WO2023093201A1 - 天线装置和电子设备 - Google Patents

天线装置和电子设备 Download PDF

Info

Publication number
WO2023093201A1
WO2023093201A1 PCT/CN2022/117245 CN2022117245W WO2023093201A1 WO 2023093201 A1 WO2023093201 A1 WO 2023093201A1 CN 2022117245 W CN2022117245 W CN 2022117245W WO 2023093201 A1 WO2023093201 A1 WO 2023093201A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
antenna device
radiator
point
mode
Prior art date
Application number
PCT/CN2022/117245
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023093201A1 publication Critical patent/WO2023093201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of terminals, in particular to an antenna device and electronic equipment.
  • electronic devices can connect the feed of the antenna device to radiators in different regions according to changes in application scenarios, and radiate signals through radiators in different regions to adapt to changes in hand postures in different application scenarios.
  • Embodiments of the present application provide an antenna device and an electronic device, which can improve the performance of the antenna device in the electronic device, so that the electronic device can be applied to ultra-wideband application scenarios.
  • an antenna device which is applied to electronic equipment, including: a feed source and a radiating unit connected to the feed source; the radiating unit is excited by the feed source to generate multiple resonance modes in the same frequency band, and different resonance modes are radiated Different resonant current distributions are formed on the unit;
  • Each resonance mode is used to generate a spatial radiation field corresponding to a frequency band, and different resonance modes correspond to different spatial coverages of the spatial radiation field.
  • an electronic device in a second aspect, includes the antenna device of the first aspect.
  • the antenna device is applied to electronic equipment, and the antenna device includes a feed source and a radiation unit connected to the feed source; the radiation unit is excited by the feed source to generate multiple resonance modes in the same frequency band, and different resonance modes are used in radiation Different resonant current distributions are formed on the unit; each resonant mode is used to generate a spatial radiation field corresponding to a frequency band, and different resonant modes correspond to different spatial coverages of the spatial radiation field.
  • the above-mentioned antenna device can radiate electromagnetic wave signals to multiple spatial coverage ranges; when electronic When the device is in different spatial states such as horizontal screen or vertical screen with different holding postures of the user, the spatial radiation field generated by different resonance modes can adapt to the change of the spatial state of the electronic device, and radiate to different spatial radiation ranges in different spatial states
  • the electromagnetic wave signal can prevent the user's hand gesture from affecting the signal transmission of the electronic device, thereby ensuring the communication performance of the electronic device.
  • FIG. 1 is a schematic structural diagram of an antenna device in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of radiation bandwidth in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the grip posture in one embodiment of the present application.
  • FIG. 5 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a filtering network in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first resonance mode in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first resonance mode in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second resonance mode in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the resonant frequency of the first working frequency band in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a third resonance mode in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a fourth resonance mode in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a fifth resonance mode in an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a sixth resonance mode in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a seventh resonant mode in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an eighth resonance mode in an embodiment of the present application.
  • FIG. 19 is a schematic diagram of the resonant frequency of the second working frequency band in an embodiment of the present application.
  • FIG. 20 is a schematic diagram of the resonant frequency of the second working frequency band in an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 22 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 23 is a schematic diagram of an antenna device in an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a fifth matching circuit in an embodiment of the present application.
  • FIG. 25 is a schematic diagram of an antenna device in an embodiment of the present application.
  • Fig. 26 is a schematic diagram of an electronic device in an embodiment of the present application.
  • Feed source 20. Radiation unit; 11. First feed source; 12. Second feed source;
  • A1 the first feed point; A2, the second feed point;
  • B1 the first matching point; B2, the second matching point; B3, the third matching point;
  • L0 the first inductance
  • L2 the second inductance
  • C0 the first capacitance
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first feed could be termed a second feed, and, similarly, a second feed could be termed a first feed, without departing from the scope of the present application.
  • Both the first feed and the second feed are feeds, but they are not the same feed.
  • the antenna device provided in the present application can be applied to electronic equipment, and the above electronic equipment can be a device with a wireless transceiver function, which can be, but not limited to, a handheld or wearable device.
  • the electronic device may be a mobile phone, a tablet computer, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, and the like.
  • the electronic device can communicate with other devices through the wireless transceiver function, and the above-mentioned other devices can be network devices or other electronic devices.
  • the foregoing network device may be a device with a wireless transceiver function.
  • base station NodeB evolved base station eNodeB
  • base station in the fifth generation (the fifth generation, 5G) communication system base station or network equipment in future communication system
  • access node in WiFi system wireless relay nodes, wireless backhaul nodes, near-field communication devices, etc.
  • an antenna device is provided, as shown in FIG. 1 .
  • the antenna device includes a feed source 10 and a radiation unit 20 connected to the feed source 10; the above-mentioned radiation unit 20 is excited by the feed source 10 and can generate multiple resonance modes in the same frequency band, and different resonance modes form different resonances on the radiation unit 20 current distribution.
  • Each of the above resonance modes can be used to generate a spatial radiation field corresponding to a frequency band, and different resonance modes correspond to different spatial coverages of the spatial radiation field.
  • the above radiation unit 20 may be a metal frame of the electronic device, or may be a radiation patch of a built-in antenna on the electronic device.
  • the metal frame of the electronic device may be formed of metal materials such as stainless steel and aluminum; the metal frame may surround the display screen of the electronic device.
  • the above-mentioned metal frame may be the bottom frame, the top frame and the side frame of the electronic device.
  • the built-in antenna above can be a Flexible Printed Circuit (FPC for short) antenna, a Laser Direct Structuring (LDS for short) circuit antenna, or a Print Direct Structuring (PDS for short) antenna.
  • FPC Flexible Printed Circuit
  • LDS Laser Direct Structuring
  • PDS Print Direct Structuring
  • the frequency bands of the electromagnetic wave signals output by the above-mentioned feed source 10 can include the frequency bands of the Global Positioning System (Global Positioning System, GPS), the working frequency bands of the Beidou Satellite System, and the working frequency bands of the Global Navigation Satellite System (GLONASS); the above-mentioned frequency bands also It may include a mobile communication communication frequency band, a WiFi communication frequency band, for example, a 5.8GHz frequency band, a 2.4GHz frequency band in a 5G frequency band, and the like.
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • an induced current may be generated on the surface of the radiation unit 20 .
  • the aforementioned induced current may have different return paths on the radiation unit 20 , corresponding to different resonance modes.
  • the foregoing resonance mode may include a quarter-wavelength mode, a three-quarter-wavelength mode, etc., and may also include other wavelength modes, which are not limited herein.
  • Different resonant modes can form different resonant current distributions on the radiation unit 20 .
  • the resonant frequencies corresponding to different resonant modes may be different.
  • the above-mentioned feed source 10 may output electromagnetic wave signals of different frequency bands, and the number of resonant modes corresponding to the electromagnetic wave signals of different frequency bands may be different.
  • the above-mentioned radiating unit 20 is excited by a feed source to generate N1 medium resonance modes in the first frequency band, and generate N2 resonance modes in the second frequency band.
  • Different resonant modes correspond to different resonant current distributions, and when the resonant currents are distributed in different spatial positions of the electronic device, the spatial coverage corresponding to the generated spatial radiation field may also be different.
  • the above-mentioned different spatial positions of the electronic device may refer to the bottom, top, side, etc. of the electronic device.
  • the aforementioned space coverage may refer to the coverage of the space radiation field generated by the resonant mode.
  • the spatial coverage corresponding to the space radiation field generated by one of the resonance modes may be the range from the bottom of the electronic device outward
  • the spatial coverage corresponding to the space radiation field generated by the other resonance mode may be the range from the side area of the electronic device to the outside. outside the range, etc.
  • the above-mentioned antenna device includes a feed source 10 and a radiation unit 20 connected to the feed source; the radiation unit 20 is excited by the feed source to generate multiple resonance modes in the same frequency band, and different resonance modes form different resonance current distributions on the radiation unit 20; Each resonance mode is used to generate a spatial radiation field corresponding to a frequency band, and different resonance modes correspond to different spatial coverages of the spatial radiation field.
  • the above-mentioned antenna device can radiate electromagnetic wave signals to multiple spatial coverage ranges; when When the electronic device is in different spatial states such as horizontal screen or vertical screen with different holding postures of the user, the spatial radiation field generated by different resonance modes can adapt to the change of the spatial state of the electronic device, and radiate to different spatial states in different spatial states.
  • the electromagnetic wave signal is radiated, so that the user's hand posture can be prevented from affecting the signal transmission of the electronic device, and the communication performance of the electronic device can be guaranteed.
  • an antenna device is provided, as shown in FIG. 2 .
  • the above-mentioned feed source 10 includes a first feed source 11 and a second feed source 12;
  • the above-mentioned radiation unit 20 includes a plurality of radiators 22 formed at intervals by at least two slits 21; the first feed source 11 and the second feed source 12 are respectively connected Different radiators 22 .
  • the above-mentioned antenna device also includes a plurality of matching circuits 30 connected to different radiators 22 .
  • the above-mentioned first feed source 11 works in the first frequency band, and is used to excite one or more radiators 22 to generate multiple resonance modes covering the first frequency band under the tuning of one or more matching circuits 30, each covering the second frequency band.
  • a resonance mode of a frequency band is used to generate a spatial radiation field corresponding to the first frequency band, and any two spatial radiation fields corresponding to the first frequency band have different spatial coverages.
  • the above-mentioned second feed source 12 works in the second frequency band, and is used to excite one or more radiators 22 to generate multiple resonance modes covering the second frequency band under the tuning of one or more matching circuits 30, each covering the second frequency band.
  • the resonant mode of the two frequency bands is used to generate a spatial radiation field corresponding to the second frequency band, and the spatial coverages of any two spatial radiation fields corresponding to the second frequency band are different.
  • the plurality of radiators 22 may be separated by at least two slits, and the opening width of the slits may be, but not limited to, between 0.5 mm and 2 mm.
  • the above gap 21 may be filled with materials such as ceramics and glass.
  • the above at least two slits 21 can be set on the same metal frame, or can be set on different metal frames, which is not limited here.
  • one of the at least two slots 21 is set on the metal bottom frame, and two slots are opened on one of the metal side frames; or, both of the two slots of the antenna device are set on the metal bottom frame.
  • the distance between two adjacent slots can be adjusted according to the setting positions of the first feed source 11 and the second feed source 12, or can be adjusted according to the position of the first feed source 11 and the second feed source 12 of the antenna device. Adjust the working frequency band.
  • the first feed source 11 and the second feed source 12 in the antenna device may output electromagnetic wave signals at the same time, or output electromagnetic wave signals through one of the feed sources 10 , which is not limited here.
  • the plurality of radiators 22 and at least two slots 21 in the antenna device are used to radiate the electromagnetic wave signal output by the first feed source 11; in another application scenario, the plurality of radiators 22 in the antenna device The body 22 and at least two slots 21 are used to simultaneously radiate the electromagnetic wave signals output by the first feed source 11 and the second feed source 12, so as to realize the common body of two antennas with different working frequency bands and improve the integration of the antenna device.
  • the operating frequency bands of the first feed source 11 and the second feed source 12 in the antenna device may be different.
  • the above-mentioned first feed source 11 and second feed source 12 can be respectively connected to different radiators 22, for example, the first feed source 11 can be connected to the first radiator 221, and the second feed source 12 can be connected to the second radiator 222 .
  • the above-mentioned first feed source 11 can also be connected to different radiators through switching, for example, when the first feeding source 11 is connected to the second radiator 222 through switching, the second feeding source 12 can be connected to the second radiator 222 through switching.
  • a radiator 221 .
  • the above-mentioned antenna device may include multiple matching circuits 30, and the above-mentioned multiple matching circuits 30 may be connected to the radiator so that the radiator can be excited to generate multiple resonance modes.
  • each radiator can be connected to a matching circuit 30 , or a matching circuit 30 can be connected to some radiators; one matching circuit 30 can be connected to the same radiator, and multiple matching circuits 30 can also be connected.
  • the forms of different matching circuits 30 in the antenna device may be different or the same.
  • their corresponding parameters such as resistance value and capacitance value may be different.
  • the tuning effects on the antenna device may be different.
  • the above-mentioned matching circuit 30 may be composed of integrated components such as capacitors, inductors, and resistors, and may also include a radio frequency switch; the above-mentioned matching circuit 30 may also be a metal stub for matching; the form of the matching circuit is not limited here.
  • an induced current may be generated on the surface of the radiator 22 . Due to the existence of gaps 21 between adjacent radiators, and the tuning of the matching circuit 30 causes impedance changes at various points on the radiators, the induced current has different return paths on the radiators, corresponding to different resonance modes.
  • the antenna device can tune the resonant frequencies corresponding to the multiple resonant modes to different positions through the multiple matching circuits 30 , so that different resonant modes correspond to different resonant frequencies. In the same working frequency band, the more resonant modes there are, the more corresponding resonant frequencies are, making the radiation bandwidth in the working frequency band wider.
  • one of the working frequency bands includes a resonant frequency as shown in Figure 3(a), the radiation bandwidth is calculated according to the minimum return loss point drop of 3dB, and the corresponding bandwidth is W1; if the working frequency band includes such
  • the radiation bandwidth is calculated according to the minimum return loss point drop of 3dB, and the corresponding bandwidth is W2, which greatly improves the radiation bandwidth of the antenna device.
  • the above-mentioned first feed source 11 can work in the first frequency band, and is used to excite one or more radiators 22 to generate multiple resonance modes covering the first frequency band under the tuning of one or more matching circuits 30, each covering
  • the resonant mode of the first frequency band is used to generate a spatial radiation field corresponding to the first frequency band, and the spatial coverages of any two spatial radiation fields corresponding to the first frequency band are different.
  • the above-mentioned second feed source 12 can work in the second frequency band, and is used to excite one or more radiators 22 to generate multiple resonance modes covering the second frequency band under the tuning of one or more matching circuits 30, each covering The resonance mode of the second frequency band is used to generate a spatial radiation field corresponding to the second frequency band, and the spatial coverages of any two spatial radiation fields corresponding to the second frequency band are different.
  • the resonance modes generated by the plurality of radiators 22 may be the same or different.
  • the above application scenarios may include scenarios corresponding to antenna devices radiating electromagnetic wave signals in different frequency bands, for example, the first scenario corresponding to the first feed source 11 outputting electromagnetic wave signals in the first working frequency band, and the first feed source 11 outputting electromagnetic wave signals in the first working frequency band
  • the second feed source 12 outputs the second scene corresponding to the electromagnetic wave signal of the second working frequency band
