WO2023093191A1 - 天线装置和电子设备 - Google Patents

天线装置和电子设备 Download PDF

Info

Publication number
WO2023093191A1
WO2023093191A1 PCT/CN2022/116671 CN2022116671W WO2023093191A1 WO 2023093191 A1 WO2023093191 A1 WO 2023093191A1 CN 2022116671 W CN2022116671 W CN 2022116671W WO 2023093191 A1 WO2023093191 A1 WO 2023093191A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
current
point
antenna device
antenna
Prior art date
Application number
PCT/CN2022/116671
Other languages
English (en)
French (fr)
Inventor
周林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023093191A1 publication Critical patent/WO2023093191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of terminals, in particular to an antenna device and electronic equipment.
  • SAR Specific Absorption Rate
  • multiple antennas can be set up, and the transmission power can be radiated to free space through multiple antennas.
  • Embodiments of the present application provide an antenna device and electronic equipment, which can reduce the SAR value of the antenna device.
  • an antenna device the antenna device includes a radiator, the radiator includes a ground point and a feed point, the feed point is connected to a feed source, and the radiator is excited by the feed source Generate multiple current strength points;
  • the first radiator width corresponding to the first current strength point is smaller than the second radiator width corresponding to the second current strength point;
  • the first current strength point is the current strength point with the largest current density, and the second current strength point
  • the strong point is any current strong point except the first current strong point;
  • the difference between the width of the first radiator and the width of the second radiator is used to reduce the maximum current density corresponding to multiple current strength points.
  • an electronic device includes the antenna device in the first aspect.
  • the antenna device includes a radiator, the radiator includes a ground point and a feed point, the feed point is connected to a feed source, and the radiator generates multiple current strong points under the excitation of the feed source; the above multiple Among the current strong points, the first radiator width corresponding to the first current strong point is smaller than the second radiator width corresponding to the second current strong point; the first current strong point is the current strong point with the largest current density, and the second current strong point It is any current strength point except the first current strength point; the difference between the width of the first radiator and the width of the second radiator is used to reduce the maximum current density corresponding to the multiple current strength points.
  • the width of the first radiator corresponding to the first current strength point is smaller than the second current strength point
  • the corresponding second radiator width can reduce the current density of the current strong point with the largest current density, and increase the current density of the second current strong point with a smaller current density, so that the first current strong point and the second current strong point
  • the current distribution is more uniform, thereby reducing the maximum current density at each point on the radiator of the antenna, so as to reduce the SAR value of the antenna device; further, the antenna device in this application does not require additional antenna elements, and the size and space requirements of the antenna device Smaller, it is easy to implement antenna SAR reduction on compact electronic devices such as mobile phones.
  • FIG. 1 is a schematic structural diagram of an antenna device in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the current distribution of the radiator of the antenna device in one embodiment of the present application.
  • FIG. 3 is a schematic diagram of current strength points of an antenna device in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the dimensions of the radiator of the antenna device in one embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the return loss of the antenna device in an embodiment of the present application.
  • Fig. 12 is a structural block diagram of an electronic device in an embodiment of the present application.
  • Width adjustment branch 12. First radiator;
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first adjusting operation could be termed a second adjusting operation, and, similarly, a second adjusting operation could be termed a first adjusting operation, without departing from the scope of the present application.
  • Both the first adjustment operation and the second adjustment operation are adjustment operations, but they are not the same adjustment operation.
  • the antenna device in the present application may be applied to electronic equipment, and the above electronic equipment may be a device with a wireless transceiver function, which may be, but not limited to, a handheld or wearable device.
  • the electronic device may be a mobile phone, a tablet computer, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, and the like.
  • the electronic device can communicate with other devices through the wireless transceiver function, and the above-mentioned other devices can be network devices or other electronic devices.
  • the foregoing network device may be a device with a wireless transceiver function.
  • base station NodeB evolved base station eNodeB
  • base station in the fifth generation (the fifth generation, 5G) communication system base station or network equipment in future communication system
  • access node in WiFi system wireless relay nodes, wireless backhaul nodes, near-field communication devices, etc.
  • a power divider can be used to transmit the transmission power of one antenna through two or more antennas, so that the transmission power on each antenna is reduced, thereby reducing the current on each antenna Density; Since the current density on the antenna is related to the SAR value, the SAR value of the antenna can be reduced when the current density decreases.
  • the antenna design of this solution is too difficult and requires a complex feed power distribution network design. Under the limited space of electronic devices such as mobile phones, this solution takes up a lot of space for additional antennas.
  • the embodiment of the present application provides an antenna device, which can reduce the SAR value of the antenna without affecting the performance of the antenna and the design space of the antenna.
  • an antenna device is provided, as shown in FIG. 1 .
  • An antenna device includes a radiator 10, the radiator includes a feed point 20 and a ground point 30, the feed point 20 is connected to a feed source, and the radiator 10 can generate multiple current strong points under the excitation of the feed source.
  • the width of the first radiator corresponding to the first current strength point is smaller than the width of the second radiator corresponding to the second current strength point; wherein, the above-mentioned first current strength point is the current strength with the largest current density point, the second current strength point is any current strength point except the first current strength point; the difference between the first radiator width and the second radiator width is used to reduce the maximum current corresponding to multiple current strength points density.
  • the above ground point 30 may be connected to the reference ground of the radiator.
  • the aforementioned antenna device may be a built-in antenna of the electronic device, or may be an external antenna of the electronic device, which is not limited here.
  • the antenna device above can be a flexible printed circuit (FPC) antenna, a laser direct structuring (LDS) circuit antenna, or a print direct structuring (Print Direct Structuring) antenna. , referred to as PDS) antenna, which is not limited here.
  • FPC flexible printed circuit
  • LDS laser direct structuring
  • PDS print direct structuring
  • the aforementioned radiator 10 may be a metal frame of the electronic device, or may be a radiation patch of a built-in antenna on the electronic device.
