WO2024016616A1 - 折叠电子设备 - Google Patents

折叠电子设备 Download PDF

Info

Publication number
WO2024016616A1
WO2024016616A1 PCT/CN2023/071626 CN2023071626W WO2024016616A1 WO 2024016616 A1 WO2024016616 A1 WO 2024016616A1 CN 2023071626 W CN2023071626 W CN 2023071626W WO 2024016616 A1 WO2024016616 A1 WO 2024016616A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switching element
electronic device
voltage
foldable electronic
Prior art date
Application number
PCT/CN2023/071626
Other languages
English (en)
French (fr)
Inventor
石聪
朱辰
毛扬
张铁利
张长营
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024016616A1 publication Critical patent/WO2024016616A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present application relate to the field of electronic technology, and in particular, to a foldable electronic device.
  • At least one battery may be provided in both the first folding part and the second folding part of the foldable electronic device.
  • Embodiments of the present application provide a foldable electronic device that controls the corresponding battery to power the load by disposing a power management module in both the first folding part and the second folding part, thereby reducing the length of the wiring corresponding to the power transmission path, and Improve the reliability of rotation mechanisms and flexible screens in foldable electronic devices.
  • an embodiment of the present application proposes a foldable electronic device.
  • the foldable electronic device includes a first folding part, a second folding part, and a rotation mechanism located between the first folding part and the second folding part; the first folding part
  • the first folding part includes a first power management module, a first load and a first battery group, and the first battery group includes at least one battery;
  • the second folding part includes a second power management module, a second load and a second battery group, and the second battery group Includes at least one battery.
  • the first power management module is respectively connected to the first battery group and the first load, and is used to control the first battery group to power the first load;
  • the second power management module is connected to the second battery group and the second load, respectively, and is used to control The second battery pack supplies power to the second load;
  • the foldable electronic device also includes an isolation circuit, which is connected to the two batteries respectively and used to equalize the voltages of the two connected batteries.
  • the battery voltage provided by the first battery group can be converted into a system voltage through the first power management module to power the first load provided in the first folding part
  • the battery voltage provided by the second battery group can be converted into a system voltage through the second power management module.
  • the module converts the system voltage to supply power to the second load set in the second folding part, so that the wiring corresponding to the power transmission path when the first battery pack supplies power to the first load is shorter, and the second battery pack supplies power to the second load.
  • the corresponding wiring of the power transmission path is also shorter, which can reduce the loss caused by the wiring impedance of the power transmission path.
  • the isolation circuit can equalize the voltage of the two batteries connected to it to reduce the voltage difference between the two batteries connected by the isolation circuit, thereby limiting the mutual charge current between the two batteries connected by the isolation circuit, thereby reducing the voltage difference due to isolation.
  • the large current generated between the two batteries connected by the circuit may charge each other and burn the traces distributed on the FPC, thereby improving the safety and reliability of foldable electronic devices.
  • the isolation circuit is connected between the first target battery and the second target battery;
  • the foldable electronic device also includes an electrical parameter detection module and a processing module.
  • the isolation circuit includes an isolation module, and the processing module is connected to the electrical parameter respectively.
  • the detection module and isolation module are connected.
  • the electrical parameter detection module is used to detect electrical parameters related to the first target battery and the second target battery.
  • the electrical parameters include the voltage of the first target battery and the voltage of the second target battery, or the electrical parameters include the current flowing through the isolation module.
  • the processing module is used to control the working state of the isolation module according to the electrical parameters.
  • the working state of the isolation module includes any one of the on state, the equilibrium state and the off state. In this way, based on the electrical parameters detected by the electrical parameter detection module, the working state of the isolation module is controlled, so that when the isolation module is controlled to be in a balanced state, the mutual charge current between the two batteries connected by the isolation circuit can be reduced.
  • the processing module is a processor in a foldable electronic device, and the processor and the isolation circuit are two different components; or, the processing module is the first control unit in the isolation circuit.
  • the processor or the first control unit in the isolation circuit can be used to control the working state of the isolation module, which enriches the implementation methods of foldable electronic devices.