  • the first feed source 11 outputs the electromagnetic wave signal of the first working frequency band
  • the second feed source 12 outputs the electromagnetic wave signal corresponding to the third working frequency band.
  • the above-mentioned application scenarios may also include free-space scenarios, vertical-screen hand-holding scenarios, and horizontal-screen hand-holding scenarios.
  • the above-mentioned free space scene may refer to a scene in which the electronic device is not held by the user.
  • the aforementioned scenario of holding the electronic device vertically may refer to a scenario where the user holds the electronic device vertically.
  • the above scene of holding the electronic device in a horizontal screen may refer to a scene in which the user holds the electronic device in a horizontal screen.
  • Figure 4 shows the bottom and middle gestures of the user holding the electronic device in vertical screen with one hand, and the user's Hold the electronic device vertically with both hands, and hold the electronic device horizontally with both hands.
  • the holding gestures involved in the vertical screen hand-holding scene and the horizontal screen hand-holding scene are not limited to the schematic diagram in FIG. 4 .
  • the feed source 10 of the above-mentioned antenna device includes a first feed source 11 and a second feed source 12; the radiation unit 20 includes a plurality of radiators 22 formed at intervals by at least two slots 21; the first feed source 11 and the second feed source 12 Different radiators are respectively connected; the above-mentioned antenna device also includes a plurality of matching circuits connected to different radiators; so that the first feed source 11 can excite one or more radiators under the tuning of one or more matching circuits 30 To generate multiple resonance modes covering the first frequency band, the second feed 12 can excite one or more radiators to generate multiple resonance modes covering the second frequency band under the tuning of one or more matching circuits.
  • the antenna device Based on a variety of resonance modes covering the first frequency band and a variety of resonance modes covering the second frequency band, the antenna device radiates electromagnetic wave signals in the first frequency band and the second frequency band, which can avoid the influence of the user's hand on the radiation performance and further guarantee Communication performance of electronic devices.
  • the plurality of radiators 22 in the above antenna device are three radiators formed by the metal frame of the electronic device separated by two gaps.
  • the above two slots 21 include a first slot 211 opened on the metal bottom frame of the electronic device, and a second slot 212 opened on the first metal side frame of the electronic device.
  • the plurality of radiators in the antenna device may include a first radiator 221 between the first slot 211 and the second slot 212, a second radiator 222 away from the second slot 212, and a third radiator away from the first slot 211 223.
  • the above-mentioned first metal side frame may be a right side frame when the screen of the electronic device faces the user, as shown in FIG. 5 .
  • the above-mentioned first metal side frame may also be a left frame when the screen of the electronic device faces the user, as shown in FIG. 6 .
  • the first feed source 11 and the second feed source 12 in the antenna device may be connected to two radiators among the first radiator 221 , the second radiator 222 and the third radiator 223 .
  • the above-mentioned first feed source 11 and second feed source 12 may be connected to the radiator through a radio frequency transmission line, or may be connected to the radiator 22 through a matching circuit, which is not limited here.
  • the first feed source 11 can be connected to the first feeding point A1 of the first radiator 221 through the first matching circuit 31; the second feed source 12 can be connected to the first feeding point A1 of the second radiator 222 through the second matching circuit 32
  • the two feeding points A2 are connected; the first working frequency band of the first feeding source 11 may be lower than the second working frequency band of the second feeding source 12 .
  • the working frequency band of the first feed source 11 is less than 1 GHz
  • the working frequency band of the second feed source 12 is greater than 1 GHz and less than GHz.
  • the above-mentioned first matching circuit 31 and the above-mentioned second matching circuit 32 can be used to simultaneously excite multiple resonance modes on the radiator 22, and can also be used to tune the resonance frequency corresponding to the resonance mode.
  • the above-mentioned matching circuit can also include a filter network, It is used to improve the isolation between the first working frequency band and the second working frequency band of the antenna device, and reduce the signal interference between the two working frequency bands.
  • the above-mentioned first matching circuit 31 may include a first frequency-selective filter network; the above-mentioned first frequency-selective filter network is used to conduct the electromagnetic wave signal output by the first feed source 11; the above-mentioned second matching circuit 32 may include a second Frequency-selective filter network; the above-mentioned second frequency-selective filter network is used to conduct the electromagnetic wave signal output by the second feed source 12 .
  • the above-mentioned frequency-selective filter network may be a resonant network composed of an inductor and a capacitor, and the above-mentioned frequency-selective filter network may be connected in parallel or connected in series.
  • FIG. 7 is a schematic diagram of several filter networks, and the first frequency-selective filter network and the second frequency-selective filter network can be any combination of the filter networks in the figure.
  • the above antenna device may also include other matching circuits.
  • a first matching point B1 may be set on the first radiator 221, and the first matching point B1 is connected to the third matching circuit 33; the first matching point B1 may be set on the first Between the gap 211 and the first feeding point A1.
  • the above-mentioned third matching circuit 33 can be used to simultaneously excite multiple resonance modes on the radiator, and can also be used to tune the resonance frequency corresponding to the resonance mode.
  • a first ground point C1 may be set on the second radiator 222 ; the first ground point C1 may be set on a side of the second feeding point A2 away from the first slot 211 .
  • the above-mentioned first ground point C1 can make the second radiator 222 present a low-impedance state at this point, so that the induced current on the second radiator 222 can flow back through the first ground point C1, reducing the flow to other areas of the second radiator 222
  • the propagating current reduces the influence of the induced current on the second radiator 222 on other components of the electronic device and improves the isolation of the antenna device.
  • a second ground point C2 is set on the third radiator 223 ; the second ground point C2 is set on a side of the third radiator 223 close to the second slot 212 .
  • the above-mentioned second ground point C2 can make the third radiator 223 present a low impedance state at this point, so that the current induced on the third radiator 223 through the second gap 212 can directly flow back through the second ground point C2, reducing the third The induced current on the radiator 223, thereby reducing the influence of the induced current on the third radiator 223 on other components of the electronic device, and improving the isolation of the antenna device.
  • the above-mentioned antenna device opens the first slit 211 and the second slit 212 on the metal frame, and under the tuning of the matching circuit, the radiator can be excited to generate multiple resonance modes, thereby widening the radiation bandwidth of the antenna device; further Specifically, since the first slit 211 is set on the metal bottom frame of the electronic device, and the second slit 212 is set on the first metal side frame of the electronic device, the antenna device can radiate electromagnetic wave signals through different positions of the electronic device, thereby adapting to different Antenna radiation requirements in the scenario.
  • the foregoing embodiments mainly introduce the structure of an antenna device when the radiator is on the metal frame of the electronic device.
  • the resonant modes generated by the radiators excited by the first feed source 11 and the second feed source 12 are respectively described.
  • the resonance mode generated by the first radiator 221 excited by the first feed source 11 includes at least one of the following:
  • the first resonant mode, the resonant current in the first resonant mode is distributed between the first slot 211 and the first feeding point A1 or the matching point B set near the first feeding point, and the second slot 212 and the first Between feed point A1, as shown in Figure 8 and Figure 9.
  • the resonant current in the second resonant mode is distributed between the first slot 211 and the second slot 212 , as shown in FIG. 10 .
  • the current can flow from the first slot 211 to the first feeding point A1, and flow from the second slot 212 to the first feeding point A1, forming a reverse current; or, the above-mentioned current can also flow from the first feeding point
  • the electricity point A1 flows to the first slot 211 , and flows from the first feeding point A1 to the second slot 212 .
  • the current may flow from the first slot 211 to the second slot 212 or from the second slot 212 to the first slot 211 to form a current in the same direction, which may also be called a balanced mode current.
  • the first feeding point A1 presents a low impedance state in the first working frequency band, so that the first radiator 221 can simultaneously generate the first resonant mode and the second resonant mode when excited by the first feed source 11 .
  • the aforementioned low-impedance state may mean that the first feeding point A1 is grounded with low impedance, for example, the first matching circuit 31 connected to the first feeding point A1 has a low-impedance grounding path.
  • the vicinity of the above-mentioned first feeding point A1 may also include other matching points B, and the matching point B may present a low impedance state in the first frequency band, so that the first radiator 221 can generate the first resonance at the same time when it is excited by the first feeding source 11 mode and the second resonant mode.
  • the above-mentioned first radiator 221 can generate the first resonance mode or the second resonance mode when excited by the first feed source 11; In the case that the first feeding point A1 or the matching point B does not present a low impedance state to the first frequency band, the above-mentioned first radiator 221 may also be excited by the first feeding source 11 to generate the second resonance mode.
  • the resonant modes generated by the above-mentioned first feed source 11 exciting the first radiator 221 may correspond to different resonant frequencies.
  • the first resonance frequency f1 corresponding to the first resonance mode may be lower than the second resonance frequency f2 corresponding to the second resonance mode, as shown in FIG. 11 .
  • the first slot 211, the second The positions of the second slot 212 and the first feeding point A1 are designed accordingly.
  • the distance between the first slit 211 and the first feeding point A1 may correspond to a quarter wavelength of the first resonance frequency; the distance between the first slit 211 and the second slit 212 corresponds to the second One-half wavelength of the resonant frequency.
  • the distance between the above-mentioned first slit 211 and the first feeding point A1 can be a quarter wavelength corresponding to the resonant frequency point f1 in Fig. 11; the above-mentioned first slit 211 to the second slit 212 The distance between them may correspond to half the wavelength corresponding to the second resonant frequency f2 in the first frequency band; since the first resonant frequency f1 is lower than the second resonant frequency f2, the distance between the first feeding point A1 and the second slot 212 The distance between them may be less than a quarter wavelength corresponding to the resonant frequency f1.
  • the first feed source 11 excites the first radiator 221 to generate the first resonant mode and the second resonant mode, which increases the radiation bandwidth of the antenna device in the first operating frequency band, so that the antenna device can adapt to the first operating frequency band.
  • the first resonance mode and the second resonance mode correspond to different spatial radiation fields, so that the antenna device can radiate electromagnetic wave signals to different spatial coverage areas.
  • the resonant mode generated by the first feed source 11 exciting the first radiator 221 may further include a third resonant mode.
  • the resonant current of the above-mentioned third resonant mode is distributed between the first matching point B1 and the second gap 212 , as shown in FIG. 12 .
  • the first matching point B1 may present a low impedance state in the first working frequency band, so that the induced current may flow back to the ground at the first matching point B1. Since the first gap 211 and the first feeding point A1 are distributed on both sides of the first matching point B1, when the electromagnetic wave signal output by the first feeding source 11 propagates to the first matching point B1, part of the induced current generated flows back to the ground , the electromagnetic wave signal propagating to the first slot 211 is reduced, so that the electromagnetic wave signal of the first working frequency band radiated outward through the first slot 211 is reduced.
  • the electromagnetic wave signal output by the first feed source 11 can propagate from the first feed point A1 to the second slot 212 , and radiate into space through the second slot 212 . That is to say, in the third resonance mode, the main radiation area of the electromagnetic wave signal output by the first feed source 11 is from the first feed point A1 to the second slot 212 .
  • the first matching point B1 located between the first slot 211 and the first feeding point A1 in the antenna device can be grounded through the third matching circuit 33, and present a low impedance state in the first working frequency band, so that the first The radiator 221 can generate a third resonance mode under the excitation of the first feed source 11 .
  • the above-mentioned third matching circuit 33 may include a switch, and when the switch is turned on to ground, the first matching point B1 is in a low impedance state in the first working frequency band; or, the above-mentioned third matching resistor may include a capacitor, the capacitance of which One end is connected to the first matching point B1, and the other end of the capacitor is connected to the ground; the above-mentioned capacitor can be a DC blocking capacitor corresponding to the first working frequency band. When the capacitor is connected to the ground, the first matching point B1 is in the first working frequency band in a low impedance state.
  • the resonant frequency of the third resonant mode can be adjusted according to the radiation requirements of the electronic equipment.
  • the first matching point B1 connected to the first feeding point A1 in the above-mentioned antenna device can be used to adjust the resonant frequency of the third resonant mode, and the resonant frequency of the third resonant mode can also be adjusted by setting other matching circuits in the antenna device. to tune.
  • the first radiator 221 may be provided with a second matching point B2; the second matching point B2 may be connected to the fourth matching circuit 34 .
  • the above-mentioned fourth matching circuit 34 adjusts the electrical length of the first radiator 221 through a switch or a variable capacitor, so that the third resonance mode covers the transmission and reception of electromagnetic wave signals in the first working frequency band.
  • the above-mentioned second matching point B2 may be located on the metal bottom frame of the electronic device, or may be located on the first metal side frame of the electronic device, which is not limited here. As shown in FIG. 13 , the second matching point B2 in the antenna device can be located on the first metal side frame, and the second matching point B2 can be connected to the ground through the fourth matching circuit 34 .
  • changing the return path of the induced current in the first radiator 221 is equivalent to adjusting the electrical length of the first radiator 221 in the first operating frequency band, so that the resonance frequency of the third resonance mode It can change with the matching state, so that the resonant frequency of the third resonant mode can be adjusted to any frequency point in the first working frequency band, so that the third resonant mode can cover the electromagnetic wave signal transceiving of the first working frequency band.
  • the first feed source 11 can excite the first radiator 221 to generate a third resonance mode.
  • the electromagnetic wave signal output by the first feed source 11 can pass through the second gap 212 on the metal side frame of the electronic device to the Space radiation enables electronic equipment to radiate electromagnetic wave signals in the first working frequency band in the third resonance mode according to the scene requirements.
  • the first feed source 11 excites the radiator to generate the third resonance mode.
  • the electronic device can detect the posture of the electronic device through components such as a gyroscope, and determine whether the electronic device is in a horizontal screen holding scene; The contact position of the device determines whether the electronic device is in a landscape holding posture scene.
  • the user can choose whether to adopt the landscape mode in the application program in the electronic device, and the electronic device can determine whether the electronic device is in a landscape holding posture scene based on the user's selection.
  • the method for determining the landscape holding posture scene is not limited here.
  • the electronic device After the electronic device determines that the device is in a landscape holding posture scene, it can adjust the matching state of the third matching circuit 33, for example, turn on the switching switch in the third matching circuit 33 to the ground, so that the first matching point B1 is opposite to the second matching point B1.
  • a working frequency band is in a low impedance state, and the first radiator 221 can generate a third resonance mode under the excitation of the first feed source 11 .
  • the third matching circuit 33 can be grounded through a capacitor, so that the first radiator 221 can be excited by the first feed source 11 in the scene of the horizontal screen holding posture, the vertical screen holding posture scene and the free space scene.
  • a third resonant mode is generated, that is to say the first resonant mode, the second resonant mode and the third resonant mode can be excited simultaneously.
  • the first feed source 11 in the antenna device can excite the first radiator 221 to generate a third resonance mode, so that the electromagnetic wave signal output by the first feed source 11 can pass through the second slot 212 Radiation to space reduces the impact on the radiation performance of the antenna device when the user holds the electronic device in a horizontal screen, and improves the radiation performance in the scene of a horizontal screen holding posture.