  • the metal frame of the electronic device may be formed of metal materials such as stainless steel and aluminum; the metal frame may surround the display screen of the electronic device.
  • the above-mentioned metal frame may be the bottom frame, the top frame and the side frame of the electronic device.
  • the radiator 10 may include one radiation patch, or may include multiple radiation patches, and gaps may be provided between the multiple patches.
  • the shapes of the above-mentioned multiple radiation patches may be the same or different.
  • the above antenna device may include one feed point 20, or may include multiple feed points 20, and the frequencies of the electromagnetic wave signals output by different feed points 20 may be different.
  • the above-mentioned multiple feed points 20 may be connected to the same radiator patch of the radiator, or may be connected to different radiator patches.
  • the same feed point can be used to output electromagnetic wave signals of different frequencies.
  • the above-mentioned antenna device can work in a high-order mode working mode.
  • the working mode of the above-mentioned high-order mode may be a three-quarter wavelength mode, may also be a five-quarter wavelength mode, or may be a seven-quarter wavelength mode, etc., which are not limited here.
  • the antenna works in the three-quarter wavelength mode, which means that the electrical length of the radiator 10 of the antenna device is about three-quarters of the wavelength corresponding to the operating frequency; similarly, the antenna device works in the five-quarter wavelength mode, which means The electrical length of the radiator 10 of the antenna device is about five quarters of the wavelength corresponding to the working frequency.
  • the electrical length of the radiator 10 of the antenna device is greater than a quarter wavelength corresponding to the operating frequency of the antenna, at least two current strong points can be generated on the radiator 10 of the antenna, which can be said to work at a high-order mode of operation.
  • the electromagnetic wave signal of the first frequency band output by the feed source excites the radiator 10 to generate a first current distribution mode; the first current distribution mode corresponds to two current strong points.
  • the relationship between the working frequency of the antenna device and the wavelength can be expressed as f, where C represents the speed of light, f represents the working frequency of the antenna, and represents the wavelength corresponding to the working frequency.
  • C represents the speed of light
  • f represents the working frequency of the antenna
  • the antenna device can work in different working modes corresponding to different frequencies at the same time, for example, when the antenna device works in the high-order mode working mode of the first frequency f1, it can work in a quarter of the second frequency f2 at the same time - working mode.
  • the antenna device working in the quarter-wavelength mode can correspond to a current peak on the radiator 10, resulting in a current strong point; the antenna device working in the three-quarter wavelength mode is on the radiator 10 It can correspond to two current peaks and generate two current strong points.
  • the above-mentioned current strong point is the position where the local current is the largest on the radiator 10 when the antenna device is in operation.
  • the figure is a current distribution diagram of an antenna device working in a high-order mode working mode.
  • the antenna device is There are two strong current points on the radiator.
  • the first current strength point is the current strength point with the largest current density.
  • the second current intensity point may be one of the multiple current intensity points with a lower current density than the first current intensity point.
  • four current strength points may be generated on the radiator of the antenna device, which may be current strength point 1, current strength point 2, current strength point 3, and current strength point 4 in descending order of current density.
  • the above-mentioned first current strength point may be current strength point 1
  • the above-mentioned second current strength point may be any one of current strength point 2, current strength point 3 and current strength point 4.
  • the above-mentioned second current intensity point is the current intensity point with the smallest current density.
  • the first radiator width corresponding to the first current strength point is smaller than the second radiator width corresponding to the second current strength point.
  • the direction in which the width of the radiator is located may be perpendicular to the propagation direction of electromagnetic waves on the radiator.
  • a in the figure is the radiator 10 of the antenna device
  • B is the feed source connected to the feed point 20 on the radiator
  • C is the reference ground of the antenna device
  • the grounding point 30 is connected to the reference ground; the propagation path of the electromagnetic wave signal on the radiator 10 can be along the dotted line direction, and the width of the radiator 10 at the current strong point is correspondingly marked in the figure.
  • the difference between the width of the first radiator and the width of the second radiator is used to reduce the maximum current density corresponding to multiple current strength points.
  • the above difference is related to the degree of uniformity of the current density at multiple current strength points.
  • On the radiator for the same current strong point, when the width of the radiator at the position of the current strong point is increased, the current density of the current strong point can be increased, and when the width of the radiator at the position of the current strong point is decreased , the current density of the current strong point can be reduced; that is, the current density of the current strong point is related to the width of the radiator.
  • the current densities of the first current strength point and the second current strength point can be made more evenly. Based on energy conservation on the radiator 10 of the antenna device, the more uniform the current density on the radiator is, the lower the maximum current density on the radiator 10 is, so that the SAR value of the antenna is reduced.
  • the radiator width of the first current strong point can be smaller than the radiator width of the multiple current strong points, and the radiation of the second current strong point
  • the body width can be greater than the radiator width of a plurality of current intensities.
  • four current strength points may be generated on the radiator 10 of the antenna device, which may be current strength point 1, current strength point 2, current strength point 3, and current strength point 4 in descending order of current density.
  • the above-mentioned first current strength point may be current strength point 1
  • the above-mentioned second current strength point may be current strength point 4 .
  • the radiator width of current strong point 1 can be smaller than the radiator widths of current strong point 3 and current strong point 4; the radiator width of current strong point 4 can be greater than the radiator width of current strong point 1 and current strong point 2.
  • the difference between the widths of the radiators at the various current strength points can be obtained through electromagnetic simulation, or can be obtained through analytical calculation, which is not limited here.
  • the computer equipment can model the antenna device, obtain the current distribution on the radiator in the antenna device, then adjust the width of the radiator according to the distribution of the ground, and determine the difference between the width of the first radiator and the width of the second radiator. difference between.
  • antenna device comprises radiator 10, and radiator comprises feed point 20 and grounding point 30, and feed point 30 is connected with feed source, and radiator 10 produces a plurality of current strong points under feed source excitation;
  • the first radiator width corresponding to the first current strong point is smaller than the second radiator width corresponding to the second current strong point;
  • the first current strong point is the current strong point with the largest current density, and the second current strong point It is any current strength point except the first current strength point; the difference between the width of the first radiator and the width of the second radiator is used to reduce the maximum current density corresponding to the multiple current strength points.