  • the electrical parameter detection module includes a first voltage detection element and a second voltage detection element, the first voltage detection element is connected to the first target battery, and the second voltage detection element is connected to the second target battery;
  • the first voltage detection element is used to detect the voltage of the first target battery;
  • the second voltage detection element is used to detect the voltage of the second target battery; wherein the electrical parameters include the voltage of the first target battery and the voltage of the second target battery.
  • the electrical parameter detection module includes a current detection element, which is connected in the path between the first target battery and the second target battery; the current detection element is used to detect the current flowing through the isolation module. ; Among them, the electrical parameters include the current flowing through the isolation module. In this way, a method of controlling the working state of the isolation module based on the current flowing through the isolation module is provided.
  • the processing module is specifically configured to control the isolation module to be in a balanced state when the foldable electronic device is in a discharge state and the electrical parameters do not meet preset conditions, so as to balance the first target battery and the second target battery.
  • the voltage of the third target battery is equalized; the processing module is also used to control the power management module connected to the third target battery to charge the third target battery when the foldable electronic device is in a charging state and the electrical parameters do not meet the preset conditions.
  • the parameters meet the preset conditions, and the third target battery is the battery with a lower voltage among the first target battery and the second target battery.
  • the electrical parameters do not meet the preset conditions; or when the current flowing through the isolation module is greater than the preset current, the electrical parameters do not meet the preset conditions. condition.
  • voltage balancing is achieved based on the isolation module; and when the foldable electronic device is in a charging state and the electrical parameters do not meet the preset conditions, the voltage balance is achieved based on the battery with a lower voltage.
  • the connected power management module achieves voltage balancing, which can improve the charging efficiency of foldable electronic devices on the basis of reducing the mutual charging current between the two batteries connected by the isolation circuit.
  • the processing module is specifically configured to control the isolation module to be in a conductive state when the electrical parameters meet the preset conditions, so that the first target battery and the second target battery are discharged in parallel, or the first target battery is discharged in parallel.
  • the battery and the second target battery are charged in parallel.
  • the electrical parameters meet the preset conditions; or, when the current flowing through the isolation module is less than or equal to the preset current, the electrical parameters meet Preset conditions.
  • the isolation module includes a first switch element; a first end of the first switch element is connected to the first target battery, and a second end of the first switch element is connected to the second target battery.
  • control end of the first switching element is connected to the processing module.
  • isolation module further includes a second switching element, the control end of the second switching element is connected to the processing module, the first end of the second switching element is connected to the control end of the first switching element, and the second end of the second switching element is connected to the processing module. Ground connection.
  • the isolation module includes a third switching element and a fourth switching element; a first end of the third switching element is connected to the first target battery, and a second end of the third switching element is connected to the fourth switching element. The first end of the fourth switching element is connected to the second target battery.
  • the control end of the third switching element and the control end of the fourth switching element are both connected to the processing module.
  • the isolation module further includes a fifth switching element, the control end of the fifth switching element is connected to the processing module, the first end of the fifth switching element is connected to the control end of the third switching element and the control end of the fourth switching element, The second terminal of the five switching elements is connected to the ground terminal.
  • both the first power management module and the second power management module include a first switch unit, a second switch unit and a second control unit; the control end of the first switch unit is connected to the second control unit , the first end of the first switch unit is connected to the charging interface, and the second end of the first switch unit is connected to the corresponding load; the first switch unit is used to convert the input voltage provided by the charging interface when the foldable electronic device is in the charging state.
  • the control end of the second switch unit is connected to the second control unit, the first end of the second switch unit is connected to the second end of the first switch unit, and the second switch The second end of the unit is connected to the corresponding battery; the second switch unit is used to charge the battery connected to it using the system voltage when the foldable electronic device is in a charging state, and to use the battery connected to the foldable electronic device when it is discharging.
  • the battery voltage provided by the battery powers the load connected to it.
  • the foldable electronic device further includes a processor, which is connected to the first power management module and the second power management module respectively; the processor is used to when the foldable electronic device is in a charging state, and the fourth target battery When the battery is fully charged but the fifth target battery is not fully charged, the second switch unit in the power management module connected to the fourth target battery is controlled to be turned off, and the second switch unit in the power management module connected to the fifth target battery is controlled to be turned on;
  • the fourth target battery is at least one battery in the foldable electronic device, and the fifth target battery is at least one battery in the foldable electronic device.
