WO2023093156A1 - 一种电源变换电路及电子设备 - Google Patents

一种电源变换电路及电子设备 Download PDF

Info

Publication number
WO2023093156A1
WO2023093156A1 PCT/CN2022/114773 CN2022114773W WO2023093156A1 WO 2023093156 A1 WO2023093156 A1 WO 2023093156A1 CN 2022114773 W CN2022114773 W CN 2022114773W WO 2023093156 A1 WO2023093156 A1 WO 2023093156A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
conversion circuit
power conversion
configuration
Prior art date
Application number
PCT/CN2022/114773
Other languages
English (en)
French (fr)
Inventor
吴明剑
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22856978.6A priority Critical patent/EP4213358A1/en
Publication of WO2023093156A1 publication Critical patent/WO2023093156A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power electronics, in particular to a power conversion circuit and electronic equipment.
  • the present application provides a power conversion circuit and electronic equipment to reduce the quiescent current caused by the voltage regulation process.
  • the first aspect of the present application provides a power conversion circuit
  • the configuration resistor is set between the setting input terminal of the power converter and the ground, and the resistance value is controllable, and can generate Configure the voltage; and its power converter can generate and output the corresponding output voltage according to the configured voltage; that is, the application realizes the adjustment of the output voltage by adjusting the resistance value of the configured resistor; and is responsible for collecting the divided voltage of the output voltage
  • the resistor is set in the power converter and can control parasitic parameters, so its resistance value can be set to be greater than a certain preset value to reduce the leakage current, thereby reducing the quiescent current of the power converter.
  • the configuration resistor includes: at least two resistors and at least one switch; at least one switch is used to put all or part of the at least two resistors into configuration according to the received on-off control. Between the two ends of the resistor; that is, by changing the number of connected resistors, the resistance value adjustment for the configured resistor can be realized.
  • An optional solution is that each resistor is connected in series with the corresponding switch to form a series branch, each series branch is connected in parallel, and the two ends of the parallel connection are used as the two ends of the configuration resistor.
  • the power converter includes: a voltage source, a capacitor, and an error amplifier; wherein, the voltage source is powered from the power supply terminal of the power converter; the voltage source is connected to the first capacitor of the capacitor through a resistor terminal; the first terminal of the capacitor is also connected to the setting input terminal and any input terminal of the error amplifier; the second terminal of the capacitor is grounded.
  • a corresponding configuration voltage can be generated after the configuration resistor is charged by the voltage source, and the configuration voltage is stably transmitted to the error amplifier through the capacitor for subsequent calculation and control.
  • a current source can also be used instead of a voltage source and a resistor.
  • the first end of the capacitor is connected to the reference input end of the error amplifier, and the adjustment of the resistance value of the configuration resistor will control the output voltage by receiving a signal from the reference input end of the error amplifier. make an impact.
  • the first end of the capacitor is connected to the feedback input end of the error amplifier, and the adjustment of the resistance value of the configuration resistor will control the output voltage by receiving the signal through the feedback input end of the error amplifier. make an impact.
  • an analog/digital converter, a register, and a digital/analog converter are further arranged between the first terminal of the capacitor and the corresponding input terminal of the error amplifier ;
  • the analog/digital converter takes power from the power supply end and is used to convert the configuration voltage into a digital signal;
  • the register is used to store the digital signal;
  • the digital/analog converter is used to convert the digital signal into an analog signal and output it to Corresponding input of the error amplifier.
  • the storage function for the configuration voltage can be realized by means of the register.
  • the power supply terminal supplies power to the voltage source or the current source, and supplies power to the analog/digital converter through the switch tube.
  • the power converter further includes: a shutdown control unit, configured to control the switch tube to be turned on and off periodically.
  • the shutdown control unit may be: an RC timer; or, if the power converter includes a clock, the shutdown control unit may also be: a counter.
  • the second aspect of the present application also provides an electronic device, which includes: a processor, a battery, a charging management module, and the power conversion circuit described in any paragraph of the first aspect above; wherein, the charging management module and the power conversion circuit are respectively Controlled by the processor; the charging management module is used to charge the battery; the power conversion circuit receives power from the battery or the charging management module.
  • the power conversion circuit can adjust its output voltage by adjusting the resistance value of its configuration resistor, and then can provide the required power supply voltage for the corresponding load in the electronic device.
  • Figure 1a, Figure 1b and Figure 1c are schematic diagrams of three voltage regulation schemes of the power converter
  • FIG. 2 is a schematic structural diagram of a power conversion circuit provided in an embodiment of the present application.
  • Fig. 3a, Fig. 3b, Fig. 3c and Fig. 3d are schematic diagrams of four configuration resistors provided by the embodiment of the present application;
  • Figure 4a and Figure 4b are signal waveform diagrams of two voltage regulation processes of the power conversion circuit provided by the embodiment of the present application;
  • Fig. 5a, Fig. 5b, Fig. 5c, Fig. 6a, Fig. 6b and Fig. 6c are schematic diagrams of the other six structures of the power conversion circuit provided by the embodiment of the present application;
  • FIG. 7 is a schematic diagram of a module structure of an electronic device provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • Power converter chips may be used in different electronic devices, such as wearable devices such as smart watches, smart bracelets, and Bluetooth headsets; even if they are used in the same electronic device, the load power supply requirements they need to face There may also be differences; in order to meet the power supply requirements of different loads, the chip needs to be able to output a variety of output voltages with different values, such as 0.7V and 1.8V; therefore, the output voltage of the chip needs to be set and adjusted , so that it can stably provide the voltage value required by the corresponding load.
  • the voltage V out is used for subsequent calculation and adjustment by the processor of the electronic device; in practical applications, the resistance values of the voltage dividing resistors R 1 and R 2 cannot be selected too large; the specific reason is that due to the voltage dividing resistors R 1 and R 2 needs to be connected to the chip through corresponding traces, and these traces will inevitably bring parasitic capacitance and inductance, and these parasitic devices will introduce interference through coupling; as interference sources, these parasitic devices
  • the internal resistance of the chip is usually large, therefore, the larger the resistance value of the voltage dividing resistor, the greater the interference it will get; and because the external wiring of the chip is usually random, the parameters of these parasitic devices brought by it It is not controllable, and the interference caused by these parasitic parameters is also uncontrollable; therefore, in order to reduce the influence of these parasitic devices on the voltage division result, the resistance values of the voltage division resistors R1 and R2 cannot be selected too large, It is better that the voltage deviation caused by interference can be ignored for the voltage division result.
  • 12uA is an excessive quiescent current.
  • the VIN pin is the power supply terminal of the chip
  • the GND pin is used to realize the ground connection
  • the voltage output by the SW pin can generate the output voltage V out through the external inductor L
  • the FB pin is used to collect the output voltage V out and fed back to the chip.