  • the width of the first radiator corresponding to the first current strength point is smaller than the second current
  • the width of the second radiator corresponding to the strong point can reduce the current density of the current strong point with the largest current density, and increase the current density of the second current strong point with a smaller current density, so that the first current strong point and the second current strong point
  • the current distribution of the point is more uniform, thereby reducing the maximum current density of each point on the radiator of the antenna, so as to reduce the SAR value of the antenna device; further, the antenna device in the present application does not need additional antenna elements, which greatly reduces the size of the antenna device.
  • the demand is small, and it is easy to implement antenna SAR reduction on compact electronic devices such as mobile phones.
  • the antenna device there is a difference between the width of the first radiator at the first current strength point and the width of the second radiator at the second current strength point, and there may be different implementation manners.
  • the first current intensity point is current intensity point 1
  • the second current intensity point is current intensity point 2. It should be noted that, in the following implementation methods The number of current strong points and the distribution positions of the current strong points are not limited.
  • the radiator 10 in the antenna device is provided with a width adjusting branch 11 at a position corresponding to the second current intensity point.
  • the above-mentioned width adjusting branch 11 may be connected to the main body of the radiator, so that the width of the radiator at the position where the second current intensity point is located becomes wider.
  • the above-mentioned width adjusting branch 11 may be directly connected with the main body of the radiator; the above-mentioned width adjusting branch 11 may be integrally formed with the main body of the radiator.
  • the length of the above-mentioned width adjustment branch 11 may be greater than the length of the area corresponding to the second current intensity point on the radiator, or may be shorter than the length of the area corresponding to the second current intensity point on the radiator, which is not limited here. Wherein, the length of the width adjusting branch 11 is a dimension along the propagation direction of the electromagnetic wave signal in the antenna device.
  • the width of the above-mentioned width adjusting branch 11 can be used to increase the width of the radiator of the second current strength point, so that the current density of the second current strength point increases.
  • the radiator 10 may be provided with one width adjustment branch 11 at a position corresponding to the second current intensity point, or may be provided with a plurality of width adjustment branches 11 , which is not limited here.
  • the first radiator 12 corresponding to the above-mentioned first current strong point may be a concave structure.
  • the above-mentioned concave structure may include one groove, or may include multiple grooves, which is not limited here.
  • the above-mentioned first radiator 12 may be a part of the radiator 10 where the first current intensity point is in a corresponding area on the radiator.
  • the above-mentioned first radiator 12 is a concave structure, which may mean that the above-mentioned first radiator 12 contains a concave structure, or may mean that the first radiator 12 has a concave structure relative to other radiating parts; that is, the above-mentioned concave structure
  • the length of the recess may be greater than the length of the area corresponding to the first current intensity point on the radiator, or may be shorter than the length of the area corresponding to the first current intensity point on the radiator.
  • the above-mentioned concave structure can be used to reduce the width of the radiator of the first current strong point, so that the current density of the first current strong point is reduced.
  • the second radiator 13 corresponding to the second current strong point may be a raised structure.
  • the above-mentioned second radiator 13 may be a part of the radiator 10 where the second current intensity point is in the corresponding area on the radiator.
  • the above-mentioned second radiator 13 is a convex structure, which may mean that the above-mentioned second radiator 13 contains a convex structure, or may mean that the second radiator 13 has a convex structure relative to other radiating parts; that is, the above-mentioned
  • the protrusion length of the protrusion structure may be greater than the length of the area corresponding to the second current intensity point on the radiator, or may be shorter than the length of the area corresponding to the second current intensity point on the radiator.
  • the above antenna device by reducing the width of the first radiator or increasing the width of the second radiator, can make the current density of each current strong point on the radiator 10 more balanced, thereby reducing the maximum current density on the radiator 10, so that The SAR value of this antenna is reduced.
  • the antenna device further includes a length adjusting stub 14 .
  • the aforementioned length adjustment branch 14 can be connected to the radiator 10 for adjusting the electrical length of the radiator 10 so as to change the uniformity of the current density at multiple current intensity points.
  • the above-mentioned length adjusting branch 14 may be arranged at the end of the radiator 10 , or at the feeding point 20 of the radiator 10 , which is not limited here.
  • the above-mentioned antenna device by setting the length adjustment branch 14, can make the antenna device work in a non-standard high-order mode operation mode, change the current density distribution of each current strong point on the radiator 10, thereby reducing the maximum current density, Reduce the antenna SAR value.
  • the radiator further includes a matching point 40, the matching point can be connected to an antenna switch, and the antenna switch is used to select different matching circuits, so that the antenna device can achieve multi-band coverage.
  • the above matching circuit can be used to tune the resonant frequency corresponding to the current distribution mode.
  • the resonant frequencies corresponding to the current distribution modes on the radiator 10 can be different, so that the antenna device can cover the electromagnetic wave signal transmission and reception within the working frequency band.
  • the above-mentioned matching circuit may be composed of integrated components such as capacitors, inductors, and resistors, and may also be metal stubs for matching; the form of the matching circuit is not limited here.
  • the forms of the above-mentioned different matching circuits may be different or the same.
  • their corresponding parameters such as resistance value and capacitance value may be different.
  • the above matching circuit can adjust the electrical length of the radiator so that the current distribution mode covers the electromagnetic wave signal transmission and reception in the working frequency band.
  • the feed source can output electromagnetic wave signals in the first frequency band and electromagnetic wave signals in the second frequency band, and when the electromagnetic wave signals in the first frequency band excite the radiator 10 to generate the first current separation mode, the radiator 10 2 current strong points are generated above; the electromagnetic wave signal of the above-mentioned second frequency band can excite the radiator 10 to generate a second current distribution mode, and the above-mentioned second current distribution mode corresponds to a current strong point; wherein, the above-mentioned second frequency band is lower than the first frequency band .