  • the first switching unit includes a sixth switching element, a seventh switching element, an eighth switching element and an inductor;
  • the second switching unit includes a ninth switching element;
  • the control end of the sixth switching element is connected to the The two control units are connected, the first end of the sixth switching element is connected to the charging interface, the second end of the sixth switching element is connected to the first end of the seventh switching element;
  • the control end of the seventh switching element is connected to the second control unit , the second end of the seventh switching element is connected to the first end of the inductor;
  • the second end of the inductor is connected to the load corresponding to the power management module;
  • the control end of the eighth switching element is connected to the second control unit, and the The first end is connected to the second end of the seventh switching element, the second end of the eighth switching element is connected to the ground end;
  • the control end of the ninth switching element is connected to the second control unit, and the first end of the ninth switching element is connected to The second end of the inductor is connected, and the second end of
  • both the first battery pack and the second battery pack include a battery
  • the foldable electronic device includes an isolation circuit, and the isolation circuit is located in the first folding part or the second folding part.
  • Figure 1 is a schematic structural diagram of a foldable electronic device in an unfolded state according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of the foldable electronic device provided by the embodiment of the present application in a folded state
  • Figure 3 is a schematic diagram of the disassembled structure of the foldable electronic device provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the circuit structure of a foldable electronic device provided by related technologies
  • Figure 5 is a schematic structural diagram of the hardware system of a foldable electronic device provided by an embodiment of the present application.
  • Figure 6 is a schematic circuit structure diagram of a foldable electronic device provided by an embodiment of the present application.
  • Figure 7 is a circuit diagram of the first isolation circuit provided by the embodiment of the present application.
  • Figure 8 is a circuit diagram of a second isolation circuit provided by an embodiment of the present application.
  • Figure 9 is a circuit diagram of a third isolation circuit provided by an embodiment of the present application.
  • Figure 10 is a circuit diagram of a fourth isolation circuit provided by an embodiment of the present application.
  • Figure 11 is a circuit diagram of the fifth isolation circuit provided by the embodiment of the present application.
  • Figure 12 is a schematic circuit structure diagram of another foldable electronic device provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • the first chip and the second chip are only used to distinguish different chips, and their sequence is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the foldable electronic device provided by the embodiment of the present application can be a mobile phone, a notebook computer, a tablet computer (Pad), a wearable device (such as a smart watch, a smart bracelet), a vehicle-mounted device, or an ultra-mobile personal computer (UMPC). ), netbooks, personal digital assistants (personal digital assistants, PDAs) and other electronic devices with foldable forms.
  • the embodiments of this application do not limit the specific technology and specific device form used in the foldable electronic device.
  • Foldable electronic devices have gradually become a development trend in the industry because they can obtain a larger display area in the unfolded state, improving the user's viewing experience, and they can obtain a smaller volume in the folded state, making it easier for users to carry. .
  • the foldable electronic device may include a first folding part 11, a second folding part 12, and a rotation mechanism 13 located between the first folding part 11 and the second folding part 12.
  • the rotation mechanism 13 may be axis.
  • the rotating mechanism 13 is connected to the first folding part 11 and the second folding part 12 respectively, and the first folding part 11 and the second folding part 12 are respectively located on both sides of the rotating mechanism 13 .
  • the first folding part 11 is located on the left side of the axis of the rotating mechanism 13
  • the second folding part 12 is located on the right side of the axis of the rotating mechanism 13 .
  • the first folding part 11 and the second folding part 12 can rotate around the axis of the rotating mechanism 13 respectively.
  • the foldable electronic device also includes a flexible screen 20 disposed on the same side of the first folding part 11 , the second folding part 12 and the rotating mechanism 13 .
  • the first folding part 11 , the second folding part 12 and the rotating mechanism 13 are used to carry the flexible screen 20 .
  • the flexible screen 20 is used to display images, videos, etc., and can be an organic light-emitting diode (OLED) display screen, or other flexible display screens.