  • the resonance mode generated by the second feed source 12 to excite the radiation unit 20 includes at least one of the following:
  • the resonant current in the fourth resonant mode can be distributed between the first ground point C1 and the first matching point B1 , as shown in FIG. 14 .
  • the resonance current in the fifth resonance mode may be distributed between the second feeding point A2 and the first matching point B1, as shown in FIG. 15 .
  • the resonance current in the sixth resonance mode can be distributed between the second feeding point A2 and the second gap 212 , as shown in FIG. 16 .
  • the resonance current in the seventh resonance mode can be distributed between the second feeding point A2 and the first slot 211 , as shown in FIG. 17 .
  • the resonance current in the eighth resonance mode can be distributed between the first ground point C1 and the first gap 211 , as shown in FIG. 18 .
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 may flow from the first ground point C1 to the first matching point B1; or flow from the first matching point B1 to the first ground point C1.
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 may flow from the second feeding point A2 to the first matching point B1, or flow from the first matching point B1 to the second feeding point A2 .
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 may include the reverse current distributed between the second feed point A2 and the second gap 212, and the induced current may flow from the second gap 212 It flows to the second feeding point A2, or flows from the second feeding point A2 to the second slot 212.
  • the electromagnetic wave signal output by the second feed source 12 can be coupled through the first slit 211 , so that the induced current can continue to propagate through the first slit 211 .
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 may flow from the second feeding point A2 to the first slot 211 or flow from the first slot 211 to the second feeding point A2.
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 may include a reverse current between the first ground point C1 and the first gap 211, and the induced current may flow from the first ground point C1 to the first gap 211.
  • a slit 211 can also flow from the first slit 211 to the first grounding point C1.
  • the above-mentioned resonant mode may be a partial resonant mode generated by the second feed source 12 exciting the radiator, and the second feed source 12 may also excite the radiator to generate other resonant modes.
  • the induced current generated by the electromagnetic field signal output by the second feed source 12 in the antenna device can flow from the second feed point A2 to other areas of the second radiator 222 through the first ground point C1.
  • the induced current intensity The smaller resonant modes are not covered here.
  • the second feeding point A2 and the first matching point B1 can be in a low impedance state in the second working frequency band, so that the induced current can flow back to the ground at the first feeding point.
  • the vicinity of the second feed point A2 may also include other matching points, which can be grounded with low impedance through a matching network, so that when the second radiator 222 and the first radiator 221 are excited by the second feed source 12, multiple a resonance mode.
  • the above-mentioned second feeding point A2 presents a low impedance state in the second working frequency band through the second matching circuit 32
  • the first matching point B1 presents a low impedance state in the second working frequency band through the third matching circuit 33
  • the second feed source 12 can excite the first radiator 221 and the second radiator 222 to generate the fourth resonance mode to the eighth resonance mode at the same time.
  • the resonant modes excited by the second feed source 12 can be arranged in descending order according to the corresponding resonant frequencies: the fourth resonant mode, the fifth resonant mode, the sixth resonant mode, and the seventh resonant mode , Eighth resonance mode.
  • the resonant frequencies corresponding to the above-mentioned fourth resonant mode to the eighth resonant mode can respectively correspond to the fourth resonant frequency f4, the fifth resonant frequency f5, the sixth resonant frequency f6, the seventh resonant frequency in the second working frequency band.
  • the resonant frequency f7 and the eighth resonant frequency f8 are examples of the fourth resonant frequencies f7 and the eighth resonant frequency f8.
  • the resonant frequency generated by the sixth resonant mode is higher than the resonant frequency generated by the fifth resonant mode.
  • the resonant modes excited by the second feed source 12 can be arranged in descending order according to the corresponding resonant frequencies: the fourth resonant mode, the sixth resonant mode, the fifth resonant mode, The seventh resonance mode and the eighth resonance mode are shown in FIG. 20 .
  • the first slot 211, the second slot 212, the second feeding point A2, the first grounding point C1, and the first matching point B1 can be arranged in the above-mentioned antenna device.
  • the location is designed accordingly.
  • the distance between the first ground point C1 and the first gap 211 corresponds to between one-eighth wavelength and one-fourth wavelength of the fourth resonant frequency; the distance between the first matching point B1 of the first gap 211 The distance corresponds to a quarter wavelength of the fifth resonant frequency; the distance between the first slit 211 and the second slit 212 corresponds to the wavelength of the sixth resonant frequency; the distance between the second feeding point A2 and the first slit 211 corresponds to A quarter of the wavelength of the seventh resonant frequency; the distance between the first ground point C1 and the first gap 211 corresponds to three quarters of the wavelength of the eighth resonant frequency.
  • the distance between the first grounding point C1 and the first gap 211 may correspond to a quarter wavelength of f4; the distance between the above-mentioned first gap 211 and the first matching point B1 may correspond to four wavelengths of f5. a wavelength; the distance between the first slit 211 and the second slit 212 corresponds to the wavelength of f6; the distance between the second feeding point A2 and the first slit 211 corresponds to a quarter wavelength of f7; the first The distance between the ground point C1 and the first slot 211 corresponds to three quarters of the wavelength of f8.
  • the above-mentioned antenna device simultaneously excites the radiator in the second working frequency band to generate the fourth to eighth resonance modes, thereby increasing the radiation bandwidth of the antenna device in the second working frequency band, so that the antenna device can adapt to ultra-high frequency in the second working frequency band. Broadband scene requirements.
  • the second feed 12 excites the first radiator 221 and the second radiator 222 to generate other resonance modes except the sixth resonance mode.
  • the electronic device can detect the posture of the electronic device through components such as a gyroscope, and determine whether the electronic device is in a vertical screen holding scene; Whether it is close to the electronic device, and then determine whether the electronic device is in a vertical screen holding posture scene according to the contact position between the user equipment and the electronic device.
  • the user can choose whether to adopt the portrait mode in the application program in the electronic device, and the electronic device can determine whether the electronic device is in the scene of holding the portrait screen based on the user's selection.
  • the method for determining the vertical screen holding posture scene is not limited here.
  • the electric field strength point of the electromagnetic wave signal may be located at the position E in FIG. 21 .
  • the second feed source 12 excites the second radiator 222 and the first radiator 221 to generate the sixth resonance mode
  • the first metal side of the electronic device as shown in the dotted line box in FIG. 21
  • the position of the radiator on the frame is easily blocked by the hand of the user, resulting in a decrease in the radiation performance of the antenna device in the second working frequency band. Therefore, in a scene where the electronic device is held in a vertical screen posture, the antenna device can avoid exciting the above sixth resonance mode.
  • a matching circuit can be added at the above-mentioned electric field strength point, for example, a matching circuit is added at point E of the electric field strength point in Figure 21, so that the sixth The resonant frequency of the resonant mode lies outside the operating frequency band.
  • a third matching point B3 can be set on the first radiator 221; the third matching point B3 can be connected to the fifth matching circuit 35; the fifth matching circuit 35 can be used to adjust the The location of the electric field strength point makes the radiator that radiates electromagnetic wave signals away from the blocked area under the vertical screen holding posture.
  • the third matching point B3 may be set between the first feeding point A1 and the second gap 212, as shown in FIG. 22; or, the third matching point B3 is set between the first feeding point A1 and the first gap 211 Between, as shown in Figure 23.
  • the induced current generated by the electromagnetic wave signal output by the second feed source 12 can flow back to the ground at the third matching point B3, changing the location of the third matching point B3.
  • the electric field strength point state of the position makes the resonant frequency of the sixth resonant mode outside the working frequency band.
  • the above-mentioned fifth matching circuit 35 can make the third matching point B3 in a low impedance state in the second working frequency band through capacitance, inductance, short-circuit stub and the like.
  • the fifth matching circuit 35 may include a first inductor L0, a second inductor L1, and a first capacitor C0; one end of the first inductor L0 is connected to one end of the first capacitor C0, and the first inductor L0 The other end is connected to one end of the second inductor L1, and the other end of the second inductor L1 is connected to the other end of the first capacitor C0, as shown in FIG. 24 .
  • the combination circuit comprising the first inductor L0, the second inductor L1 and the first capacitor C0 can make the third matching point B3 in a low impedance state in the second working frequency band.
  • the above-mentioned third matching point B3 may pass through the fifth matching circuit 35 to be in a high impedance state in the first working frequency band and in a low impedance state in the second working frequency band. Since the third matching point B3 is in a high-impedance state in the first working frequency band, the tuning of the second working frequency band in the vertical screen holding posture scenario does not affect the working mode excited by the first working frequency band.
  • the above-mentioned fifth matching circuit 35 may include a second switch; when the electronic device is held in a landscape orientation, the second switch is connected to the first impedance network, so that the third matching point B3 is at The second working frequency band is in a low impedance state.
  • the above-mentioned first impedance network may be a ground network, or may be a capacitor or an inductor, and the above-mentioned capacitor and inductor may be in a low-impedance state in the second working frequency band.
  • the above-mentioned first impedance network may also be a combined circuit as shown in FIG. 24 including the first inductor L0, the second inductor L1 and the first capacitor C0.
  • the electronic device can adjust the matching state of the fifth matching circuit 35 when it detects that the device is in a vertical screen holding posture, for example, turn on the switch in the fifth matching circuit 35 to ground, so that the third matching point B3
  • the second working frequency band is in a low impedance state, and the first radiator 221 and the second radiator 222 may not generate the above-mentioned sixth resonance mode under the excitation of the second feed source 12 .
  • the fifth matching circuit 35 can maintain the state as shown in the figure, so that the first radiator 221 and the second radiator 222 are fed by the second feeder in the scene of the horizontal screen holding posture, the vertical screen holding posture scene and the free space scene.
  • the sixth resonant mode is not generated, that is to say, the resonant modes generated by the radiator excited by the second feed source 12 may include the fourth resonant mode, the fifth resonant mode, the seventh resonant mode and the eighth resonant mode.
  • the electronic device may make the second feed source 12 excite the radiator to generate other resonance modes except the sixth resonance mode when it is determined that the device is in a vertical screen holding posture; or, the electronic device may also determine that the device is in a vertical screen After the holding posture scene, determine whether the user's hand blocks the position of the radiator of the first metal side frame of the above-mentioned electronic device (as shown in the dotted line box in FIG. 21 ), and further determine whether the sixth resonance mode is not excited. For example, if the user holds the electronic device vertically with his left hand, the user's left hand will not interfere with the signal radiation of the radiator on the first metal side frame, so the fourth resonant mode to the eighth resonant mode can be simultaneously excited.
  • the second feed 12 excites the radiator to generate other resonances except the sixth resonance mode model.
  • the electronic device can determine whether the user's hand blocks the radiator on the first metal side frame through the sensor arranged at the third matching point B3.
  • the second feed source 12 in the above-mentioned antenna device can excite the first radiator 221 and the second radiator 222 so as not to generate the above-mentioned sixth resonance mode, so as to radiate the output of the second feed source 12
  • the radiator of the electromagnetic wave signal is not blocked by the user, which reduces the impact on the radiation performance of the antenna device when the user holds the electronic device vertically, and improves the radiation performance in the vertical screen holding posture scene.
  • the antenna device above further includes a proximity sensor 40 .
  • the above-mentioned proximity sensor 40 can be used to trigger the electronic equipment to reduce the input power of the antenna device when the user approaches the antenna device.
  • the proximity sensor 40 can detect the capacitance change caused by the approach of the human body, so as to determine that a user is approaching the electronic device.
  • the electronic device can reduce the input power of the antenna device when a user approaches.
  • the radiation power of the antenna device is reduced, thereby reducing the influence of the antenna radiation on the human body and reducing the specific absorption rate (SAR) value of the antenna.
  • SAR specific absorption rate
  • the above SAR value is used to measure the impact of antenna radiation on the human body, and the above impact is quantified by the amount of electromagnetic radiation absorbed by the human body.
  • the smaller the power radiated by the antenna the lower the SAR value of the antenna device.
  • the electronic device may include one proximity sensor 40, or may include multiple proximity sensors 40, which is not limited here.
  • the proximity sensor 40 needs to detect the capacitance change on the radiator of the electronic device when a human body approaches, therefore, the proximity sensor 40 can be connected to at least one radiator.
  • the above-mentioned proximity sensor 40 may be connected to the radiator at the matching point, may also be connected to the radiator at the feeding point, or may be connected at other positions on the radiator, which is not limited here.
  • the proximity sensor 40 may be connected to the radiator through an inductance, so as to reduce the influence of the access of the proximity sensor 40 on the radiation performance of the antenna device.
  • the above inductance can isolate higher frequencies, for example, it can be an inductance of 82nH.
  • the above-mentioned proximity sensor 40 needs to detect capacitance changes through a suspended metal body, and a DC blocking capacitor C1 can be set between the radiator and the matching circuit, so that one end of the DC blocking capacitor C1 is connected to the matching circuit, and the other end of the DC blocking capacitor C1 is connected to the radiation. body connection.
  • the radiator is a suspended metal body for the proximity sensor 40 .
  • the above antenna device detects whether the user is close to the electronic device through the proximity sensor 40, so that the electronic device can reduce the input power of the antenna device when the user is close to the electronic device, so as to achieve the effect of intelligent SAR on the electronic device.
  • Fig. 26 is a schematic diagram of the internal structure of an electronic device in one embodiment.
  • the above-mentioned electronic device may include the antenna device in the above-mentioned embodiments.
  • the electronic device can be any terminal device such as mobile phone, tablet computer, notebook computer, desktop computer, PDA (Personal Digital Assistant, personal digital assistant), POS (Point of Sales, sales terminal), vehicle-mounted computer, wearable device, etc.
  • the electronic device includes a processor and memory connected by a system bus.
  • the processor may include one or more processing units.
  • the processor can be a CPU (Central Processing Unit, central processing unit) or a DSP (Digital Signal Processing, digital signal processor), etc.
  • the memory may include non-volatile storage media and internal memory. Nonvolatile storage media store operating systems and computer programs.
  • Non-volatile memory can include ROM (Read-Only Memory, read-only memory), PROM (Programmable Read-only Memory, programmable read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory) Memory), EEPROM (Electrically Erasable Programmable Read-only Memory, Electrically Erasable Programmable Read-only Memory) or flash memory.
  • Volatile memory can include RAM (Random Access Memory, Random Access Memory), which is used as external cache memory.
  • RAM is available in various forms, such as SRAM (Static Random Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), SDRAM (Synchronous Dynamic Random Access Memory , synchronous dynamic random access memory), double data rate DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access memory, double data rate synchronous dynamic random access memory), ESDRAM (Enhanced Synchronous Dynamic Random Access memory, enhanced synchronous dynamic random access memory access memory), SLDRAM (Sync Link Dynamic Random Access Memory, synchronous link dynamic random access memory), RDRAM (Rambus Dynamic Random Access Memory, bus dynamic random access memory), DRDRAM (Direct Rambus Dynamic Random Access Memory, interface dynamic random access memory) memory).
  • SRAM Static Random Access Memory, static random access memory
  • DRAM Dynanamic Random Access Memory, dynamic random access memory
  • SDRAM Synchronous Dynamic Random Access Memory , synchronous dynamic random access memory
  • double data rate DDR SDRAM Double Data Rate Synchronous Dynamic Random Access memory, double