  • the antenna device can work in three frequency bands, including low frequency 0.6-0.96 GHz, intermediate frequency 1.71 GHz-2.17 GHz, and high frequency 2.4 GHz-2.69 GHz.
  • the low frequency works in the quarter-wavelength mode
  • the intermediate frequency and high frequency can work in the three-quarter working mode.
  • the frequency band switching can be performed through the antenna switch in Figure 10, and the corresponding antenna return loss can be shown in Figure 11. .
  • the above-mentioned current strength point 2 may be a first current strength point, and the above-mentioned current strength point 1 may be a second current strength point.
  • the radiator width of the current intensity point 1 may be greater than the radiator width of the current intensity point 2 .
  • the above antenna device can make the current density of the two current strong points more uniform; for example, the SAR value of the antenna can be reduced from the original 3.59W/Kg to 2.35W/kg, reducing the About 1.5dB.
  • an electronic device is provided, and the above electronic device may include the antenna device in the above embodiment.
  • the technical principles and implementation effects of the above-mentioned electronic equipment are similar to those of the above-mentioned antenna device, and will not be repeated here.
  • Fig. 12 is a schematic diagram of the internal structure of an electronic device in one embodiment.
  • the above-mentioned electronic device may include the antenna device in the above-mentioned embodiments.
  • the electronic device can be any terminal device such as mobile phone, tablet computer, notebook computer, desktop computer, PDA (Personal Digital Assistant, personal digital assistant), POS (Point of Sales, sales terminal), vehicle-mounted computer, wearable device, etc.
  • the electronic device includes a processor and memory connected by a system bus.
  • the processor may include one or more processing units.
  • the processor may be a CPU (Central Processing Unit, central processing unit) or a DSP (Digital Signal Processing, digital signal processor), etc.
  • the memory may include non-volatile storage media and internal memory. Nonvolatile storage media store operating systems and computer programs.
  • Non-volatile memory can include ROM (Read-Only Memory, read-only memory), PROM (Programmable Read-only Memory, programmable read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory) Memory), EEPROM (Electrically Erasable Programmable Read-only Memory, Electrically Erasable Programmable Read-only Memory) or flash memory.
  • Volatile memory can include RAM (Random Access Memory, Random Access Memory), which is used as external cache memory.
  • RAM is available in various forms, such as SRAM (Static Random Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), SDRAM (Synchronous Dynamic Random Access Memory , synchronous dynamic random access memory), double data rate DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access memory, double data rate synchronous dynamic random access memory), ESDRAM (Enhanced Synchronous Dynamic Random Access memory, enhanced synchronous dynamic random access memory access memory), SLDRAM (Sync Link Dynamic Random Access Memory, synchronous link dynamic random access memory), RDRAM (Rambus Dynamic Random Access Memory, bus dynamic random access memory), DRDRAM (Direct Rambus Dynamic Random Access Memory, interface dynamic random access memory) memory).