  • the flexible screen 20 includes a first non-bending area 21 , a second non-bending area 22 and a bending area 23 .
  • the bending area 23 is located between the first non-bending area 21 and the second non-bending area 22 .
  • the first non-bending area 21 can be fixed on the first folding part 11 through a glue layer
  • the second non-bending area 22 can be fixed on the second folding part 12 through a glue layer.
  • the bending area 23 of the flexible screen 20 is made of flexible materials, and the first non-bending area 21 and the second non-bending area 22 of the flexible screen 20 can be made of flexible materials or rigid materials.
  • the embodiment of the present application is suitable for This is not a limitation.
  • the flexible screen 20 can be folded or unfolded accordingly as the first folding part 11 and the second folding part 12 rotate relative to the rotation mechanism 13 .
  • the flexible screen 20 can be made to be in an unfolded state.
  • the angle between the first folding part 11 and the second folding part 12 may be 180°.
  • the first folding part 11 and the second folding part 12 The angle between the two folding parts 12 may also be 175° or 185°.
  • the flexible screen 20 When the flexible screen 20 is in the unfolded state, the flexible screen 20 at this time has a larger display area, that is, the first non-bending area 21 , the second non-bending area 22 and the bending area 23 in the flexible screen 20 can all be display to improve the user’s viewing experience.
  • the foldable electronic device When the flexible screen 20 is in a folded state, the foldable electronic device has a smaller volume, making it easier for the user to carry it.
  • the foldable electronic device shown in Figures 1 and 2 is explained by taking a folding mobile phone as an example.
  • the folding mobile phone can be an inward-folding folding phone (that is, the flexible screen 20 is folded inward) or an outward-folding folding phone.
  • Mobile phone that is, the flexible screen 20 is folded outward.
  • the foldable electronic device in the embodiment of the present application can also be other foldable devices.
  • the rotating mechanism 13 may include a rotating shaft body 131 , a first blade 132 and a second blade 133 .
  • the number of the first blades 132 may be multiple, and the number of the second blades 133 may also be multiple.
  • the number of the first blades 132 and the second blades 133 may be two as shown in FIG. 3 .
  • the rotating shaft body 131 includes a first rotating shaft 1311 and a second rotating shaft 1312 arranged coaxially.
  • the axes of the first rotating shaft 1311 and the second rotating shaft 1312 serve as the axis of the rotating mechanism 13 .
  • the first blade 132 can also be called the first swing arm.
  • One end of the first blade 132 is connected to the first rotating shaft 1311 in the rotating shaft body 131 , and the other end of the first blade 132 extends into the recess below the first folding part 11 . inside the groove and connected with the first folding part 11 .
  • the second blade 133 can also be called the second swing arm.
  • One end of the second blade 133 is connected to the second rotating shaft 1312 in the rotating shaft body 131 , and the other end of the second blade 133 extends into the recess below the second folding part 12 . inside the groove and connected with the second folding part 12 .
  • the first rotating shaft 1311 drives the first folding part 11 to rotate around the axis of the first rotating shaft 1311 through the first blade 132.
  • the second rotating shaft 1312 drives the second folding part 12 around the second rotating axis through the second blade 133.
  • the axis of 1312 rotates. Since the axes of the first rotation shaft 1311 and the second rotation shaft 1312 serve as the axes of the rotation mechanism 13 , the first folding part 11 and the second folding part 12 can respectively rotate around the axes of the rotation mechanism 13 .
  • the avoidance space between the two first blades 132 and the avoidance space between the two second blades 133 are mainly used to place flexible printed circuit boards (FPC).
  • the FPC is distributed with wiring for electrical signal transmission between the first folding part 11 and the second folding part 12 .
  • At least one battery in order to improve the battery life of the foldable electronic device, at least one battery can be provided in both the first folding part 11 and the second folding part 12 of the foldable electronic device to increase the standby time of the foldable electronic device.
  • a first battery is provided in the first folding part 11, and a second battery is provided in the second folding part 12. That is, the first battery and the second battery are respectively located on the left and right sides of the rotating mechanism 13. side.
  • a first load is disposed in the first folding part 11.