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请涉及一种天线装置和电子设备,天线装置应用于电子设备,天线装置包括馈源10以及与馈源10连接的辐射单元20;辐射单元20被馈源10激励,在同一频段产生多种谐振模式,不同的谐振模式在辐射单元20上形成不同的谐振电流分布;每一种谐振模式用于产生一对应于频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。采用上述天线装置可以避免用户手握姿势影响电子设备的信号发射,保障了电子设备的通信性能。

Description

天线装置和电子设备
相关申请
本申请要求2021年11月24日申请的,申请号为2021114063858,名称为“天线装置和电子设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及终端技术领域,特别是涉及一种天线装置和电子设备。
背景技术
随着通信技术的发展,手机等电子设备的应用场景也开始增多,如通话场景、游戏场景等。不同应用场景下用户手持电子设备的姿势也会发生变化,对电子设备中天线装置的性能要求也是不同的。
传统方法中,电子设备可以根据应用场景的变化,将天线装置的馈电连接至不同区域的辐射体,通过不同区域的辐射体辐射信号,以适应不同应用场景下手握姿势的变化。
但是,采用上述方法无法满足电子设备的通信需求。
发明内容
本申请实施例提供了一种天线装置和电子设备,可以提升电子设备中天线装置的性能,使得电子设备可以应用于超宽带应用场景。
第一方面,提供一种天线装置,应用于电子设备,包括:馈源以及与馈源连接的辐射单元;辐射单元被馈源激励,在同一频段产生多种谐振模式,不同的谐振模式在辐射单元上形成不同的谐振电流分布;
每一种谐振模式用于产生一对应于频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。
第二方面,提供一种电子设备,上述电子设备包括第一方面的天线装置。
上述天线装置和电子设备,天线装置应用于电子设备,天线装置包括馈源以及与馈源连接的辐射单元;辐射单元被馈源激励,在同一频段产生多种谐振模式,不同的谐振模式在辐射单元上形成不同的谐振电流分布;每一种谐振模式用于产生一对应于频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。由于上述天线装置的辐射单元可以被馈源激励产生多种谐振模式,并且不同谐振模式对应的空间辐射场的空间覆盖范围不同,因此上述天线装置可以向多个空间覆盖范围辐射电磁波信号;当电子设备随着用户手握姿势不同处于横屏或者竖屏等不同的空间状态时,不同谐振模式产生的空间辐射场可以适应电子设备的空间状态的变化,在不同空间状态下向不同空间辐射范围辐射电磁波信号,从而可以避免用户手握姿势影响电子设备的信号发射,保障了电子设备的通信性能。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一个实施例中天线装置的结构示意图;
图2为本申请一个实施例中天线装置的结构示意图;
图3为本申请一个实施例中辐射带宽示意图;
图4为本申请一个实施例中握姿示意图;
图5为本申请一个实施例中天线装置的示意图;
图6为本申请一个实施例中天线装置的示意图;
图7为本申请一个实施例中滤波网络的示意图;
图8为本申请一个实施例中第一谐振模式的示意图;
图9为本申请一个实施例中第一谐振模式的示意图;
图10为本申请一个实施例中第二谐振模式的示意图;
图11为本申请一个实施例中第一工作频段的谐振频率的示意图;
图12为本申请一个实施例中第三谐振模式的示意图;
图13为本申请一个实施例中天线装置的示意图;
图14为本申请一个实施例中第四谐振模式的示意图;
图15为本申请一个实施例中第五谐振模式的示意图;
图16为本申请一个实施例中第六谐振模式的示意图;
图17为本申请一个实施例中第七谐振模式的示意图;
图18为本申请一个实施例中第八谐振模式的示意图;
图19为本申请一个实施例中第二工作频段的谐振频率的示意图;
图20为本申请一个实施例中第二工作频段的谐振频率的示意图;
图21为本申请一个实施例中天线装置的示意图;
图22为本申请一个实施例中天线装置的示意图;
图23为本申请一个实施例中天线装置的示意图;
图24为本申请一个实施例中第五匹配电路的示意图;
图25为本申请一个实施例中天线装置的示意图;
图26为本申请一个实施例中电子设备的示意图。
附图说明:
10、馈源;20、辐射单元;11、第一馈源;12、第二馈源;
21、缝隙;211、第一缝隙;212、第二缝隙;
22、辐射体;221、第一辐射体;222、第二辐射体;223、第三辐射体;
30、匹配电路;31、第一匹配电路;32、第二匹配电路;
33、第三匹配电路;34、第四匹配电路;35、第五匹配电路;
A1、第一馈电点;A2、第二馈电点;
B1、第一匹配点;B2、第二匹配点;B3、第三匹配点;
C1、第一接地点;C2、第二接地点;
L0、第一电感;L2、第二电感;C0、第一电容;
40、接近传感器;C1、隔直电容。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一馈源称为第二馈源,且类似地,可将第二馈源称为第一馈源。第一馈源和第二馈源两者都是馈源,但其不是同一馈源。
本申请提供的天线装置可以应用于电子设备,上述电子设备可以是一种具有无线收发功能的设备,可以但不限于是手持或穿戴设备等。电子设备可以是手机、平板电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。电子设备可以通过无线收发功能与其它设备通信连接,上述其它设备可以是网络设备,也可以是其它电子设备。上述网络设备可以是一种具有无线收发功能的设备。包括但不限于:基站 NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点、近场通信设备等。
在一个实施例中,提供一种天线装置,如图1所示。天线装置包括馈源10以及与馈源10连接的辐射单元20;上述辐射单元20被馈源10激励,在同一频段可以产生多种谐振模式,不同的谐振模式在辐射单元20上形成不同的谐振电流分布。上述每一种谐振模式可以用于产生一对应于频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。
其中,上述辐射单元20可以为电子设备的金属边框,也可以是电子设备上的内置天线的辐射贴片。上述电子设备的金属边框可以由不锈钢、铝等金属材料形成;上述金属边框可以围设于电子设备的显示屏。上述金属边框可以是电子设备的底框、顶框以及侧框。上述内置天线可以是柔性电路板(Flexible Printed Circuit,简称FPC)天线,也可以是激光直接成型类(Laser Direct Structuring,简称LDS)电路天线,还可以是印刷直接成型(Print Direct Structuring,简称PDS)天线,在此不做限定。
上述馈源10输出的电磁波信号的频段可以包括全球定位系统(Global Positioning System,GPS)频段、北斗卫星系统的工作频段、全球卫星导航系统(GLOBAL NAVIGATION SATELLITE SYSTEM,GLONASS)的工作频段;上述频段还可以包括移动通信通信频段、WiFi通信频段,例如5G频段中的5.8GHz频段、2.4GHz频段等。
馈源10输出的电磁波信号到达辐射单元20之后,可以在辐射单元20表面产生感应电流。上述感应电流在辐射单元20上可以存在不同的回流路径,对应不同的谐振模式。上述谐振模式可以包括四分之一波长模式、四分之三波长模式等,还可以包括其它波长模式,在此不做限定。不同谐振模式可以在辐射单元20上形成不同的谐振电流分布。不同谐振模式对应的谐振频率可以不同。
上述馈源10可以输出不同频段的电磁波信号,不同频段的电磁波信号对应的谐振模式的数量可以不同。例如,上述辐射单元20被馈源激励,在第一频段产生N1中谐振模式,在第二频段产生N2种谐振模式。
不同谐振模式对应的谐振电流分布不同,上述谐振电流分布在电子设备的不同空间位置时,其产生的空间辐射场所对应的空间覆盖范围也可以不同。其中,上述电子设备的不同空间位置可以是指电子设备的底部、顶部、侧面等。上述空间覆盖范围,可以是指该谐振模式产生的空间辐射场所覆盖的范围。例如,其中一个谐振模式产生的空间辐射场所对应的空间覆盖范围可以是电子设备的底部向外的范围,另一个谐振模式产生的空间辐射场所对应的空间覆盖范围可以是电子设备的侧边区域向外的范围等。
上述天线装置包括馈源10以及与馈源连接的辐射单元20;辐射单元20被馈源激励,在同一频段产生多种谐振模式,不同的谐振模式在辐射单元20上形成不同的谐振电流分布;每一种谐振模式用于产生一对应于频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。由于上述天线装置的辐射单元20可以被馈源激励产生多种谐振模式,并且不同谐振模式对应的空间辐射场的空间覆盖范围不同,因此上述天线装置可以向多个空间覆盖范围辐射电磁波信号;当电子设备随着用户手握姿势不同处于横屏或者竖屏等不同的空间状态时,不同谐振模式产生的空间辐射场可以适应电子设备的空间状态的变化,在不同空间状态下向不同空间辐射范围辐射电磁波信号,从而可以避免用户手握姿势影响电子设备的信号发射,保障了电子设备的通信性能。
在一个实施例中,提供一种天线装置,如图2所示。上述馈源10包括第一馈源11和第二馈源12;上述辐射单元20包括被至少两个缝隙21间隔形成的多个辐射体22;第一馈源11与第二馈源12分别连接不同的辐射体22。上述天线装置还包括与不同的辐射体22 连接的多个匹配电路30。
上述第一馈源11工作于第一频段,用于在一个或多个匹配电路30的调谐下,激励一个或多个辐射体22产生多种覆盖第一频段的谐振模式,每一种覆盖第一频段的谐振模式用于产生一对应于第一频段空间辐射场,任意两个对应于第一频段的空间辐射场的空间覆盖范围不同。
上述第二馈源12工作于第二频段,用于在一个或多个匹配电路30的调谐下,激励一个或多个辐射体22产生多种覆盖第二频段的谐振模式,每一种覆盖第二频段的谐振模式用于产生一对应于第二频段的空间辐射场,任意两个对应于第二频段的空间辐射场的空间覆盖范围不同。
上述多个辐射体22可以被至少两个缝隙间隔开,上述缝隙的开设宽度可以但不限于在0.5毫米至2毫米之间。以电子设备的金属边框上的缝隙为例,上述缝隙21可以通过陶瓷、玻璃等材料进行填充。上述至少两个缝隙21可以开设置同一个金属边框上,也可以开设在不同的金属边框上,在此不做限定。例如,上述至少两个缝隙21中其中一个缝隙开设在金属底框,两个缝隙开设在其中一个金属侧框上;或者,天线装置的两个缝隙均开设在金属底框上。天线装置中,相邻两个缝隙之间的距离可以根据第一馈源11和第二馈源12的设置位置进行调整,也可以根据天线装置的第一馈源11和第二馈源12的工作频段进行调整。天线装置中的第一馈源11和第二馈源12可以同时输出电磁波信号,也可以通过其中一个馈源10输出电磁波信号,在此不做限定。在一种应用场景中,天线装置中的多个辐射体22以及至少两个缝隙21用于辐射第一馈源11输出的电磁波信号;在另一种应用场景中,天线装置中的多个辐射体22以及至少两个缝隙21用于同时辐射第一馈源11和第二馈源12输出的电磁波信号,实现两个不同工作频段的天线共体,提升天线装置的集成度。
天线装置中第一馈源11与第二馈源12的工作频段可以不同。上述第一馈源11和第二馈源12可以分别连接至不同的辐射体22,例如第一馈源11可以连接至第一辐射体221,第二馈源12可以连接至第二辐射体222。上述第一馈源11也可以通过开关切换连接至不同的辐射体,例如第一馈源11通过开关切换与第二辐射体222连接的情况下,第二馈源12可以通过开关切换连接至第一辐射体221。
上述天线装置可以包括多个匹配电路30,上述多个匹配电路30可以与辐射体连接,使得辐射体可以被激励产生多种谐振模式。天线装置中可以将每个辐射体与匹配电路30连接,也可以在部分辐射体上连接匹配电路30;同一个辐射体上可以连接一个匹配电路30,也可以连接多个匹配电路30。天线装置中不同匹配电路30的形式可以不同,也可以相同。对于相同形式的匹配电路30,其对应的阻值、容值等参数可以不同。天线装置中同一个匹配电路连接辐射体的不同位置的情况下,对所述天线装置的调谐效果可以不同。
上述匹配电路30可以由电容、电感、电阻等集成元器件组成,也可以包括射频开关;上述匹配电路30还可以是用于匹配的金属枝节;对于匹配电路的形式在此不做限定。
第一馈源11和第二馈源12输出的电磁波信号到达辐射体22之后,可以在辐射体22表面产生感应电流。由于相邻辐射体之间存在缝隙21,以及匹配电路30的调谐引起辐射体上各点的阻抗变化,使得感应电流在辐射体上存在不同的回流路径,对应不同的谐振模式。天线装置可以通过多个匹配电路30将多个谐振模式对应的谐振频率调谐至不同位置,使得不同谐振模式对应不同的谐振频率。在同一个工作频段中,谐振模式越多,对应的谐振频率越多,使得工作频段中的辐射带宽更宽。如图3所示,其中一个工作频段中包括一个谐振频率可以如图3(a)所示,辐射带宽按照最小回波损耗点降3dB计算,对应的带宽为W1;若该工作频段中包括如图3(b)中的三个谐振频率,辐射带宽按照最小回波损耗点降3dB计算,对应的带宽为W2,大大提升了天线装置的辐射带宽。
上述第一馈源11可以工作于第一频段,用于在一个或多个匹配电路30的调谐下,激励一个或多个辐射体22产生多种覆盖第一频段的谐振模式,每一种覆盖第一频段的谐振模式用于产生一对应于第一频段空间辐射场,任意两个对应于第一频段的空间辐射场的空间覆盖范围不同。