  • the chip receives the control signal through the SCL pin and receives the data signal through the SDA pin to realize the setting of the output voltage V out and adjustment; the corresponding electronic device can only have the I 2 C communication function after its processor is powered on, and the SDA pin can receive the corresponding data signal, so this solution is not suitable for the scene of power-on first and then communication;
  • the chip In the scenario where the chip is used to power the camera in the electronic device, for a chip whose output voltage V out is initially defaulted to 1.8V, it needs the processor to communicate through I 2 C when faced with the rated power supply voltage requirement of 1.2V for the camera
  • the function is to transmit data signals to the SDA pin of the chip to adjust its output voltage V out to 1.2V; however, since the initial default value of the chip’s output voltage V out after power-on is 1.8V, when the processor is powered on During the period of time until the start of communication, the power supply voltage received by the camera is 1.8V
  • the chip configures the output voltage V out through the three setting pins V SEL1 , V SEL2 , and V SEL3 .
  • the present application provides a power conversion circuit, which can significantly reduce the quiescent current, and at the same time realize more output voltages and reduce the chip size, which is suitable for application in wearable devices.
  • the power conversion circuit is set in an electronic device and is controlled by a processor in the electronic device;
  • the electronic device can be a wearable device such as a smart watch, a smart bracelet, and a Bluetooth headset, or a mobile terminal device such as a mobile phone or a tablet computer
  • a wearable device such as a smart watch, a smart bracelet, and a Bluetooth headset
  • a mobile terminal device such as a mobile phone or a tablet computer
  • the power conversion circuit includes: a power converter 10 and a configuration resistor R set ; wherein:
  • the power converter 10 is set in the power management module of the wearable device, specifically a chip that realizes DC/DC conversion, such as buck, boost, buckboost and other chips, which pass between the VIN pin and the GND pin
  • the external input capacitor C in receives the input voltage V in provided by the battery or charging management module in the wearable device. After corresponding transformation of the input voltage V in , it is filtered by the inductor L connected to the outside of the SW pin. An output voltage V out is generated on the output capacitor C out between the other side of the inductor L and the ground; the output voltage V out is used to supply power to other devices in the wearable device, such as processors, speakers, memory, motors, Power supply for flexible screens, cameras and wireless communication modules.
  • Different electronic equipment may have different voltages required by its internal devices, such as 0.7V, 1.2V or 1.8V, etc.; in order to make the power conversion circuit of the same type cover a variety of different output voltages, and then adapt to different application scenarios, so it needs to be equipped with the corresponding voltage regulation function.
  • the configuration resistor R set is set between the setting input terminal VSET of the power converter 10 and the ground, and is used to set its own resistance according to the control of the processor.
  • a specific example is that the configuration resistance R set is implemented by connecting at least two resistors in parallel, see Figure 3a, each resistor R 0 is connected in series with the corresponding switch K 0 to form a series branch, and then these series branches are connected in parallel , the two ends of the parallel connection are used as the two ends of the configuration resistance R set ; the processor changes the specific number of internal access resistance R 0 of the configuration resistance R set by controlling the on-off of each switch K 0 , and then changes the configuration resistance R
  • the equivalent resistance value of set in practical applications, the resistance values of each resistor R 0 may be completely the same, or may not be completely the same, or may even be different, all within the protection scope of the present application.
  • the configuration resistor R set can also be realized by connecting at least two resistors R 0 in series.
  • each resistor R 0 is also connected in parallel with a corresponding switch K 0 , and its structure is shown in Figure 3b; in this case, The switch K 0 can bypass its parallel resistor R 0 in the closed state, thereby reducing the number of resistors in the configuration resistor R set that are put into the series connection relationship; or, the switch K 0 can be in the disconnected state, Put its parallel resistance R 0 into the series connection relationship; this structure can also realize the change of the equivalent resistance value of the configuration resistance R set , and the resistance value of each resistance R 0 under this structure is not specifically limited ; However, in the structure shown in Figure 3b, for each switch K 0 except the lowermost switch K 0 , the reference ground level conversion of the control terminal is required to ensure the on-off control of each switch K 0 The level is uniform, so its implementation is more complex than that shown in Figure 3a.
  • the combination of the structures shown in Figure 3a and Figure 3b can also be used, the structure shown in Figure 3c is first connected in parallel and then connected in series, and the structure shown in Figure 3d is The structure of series connection first and then parallel connection can also be a more complex series-parallel structure, as long as the processor controls the on-off of at least one switch, all or part of the at least two resistors are put into the two configuration resistors R set
  • the schemes between terminals are all within the scope of protection of this application.
  • the power converter 10 is provided with a switch tube K, a voltage source U s , a resistor R s , a capacitor C 1 , and an ADC (Analog-to-Digital Converter, analog/ digital converter), register 101, DAC (Digital-to-Analog Converter, digital/analog converter), and EA (error amplifier, error amplifier).
  • the voltage source U s is connected to the first terminal of the capacitor C1 , the setting input terminal VSET and the input terminal of the ADC through the resistor R s
  • the output terminal of the ADC is connected to the reference input terminal of the EA through the register 101 and the DAC in turn.
  • the VIN pin of the power converter 10 can supply power to the devices inside the power converter 10 through the switch tube K, for example, can supply power to the voltage source U s and ADC in the dotted line box in Figure 2;
  • the switch tube K may specifically be a MOS transistor, but is not limited thereto.
  • the processor controls the switch tube K to close, and the voltage source U s and the ADC are powered on.
  • the voltage source U s can output a stable voltage.
  • the resistor R s and the configuration resistor R set with a resistance value set outside the chip divide the stable voltage, and a voltage value V set is obtained on the configuration resistor R set .
  • the collection of the output voltage V out is obtained by dividing the voltage through the grounded voltage dividing resistors R 1 and R 2 , and the voltage value F b on the grounding resistance R 2 is the collection value of the output voltage V out , which is obtained by Input to the feedback input terminal of the EA as the feedback voltage F b of the control loop, for the processor to reduce the difference between the feedback voltage F b and the analog signal V ref to realize the regulation of the output voltage V out .
  • the voltage dividing resistors R 1 and R 2 are set inside the power converter 10, one is close to EA, and the other is that the connection wiring can be set by itself to control the parasitic parameters, so the resistance value can be set very Large, in practical applications, it can be set to be greater than a specific preset value, so that the leakage current is very small, thereby reducing the quiescent current of the chip;
  • the signal waveform diagram is shown in Figure 4a, where EN is high, indicating that the VIN pin is powered on , I q represents the current flowing into the VIN pin, which is the quiescent current in the standby state of the power converter 10 , and the period with the highest value represents the time period for the ADC to read the configuration voltage V set information.
  • the quiescent current is relatively large only at the moment when the ADC reads the configuration voltage V set information after power-on, and the ultra-low quiescent current operation can be maintained in the subsequent steady-state stage.