  • SRAM Static Random Access Memory, static random access memory
  • DRAM Dynanamic Random Access Memory, dynamic random access memory
  • SDRAM Synchronous Dynamic Random Access Memory , synchronous dynamic random access memory
  • double data rate DDR SDRAM Double Data Rate Synchronous Dynamic Random Access memory, double

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供一种天线装置和电子设备,天线装置包括辐射体10,辐射体10包括接地点30和馈电点20;上述馈电点20与馈源连接,上述辐射体10在馈源激励下产生多个电流强点;上述多个电流强点中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;第一电流强点为电流密度最大的电流强点,第二电流强点为除第一电流强点外的任一电流强点;上述第一辐射体宽度与第二辐射体宽度的差值用于降低多个电流强点对应的最大电流密度。上述天线装置可以降低天线SAR值,易于在手机等结构紧凑的电子设备上实现天线降SAR。

Description

天线装置和电子设备
相关申请
本申请要求2021年11月24日申请的,申请号为202111404193.3,名称为“天线装置和电子设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及终端技术领域,特别是涉及一种天线装置和电子设备。
背景技术
随着无线通信技术的不断发展,在人们日常生活中出现了越来越多的电子设备,如手机、耳机、可穿戴式设备等。电子设备在进行正常通信时会产生电磁辐射,而强度过大的电磁辐射可能会对人体健康造成影响。比吸收率(Specific Absorption Rate,简称为SAR)可以作为电子设备对人体辐射的影响大小的衡量指标。SAR值越低,表明电子设备对人体辐射影响越小;反之,则影响越大。
传统方法中,可以设置多个天线,将发射功率通过多个天线辐射至自由空间。
但是,上述降低天线SAR值的方法需要增加额外的天线元件,实现难度较大。
发明内容
本申请实施例提供了一种天线装置和电子设备,可以降低天线装置的SAR值。
第一方面,一种天线装置,所述天线装置包括辐射体,所述辐射体包括接地点和馈电点,所述馈电点与馈源连接,所述辐射体在所述馈源激励下产生多个电流强点;
多个电流强点中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;第一电流强点为电流密度最大的电流强点,第二电流强点为除所述第一电流强点外的任一电流强点;
第一辐射体宽度与第二辐射体宽度的差值用于降低多个电流强点对应的最大电流密度。
第二方面,一种电子设备,包括第一方面中的天线装置。
上述天线装置和电子设备,天线装置包括辐射体,辐射体包括接地点和馈电点,馈电点与馈源连接,辐射体在所述馈源激励下产生多个电流强点;上述多个电流强点中,第一 电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;第一电流强点为电流密度最大的电流强点,第二电流强点为除所述第一电流强点外的任一电流强点;上述第一辐射体宽度与第二辐射体宽度的差值用于降低多个电流强点对应的最大电流密度。由于天线装置的SAR值与辐射体上的最大电流密度值相关,馈源激励辐射体产生多个电流强点的情况下,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度,可以减少电流密度最大的电流强点的电流密度,增大电流密度较小的第二电流强点的电流密度,使得第一电流强点和第二电流强点的电流分布更均匀,从而降低天线的辐射体上各个点的最大电流密度,以降低天线装置的SAR值;进一步地,本申请中天线装置不需要额外的天线元件,对天线装置的尺寸空间的需求较小,易于在手机等结构紧凑的电子设备上实现天线降SAR。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一个实施例中天线装置的结构示意图;
图2为本申请一个实施例中天线装置的辐射体的电流分布示意图;
图3为本申请一个实施例中天线装置的电流强点的示意图;
图4为本申请一个实施例中天线装置的辐射体的尺寸示意图;
图5为本申请一个实施例中天线装置的结构示意图;
图6为本申请一个实施例中天线装置的结构示意图;
图7为本申请一个实施例中天线装置的结构示意图;
图8为本申请一个实施例中天线装置的结构示意图;
图9为本申请一个实施例中天线装置的结构示意图;
图10为本申请一个实施例中天线装置的结构示意图;
图11为本申请一个实施例中天线装置的回波损耗的示意图;
图12为本申请一个实施例中电子设备的结构框图。
附图说明:
10、辐射体;20、馈电点;30、接地点;
11、宽度调整枝节;12、第一辐射体;
13、第二辐射体;14、长度调整枝节;
40、匹配点。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一调整操作称为第二调整操作,且类似地,可将第二调整操作称为第一调整操作。第一调整操作和第二调整操作两者都是调整操作,但其不是同一调整操作。
本申请中的天线装置可以应用于电子设备,上述电子设备可以是一种具有无线收发功能的设备,可以但不限于是手持或穿戴设备等。电子设备可以是手机、平板电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备等。电子设备可以通过无线收发功能与其它设备通信连接,上述其它设备可以是网络设备,也可以是其它电子设备。上述网络设备可以是一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点、近场通信设备等。
当前在降低电子设备的天线的SAR方面,主要分为两种方案:第一、直接降低电子设备的发射功率,或者分场景降低发射功率;第二、在天线设计上实现降SAR方案。采用上述第一种方案虽然可以直接降低天线的SAR值,但是会直接导致电子设备的辐射性能下降,使用户的通信性能大大受到影响。采用上述第二种方案,可以在保持辐射性能不变的情况下降低天线的SAR值。现有技术中,可以利用功分器,将原本一个天线的发射功率,通过两个甚至更多的天线发射出去,使得每个天线上的发射功率降低,从而减小了每个天线上的电流密度;由于天线上的电流密度与SAR值相关,电流密度减小的情况下可以降低天线SAR值。但此方案天线设计难度太大,而且需要复杂的馈电功分网络设计。在手机等电子设备的极限空间下,此方案占据很大空间给额外增加的天线。
针对以上问题,本申请实施例提供一种天线装置,可以在不影响天线性能以及天线的 设计空间的情况下降低天线的SAR值。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
在一个实施例中,提供一种天线装置,如图1所示。一种天线装置,包括辐射体10,上述辐射体包括馈电点20和接地点30,上述馈电点20与馈源连接,上述辐射体10在馈源激励下可以产生多个电流强点。在上述多个电流强点中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;其中,上述第一电流强点为电流密度最大的电流强点,上述第二电流强点为除第一电流强点外的任一电流强点;上述第一辐射体宽度与第二辐射体宽度的差值用于降低多个电流强点对应的最大电流密度。上述接地点30可以与辐射体的参考地连接。