上述第二馈源12可以工作于第二频段,用于在一个或多个匹配电路30的调谐下,激励一个或多个辐射体22产生多种覆盖第二频段的谐振模式,每一种覆盖第二频段的谐振模式用于产生一对应于第二频段的空间辐射场,任意两个对应于第二频段的空间辐射场的空间覆盖范围不同。
当电子设备处于不同的应用场景时,上述多个辐射体22产生的谐振模式可以相同也可以不同。
上述应用场景可以包括天线装置辐射不同频段的电磁波信号对应的场景,例如第一馈源11输出第一工作频段的电磁波信号对应的第一场景、第一馈源11输出第一工作频段的电磁波信号同时第二馈源12输出第二工作频段的电磁波信号对应的第二场景、第一馈源11输出第一工作频段的电磁波信号同时第二馈源12输出第三工作频段的电磁波信号对应的第三场景等。
上述应用场景还可以包括自由空间场景、竖屏手握场景以及横屏手握场景。其中,上述自由空间场景可以是指电子设备没有被用户手握的场景。上述竖屏手握场景可以是指用户竖屏手握电子设备的场景。上述横屏手握场景可以是指用户横屏手握电子设备的场景。竖屏手握场景和横屏手握场景涉及的几种手握姿势可如图4所示,图4中分别示出了用户单手竖屏握持电子设备的底部、中部的姿势,以及用户双手竖屏握持电子设备、双手横屏手握电子设备等握姿。对于竖屏手握场景以及横屏手握场景所涉及的握持姿势不限于图4中的示意图。
上述天线装置的馈源10包括第一馈源11和第二馈源12;辐射单元20包括被至少两个缝隙21间隔形成的多个辐射体22;第一馈源11与第二馈源12分别连接不同的辐射体;上述天线装置还包括与不同的辐射体连接的多个匹配电路;使得第一馈源11可以在一个或多个匹配电路30的调谐下,激励一个或多个辐射体产生多种覆盖第一频段的谐振模式,第二馈源12可以在一个或多个匹配电路的调谐下,激励一个或多个辐射体产生多种覆盖第二频段的谐振模式。基于多种覆盖第一频段的谐振模式以及多种覆盖第二频段的谐振模式,天线装置辐射第一频段和第二频段的电磁波信号,均可以避免用户手握对辐射性能的影响,进一步保障了电子设备的通信性能。
在一个实施例中,如图5所示,上述天线装置中的多个辐射体22,为电子设备的金属边框被两个缝隙间隔形成的三个辐射体。上述两个缝隙21包括开设在电子设备的金属底框上的第一缝隙211,以及开设在电子设备的第一金属侧框上的第二缝隙212。天线装置中的多个辐射体可以包括第一缝隙211与第二缝隙212之间的第一辐射体221、远离第二缝隙212的第二辐射体222以及远离第一缝隙211的第三辐射体223。
其中,上述第一金属侧框可以为电子设备的屏幕面向用户时的右侧框,如图5所示。上述第一金属侧框也可以是电子设备的屏幕面向用户时的左侧框,如图6所示。
天线装置中的第一馈源11和第二馈源12可以与第一辐射体221、第二辐射体222以及第三辐射体223中的其中两个辐射体连接。上述第一馈源11和第二馈源12可以通过射频传输线与辐射体连接,也可以通过匹配电路与辐射体22连接,在此不做限定。
可选地,第一馈源11可以通过第一匹配电路31与第一辐射体221的第一馈电点A1连接;第二馈源12通过第二匹配电路32与第二辐射体222的第二馈电点A2连接;上述第一馈源11的第一工作频段可以低于第二馈源12的第二工作频段。可选地,第一馈源11的工作频段小于1GHz,第二馈源12的工作频段大于1GHz且小于GHz。
上述第一匹配电路31和上述第二匹配电路32可以用于实现在辐射体22上同时激励多种谐振模式,也可以用于调谐谐振模式对应的谐振频率,上述匹配电路还可以包括滤波网络,用于提升天线装置在第一工作频段和第二工作频段之间的隔离度,降低两个工作频段之间的信号干扰。可选地,上述第一匹配电路31可以包括第一选频滤波网络;上述第一选频滤波网络用于导通第一馈源11输出的电磁波信号;上述第二匹配电路32可以包括第二选频滤波网络;上述第二选频滤波网络用于导通第二馈源12输出的电磁波信号。上述选频滤波网络可以为电感和电容构成的谐振网络,上述选频滤波网络中电感和电容可以并联,也可以串联。图7中所示的为几种滤波网络的示意图,上述第一选频滤波网络和第二选频滤波网络可以是图中各滤波网络的任意组合。
上述天线装置中除第一匹配电路31和第二匹配电路32之外,还可以包括其它其它匹配电路。
可选地,如图5所示,上述第一辐射体221上可以设置有第一匹配点B1,上述第一匹配点B1与第三匹配电路33连接;第一匹配点B1可以设置于第一缝隙211与第一馈电点A1之间。上述第三匹配电路33可以用于实现在辐射体上同时激励多种谐振模式,也可以用于调谐谐振模式对应的谐振频率。
可选地,上述第二辐射体222上可以设置第一接地点C1;上述第一接地点C1可以设置在第二馈电点A2远离第一缝隙211的一侧。上述第一接地点C1可以使得第二辐射体222在该点呈现低阻抗状态,使得第二辐射体222上的感应电流可以通过第一接地点C1回流,减少了向第二辐射体222其它区域传播的电流,从而降低第二辐射体222上的感应电流对电子设备的其它部件的影响,提高天线装置的隔离度。
可选地,上述第三辐射体223上设置第二接地点C2;第二接地点C2设置在第三辐射体223上靠近第二缝隙212的一侧。上述第二接地点C2可以使得第三辐射体223在该点呈现低阻抗状态,使得第三辐射体223上通过第二缝隙212感应的电流可以直接通过第二接地点C2回流,减少了第三辐射体223上的感应电流,从而降低第三辐射体223上的感应电流对电子设备的其它部件的影响,提高天线装置的隔离度。
上述天线装置通过金属边框上开设第一缝隙211和第二缝隙212,并在匹配电路的调谐下使得辐射体上可以被激励产生多种谐振模式,从而扩宽了天线装置的的辐射带宽;进一步地,由于第一缝隙211开设在电子设备的金属底框上,第二缝隙212开设在电子设备的第一金属侧框上,使得天线装置可以通过电子设备的不同位置辐射电磁波信号,从而适应不同场景下的天线辐射需求。
上述实施例中主要介绍了辐射体在电子设备的金属边框上时的一种天线装置的结构。下面实施例中,分别针对第一馈源11和第二馈源12激励辐射体产生的谐振模式进行说明。
在其中一个实施例中,第一馈源11激励第一辐射体221产生的谐振模式包括如下至少一种:
第一谐振模式,第一谐振模式下的谐振电流分布于第一缝隙211与第一馈电点A1或设置于第一馈电点附近的匹配点B之间,以及第二缝隙212与第一馈电点A1之间,如图8和图9所示。
第二谐振模式,第二谐振模式下的谐振电流分布于第一缝隙211与第二缝隙212之间,如图10所示。
第一谐振模式中,电流可以从第一缝隙211流向第一馈电点A1,以及从第二缝隙212流向第一馈电点A1,形成反向电流;或者,上述电流也可以从第一馈电点A1流向第一缝隙211,以及从第一馈电点A1流向第二缝隙212。
第二谐振模式中,电流可以从第一缝隙211流向第二缝隙212,也可以从第二缝隙212流向第一缝隙211,形成同向电流,也可以称之为平衡模式电流。
上述天线装置中,第一馈电点A1在第一工作频段呈现低阻抗状态,使得第一辐射体221被第一馈源11激励时可以同时产生第一谐振模式和第二谐振模式。上述低阻抗状态可以是指第一馈电点A1低阻抗接地,例如第一馈电点A1连接的第一匹配电路31中具有低阻抗接地路径。
上述第一馈电点A1附近还可以包括其它匹配点B,该匹配点B可以在第一频段呈现低阻抗状态,使得第一辐射体221被第一馈源11激励时可以同时产生第一谐振模式和第二谐振模式。
需要说明的是,第一馈电点A1或者匹配点B接地的情况下,上述第一辐射体221可以被第一馈源11激励时可以产生第一谐振模式,也可以产生第二谐振模式;在第一馈电点A1或者匹配点B对第一频段不呈现低阻抗状态的情况下,上述第一辐射体221也可以被第一馈源11激励产生第二谐振模式。
在匹配电路的第一调谐下,上述第一馈源11激励第一辐射体221产生的谐振模式可以对应不同的谐振频率。可选地,上述第一谐振模式对应的第一谐振频率f1可以低于第二谐振模式对应的第二谐振频率f2,如图11所示。
为了使得第一谐振模式对应的谐振频率小于第二谐振模式对应的谐振频率,且上述谐振频率均位于第一馈源11的第一工作频段内,上述天线装置中可以对第一缝隙211、第二缝隙212以及第一馈电点A1的位置进行相应设计。可选地,上述第一缝隙211至第一馈电点A1之间的距离可以对应第一谐振频率的四分之一波长;上述第一缝隙211至第二缝隙212之间的距离对应第二谐振频率的二分之一波长。以图8为例,上述第一缝隙211至第一馈电点A1之间的距离,可以为图11中谐振频点f1对应的四分之一波长;上述第一缝隙211至第二缝隙212之间的距离可以对应第一频段中第二谐振频率f2对应的二分之一波长;由于第一谐振频率f1低于第二谐振频率f2,上述第一馈电点A1至第二缝隙212之间的距离可以小于谐振频率f1对应的四分之一波长。
上述天线装置,第一馈源11激励第一辐射体221产生第一谐振模式和第二谐振模式,增大天线装置在第一工作频段中的辐射带宽,使得天线装置可以在第一工作频段适应超宽带场景需求;进一步地,第一谐振模式和第二谐振模式对应不同的空间辐射场,使得天线装置可以向不同空间覆盖范围辐射电磁波信号。
在一个实施例中,第一馈源11激励第一辐射体221产生的谐振模式还可以包括第三谐振模式。上述第三谐振模式的谐振电流分布于第一匹配点B1与第二缝隙212之间,如图12所示。
在第三谐振模式中,第一匹配点B1可以在第一工作频段呈现低阻抗状态,使得感应电流可以在第一匹配点B1处回流至地。由于第一缝隙211和第一馈电点A1分布在第一匹配点B1的两侧,当第一馈源11输出的电磁波信号传播至第一匹配点B1之后,产生的部分感应电流回流至地,减少了向第一缝隙211传播的电磁波信号,使得通过第一缝隙211向外辐射的第一工作频段的电磁波信号减少。第一馈源11输出的电磁波信号可以从第一馈电点A1向第二缝隙212传播,通过第二缝隙212向空间辐射。也就是说,在第三谐振模式下,第一馈源11输出的电磁波信号的主要辐射区域为第一馈电点A1至第二缝隙212。
可选地,天线装置中位于第一缝隙211和第一馈电点A1之间的第一匹配点B1,可以通过第三匹配电路33接地,在第一工作频段呈现低阻抗状态,使得第一辐射体221可以在第一馈源11的激励下产生第三谐振模式。上述第三匹配电路33中可以包括切换开关,当切换开关导通至地时,第一匹配点B1在第一工作频段呈低阻抗状态;或者,上述第三匹配电阻中可以包括电容,电容的一端与第一匹配点B1连接,电容的另一端与地连接;上述电容可以是第一工作频段对应的隔直电容,该电容连接至地的情况下,第一匹配点B1在第一工作频段呈低阻抗状态。
上述天线装置中第一辐射体221被第一馈源11激励产生第三谐振模式的情况下,第三谐振模式的谐振频率可以随电子设备的辐射需求进行调整。上述天线装置中与第一馈电点A1连接的第一匹配点B1路中可以用于调整第三谐振模式的谐振频率,天线装置中还可以通过设置其它匹配电路对第三谐振模式的谐振频率进行调谐。可选地,上述第一辐射体221可以设置第二匹配点B2;上述第二匹配点B2可以与第四匹配电路34连接。上述第四匹配电路34通过开关或可变电容调整第一辐射体221的电长度,使得第三谐振模式覆盖第一工作频段的电磁波信号收发。上述第二匹配点B2可以位于电子设备的金属底框,也可以位于电子设备的第一金属侧框,在此不做限定。如图13所示,天线装置中的第二匹配点B2可以位于第一金属侧框上,上述第二匹配点B2可以通过第四匹配电路34与地连接。当匹配电路中的匹配状态发生变化时,改变第一辐射体221中感应电流的回流路径,相当于调整了第一辐射体221在第一工作频段的电长度,使得第三谐振模式的谐振频率可以随匹配状态变化而变化,从而可以将第三谐振模式的谐振频率调整至第一工作频段内的任意一个频率点,使得第三谐振模式可以覆盖第一工作频段的电磁波信号收发。
上述天线装置,第一馈源11可以激励第一辐射体221产生第三谐振模式,在该模式下第一馈源11输出的电磁波信号可以通过电子设备的金属侧框上的第二缝隙212向空间辐射,使得电子设备可以根据场景需求,在第三谐振模式下辐射第一工作频段的电磁波信号。
在一个实施例中,在上述实施例的基础上,电子设备可以在处于横屏握姿场景下时,第一馈源11激励辐射体产生第三谐振模式。
电子设备可以通过陀螺仪等部件检测电子设备的姿态,确定电子设备是否处于横屏握资场景;电子设备可以通过设置于设备边框上的传感器,检测用户是否靠近电子设备,进而根据用户设备与电子设备的接触位置确定电子设备是否处于横屏握姿场景。在另一种实现方式中,用户可以在电子设备中的应用程序中选择是否采用横屏模式,电子设备可以基于用户的选择确定电子设备是否处于横屏握姿场景。对于横屏握姿场景的确定方式在此不做限定。
电子设备在确定设备处于横屏握姿场景之后,可以对第三匹配电路33的匹配状态进行调整,例如将第三匹配电路33中的切换开关导通至地,使得第一匹配点B1对第一工作频段呈低阻抗状态,第一辐射体221可以在第一馈源11的激励下产生第三谐振模式。在另一个实现方式中,第三匹配电路33中可以通过电容接地,使得第一辐射体221在横屏握姿场景、竖屏握姿场景以及自由空间场景下均可以被第一馈源11激励产生第三谐振模式,也就是说第一谐振模式、第二谐振模式和第三谐振模式可以同时被激励。
电子设备在横屏握姿场景下,上述天线装置中的第一馈源11可以激励第一辐射体221产生第三谐振模式,从而使得第一馈源11输出的电磁波信号可以通过第二缝隙212向空间辐射,降低了用户横屏手握电子设备时对天线装置的辐射性能的影响,提升横屏握姿场景下的辐射性能。
在一个实施例中,第二馈源12激励辐射单元20产生的谐振模式包括如下至少一种:
第四谐振模式,第四谐振模式下的谐振电流可以分布于第一接地点C1与第一匹配点B1之间,如图14所示。
第五谐振模式,第五谐振模式下的谐振电流可以分布于第二馈电点A2与第一匹配点B1之间,如图15所示。
第六谐振模式,第六谐振模式下的谐振电流可以分布于第二馈电点A2与第二缝隙212之间,如图16所示。