  • the present application only needs one VSET pin to realize the voltage setting function, and the power converter 10 can be realized with a chip of smaller size.
  • the defect of limited pressure range moreover, relying on the high precision of ADC, it can also realize continuous voltage regulation.
  • this application does not need I 2 C communication for the adjustment of the output voltage V out , so there is no need for I 2 C communication port, and there is no need for I 2 C communication to be online in real time; when the resistance value of the configuration resistor R set is set In this case, the corresponding output voltage V out can be output as long as the power is turned on, which is applicable to the scene of communication after power-on first.
  • the DAC in FIG. 2 can be replaced by a low-precision resistor network.
  • the structure setting of the resistor network is the same as that of the configuration resistor R set , as shown in FIGS. 3a to 3d; here No more details; the voltage regulation step in this mode will be affected by the structure setting of the resistor network, so in practical applications, the resistance value and connection relationship of each internal resistor can be adaptively adjusted, all of which are protected by this application. within range.
  • the register 101 can continue to provide the analog signal V ref through the DAC to ensure that the reference input terminal of the EA
  • the reference voltage of the control loop can be received all the time, and the power converter 10 can still generate and output the corresponding output voltage V out according to the configuration voltage V set ; at this time, due to the power-off of the voltage source U s and the ADC, The power consumption of the voltage source U s
  • the turn-off control unit 102 shown in FIG. 5a indirectly controls the periodic on-off of the switch tube K through the processor;
  • the turn-off control unit 102 may specifically be an RC timer, which may By setting a specific duration, such as 10ms, to switch the switch tube K regularly; in this way, the resistance value of the configuration resistor R set can be adjusted at any time during the operation of the chip without powering off the VIN pin, and with the help of
  • the storage function of the register 101 changes the digital signal stored in the register 101 when the voltage source U s and the ADC are powered on next time, realizes the register value refresh function when the chip is not powered off, and then changes the analog signal V ref output by the DAC, Realize post-power-on adjustment for the output voltage V out .
  • the magnitude of the quiescent current I q will change periodically following the on-off of the switch tube K, as shown in Figure 4b, when the switch tube K is closed, the voltage source U s and the ADC will consume corresponding power, Therefore, the value of its quiescent current Iq will be the same as that in the steady-state stage in Figure 4a; and when the switch tube K is turned off, the quiescent current Iq can be further reduced.
  • the shutdown control unit 102 can also be a counter, which can also realize the above functions in conjunction with the clock reference signal, and will not be repeated here.
  • the switch tube K can be reserved, and after the VIN pin is powered on, it is controlled by the processor and kept closed, and after the power converter 10 is normally powered off, it can be turned off with an appropriate delay to realize the input
  • the discharge of the voltage on the capacitor C in or you can choose to turn off directly; of course, for the various situations shown in Figure 2, Figure 5a and Figure 5b, the switch tube K can also be selectively omitted, at this time, for each figure
  • the power supply of the devices in the middle dotted line box will follow the power-on of the VIN pin.
  • the voltage source U s and the resistor R s can also be replaced by a current source I s , and its structure is shown in Fig. 5c.
  • the resistance values of the resistors R set vary in a constant proportional relationship.
  • Fig. 5c is a modification of the structure shown in Fig. 5b.
  • the voltage source U s and resistor R s in Fig. 2 and Fig. 5a can also be replaced by the current source I s , and will not be illustrated one by one .
  • the two input terminals of EA can also be changed to receive signals to obtain a corresponding deformation structure, specifically, the reference input terminal is changed to receive a fixed reference voltage V ref , and the received signal of the feedback voltage F b at the feedback input end will be adjusted in the above corresponding form; after the structure shown in Fig. 2 is changed to the above EA input end, the obtained deformation structure diagram is shown in Fig.
  • Another embodiment of the present application also provides an electronic device, which can be: a mobile phone, a tablet computer (portable android device, PAD), a desktop, a laptop, a notebook computer, an ultra-mobile personal computer (Ultra-mobile Personal Computer, UMPC), handheld computers, netbooks, personal digital assistants (Personal Digital Assistant, PDA) and wearable devices and other mobile terminal devices; where wearable devices include but are not limited to smart watches, smart bracelets and Bluetooth headsets.
  • the form of the electronic device is not specifically limited in the embodiment of the present application.
  • the electronic device may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, Antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, micro motor 191A, indicator 192 , camera 193, display screen 194 (flexible screen), and SIM card interface 195 etc.
  • the sensor module 180 may include a pressure sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, and the like.
  • the structure shown in the embodiment of the present application does not constitute a specific limitation on the electronic device.
  • the electronic device may include more or fewer components than shown in the illustrations, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • a Bluetooth headset it is not necessary to be provided with components such as a headset jack 170D, a sensor module 180, a micro-motor 191A, a camera 193, a display screen 194 (flexible screen), and a SIM card interface 195, depending on the specific application environment. , are all within the protection scope of this application.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, or a USB Type C interface.
  • the USB interface 130 can be used to connect a charger to charge the electronic device, can also be used to transmit data between the electronic device and a peripheral device, and can also be used to connect an earphone to play audio through the earphone.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the charging management module 140 is used for receiving charging input from an external charger. While the charging management module 140 is charging the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 may include one or more power conversion circuits provided in the above embodiments, for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input of the battery 142 and/or the charging management module 140, through the corresponding power conversion circuit, provides the processor 110, the internal memory 121, the speaker 170A, the external memory, the motor 191, the flexible screen 194, the camera 193 and the wireless The communication module 160 and the like supply power.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance). In some other embodiments, the power management module 141 may also be disposed in the processor 110 . In some other embodiments, the power management module 141 and the charging management module 140 may also be set in the same device.
  • the processor 110 may be a SoC (System-on-a-Chip, system-on-a-chip) in devices such as mobile phones and smart watches, or a central processing unit in devices such as tablet computers and notebook computers, or may be an MCU (Microcontroller Unit , micro control unit), etc.; it may specifically include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU ), image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural- network processing unit, NPU), etc.
  • SoC System-on-a-Chip, system-on-a-chip
  • MCU Microcontroller Unit , micro control unit
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU ), image signal processor (image signal
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic equipment. The controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I 2 C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver ( universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface , and/or a universal serial bus (universal serial bus, USB) interface, etc.
  • I 2 C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • mobile industry processor interface mobile industry processor interface
  • MIPI mobile industry processor interface
  • general-purpose input and output general-purpose input/output
  • GPIO general-