其中,上述天线装置可以是电子设备的内置天线,也可以是电子设备的外置天线,在此不做限定。可选地,上述天线装置可以是柔性电路板(Flexible Printed Circuit,简称FPC)天线,也可以是激光直接成型类(Laser Direct Structuring,简称LDS)电路天线,还可以是印刷直接成型(Print Direct Structuring,简称PDS)天线,在此不做限定。
其中,上述辐射体10可以为电子设备的金属边框,也可以是电子设备上的内置天线的辐射贴片。上述电子设备的金属边框可以由不锈钢、铝等金属材料形成;上述金属边框可以围设于电子设备的显示屏。上述金属边框可以是电子设备的底框、顶框以及侧框。
上述辐射体10可以包括一个辐射贴片,也可以包括多个辐射贴片,上述多个贴片之间可以设置缝隙。上述多个辐射贴片的形状可以相同,也可以不同。
上述天线装置可以包括一个馈电点20,也可以包括多个馈电点20,不同馈电点20输出的电磁波信号的频率可以不同。上述多个馈电点20可以连接至辐射体的同一个辐射体贴片,也可以连接至不同的辐射贴片。同一个馈电点可以用于输出不同频率的电磁波信号。上述天线装置可以工作在高次模工作模式。上述高次模工作模式可以是四分之三波长模式,也可以是四分之五波长模式,还可以是四分之七波长模式等,在此不做限定。天线工作在四分之三波长模式,是指天线装置的辐射体10的电长度约为工作频率对应的波长的四分之三;类似地,天线装置工作在四分之五波长模式,是指天线装置的辐射体10的电长度的长度约为工作频率对应的波长的四分之五。天线装置的辐射体10的电长度大于该天线的工作频率对应的四分之一波长的情况下,可以在该天线的辐射体10上产生至少两个电流强点,可以称其工作在高次模工作模式。可选地,馈源输出的第一频段的电磁波信号激励辐射体10产生第一电流分布模式;第一电流分布模式对应两个电流强点。
天线装置的工作频率与波长的关系可以表示为f,其中,C表示光速,f表示天线的工 作频率,表示该工作频率对应的波长。天线的工作频率越高,对应的波长越短。需要说明的是,天线装置可以同时工作在不同频率对应的不同工作模式,例如天线装置工作在第一频率f1的高次模工作模式的情况下,可以同时工作在第二频率f2的四分之一工作模式。
如图2所示,工作在四分之一波长模式的天线装置在辐射体10上可以对应一个电流波峰,产生一个电流强点;工作在四分之三波长模式的天线装置在辐射体10上可以对应两个电流波峰,产生两个电流强点。上述电流强点是该天线装置工作时辐射体10上出现局部电流最大的位置。
如图3所示,图中为一个工作在高次模工作模式的天线装置的电流分布图,上述电流分布图中颜色越深表征该点的电流密度越大,由图3可知该天线装置的辐射体上存在两个电流强点。
在上述多个电流强点中,第一电流强点为电流密度最大的电流强点。第二电流强点可以是多个电流强点中,电流密度小于第一电流强点的其中一个电流强点。例如,天线装置的辐射体上可以产生4个电流强点,按照电流密度降序排列可以为电流强点1、电流强点2、电流强点3和电流强点4。上述第一电流强点可以是电流强点1,上述第二电流强点可以是电流强点2、电流强点3和电流强点4中的任意一个。可选地,上述第二电流强点为电流密度最小的电流强点。
上述第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度。上述辐射体宽度所在方向可以垂直于电磁波在辐射体上的传播方向。以图4中的天线装置为例,图中A为天线装置的辐射体10,B为与辐射体10上的馈电点20连接的馈源,C为天线装置的参考地,辐射体10上的接地点30与参考地连接;电磁波信号在辐射体10上的传播路径可以沿虚线方向,在电流强点处的辐射体10的宽度如图中对应标记。
上述第一辐射体宽度与第二辐射体宽度的差值,用于降低多个电流强点对应的最大电流密度。上述差值与多个电流强点的电流密度的均匀程度相关。在辐射体上,对于同一个电流强点,当增加该电流强点所在位置的辐射体宽度时,可以增大该电流强点的电流密度,当减小该电流强点所在位置的辐射体宽度时,可以减小该电流强点的电流密度;也就是说,电流强点的电流密度与辐射体的宽度相关。上述天线装置中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度的情况下,可以使得第一电流强点和第二电流强点的电流密度更均匀。基于天线装置的辐射体10上的能量守恒,辐射体上的电流密度越均匀,可以使得辐射体10上的最大电流密度越低,使得该天线的SAR值降低。
需要说明的是,天线装置的辐射体10上产生多个电流强点的情况下,第一电流强点的辐射体宽度可以小于多个电流强点的辐射体宽度,第二电流强点的辐射体宽度可以大于 多个电流强点的辐射体宽度。例如,天线装置的辐射体10上可以产生4个电流强点,按照电流密度降序排列可以为电流强点1、电流强点2、电流强点3和电流强点4。上述第一电流强点可以是电流强点1,上述第二电流强点可以是电流强点4。电流强点1的辐射体宽度可以小于电流强点3和电流强点4的辐射体宽度;电流强点4的辐射体宽度可以大于电流强点1和电流强点2的辐射体宽度。
各个电流强点的辐射体宽度之间的差值,可以通过电磁仿真获得,也可以通过解析方法计算获得,在此不做限定。例如,计算机设备可以对天线装置进行建模,获取天线装置中辐射体上的电流分布,然后根据地啊你路分布对辐射体的宽度进行调整,确定第一辐射体宽度和第二辐射体宽度之间的差值。
上述天线装置,天线装置包括辐射体10,辐射体包括馈电点20和接地点30,馈电点30与馈源连接,辐射体10在馈源激励下产生多个电流强点;上述多个电流强点中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;第一电流强点为电流密度最大的电流强点,第二电流强点为除所述第一电流强点外的任一电流强点;上述第一辐射体宽度与第二辐射体宽度的差值用于降低多个电流强点对应的最大电流密度。由于天线装置的SAR值与辐射体10上的最大电流密度值相关,馈源激励辐射体10产生多个电流强点的情况下,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度,可以减少电流密度最大的电流强点的电流密度,增大电流密度较小的第二电流强点的电流密度,使得第一电流强点和第二电流强点的电流分布更均匀,从而降低天线的辐射体上各个点的最大电流密度,以降低天线装置的SAR值;进一步地,本申请中天线装置不需要额外的天线元件,对天线装置的尺寸空间的需求较小,易于在手机等结构紧凑的电子设备上实现天线降SAR。
在天线装置中,第一电流强点的第一辐射体宽度与第二电流强点的第二辐射体宽度存在差值,可以有不同的实现方式。下述各个实现方式对应的天线装置示意图中,以第一电流强点为电流强点1、第二电流强点为电流强点2为例进行说明,需要说明的是,下述各实现方式中对电流强点的数量以及电流强点的分布位置并不做限定。
在一种实现方式中,如图5所示,天线装置中的辐射体10在第二电流强点对应位置设置宽度调整枝节11。
上述宽度调整枝节11可以与辐射体主体连接,使得第二电流强点所在位置的辐射体宽度变宽。上述宽度调整枝节11可以与辐射体主体直接连接;上述宽度调整枝节11可以与辐射体主体通过一体成型的方式获得。上述宽度调整枝节11的长度可以大于第二电流强点在辐射体上对应的区域长度,也可以小于第二电流强点在辐射体上对应的区域长度,在此 不做限定。其中,上述宽度调整枝节11的长度为沿电磁波信号在天线装置中的传播方向上的尺寸。上述宽度调整枝节11的宽度可以用于增大第二电流强点的辐射体宽度,使得第二电流强点的电流密度增大。
辐射体10在第二电流强点对应位置可以设置一个宽度调整枝节11,也可以设置多个宽度调整枝节11,在此不做限定。
在一种实现方式中,如图6所示,上述第一电流强点对应的第一辐射体12可以为凹陷结构。