  • the first load may be a processor, memory and other load peripherals; and a second load is disposed in the second folding part 12.
  • the second load may be a speaker, Load peripherals such as cameras.
  • FIG. 4 there is only one power management module 140 provided in the first folding part 11 , and the system voltage provided to the first load and the second load is unified by the power management module 140 provided in the first folding part 11 . management and output.
  • the first folding part 11 is also provided with a universal serial bus (USB) interface, an over voltage protection (OVP) circuit, a first fast charging chip, etc.
  • the power management module 140 includes power management Integrated circuit (power management IC, PMIC) chip and some peripheral circuits.
  • the peripheral circuits may include a first capacitor C1, a second capacitor C2, an inductor L1, etc.
  • the second folding part 12 is also provided with a second fast charging chip and an isolation circuit.
  • the power management module 140 may be connected to the first load and the second load respectively.
  • the power management module 140 can convert the battery voltage provided by the first battery into the system voltage and provide it to the first load to power the first load.
  • the power management module 140 can also convert the battery voltage provided by the second battery into the system voltage. and provided to the second load to power the second load.
  • the battery voltage provided by the second battery is transmitted to the power management module 140 provided in the first folding part 11 through the power traces distributed on the FPC provided in the rotating mechanism 13 , the power management module 140 converts the battery voltage provided by the second battery into the system voltage Vsys.
  • the system voltage Vsys is then transmitted to the third FPC provided in the rotating mechanism 13 through the power traces distributed on the rotating mechanism 13 .
  • Two loads, thereby supplying power to the second load provided in the second folding part 12 are transmitted to the power management module 140 provided in the first folding part 11 through the power traces distributed on the FPC provided in the rotating mechanism 13 .
  • the wiring corresponding to the power transmission path forms a looped path, so that the power transmission The trace corresponding to the path is longer. Since the wiring corresponding to the power transmission path has a certain impedance, when the wiring corresponding to the power transmission path is long, the loss caused by the wiring impedance of the power transmission path is also greater.
  • the first blade 132 and the second blade 133 included in the rotating mechanism 13 cannot be installed at the position where the FPC provided in the rotating mechanism 13 is located.
  • the avoidance space of the main structure ie, the first blade 132 and the second blade 133 in the rotating mechanism 13 for the FPC will increase, that is, the two first blades in FIG. 3
  • the width d of the avoidance space between the blade 132 and the two second blades 133 increases along the Y direction.
  • the space occupied by the first blade 132 and the second blade 133 in the rotating mechanism 13 is reduced, thereby reducing the reliability of the rotating mechanism 13 itself.
  • the first blade 132 and the second blade 133 can also play a role in supporting the flexible screen 20, as for the area where the FPC is located, due to the lack of the first blade 132 and the second blade 133, this area cannot support the flexible screen 20. 20 plays a supporting role.
  • the width d of the area where the FPC is located is larger, the supporting effect of the rotating mechanism 13 on the flexible screen 20 will be worse. Therefore, when the user uses the foldable electronic device, if the user presses the flexible screen 20 screen 20, it will affect the reliability of the flexible screen 20 supported by the rotating mechanism 13.
  • the second load provided in the second folding part 12 does not directly draw power from the second battery provided in the second folding part 12, but must draw power from the power management module 140 provided in the first folding part 11.
  • battery which is caused by recharging issues.
  • the principle of recharging is: after the battery is fully charged, if the user still does not unplug the charger connected to the USB interface, the battery can no longer be charged at this time, and the load in the foldable electronic device cannot continue to consume the battery power, otherwise When the user unplugs the charger after using it for a period of time, the battery power will not reach 100%. Therefore, in order to solve the recharging problem, after the battery is fully charged, the power consumed by the load needs to be taken from the charger and the battery is bypassed.
  • the module that implements this function is the power management module 140.
  • a switching element is provided in the power management module 140, such as a ninth switching element Q9 as shown in Figure 4.
  • the ninth switching element Q9 is connected between the load and the battery.
  • the ninth switching element Q9 When the charger is used to charge the battery, the ninth switching element Q9 is turned on to charge the battery through the ninth switching element Q9; when the battery is required to power the load, the ninth switching element Q9 is turned on to charge the battery through the ninth switching element Q9.