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本申请提供了一种电源变换电路及电子设备,该电源变换电路中,其配置电阻设置于电源变换器的设定输入端与地之间,且阻值可控,能够在相应阻值下,为设定输入端生成配置电压;而其电源变换器能够根据配置电压生成并输出相应的输出电压;也即,本申请通过调整配置电阻的阻值,来实现对于输出电压的调节;并且,负责采集输出电压的分压电阻,设置于电源变换器中,可以控制寄生参数,所以其阻值可以设置为大于某一预设值,以减小漏电流,进而降低电源变换器的静态电流。

Description

一种电源变换电路及电子设备
本申请要求于2021年11月26日提交中国国家知识产权局、申请号为202111421896.7、发明名称为“一种电源变换电路及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,特别涉及一种电源变换电路及电子设备。
背景技术
随着可穿戴设备的广泛普及,最大化的延长其待机时间成为了一个重点研究方向;其中,电源变换器类芯片的静态电流,是影响待机时长的重要因素,尤其是休眠时期的待机时长。然而,由于电源变换器类芯片,需要对其输出电压进行调节,以使其稳定于设定的配置值,进而适应不同负载的需求,即便休眠时期也需如此;而这一过程带来的静态电流通常比较大,因此,当前亟需提供一种静态电流较小的调压方案。
发明内容
有鉴于此,本申请提供一种电源变换电路及电子设备,以降低调压过程所带来的静态电流。
为实现上述目的,本申请提供如下技术方案:
本申请第一方面提供了一种电源变换电路,其配置电阻设置于电源变换器的设定输入端与地之间,且阻值可控,能够在相应阻值下,为设定输入端生成配置电压;而其电源变换器能够根据配置电压生成并输出相应的输出电压;也即,本申请通过调整配置电阻的阻值,来实现对于输出电压的调节;并且,负责采集输出电压的分压电阻,设置于电源变换器中,可以控制寄生参数,所以其阻值可以设置为大于某一预设值,以减小漏电流,进而降低电源变换器的静态电流。
在一种可能的实施方式中,该配置电阻包括:至少两个电阻及至少一个开关;其至少一个开关用于根据接收到的通断控制,将至少两个电阻中的全部或部分投入至配置电阻的两端之间;也即,通过改变电阻的接入数量,即可实现对于该配置电阻的阻值调整。一种可选方案是,各电阻分别与相应的开关串联成串联支路,各串联支路并联连接,并联后的两端作为配置电阻的两端。
在一种可能的实施方式中,该电源变换器中,包括:电压源,电容,以及,误差放大器;其中,电压源取电于电源变换器的供电端;电压源通过电阻连接电容的第一端;电容的第一端,还与设定输入端以及误差放大器的任一输入端相连;电容的第二端接地。通过此结构设置,可以通过电压源为配置电阻充电后生成相应的配置电压,并将该配置电压通过电容稳定的传送至误差放大器中,进行后续的计算和控制。而且,还可以用电流源代替电压源及电阻。在一种可能的实施方式中,该电容的第一端,与误差放大器的参考输入端 相连,则该配置电阻的阻值调整,将会通过误差放大器的参考输入端接收信号对输出电压的控制产生影响。在一种可能的实施方式中,该电容的第一端,与误差放大器的反馈输入端相连,则该配置电阻的阻值调整,将会通过误差放大器的反馈输入端接收信号对输出电压的控制产生影响。
在一种可能的实施方式中,该电源变换器中,电容的第一端,与误差放大器的相应输入端之间,还设置有:模拟/数字转换器,寄存器,以及,数字/模拟转换器;其中,模拟/数字转换器取电于供电端,用于将配置电压转换为数字信号;寄存器用于存储数字信号;数值/模拟转换器用于将数字信号转换为模拟信号,并将其输出至误差放大器的相应输入端。此时,能够借助寄存器实现对于配置电压的存储功能。而且,还可以用电阻网络来代替数字/模拟转换器。
在一种可能的实施方式中,该电源变换器中,供电端通过开关管,为电压源或电流源供电,以及为模拟/数字转换器供电。并且,该电源变换器中还包括:关断控制单元,用于控制开关管周期性通断。进而,通过该关断控制单元,借助寄存器的存储功能,能够使电源变换器在不下电的情况下实现对于输出电压的调节功能。可选的,该关断控制单元可以为:RC计时器;或者,在电源变换器中包括时钟的情况下,该关断控制单元也可以为:计数器。
本申请第二方面还提供了一种电子设备,其包括:处理器、电池、充电管理模块和如上述第一方面任一段落所述的电源变换电路;其中,充电管理模块和电源变换电路,分别受控于处理器;充电管理模块用于为电池充电;电源变换电路接收电池或者充电管理模块的供电。该电源变换电路能够通过其配置电阻的阻值调整,来实现对于其输出电压的调节,进而能够为电子设备内相应的负载提供其所需的供电电压。
应当理解的是,本申请中对技术特征、技术方案、有益效果或类似语言的描述并不是暗示在任意的单个实施例中可以实现所有的特点和优点。相反,可以理解的是对于特征或有益效果的描述意味着在至少一个实施例中包括特定的技术特征、技术方案或有益效果。因此,本说明书中对于技术特征、技术方案或有益效果的描述并不一定是指相同的实施例。进而,还可以任何适当的方式组合本实施例中所描述的技术特征、技术方案和有益效果。本领域技术人员将会理解,无需特定实施例的一个或多个特定的技术特征、技术方案或有益效果即可实现实施例。在其他实施例中,还可在没有体现所有实施例的特定实施例中识别出额外的技术特征和有益效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1a、图1b和图1c分别为电源变换器的三种调压方案示意图;
图2为本申请实施例提供的电源变换电路的一种结构示意图;
图3a、图3b、图3c及图3d为本申请实施例提供的配置电阻的四种结构示意图;
图4a和图4b为本申请实施例提供的电源变换电路的两种调压过程的信号波形图;
图5a、图5b、图5c、图6a、图6b及图6c为本申请实施例提供的电源变换电路的另外六种结构示意图;
图7为本申请实施例提供的电子设备的模块结构示意图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
电源变换器类芯片,有可能会应用于不同的电子设备中,比如智能手表、智能手环、蓝牙耳机等可穿戴设备;即便是应用于同一种电子设备中,其需要面对的负载供电需求也有可能会存在差异;为适应不同负载的供电需求,需要该芯片能够输出多种不同取值的输出电压,比如0.7V和1.8V等;因此,需要对该芯片的输出电压进行设定和调节,以使其能够稳定提供相应负载所需的电压值。