其中,上述凹陷结构可以包括一个凹槽,也可以包括多个凹槽,在此不做限定。上述第一辐射体12可以是辐射体10中第一电流强点在辐射体上对应区域的部分辐射体。上述第一辐射体12为凹陷结构,可以是指上述第一辐射体12中包含凹陷结构,也可以是指第一辐射体12相对于其他辐射部分为凹陷结构;也就是说,上述凹陷结构的凹陷长度可以大于第一电流强点在辐射体上对应的区域长度,也可以小于第一电流强点在辐射体上对应的区域长度。上述凹陷结构可以用于减小第一电流强点的辐射体宽度,使得第一电流强点的电流密度减小。
在一种实现方式中,如图7所示,上述第二电流强点对应的第二辐射体13可以为凸起结构。
上述第二辐射体13可以是辐射体10中第二电流强点在辐射体上对应区域的部分辐射体。上述第二辐射体13为凸起结构,可以是指上述第二辐射体13中包含凸起结构,也可以是指第二辐射体13相对于其他辐射部分为凸起结构;也就是说,上述凸起结构的凸起长度可以大于第二电流强点在辐射体上对应的区域长度,也可以小于第二电流强点在辐射体上对应的区域长度。
上述天线装置,通过减小第一辐射体宽度或者增大第二辐射体宽度,可以使得辐射体10上各个电流强点的电流密度更均衡,从而降低了辐射体10上的最大电流密度,使得该天线的SAR值降低。
在一个实施例中,如图8所示,天线装置还包括长度调整枝节14。上述长度调整枝节14可以与辐射体10连接,用于调整辐射体10的电长度,以改变多个电流强点的电流密度的均匀程度。
上述长度调整枝节14可以设置于辐射体10的末端,也可以设置于辐射体10的馈电点20处,在此不做限定。
上述天线装置,通过设置长度调整枝节14,可以使得天线装置工作在非标准的高次模工作模式下,改变辐射体10上的各个电流强点的电流密度分布,从而可以减小最大电流 密度,降低天线SAR值。
在一个实施例中,如图9所示,上述辐射体还包括匹配点40,上述匹配点可以连接天线开关,上述天线开关用于选择不同的匹配电路,使得所述天线装置实现多频段覆盖。
上述匹配电路可以用于调谐电流分布模式对应的谐振频率。当天线开关连接不同的匹配电路时,辐射体10上的电流分布模式对应的谐振频率可以不同,从而可以实现天线装置可以覆盖工作频段内的电磁波信号收发。
上述匹配电路可以由电容、电感、电阻等集成元器件组成,还可以是用于匹配的金属枝节;对于匹配电路的形式在此不做限定。
上述不同匹配电路的形式可以不同,也可以相同。对于相同形式的匹配电路,其对应的阻值、容值等参数可以不同。上述匹配电路可以调整辐射体的电长度,使得电流分布模式覆盖工作频段的电磁波信号收发。
在一个实施例中,上述馈源可以输出第一频段的电磁波信号以及第二频段的电磁波信号,上述第一频段的电磁波信号激励辐射体10产生第一电流分别模式的情况下,在辐射体10上产生2个电流强点;上述第二频段的电磁波信号可以激励辐射体10产生第二电流分布模式,上述第二电流分布模式对应一个电流强点;其中,上述第二频段低于第一频段。
以图10所示的天线装置为例,天线装置可以工作在三个频段,包括低频0.6~0.96GHz,中频1.71GHz~2.17GHz,高频2.4GHz~2.69GHz。其中,低频工作在四分之一波长模式,中频和高频可以工作在四分之三工作模式,通过图10中的天线开关可以进行频段切换,对应的天线回波损耗可以如图11所示。辐射体上可以存在两个电流强点,分别为电流强点1和电流强点2;电流强点1靠近馈电点20,电流强点2靠近辐射体的末端,电流强点2的电流密度大于电流强点1的电流密度。上述电流强点2可以为第一电流强点,上述电流强点1可以为第二电流强点。电流强点1的辐射体宽度可以大于电流强点2的辐射体宽度。相对于辐射体宽度一致的天线装置,上述天线装置可以使得两个电流强点的电流密度更均匀;例如,天线的SAR值可以由原来的3.59W/Kg降为2.35W/kg,减小了约1.5dB。
在一个实施例中,提供一种电子设备,上述电子设备可以包括上述实施例中的天线装置。上述电子设备的技术原理和实现效果与上述天线装置类似,在此不做赘述。
图12为一个实施例中电子设备的内部结构示意图。上述电子设备可以包括上述实施例中的天线装置。该电子设备可以是手机、平板电脑、笔记本电脑、台式电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、穿戴式设备等任意终端设备。该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器可以包括一个或多个处理单元。处理器可为CPU(Central Processing Unit,中央处理单元) 或DSP(Digital Signal Processing,数字信号处理器)等。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括ROM(Read-Only Memory,只读存储器)、PROM(Programmable Read-only Memory,可编程只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦除可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-only Memory,电可擦除可编程只读存储器)或闪存。易失性存储器可包括RAM(Random Access Memory,随机存取存储器),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如SRAM(Static Random Access Memory,静态随机存取存储器)、DRAM(Dynamic Random Access Memory,动态随机存取存储器)、SDRAM(Synchronous Dynamic Random Access Memory,同步动态随机存取存储器)、双数据率DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access memory,双数据率同步动态随机存取存储器)、ESDRAM(Enhanced Synchronous Dynamic Random Access memory,增强型同步动态随机存取存储器)、SLDRAM(Sync Link Dynamic Random Access Memory,同步链路动态随机存取存储器)、RDRAM(Rambus Dynamic Random Access Memory,总线式动态随机存储器)、DRDRAM(Direct Rambus Dynamic Random Access Memory,接口动态随机存储器)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种天线装置,其中,所述天线装置包括辐射体,所述辐射体包括接地点和馈电点,所述馈电点与馈源连接,所述辐射体在所述馈源激励下产生多个电流强点;
    所述多个电流强点中,第一电流强点对应的第一辐射体宽度小于第二电流强点对应的第二辐射体宽度;所述第一电流强点为电流密度最大的电流强点,所述第二电流强点为除所述第一电流强点外的任一电流强点;
    所述第一辐射体宽度与所述第二辐射体宽度的差值用于降低所述多个电流强点对应的最大电流密度。
  2. 根据权利要求1所述的天线装置,其中,所述第二电流强点为所述多个电流强点中电流密度最小的电流强点。
  3. 根据权利要求1或2所述的天线装置,其中,所述辐射体在所述第二电流强点对应位置设置宽度调整枝节。
  4. 根据权利要求1或2所述的天线装置,其中,所述第一电流强点对应的第一辐射体为凹陷结构。
  5. 根据权利要求1或2所述的天线装置,其中,所述第二电流强点对应的第二辐射体为凸起结构。
  6. 根据权利要求1或2所述的天线装置,其中,所述天线装置还包括长度调整枝节;所述长度调整枝节与所述辐射体连接,用于调整所述辐射体的电长度,以改变所述多个电流强点的电流密度的均匀程度。
  7. 根据权利要求1或2所述的天线装置,其中,所述辐射体还包括匹配点,所述匹配点连接至天线开关,所述天线开关用于选择不同的匹配电路,使得所述天线装置实现多频段覆盖。
  8. 根据权利要求1或2所述的天线装置,其中,所述馈源输出的第一频段的电磁波信号激励所述辐射体产生第一电流分布模式;所述第一电流分布模式对应两个电流强点。