第七谐振模式,第七谐振模式下的谐振电流可以分布于第二馈电点A2与第一缝隙211之间,如图17所示。
第八谐振模式,第八谐振模式下的谐振电流可以分布于第一接地点C1与第一缝隙211 之间,如图18所示。
其中,第四谐振模式中,第二馈源12输出的电磁波信号产生的感应电流可以从第一接地点C1流向第一匹配点B1;也可以从第一匹配点B1流向第一接地点C1。在第五谐振模式中,第二馈源12输出的电磁波信号产生的感应电流可以从第二馈电点A2流向第一匹配点B1,也可以从第一匹配点B1流向第二馈电点A2。在第六谐振模式中,第二馈源12输出的电磁波信号产生的感应电流可以包括第二馈电点A2流与第二缝隙212之间分布的反向电流,感应电流可以从第二缝隙212流向第二馈电点A2,也可以从第二馈电点A2流向第二缝隙212。其中,第二馈源12输出的电磁波信号可以通过第一缝隙211进行耦合,使得感应电流可以经过第一缝隙211继续传播。
在第七谐振模式中,第二馈源12输出的电磁波信号产生的感应电流可以从第二馈电点A2流向第一缝隙211,也可以从第一缝隙211流向第二馈电点A2。在第八谐振模式中,第二馈源12输出的电磁波信号产生的感应电流可以包括第一接地点C1与第一缝隙211之间的反向电流,感应电流可以从第一接地点C1流向第一缝隙211,也可以从第一缝隙211流向第一接地点C1。
需要说明的是,上述谐振模式可以是第二馈源12激励辐射体产生的部分谐振模式,第二馈源12还可以激励辐射体产生其它的谐振模式。例如,天线装置中第二馈源12输出的电磁场信号产生的感应电流可以从第二馈电点A2经过第一接地点C1流向第二辐射体222的其它区域,本实施例中对于感应电流强度较小的谐振模式在此不做介绍。
在上述谐振模式中,第二馈电点A2和第一匹配点B1可以在第二工作频段呈低阻抗状态,使得感应电流可以在第馈电点处回流至地。上述第二馈电点A2附近还可以包括其它匹配点,该匹配点可以通过匹配网络低阻抗接地,使得第二辐射体222和第一辐射体221被第二馈源12激励时可以同时产生多种谐振模式。可选地,上述第二馈电点A2通过第二匹配电路32在第二工作频段呈现低阻抗状态,且第一匹配点B1通过第三匹配电路33在第二工作频段呈现低阻抗状态的情况下,第二馈源12可以激励第一辐射体221和第二辐射体222同时产生第四谐振模式至第八谐振模式。
在匹配电路的第二调谐下,第二馈源12激励的谐振模式按照对应的谐振频率从小到大依次排列可以为:第四谐振模式、第五谐振模式、第六谐振模式、第七谐振模式、第八谐振模式。如图19所示,上述第四谐振模式至第八谐振模式对应的谐振频率,可以分别对应第二工作频段中的第四谐振频率f4、第五谐振频率f5、第六谐振频率f6、第七谐振频率f7以及第八谐振频率f8。
在匹配电路的调谐下,上述第六谐振模式产生的谐振频率大于第五谐振模式产生的谐振频率。可选地,在匹配电路的第三调谐下,第二馈源12激励的谐振模式按照对应的谐振频率从小到大依次排列可以为:第四谐振模式、第六谐振模式、第五谐振模式、第七谐振模式、第八谐振模式,如图20所示。
为了使得上述谐振模式对应的谐振频率可以按照上述顺序排列,上述天线装置中可以对第一缝隙211、第二缝隙212、第二馈电点A2以及第一接地点C1、第一匹配点B1的位置进行相应设计。可选地,第一接地点C1至第一缝隙211之间的距离对应第四谐振频率的八分之一波长至四分之一波长之间;第一缝隙211第一匹配点B1之间的距离对应第五谐振频率的四分之一波长;第一缝隙211至第二缝隙212之间的距离对应第六谐振频率的波长;第二馈电点A2至第一缝隙211之间的距离对应第七谐振频率的四分之一波长;第一接地点C1至第一缝隙211之间的距离对应第八谐振频率的四分之三波长。以图13为例,第一接地点C1至第一缝隙211之间的距离可以对应f4的四分之一波长;上述第一缝隙211和第一匹配点B1之间的距离可以对应f5的四分之一波长;上述第一缝隙211至第二缝隙212之间的距离对应f6的波长;第二馈电点A2至第一缝隙211之间的距离对应f7的四分 之一波长;第一接地点C1至第一缝隙211之间的距离对应f8的四分之三波长。
上述天线装置,在第二工作频段中同时激励辐射体产生第四谐振模式至第八谐振模式,增大天线装置在第二工作频段中的辐射带宽,使得天线装置可以在第二工作频段适应超宽带场景需求。
在一个实施例中,电子设备处于竖屏握姿场景下时,第二馈源12激励第一辐射体221和第二辐射体222产生除第六谐振模式之外的其余谐振模式。
与确定横屏握姿场景的方法类似,电子设备可以通过陀螺仪等部件检测电子设备的姿态,确定电子设备是否处于竖屏握资场景;电子设备可以通过设置于设备边框上的传感器,检测用户是否靠近电子设备,进而根据用户设备与电子设备的接触位置确定电子设备是否处于竖屏握姿场景。在另一种实现方式中,用户可以在电子设备中的应用程序中选择是否采用竖屏模式,电子设备可以基于用户的选择确定电子设备是否处于竖屏握姿场景。对于竖屏握姿场景的确定方式在此不做限定。
第六谐振模式中,电磁波信号的电场强点可以位于图21中E所处的位置。当第二馈源12激励第二辐射体222和第一辐射体221产生第六谐振模式时,若用户竖屏手握电子设备,如图21中虚线框所示的电子设备的第一金属侧框上的辐射体的位置容易被用户的手部遮挡,导致天线装置在第二工作频段的辐射性能下降。因此,电子设备在竖屏握姿场景下,天线装置可以避免激励上述第六谐振模式。
为了使得天线装置中用户手握电子设备的部位不遮挡辐射电磁波信号的辐射体,可以在上述电场强点处增加匹配电路,例如在图21中电场强点E点增加匹配电路,使得第六谐振模式的谐振频率位于工作频段之外。可选地,上述第一辐射体221上可以设置第三匹配点B3;上述第三匹配点B3可以与第五匹配电路35连接;上述第五匹配电路35可以用于调整第一辐射体221上的电场强点位置,使得辐射电磁波信号的辐射体远离竖屏握姿下的被遮挡区域。上述第三匹配点B3可以设置于第一馈电点A1与第二缝隙212之间,如图22所示;或者,上述第三匹配点B3设置于第一馈电点A1与第一缝隙211之间,如图23所示。
第三匹配点B3在第二工作频段呈低阻抗状态的情况下,第二馈源12输出的电磁波信号产生的感应电流可以在第三匹配点B3回流至地,改变上述第三匹配点B3所在位置的电场强点状态,使得第六谐振模式的谐振频率位于工作频段之外。上述第五匹配电路35可以通过电容、电感、短路枝节等,使得第三匹配点B3在第二工作频段呈低阻抗状态。
在一种实现方式中,上述第五匹配电路35可以包括第一电感L0、第二电感L1以及第一电容C0;第一电感L0的一端与第一电容C0的一端连接,第一电感L0的另一端与第二电感L1的一端连接,第二电感L1的另一端与第一电容C0的另一端连接,如图24所示。上述包括第一电感L0、第二电感L1以及第一电容C0的组合电路,可以使得第三匹配点B3在第二工作频段呈低阻抗状态。
可选地,上述第三匹配点B3可以通过第五匹配电路35,在第一工作频段呈高阻抗状态,且在第二工作频段呈低阻抗状态。由于该第三匹配点B3在第一工作频段呈高阻抗状态,使得竖屏握姿场景下对第二工作频段的调谐不影响第一工作频段所激励的工作模式。
在另一种实现方式中,上述第五匹配电路35可以包括第二切换开关;电子设备处于横屏握姿场景下,第二切换开关导通至第一阻抗网络,使得第三匹配点B3在所在第二工作频段呈低阻抗状态。其中,上述第一阻抗网络可以是接地网络,也可以是电容或电感,上述电容和电感可以在第二工作频段呈低阻抗状态。可选地,上述第一阻抗网络还可以为图24中所示的包含第一电感L0、第二电感L1以及第一电容C0的组合电路。
电子设备可以在检测到设备处于竖屏握姿场景下时,对第五匹配电路35的匹配状态进行调整,例如将第五匹配电路35中的切换开关导通至地,使得第三匹配点B3对第二工 作频段呈低阻抗状态,第一辐射体221和第二辐射体222可以在第二馈源12的激励下不产生上述第六谐振模式。或者,第五匹配电路35中可以保持如图所示的状态,使得第一辐射体221和第二辐射体222在横屏握姿场景、竖屏握姿场景以及自由空间场景下被第二馈源12激励时,不产生第六谐振模式,也就是说第二馈源12激励辐射体产生的谐振模式可以包括第四谐振模式、第五谐振模式、第七谐振模式和第八谐振模式。
电子设备可以在确定设备处于竖屏握姿场景下时,使得上述第二馈源12激励辐射体产生除第六谐振模式之外的其余谐振模式;或者,电子设备还可以在确定设备处于竖屏握姿场景之后,确定用户的手部是否遮挡上述电子设备的第一金属侧框的辐射体(可如图21中虚线框所示)的位置,进一步判断是否不激励第六谐振模式。例如,若用户左手竖握电子设备,用户左手并不会对第一金属侧框上辐射体的信号辐射造成干扰,因此可以同时激励第四谐振模式至第八谐振模式。
可选地,电子设备可以处于横屏握姿场景且第一金属侧框上的辐射体处于被遮挡状态的情况下,第二馈源12激励辐射体产生除第六谐振模式之外的其余谐振模式。电子设备可以通过设置于第三匹配点B3位置的传感器,确定用户手部是否遮挡第一金属侧框上的辐射体。
电子设备在横屏握姿场景下,上述天线装置中的第二馈源12可以激励第一辐射体221和第二辐射体222不产生上述第六谐振模式,使得辐射第二馈源12输出的电磁波信号的辐射体不被用户遮挡,降低了用户竖屏手握电子设备时对天线装置的辐射性能的影响,提升竖屏握姿场景下的辐射性能。
在一个实施例中,如图25所示,上述天线装置还包括接近传感器40。上述接近传感器40可以用于在用户靠近天线装置时,触发电子设备降低天线装置的输入功率。当用户靠近电子设备时,上述接近传感器40可以检测到人体靠近带来的电容变化,从而确定有用户靠近电子设备。电子设备可以在有用户靠近的情况下,降低天线装置的输入功率。使得天线装置辐射的功率降低,从而减小天线辐射对人体的影响,降低天线的比吸收率(Specific Absorption Rate,简称SAR)值。上述SAR值用于衡量天线辐射对人体的影响,通过人体吸收电磁辐射的量对上述影响进行量化。一般情况下,天线辐射的功率越小,该天线设备的SAR值越低。
电子设备中可以包括一个接近传感器40,也可以包括多个接近传感器40,在此不做限定。上述接近传感器40需要检测人体靠近时在电子设备的辐射体上产生的电容变化,因此,上述接近传感器40可以与至少一个辐射体连接。上述接近传感器40可以在匹配点与辐射体连接,也可以在馈电点与辐射体连接,还可以在辐射体上的其它位置连接,在此不做限定。
接近传感器40可以通过电感与辐射体连接,以降低接近传感器40的接入对天线装置的辐射性能的影响。上述电感可以隔离较高频率,例如可以是82nH的电感。
上述接近传感器40需要通过悬浮的金属体检测电容变化,可以在辐射体与匹配电路之间设置隔直电容C1,使得隔直电容C1的一端与匹配电路连接,隔直电容C1的另一端与辐射体连接。接近传感器40连接至隔直电容C1的另一端时,上述辐射体对接近传感器40来说为一个悬浮的金属体。
上述天线装置,通过接近传感器40检测用户是否靠近电子设备,从而在用户靠近电子设备的情况下,使得电子设备可以降低天线设备的输入功率,达到对电子设备进行智能将SAR的效果。
图26为一个实施例中电子设备的内部结构示意图。上述电子设备可以包括上述实施例中的天线装置。该电子设备可以是手机、平板电脑、笔记本电脑、台式电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、穿戴式设 备等任意终端设备。该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器可以包括一个或多个处理单元。处理器可为CPU(Central Processing Unit,中央处理单元)或DSP(Digital Signal Processing,数字信号处理器)等。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括ROM(Read-Only Memory,只读存储器)、PROM(Programmable Read-only Memory,可编程只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦除可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-only Memory,电可擦除可编程只读存储器)或闪存。易失性存储器可包括RAM(Random Access Memory,随机存取存储器),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如SRAM(Static Random Access Memory,静态随机存取存储器)、DRAM(Dynamic Random Access Memory,动态随机存取存储器)、SDRAM(Synchronous Dynamic Random Access Memory,同步动态随机存取存储器)、双数据率DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access memory,双数据率同步动态随机存取存储器)、ESDRAM(Enhanced Synchronous Dynamic Random Access memory,增强型同步动态随机存取存储器)、SLDRAM(Sync Link Dynamic Random Access Memory,同步链路动态随机存取存储器)、RDRAM(Rambus Dynamic Random Access Memory,总线式动态随机存储器)、DRDRAM(Direct Rambus Dynamic Random Access Memory,接口动态随机存储器)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (33)