当前,对于该芯片的输出电压调节,若采用图1a所示的分压电阻调压方案,即通过芯片(如图中的方框所示)外部的分压电阻R 1和R 2来采集输出电压V out,以供电子设备的处理器进行后续计算和调节;则实际应用中,分压电阻R 1和R 2的阻值不能选取的太大;具体原因是,由于分压电阻R 1和R 2需要通过相应的走线来实现其与芯片之间的连接,而这些走线势必会带来寄生的电容和电感,这些寄生器件会通过耦合的方式引入干扰;作为干扰源,这些寄生器件的内阻通常较大,因此,分压电阻的阻值越大,其所分得的干扰就越大;又由于芯片的外部走线通常具有随机性,所以其带来的这些寄生器件的参数并不可控,进而导致由这些寄生参数而带来的干扰也不可控;因此,为了降低这些寄生器件对分压结果的影响,分压电阻R 1和R 2的阻值不能选取的太大,以干扰带来的电压偏差对分压结果可以忽略为优。以可穿戴设备常用的输出电压V out=1.8V为例,分压电阻R 1+R 2取150kΩ,则其上流过的电流I (R1+R2)=1.8V/150kΩ=12uA;而对于可穿戴设备而言,12uA属于静态电流过大的情况。其中,VIN引脚为该芯片的供电端,GND引脚用于实现接地连接,SW引脚输出的电压通过外部电感L能生成该输出电压V out,FB引脚用于采集该输出电压V out并反馈至该芯片内部。
若采用I 2C通信功能来实现调压,即如图1b所示,该芯片通过SCL引脚来接收控制信号,并通过SDA引脚来接收数据信号,以实现对于输出电压V out的设定和调节;则相应电子设备只有在其处理器上电后,才能具有I 2C通信功能,SDA引脚才能接收到相应的数据信号,因此该方案不适用于先上电后通信的场景;比如在采用该芯片为电子设备内摄像头供电的场景下,对于输出电压V out初始默认值为1.8V的芯片,其在面对摄像头1.2V的额定供电电压需求时,需要处理器通过I 2C通信功能,为该芯片的SDA引脚传输数据信号,才能将其输出电压V out调整为1.2V;但由于芯片的输出电压V out在上电后的初始默认值为 1.8V,在处理器上电后到开始进行通信的时间段内,摄像头接收到的供电电压是1.8V,超过了摄像头的额定供电电压,有可能会导致摄像头烧毁;因此,该方案不适用于这种先上电后通信的场景;而且,该方案还需要I 2C通信实时在线,以等待处理器产生数据信号后对其进行传输,进而确保SDA引脚能够接收到数据信号,因此,该方案的静态电流也通常会大于2uA。
若采用V SEL真值表来实现调压,即如图1c所示,该芯片通过V SEL1、V SEL2、V SEL3这三个设定引脚来配置输出电压V out,则通过这三个设定引脚只能够提供一共2 3=8个电压值,因此其输出电压V out的调节档位少,而且不灵活;另外,其设定引脚越多,其芯片尺寸就会越大。
因此,本申请提供了一种电源变换电路,其能够显著降低静态电流,同时还能实现更多取值的输出电压并减小芯片尺寸,适合应用于可穿戴设备中。
该电源变换电路设置于电子设备中,受控于电子设备中的处理器;该电子设备可以是智能手表、智能手环及蓝牙耳机等可穿戴设备,也可以是手机或平板电脑等移动终端设备,具体可以参见最后一个实施例中所述的内容;下面以可穿戴设备为例进行说明。
如图2所示,该电源变换电路,包括:电源变换器10和配置电阻R set;其中:
该电源变换器10是设置于可穿戴设备的电源管理模块中的,具体可以是一种实现DC/DC变换的芯片,比如buck、boost、buckboost等芯片,其通过VIN引脚和GND引脚间的外置输入电容C in,接收可穿戴设备中电池或充电管理模块提供的输入电压V in,对该输入电压V in进行相应变换后,通过SW引脚外侧所接的电感L进行滤波,在电感L另一侧与地之间的输出电容C out上生成输出电压V out;该输出电压V out用于为该可穿戴设备中的其他器件供电,比如为处理器、扬声器、存储器、马达、柔性屏幕、摄像头和无线通信模块等供电。不同的电子设备,其内部器件所需的电压可能会有所不同,比如0.7V、1.2V或者1.8V等;为了使同一型号的电源变换电路,能够覆盖多种不同的输出电压,进而适应不同的应用场景,所以需要为其配备相应的调压功能。
该配置电阻R set设置于电源变换器10的设定输入端VSET与地之间,用于根据处理器的控制,设置自身的阻值。一种具体的示例是,该配置电阻R set由至少两个电阻并联实现,参见图3a,各个电阻R 0分别与相应的开关K 0串联成一个串联支路,然后这些串联支路再并联连接,并联后的两端作为该配置电阻R set的两端;处理器通过控制各个开关K 0的通断,改变该配置电阻R set内部接入电阻R 0的具体数量,进而改变该配置电阻R set的等效阻值;实际应用中,各个电阻R 0的阻值可以是完全相同的,也可以是不完全相同的,甚至可以是各不相同的,均在本申请的保护范围内。另外,该配置电阻R set也可以由至少两个电阻R 0通过串联来实现,此时各个电阻R 0还分别并联有一个相应的开关K 0,其结构如图3b所示;该情况下,开关K 0能够在闭合状态下将其并联的电阻R 0旁路掉,进而减少该配置电阻R set中投入到串联连接关系中的电阻数量;或者,开关K 0能够在断开的状态下,将其并联的电阻R 0投入到串联连接关系中;该结构也能够实现对于该配置电阻R set的等效阻值的改变,而且,该结构下各个电阻R 0的阻值也不做具体限定;只不过,图3b中所示的结构,对其除最下端一个开关K 0以外的其他各个开关K 0,均需要进行控制端的参考地电平变换,以确保各个开关K 0的通断控制电平是统一的,所以其实现方式比图3a所示结构复杂。实际 应用中,对于该配置电阻R set阻值的设置,还可以采用图3a和图3b所示结构相结合的形式,如图3c所示的先并联再串联的结构,以及图3d所示的先串联再并联的结构,还可以是更为复杂的串并联结构,只要是处理器通过控制至少一个开关的通断,来将至少两个电阻中的全部或部分投入至该配置电阻R set两端之间的方案,均在本申请的保护范围内。
一种具体的示例中,如图2所示,该电源变换器10内部,设置有开关管K、电压源U s、电阻R s、电容C 1、ADC(Analog-to-Digital Converter,模拟/数字转换器)、寄存器101、DAC(Digital-to-Analog Converter,数字/模拟转换器)以及EA(error amplifier,误差放大器)。其中,该电压源U s通过电阻R s,连接电容C 1的第一端、设定输入端VSET以及ADC的输入端,该ADC的输出端依次通过寄存器101和DAC连接EA的参考输入端。
该电源变换器10的VIN引脚,作为其供电端,可以通过开关管K来为电源变换器10内部的器件供电,比如,可以为图2中虚线框内的电压源U s和ADC供电;该开关管K具体可以是MOS晶体管,但并不仅限于此。电源变换器10上电之后,即VIN引脚上电之后,处理器控制该开关管K闭合,电压源U s和ADC上电。该电压源U s能够输出稳定的电压,电阻R s与芯片外部设置好阻值的配置电阻R set对这一稳定的电压进行分压,配置电阻R set上获得一个电压值V set,该电压值V set即为配置电阻R set在自身的相应阻值下,为设定输入端VSET(也即VSET引脚)生成的配置电压;该配置电压V set能够通过芯片内部的电容C 1维持在一个稳定状态,进而由ADC读取后将其转换为数字信号,并锁存在寄存器101当中;该寄存器101中的数字信号再经过DAC转换为模拟信号V ref,V ref=V set,该模拟信号V ref被输入至EA的参考输入端、作为控制环路的基准参考电压,实现对于该输出电压V out的参考设定,进而使处理器能够控制电源变换器10,根据该配置电压V set生成并输出相应的输出电压V out