  9. 根据权利要求8所述的天线装置,其中,所述馈源输出的第二频段的电磁波信号激励所述辐射体产生第二电流分布模式;所述第二电流分布模式对应一个电流强点;所述第二频段低于所述第一频段。
  10. 根据权利要求1或2所述的天线装置,其中,所述天线装置为柔性电路板类FPC天线、激光直接成型类LDS天线、印刷直接成型PDS天线中的任意一种。
  11. 根据权利要求1所述的天线装置,其中,所述辐射体包括辐射贴片。
  12. 根据权利要求7所述的天线装置,其中,所述匹配电路包括电容、电感、电阻。
  13. 根据权利要求7所述的天线装置,其中,所述匹配电路为用于匹配的金属枝节。
  14. 根据权利要求3所述的天线装置,其中,所述宽度调整枝节与所述辐射体连接,用于使所述第二电流强点所在的位置的辐射体宽度变宽。
  15. 一种电子设备,其中,所述电子设备包括权利要求1-14任一项所述的天线装置。
PCT/CN2022/116671 2021-11-24 2022-09-02 天线装置和电子设备 WO2023093191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111404193.3 2021-11-24
CN202111404193.3A CN116169461A (zh) 2021-11-24 2021-11-24 天线装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023093191A1 true WO2023093191A1 (zh) 2023-06-01

Family

ID=86409964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116671 WO2023093191A1 (zh) 2021-11-24 2022-09-02 天线装置和电子设备

Country Status (2)

Country Link
CN (1) CN116169461A (zh)
WO (1) WO2023093191A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350077B1 (en) * 2013-08-08 2016-05-24 Amazon Technologies, Inc. Low SAR folded loop-shaped antenna
US9735822B1 (en) * 2014-09-16 2017-08-15 Amazon Technologies, Inc. Low specific absorption rate dual-band antenna structure
US9812773B1 (en) * 2013-11-18 2017-11-07 Amazon Technologies, Inc. Antenna design for reduced specific absorption rate
CN111969305A (zh) * 2020-09-28 2020-11-20 西安电子科技大学 天线模组及通讯设备
CN112599959A (zh) * 2020-11-30 2021-04-02 Oppo广东移动通信有限公司 电子设备及其壳体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350077B1 (en) * 2013-08-08 2016-05-24 Amazon Technologies, Inc. Low SAR folded loop-shaped antenna
US9812773B1 (en) * 2013-11-18 2017-11-07 Amazon Technologies, Inc. Antenna design for reduced specific absorption rate
US9735822B1 (en) * 2014-09-16 2017-08-15 Amazon Technologies, Inc. Low specific absorption rate dual-band antenna structure
CN111969305A (zh) * 2020-09-28 2020-11-20 西安电子科技大学 天线模组及通讯设备
CN112599959A (zh) * 2020-11-30 2021-04-02 Oppo广东移动通信有限公司 电子设备及其壳体

Also Published As

Publication number Publication date
CN116169461A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
EP3896790B1 (en) Antenna structure and communication terminal
US10601117B2 (en) Antenna and mobile terminal
US10446915B2 (en) Mobile device
TWI568076B (zh) 天線結構
TWI557989B (zh) 行動裝置
US20010035843A1 (en) Dual band patch antenna
TW201409828A (zh) 行動裝置
EP3246989B1 (en) Multi-frequency antenna and terminal device
US20150061953A1 (en) Antenna and Electronic Device
WO2023093201A1 (zh) 天线装置和电子设备
US20130135156A1 (en) Multi-Band Antenna For Portable Communication Device
US20230029513A1 (en) Antenna structure and electronic device having antenna structure
US6252561B1 (en) Wireless LAN antenna with single loop
CN107994316B (zh) 天线系统及通信终端
US7920095B2 (en) Three-dimensional multi-frequency antenna
WO2018157661A1 (zh) 天线和终端
US10811775B2 (en) Loop antenna
WO2023093191A1 (zh) 天线装置和电子设备
TWI669851B (zh) 行動裝置
Chang et al. Compact LTE frame antenna with a narrow metal clearance and a radiating feed network for the metal-casing smartphone
CN116190991A (zh) 天线装置、电子设备和电压控制方法
CN209822860U (zh) 一种宽带的双极化正交天线
CN114094339A (zh) 自适应调谐方法、自适应调谐天线及电子设备
Kazmi et al. Dual-Band MIMO Prototype in the Sub-6 GHz Integrated With mm-Wave Arrays: Ensuring Beamforming and Safety Measures
WO2023020019A9 (zh) 一种耦合馈电的终端单极子天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897283

Country of ref document: EP

Kind code of ref document: A1