  1. 一种天线装置,其特征在于,应用于电子设备,包括:馈源以及与所述馈源连接的辐射单元;
    所述辐射单元被所述馈源激励,在同一频段产生多种谐振模式,不同的谐振模式在所述辐射单元上形成不同的谐振电流分布;
    每一种所述谐振模式用于产生一对应于所述频段的空间辐射场,不同的谐振模式对应的空间辐射场的空间覆盖范围不同。
  2. 根据权利要求1所述的天线装置,其特征在于,所述馈源包括第一馈源和第二馈源;所述辐射单元包括被至少两个缝隙间隔形成的多个辐射体;所述第一馈源与所述第二馈源分别连接不同的辐射体;所述天线装置还包括与不同的所述辐射体连接的多个匹配电路;
    所述第一馈源工作于第一频段,用于在一个或多个所述匹配电路的调谐下,激励一个或多个所述辐射体产生多种覆盖所述第一频段的谐振模式,每一种覆盖所述第一频段的谐振模式用于产生一对应于所述第一频段空间辐射场,任意两个对应于所述第一频段的空间辐射场的空间覆盖范围不同;
    所述第二馈源工作于第二频段,用于在一个或多个所述匹配电路的调谐下,激励一个或多个所述辐射体产生多种覆盖所述第二频段的谐振模式,每一种覆盖所述第二频段的谐振模式用于产生一对应于所述第二频段的空间辐射场,任意两个对应于所述第二频段的空间辐射场的空间覆盖范围不同。
  3. 根据权利要求2所述的天线装置,其特征在于,所述至少两个缝隙包括开设在所述电子设备的金属底框上的第一缝隙,以及开设在所述电子设备的第一金属侧框上的第二缝隙;
    所述多个辐射体包括所述第一缝隙与所述第二缝隙之间的第一辐射体、远离所述第二缝隙的第二辐射体以及远离所述第一缝隙的第三辐射体。
  4. 根据权利要求3所述的天线装置,其特征在于,所述第一馈源通过第一匹配电路与所述第一辐射体的第一馈电点连接;所述第二馈源通过第二匹配电路与所述第二辐射体的第二馈电点连接;所述第一馈源的第一工作频段低于所述第二馈源的第二工作频段。
  5. 根据权利要求4所述的天线装置,其特征在于,所述第一辐射体上设置有第一匹配点,所述第一匹配点与第三匹配电路连接;所述第一匹配点设置于所述第一缝隙与所述第一馈电点之间。
  6. 根据权利要求5所述的天线装置,其特征在于,所述第一馈源激励所述第一辐射体产生的谐振模式包括如下至少一种:
    第一谐振模式,所述第一谐振模式下的谐振电流分布于所述第一缝隙与所述第一馈电点或设置于所述第一馈电点附近的匹配点之间,以及所述第二缝隙与所述第一馈电点之间;
    第二谐振模式,所述第二谐振模式下的谐振电流分布于所述第一缝隙与所述第二缝隙之间。
  7. 根据权利要求6所述的天线装置,其特征在于,所述第一馈电点在所述第一工作频段呈现低阻抗状态的情况下,所述第一馈源激励所述第一辐射体同时产生所述第一谐振模式和所述第二谐振模式。
  8. 根据权利要求6所述的天线装置,其特征在于,所述第一缝隙至所述第一馈电点之间的距离对应第一谐振频率的四分之一波长;所述第一缝隙至所述第二缝隙之间的距离对应第二谐振频率的二分之一波长;所述第一谐振频率为所述第一谐振模式对应的谐振频率,所述第二谐振频率为所述第二谐振模式对应的谐振频率。
  9. 根据权利要求6所述的天线装置,其特征在于,在所述匹配电路的第一调谐下, 所述第一谐振模式对应的第一谐振频率低于所述第二谐振模式对应的第二谐振频率。
  10. 根据权利要求6所述的天线装置,其特征在于,所述第一馈源激励所述第一辐射体产生的谐振模式还包括第三谐振模式;所述第三谐振模式的谐振电流分布于所述第一匹配点与所述第二缝隙之间。
  11. 根据权利要求所述的天线装置,其特征在于,所述第一匹配点在所述第一工作频段呈现低阻抗状态的情况下,所述第一馈源激励所述第一辐射体产生所述第三谐振模式。
  12. 根据权利要求所述的天线装置,其特征在于,所述第一辐射体设置第二匹配点;所述第二匹配点与第四匹配电路连接;所述第四匹配电路通过开关或可变电容调整所述第一辐射体的电长度,使得所述第三谐振模式覆盖所述第一工作频段的电磁波信号收发。
  13. 根据权利要求-任一项所述的天线装置,其特征在于,所述电子设备处于横屏握姿场景下时,所述第一馈源激励所述第一辐射体产生所述第三谐振模式。
  14. 根据权利要求5所述的天线装置,其特征在于,所述第二辐射体上设置第一接地点;所述第一接地点设置在所述第二馈电点远离所述第一缝隙的一侧。
  15. 根据权利要求14所述的天线装置,其特征在于,所述第二馈源激励所述辐射单元产生的谐振模式包括如下至少一种:
    第四谐振模式,所述第四谐振模式下的谐振电流分布于所述第一接地点与所述第一匹配点之间;
    第五谐振模式,所述第五谐振模式下的谐振电流分布于所述第二馈电点与所述第一匹配点之间;
    第六谐振模式,所述第六谐振模式下的谐振电流分布于所述第二馈电点与所述第二缝隙之间;
    第七谐振模式,所述第七谐振模式下的谐振电流分布于所述第二馈电点与所述第一缝隙之间;
    第八谐振模式,所述第八谐振模式下的谐振电流分布于所述第一接地点与所述第一缝隙之间。
  16. 根据权利要求15所述的天线装置,其特征在于,所述第二馈电点在所述第二工作频段呈现低阻抗状态,且所述第一匹配点在所述第二工作频段呈现低阻抗状态的情况下,所述第二馈源激励所述第一辐射体和所述第二辐射体同时产生所述第四谐振模式至所述第八谐振模式。
  17. 根据权利要求16所述的天线装置,其特征在于,所述第一接地点至所述第一缝隙之间的距离对应第四谐振频率的八分之一波长至四分之一波长之间;所述第四谐振频率为所述第四谐振模式对应的谐振频率;
    所述第一缝隙所述第一匹配点之间的距离对应第五谐振频率的四分之一波长;所述第五谐振频率为所述第五谐振模式对应的谐振频率;
    所述第一缝隙至所述第二缝隙之间的距离对应第六谐振频率的波长;所述第六谐振频率为所述第六谐振模式对应的谐振频率;
    所述第二馈电点至所述第一缝隙之间的距离对应第七谐振频率的四分之一波长;所述第七谐振频率为所述第七谐振模式对应的谐振频率;
    所述第一接地点至所述第一缝隙之间的距离对应第八谐振频率的四分之三波长;所述第八谐振频率为所述第八谐振模式对应的谐振频率。
  18. 根据权利要求15所述的天线装置,其特征在于,在所述匹配电路的第二调谐下,所述第二馈源激励的谐振模式按照对应的谐振频率从小到大依次排列为:所述第四谐振模式、所述第五谐振模式、所述第六谐振模式、所述第七谐振模式、所述第八谐振模式。
  19. 根据权利要求15所述的天线装置,其特征在于,在所述匹配电路的第三调谐下, 所述第二馈源激励的谐振模式按照对应的谐振频率从小到大依次排列为:所述第四谐振模式、所述第六谐振模式、所述第五谐振模式、所述第七谐振模式、所述第八谐振模式。
  20. 根据权利要求15-19任一项所述的天线装置,其特征在于,所述电子设备处于竖屏握姿场景下时,所述第二馈源激励所述第一辐射体和所述第二辐射体产生除所述第六谐振模式之外的其余谐振模式。
  21. 根据权利要求所述的天线装置,其特征在于,所述第一辐射体上设置第三匹配点;所述第三匹配点与第五匹配电路连接;所述第五匹配电路用于调整所述第一辐射体上的电场强点位置,使得辐射所述第二馈源输出的电磁波信号的辐射体远离竖屏握姿下的被遮挡区域。
  22. 根据权利要求所述的天线装置,其特征在于,所述第三匹配点设置于所述第一馈电点与所述第二缝隙之间;或,所述第三匹配点设置于所述第一馈电点与所述第一缝隙之间。
  23. 根据权利要求所述的天线装置,其特征在于,所述第五匹配电路包括第一电感、第二电感以及第一电容;所述第一电感的一端与所述第一电容的一端连接,所述第一电感的另一端与所述第二电感的一端连接,所述第二电感的另一端与所述第一电容的另一端连接。
  24. 根据权利要求所述的天线装置,其特征在于,所述第三匹配点在所述第一工作频段呈高阻抗状态,且在所述第二工作频段呈低阻抗状态。
  25. 根据权利要求所述的天线装置,其特征在于,所述第五匹配电路包括第二切换开关;所述电子设备处于竖屏握姿场景下,所述第二切换开关导通至第一阻抗网络,使得第三匹配点在所在所述第二工作频段呈低阻抗状态。
  26. 根据权利要求所述的天线装置,其特征在于,所述电子设备处于竖屏握姿场景且所述第三匹配点处于被遮挡状态的情况下,所述第二馈源激励所述第一辐射体和所述第二辐射体产生除所述第六谐振模式之外的其余谐振模式。
  27. 根据权利要求2-5任一项所述的天线装置,其特征在于,所述第一匹配电路包括第一选频滤波网络;所述第一选频滤波网络用于导通所述第一馈源输出的电磁波信号;所述第二匹配电路包括第二选频滤波网络;所述第二选频滤波网络用于导通所述第二馈源输出的电磁波信号。
  28. 根据权利要求4或5所述的天线装置,其特征在于,所述天线装置还包括接近传感器;所述接近传感器用于在用户靠近所述天线装置时,触发所述电子设备降低所述天线装置的输入功率。
  29. 根据权利要求28所述的天线装置,其特征在于,所述接近传感器与至少一个辐射体连接。
  30. 根据权利要求29所述的天线装置,其特征在于,所述接近传感器所连接的辐射体与匹配电路之间设置隔直电容。
  31. 根据权利要求4或5所述的天线装置,其特征在于,在所述第三辐射体上设置第二接地点;所述第二接地点设置在所述第三辐射体上靠近所述第二缝隙的一侧。
  32. 根据权利要求2-5任一项所述的天线装置,其特征在于,所述第一馈源的工作频段小于1GHz,所述第二馈源的工作频段大于1GHz且小于GHz。
  33. 一种电子设备,其特征在于,所述电子设备包括权利要求1-32任一项所述的天线装置。
PCT/CN2022/117245 2021-11-24 2022-09-06 天线装置和电子设备 WO2023093201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111406385.8A CN114122693B (zh) 2021-11-24 2021-11-24 天线装置和电子设备
CN202111406385.8 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023093201A1 true WO2023093201A1 (zh) 2023-06-01