并且,该输出电压V out的采集,是通过接地的分压电阻R 1和R 2来分压采集的,接地电阻R 2上的电压值F b即为该输出电压V out的采集值,被输入至EA的反馈输入端、作为控制环路的反馈电压F b,以供处理器缩小该反馈电压F b与模拟信号V ref之间的差值,实现对于该输出电压V out的调节。而且,该分压电阻R 1和R 2设置于该电源变换器10的内部,一是距离EA较近,二是可以自行设置其连接走线进而控制寄生参数,所以其阻值可以设置的非常大,实际应用中可以设置其大于某一具体的预设值,使得漏电流很小,进而降低芯片的静态电流;其信号波形图参见图4a,其中,EN为高时表示VIN引脚上电,I q表示VIN引脚流入的电流,其在电源变换器10待机状态下即为静态电流,其取值最高的一段表示ADC读取配置电压V set信息的时间段。
由图4a中的I q波形可见,本申请只在上电后ADC读取配置电压V set信息的瞬间,其静态电流偏大,而后续稳态阶段即可保持超低静态电流运行。而且,本申请只需要一个VSET引脚即可实现电压设定功能,能够以较小尺寸的芯片来实现电源变换器10。另外,其配置电阻R set能够实现的等效阻值越多,其对于输出电压V out的调节档位越多,能够实现的调节就越灵活,克服了传统低功耗电源变换器类芯片调压范围受限的缺陷;而且,依靠ADC较高的精度,还可实现连续调压。再者,本申请对于输出电压V out的调节,并不需要借助I 2C通信,所以无需I 2C通信口,也无需I 2C通信实时在线;在配置电阻R set阻值设置好的情况下,只要上电即可输出相应的输出电压V out,能够适用于先上电后通信的场景。
一种另外的示例中,可以用低精度的电阻网络来代替图2中的该DAC,该电阻网络的结构设置与配置电阻R set的设置原理相同,参见图3a至图3d所示;此处不再赘述;该方式下的调压步长会受电阻网络的结构设置影响,所以实际应用中,可以对其内部各组成电阻的阻值和连接关系进行适应性调整,均在本申请的保护范围内。
在大阻值的分压电阻R 1和R 2能够降低静态电流的基础之上,进一步的,由于配置电压V set被ADC转换为数字信号后,即被存储到寄存器101中,寄存器101中存储的数字信号又经ADC转换为模拟信号V ref,也即从V set到V ref只经历了模数转换、存储及数模转换,因此有V ref=V set;所以在DAC将寄存器101中的数字信号转换为模拟信号V ref后,即便开关管K受控断开,电压源U s和ADC下电,也可以由寄存器101来继续通过DAC提供该模拟信号V ref,确保EA的参考输入端能够一直接收到控制环路的基准参考电压,电源变换器10也依旧能根据该配置电压V set生成并输出相应的输出电压V out;而此时,由于电压源U s和ADC的下电,还能进一步省掉电压源U s和ADC的供电消耗,所以静态电流I q在图4a的基础上还能进一步降低,进而得到显著减小,如图4b所示。一种具体的示例是,由图5a所示的关断控制单元102,通过处理器来间接控制该开关管K周期性通断;该关断控制单元102具体可以是一个RC计时器,其可以通过设定一个具体的时长,比如10ms,来定期开关该开关管K;这样,无需VIN引脚下电,即可在芯片运行过程中,随时对配置电阻R set的阻值进行调整,并借助寄存器101的存储功能,在电压源U s和ADC下次上电时改变存储于寄存器101内的数字信号,实现芯片不下电情况下的寄存器值刷新功能,继而改变DAC输出的模拟信号V ref,实现对于输出电压V out的上电后调整。该情况下,静态电流I q的大小会跟随开关管K的通断而发生周期性变化,如图4b中所示,当开关管K闭合时,电压源U s和ADC会有相应耗电,所以其静态电流I q的取值会与图4a中的稳态阶段相同;而当开关管K断开时,静态电流I q即可得到进一步减小。
实际应用中,若该电源变换器10内配备有时钟,则该关断控制单元102也可以是一个计数器,配合时钟基准信号,同样能够实现上述功能,不再赘述。
另外,该电源变换器10内在没有关断控制单元102时,也可以没有ADC、寄存器101及DAC;此时,VSET引脚在该电源变换器10内,直接连接电容C 1的第一端以及EA的参考输入端,如图5b所示;该结构同样能实现图4a所示的效果,即能够在稳态阶段保持低静态电流运行;只不过由于省略了关断控制单元102带来的周期性关断功能以及寄存器101带来的存储功能,该结构将不再具备图5a结构下带来的不下电寄存器值刷新功能。此时,开关管K可以保留,其在VIN引脚上电之后,由处理器控制并保持闭合,并在该电源变换器10正常下电后,可以选择适当延时关断,以实现对于输入电容C in上电压的泄放,或者也可以选择直接关断;当然,对于图2、图5a及图5b所示各种情况,该开关管K也可以选择性省略,此时,对于各图中虚线框内的器件供电,将会跟随VIN引脚的上电来进行。
再者,该电源变换器10内,也可以通过电流源I s来代替该电压源U s和电阻R s,其结构如图5c所示,此时,配置电压V set的取值将与配置电阻R set的阻值之间呈常数正比例关系变化。而且,图5c是对图5b所示结构的变形,实际应用中,图2和图5a中的电压源U s和电阻R s也可以由电流源I s来代替,不再一一进行图示。
对于电源变换器10内部的上述各种结构,还可以对其中EA的两个输入端进行接收信号的改变,得到相应的变形结构,具体是将其参考输入端改变为接收固定的参考电压V ref,而其反馈输入端反馈电压F b的接收信号将会接受上述相应形式的调整;将图2所示的结构进行上述EA输入端的改变之后,得到的变形结构图如图6a所示;将图5a所示的结构进行上述EA输入端的改变之后,得到的变形结构图如图6b所示;将图5b所示的结构进行上述EA输入端的改变之后,得到的变形结构图如图6c所示;与图5c相对应的电流源的情况未进行图示,均在本申请的保护范围内。该方案下,仍然是通过调整配置电阻R set的阻值,来实现对于输出电压V out的调整,具体的调整原理与上述内容相似,不再一一赘述。
本申请另一实施例还提供了一种电子设备,该电子设备可以是:手机、平板电脑(portable android device,PAD)、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)和可穿戴设备等移动终端设备;其中可穿戴设备包括但不限于智能手表、智能手环及蓝牙耳机等。本申请实施例中对该电子设备的形态不做具体限定。
