11-24 2022-01-18 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法
CN113942399B (zh) * 2021-11-24 2023-08-04 中车大连机车车辆有限公司 一种抑制机车低速空转的控制方法

Similar Documents

Publication Publication Date Title
CN106444373A (zh) 一种动车组列车安全高效运行主动粘着控制方法和系统
CN102267459B (zh) 一种电机驱动车辆的驱动防滑调节控制方法
CN101830231B (zh) 一种机车空转滑行保护控制方法
CN103105779B (zh) 一种列车运动仿真系统
CN103991442B (zh) 一种电动车辆的复合制动系统及其复合制动方法
WO2018045881A1 (zh) 用于车辆的陡坡缓降系统及其控制方法
CN107310557B (zh) 一种混合动力汽车制动模式切换协调控制的方法
CN102501779A (zh) 一种电动汽车牵引力控制方法
CN102166963A (zh) 一种纯电动汽车制动能量回馈控制方法
CN108909526A (zh) 一种单踏板驾驶模式减速控制方法、装置及电动汽车
CN103953503B (zh) 风力发电机组偏航制动力矩控制装置及其方法
CN106458226B (zh) 用于提高机车车辆的效率的方法和系统
EP3194201B1 (en) Wheel stability control based on the moment of an electrical motor
CN107206983B (zh) 车辆的控制装置以及车辆的控制方法
CN103034129B (zh) 一种适用于轨道车辆牵引控制的仿真方法
JP5484089B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN110091720A (zh) 一种电动汽车自适应制动能量回收算法
JP2012151958A (ja) 電気車制御装置
Heydari et al. Influencing factors in low speed regenerative braking performance of electric vehicles
CN109760683A (zh) 一种分布式驱动的纯电动车辆爬坡扭矩控制方法及系统
CN103879305B (zh) 用于四轮独立驱动电动车的最大转矩估计驱动防滑算法
JP5484215B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN105253012B (zh) 自卸车轴间功率分配及差速控制的仿真方法
JP5484214B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN104035325A (zh) 一种防空转防滑行保护阈值确定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222

RJ01 Rejection of invention patent application after publication