Family

ID=80372142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117245 WO2023093201A1 (zh) 2021-11-24 2022-09-06 天线装置和电子设备

Country Status (2)

Country Link
CN (1) CN114122693B (zh)
WO (1) WO2023093201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117574097A (zh) * 2024-01-08 2024-02-20 之江实验室 一种多点馈电天线辐射场的计算方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122693B (zh) * 2021-11-24 2024-01-02 Oppo广东移动通信有限公司 天线装置和电子设备
CN115528420A (zh) * 2022-09-30 2022-12-27 Oppo广东移动通信有限公司 一种电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112421211A (zh) * 2019-08-23 2021-02-26 华为技术有限公司 天线及电子设备
CN112751174A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928453A (zh) * 2021-01-28 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备
CN114122693A (zh) * 2021-11-24 2022-03-01 Oppo广东移动通信有限公司 天线装置和电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI536660B (zh) * 2014-04-23 2016-06-01 財團法人工業技術研究院 通訊裝置及其多天線系統設計之方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421211A (zh) * 2019-08-23 2021-02-26 华为技术有限公司 天线及电子设备
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751174A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件和电子设备
CN112751212A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112768959A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线组件和电子设备
CN112928453A (zh) * 2021-01-28 2021-06-08 Oppo广东移动通信有限公司 天线组件及电子设备
CN114122693A (zh) * 2021-11-24 2022-03-01 Oppo广东移动通信有限公司 天线装置和电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117574097A (zh) * 2024-01-08 2024-02-20 之江实验室 一种多点馈电天线辐射场的计算方法及装置
CN117574097B (zh) * 2024-01-08 2024-04-09 之江实验室 一种多点馈电天线辐射场的计算方法及装置

Also Published As

Publication number Publication date
CN114122693B (zh) 2024-01-02
CN114122693A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023093201A1 (zh) 天线装置和电子设备
US10819031B2 (en) Printed circuit board antenna and terminal
WO2022068827A1 (zh) 天线组件和电子设备
US9577331B2 (en) Wireless communication device
CN112751212B (zh) 天线系统及电子设备
TWI556506B (zh) 行動裝置
TWI487198B (zh) 多頻天線
US8836588B2 (en) Antenna device and electronic apparatus including antenna device
TWI557989B (zh) 行動裝置
KR102305113B1 (ko) 안테나를 구비한 전자 장치를 위한 보조 장치
CN112204815B (zh) 天线及移动终端
CN107851884A (zh) 金属边框天线和终端设备
CN112768959B (zh) 天线组件和电子设备
US20110115677A1 (en) Antenna for multi mode mimo communication in handheld devices
TWI539676B (zh) 通訊裝置
CN110731031A (zh) 一种天线和终端
WO2022247502A1 (zh) 天线组件及电子设备
EP2323217B1 (en) Antenna for multi mode mimo communication in handheld devices
TWI412177B (zh) 天線模組及其應用之電子裝置
US10811775B2 (en) Loop antenna
US20240072440A1 (en) Antenna assembly and electronic device
EP3258539B1 (en) Multi-frequency antenna and terminal device
WO2023093191A1 (zh) 天线装置和电子设备
Kazmi et al. Dual-Band MIMO Prototype in the Sub-6 GHz Integrated With mm-Wave Arrays: Ensuring Beamforming and Safety Measures
US20180212310A1 (en) Mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897292

Country of ref document: EP

Kind code of ref document: A1