参见图7,该电子设备可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,微型马达191A,指示器192,摄像头193,显示屏194(柔性屏幕),以及SIM卡接口195等。传感器模块180可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器和骨传导传感器等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备的具体限定。在本申请另一些实施例中,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。比如,蓝牙耳机中,并不需要设置有耳机接口170D、传感器模块180、微型马达191A、摄像头193、显示屏194(柔性屏幕)以及SIM卡接口195等器件,视其具体应用环境而定即可,均在本申请的保护范围内。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口、Micro USB接口或USB Type C接口等。USB接口130可以用于连接充电器为该电子设备充电,也可以用于该电子设备与外围设备之间的传输数据,还可以用于连接耳机,通过耳机播放音频。此外,该接口还可以用于连接其他电子设备,例如AR设备等。
充电管理模块140用于从外部充电器接收充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。电源管理模块141,可以包括一个或多个上述实施例提供的电源变换电路,用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,通过相应的电源变换电路,为处理器110、内部存储器121、扬声器170A、外部存储器、马达191、柔性屏幕194、摄像头193和无线通信模块160等供电。电源管理模块141还可以用于监测电 池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
处理器110可以是手机、智能手表等设备中的SoC(System-on-a-Chip,系统级芯片),或者,平板电脑、笔记本电脑等设备中的中央处理器,还可以是MCU(Microcontroller Unit,微控制单元)等;其具体可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。其中,控制器可以是电子设备的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I 2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
电子设备内其他模块能够实现的功能此处不再一一赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种电源变换电路,其特征在于,包括:电源变换器和配置电阻;其中:
    所述配置电阻设置于所述电源变换器的设定输入端与地之间,且阻值可控,用于在相应阻值下,为所述设定输入端生成配置电压;
    所述电源变换器根据所述配置电压生成并输出相应的输出电压;
    采集所述输出电压的分压电阻设置于所述电源变换器中,且其阻值大于预设值。
  2. 根据权利要求1所述的电源变换电路,其特征在于,所述配置电阻包括:至少两个电阻及至少一个开关;其中:
    所述至少一个开关用于根据接收到的通断控制,将所述至少两个电阻中的全部或部分投入至所述配置电阻的两端之间。
  3. 根据权利要求2所述的电源变换电路,其特征在于,所述配置电阻中,各电阻分别与相应的开关串联成串联支路,各所述串联支路并联连接,并联后的两端作为所述配置电阻的两端。
  4. 根据权利要求1至3任一项所述的电源变换电路,其特征在于,所述电源变换器中,包括:电压源,电容,以及,误差放大器;其中:
    所述电压源取电于所述电源变换器的供电端;
    所述电压源通过电阻连接所述电容的第一端;
    所述电容的第一端,还与所述设定输入端以及所述误差放大器的任一输入端相连;
    所述电容的第二端接地。
  5. 根据权利要求1至3任一项所述的电源变换电路,其特征在于,所述电源变换器中,包括:电流源,电容,以及,误差放大器;其中:
    所述电流源取电于所述电源变换器的供电端;
    所述电流源连接所述电容的第一端;
    所述电容的第一端,还与所述设定输入端以及所述误差放大器的任一输入端相连;
    所述电容的第二端接地。
  6. 根据权利要求4或5所述的电源变换电路,其特征在于,所述电容的第一端,与所述误差放大器的参考输入端相连。
  7. 根据权利要求4或5所述的电源变换电路,其特征在于,所述电源变换器中,所述电容的第一端,与所述误差放大器的相应输入端之间,还设置有:模拟/数字转换器,寄存器,以及,数字/模拟转换器;其中:
    所述模拟/数字转换器取电于所述供电端,用于将所述配置电压转换为数字信号;
    所述寄存器用于存储所述数字信号;
    所述数字/模拟转换器用于将所述数字信号转换为模拟信号,并将其输出至所述误差放大器的相应输入端。
  8. 根据权利要求4或5所述的电源变换电路,其特征在于,所述电源变换器中,所述电容的第一端,与所述误差放大器的相应输入端之间,还设置有:模拟/数字转换器,寄存器,以及,电阻网络;其中:
    所述模拟/数字转换器取电于所述供电端,用于将所述配置电压转换为数字信号;
    所述寄存器用于存储所述数字信号;
    所述电阻网络用于将所述数字信号转换为模拟信号,并将其输出至所述误差放大器的相应输入端。
  9. 根据权利要求7或8所述的电源变换电路,其特征在于,所述电源变换器中,所述供电端通过开关管,为所述电压源或所述电流源供电,以及为所述模拟/数字转换器供电。
  10. 根据权利要求9所述的电源变换电路,其特征在于,所述电源变换器中还包括:关断控制单元,用于控制所述开关管周期性通断。
  11. 根据权利要求10所述的电源变换电路,其特征在于,所述关断控制单元为:RC计时器。
  12. 根据权利要求10所述的电源变换电路,其特征在于,所述电源变换器中包括时钟,所述关断控制单元为:计数器。
  13. 一种电子设备,其特征在于,包括:处理器、电池、充电管理模块和如权利要求1-12任一项所述的电源变换电路;其中:
    所述充电管理模块和所述电源变换电路,分别受控于所述处理器;
    所述充电管理模块用于为所述电池充电;
    所述电源变换电路接收所述电池或者所述充电管理模块的供电。
PCT/CN2022/114773 2021-11-26 2022-08-25 一种电源变换电路及电子设备 WO2023093156A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22856978.6A EP4213358A1 (en) 2021-11-26 2022-08-25 Power conversion circuit and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111421896.7 2021-11-26
CN202111421896.7A CN115001263B (zh) 2021-11-26 2021-11-26 一种电源变换电路及电子设备

Publications (1)

Publication Number Publication Date
WO2023093156A1 true WO2023093156A1 (zh) 2023-06-01

Family

ID=83018063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114773 WO2023093156A1 (zh) 2021-11-26 2022-08-25 一种电源变换电路及电子设备

Country Status (3)

Country Link
EP (1) EP4213358A1 (zh)
CN (2) CN116581982A (zh)
WO (1) WO2023093156A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2912099Y (zh) * 2006-06-19 2007-06-13 刘程宇 具有cuk变换器的移动电源电路
JP2011210026A (ja) * 2010-03-30 2011-10-20 Denso Corp 電力変換装置
CN104953837A (zh) * 2014-03-31 2015-09-30 台达电子企业管理(上海)有限公司 用于功率变换器的控制装置和控制方法以及开关电源
CN109256939A (zh) * 2017-07-12 2019-01-22 赤多尼科两合股份有限公司 电流选择电路和驱动电路
CN113394983A (zh) * 2021-07-01 2021-09-14 上海南芯半导体科技有限公司 一种反激式变换器的电压反馈电路及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681492B2 (ja) * 1985-04-05 1994-10-12 ソニー株式会社 Dc−dcコンバ−タ
JPH06164960A (ja) * 1992-11-27 1994-06-10 Matsushita Electric Ind Co Ltd フライバックトランス
US5490055A (en) * 1993-03-03 1996-02-06 At&T Corp. Multiloop feedback control apparatus for DC/DC converters with frequency-shaping band pass current control
JP2011152014A (ja) * 2010-01-25 2011-08-04 Renesas Electronics Corp Dc/dcコンバータ回路
CN105429460B (zh) * 2015-12-31 2019-01-25 无锡华润矽科微电子有限公司 带线损补偿的dc-dc转换器
CN105515370B (zh) * 2016-01-27 2018-06-29 上海华虹宏力半导体制造有限公司 电荷泵电路及存储器
CN105932873B (zh) * 2016-06-17 2018-05-25 苏州昆泰芯微电子科技有限公司 一种低功耗高输出电压的电荷泵
CN107145182B (zh) * 2017-05-19 2018-11-06 北京东方计量测试研究所 输入电压型模拟电阻器及电阻控制方法
CN213906562U (zh) * 2020-11-05 2021-08-06 苏州科易新动力科技有限公司 一种多电流可调模块及其应用的程控电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2912099Y (zh) * 2006-06-19 2007-06-13 刘程宇 具有cuk变换器的移动电源电路
JP2011210026A (ja) * 2010-03-30 2011-10-20 Denso Corp 電力変換装置
CN104953837A (zh) * 2014-03-31 2015-09-30 台达电子企业管理(上海)有限公司 用于功率变换器的控制装置和控制方法以及开关电源
CN109256939A (zh) * 2017-07-12 2019-01-22 赤多尼科两合股份有限公司 电流选择电路和驱动电路
CN113394983A (zh) * 2021-07-01 2021-09-14 上海南芯半导体科技有限公司 一种反激式变换器的电压反馈电路及其控制方法

Also Published As

Publication number Publication date
CN115001263B (zh) 2023-05-09
CN115001263A (zh) 2022-09-02
EP4213358A1 (en) 2023-07-19
CN116581982A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
TWI468908B (zh) 系統電源積體電路及架構、管理電路、電源供應配置以及手提裝置
US8028178B2 (en) System and method for providing external power on a universal serial bus
CN100362724C (zh) 多功能产品的有效利用电池电量的装置与方法
JP2001282164A (ja) 表示装置用駆動装置
WO2024016616A1 (zh) 折叠电子设备
US11532951B2 (en) Electronic device including resonant charging circuit
WO2023197699A1 (zh) 充电电路、充电控制方法和电子设备
US11646754B2 (en) Apparatus for improving the effective performance of a power source and associated methods
US9564804B2 (en) Electronic device having plurality of voltage rails
KR20210045912A (ko) 공진형 충전 회로를 포함하는 전자 장치
WO2023093156A1 (zh) 一种电源变换电路及电子设备
EP4050783A1 (en) Power supply circuit
US11476694B2 (en) Electronic device including resonant charging circuit
WO2023207706A1 (zh) 一种充电电路及电子设备
CN204633599U (zh) 功率电荷泵及使用该功率电荷泵的电源管理电路
WO2022037540A1 (zh) 无线充电装置和电子设备
US11488507B2 (en) Power management device and display device
WO2018094910A1 (zh) 一种供电电路及音频播放设备
CN219351321U (zh) 一种带有拓展坞功能的移动电源
CN111026257A (zh) 供电电路及电子装置
KR101046653B1 (ko) 매트릭스 커패시턴스 모드를 이용한 전원안정화회로
CN216056362U (zh) 电源装置和显示设备
CN117614088A (zh) 电能处理电路、方法及电子设备
WO2022056930A1 (zh) 一种电压调节电路、设备及方法
WO2024067646A1 (zh) 开关电源电路、电源适配器及充电系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022856978

Country of ref document: EP

Effective date: 20230221