  • Switching element Q9 causes the load to drain the battery. After the battery is fully charged and the charger is still connected to the USB interface, the ninth switching element Q9 is in a cut-off state, causing the battery to be bypassed outside the load, and the power consumed by the load is supplied by the charger.
  • embodiments of the present application provide a foldable electronic device by arranging a first power management module, a first load and a first battery pack in the first folding part 11 , and arranging a second folding part 12 in the second folding part 12 .
  • the power management module, the second load and the second battery group, the first power management module is connected to the first battery group and the first load respectively, and is used to control the first battery group to power the first load; the second power management module is respectively connected to the first battery group and the first load.
  • the second battery group is connected to the second load and used to control the second battery group to supply power to the second load.
  • the battery voltage provided by the first battery group can be converted into a system voltage through the first power management module to power the first load provided in the first folding part 11
  • the battery voltage provided by the second battery group can be converted through the second
  • the power management module converts the system voltage to supply power to the second load provided in the second folding part 12, so that the wiring corresponding to the power transmission path when the first battery pack supplies power to the first load is shorter, and the second battery When the group supplies power to the second load, the wiring corresponding to the power transmission path is also shorter, thereby reducing the loss caused by the wiring impedance of the power transmission path.
  • there is no need to increase the wiring width of the power transmission path thereby improving the reliability of the rotating mechanism 13 itself and the reliability of the flexible screen 20 supported by the rotating mechanism 13 .
  • the foldable electronic device further includes an isolation circuit, which is connected to two batteries respectively, and is used for voltage equalizing the voltages of the two batteries connected thereto.
  • an isolation circuit which is connected to two batteries respectively, and is used for voltage equalizing the voltages of the two batteries connected thereto.
  • the voltages of the two batteries connected by the isolation circuit can be balanced to reduce the voltage difference between the two batteries connected by the isolation circuit, thereby limiting the mutual charge current between the two batteries connected by the isolation circuit, thereby reducing the voltage difference due to the isolation circuit.
  • the large current generated between the two connected batteries may charge each other and burn the traces distributed on the FPC, thereby improving the safety and reliability of foldable electronic devices.
  • FIG. 5 is a schematic structural diagram of a foldable electronic device 100 provided by an embodiment of the present application.
  • the foldable electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a USB interface 130, a power management module 140, a battery 143, a first antenna, a second antenna, a mobile communication module 150, a wireless communication module 160, audio Module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and subscriber identification module (subscriberidentification module, SIM) card interface 195 wait.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the foldable electronic device 100 .
  • the foldable electronic device 100 may include more or less components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include a system on chip (SOC) processor, an application processor (application processor, AP), a modem processor, and a graphics processor.
  • SOC system on chip
  • application processor application processor
  • AP application processor
  • modem processor modem processor
  • graphics processor graphics processing unit
  • GPU image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be recalled from memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuitsound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver (universal asynchronous receiver) /transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and/or USB interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous receiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB interface etc.
  • the power management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the power management module 140 may receive wireless charging input through the wireless charging coil of the foldable electronic device 100 .
  • the power management module 140 While the power management module 140 charges the battery 143, it can also provide power to the foldable electronic device 100.
  • the power management module 140 is used to connect the battery 143 and the processor 110 .
  • the power management module 140 receives input from the battery 143 and supplies power to the processor 110, internal memory 121, display screen 194, camera 193, wireless communication module 160, etc.
  • the power management module 140 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters. In some other embodiments, the power management module 140 may also be provided in the processor 110 .
  • the foldable electronic device 100 includes two power management modules, which are respectively a first power management module and a second power management module.
  • the first power management module is located in the first folding part 11 and the second power management module The module is located within the second fold 12 .
  • a first battery pack is also provided in the first folding part 11, and the first battery pack includes at least one battery 143; a second battery group is also provided in the second folding part 12, and the second battery group also includes at least one battery. 143.
  • the wireless communication function of the foldable electronic device 100 can be implemented through the first antenna, the second antenna, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • the foldable electronic device 100 implements display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, display videos, receive sliding operations, etc., and the display screen 194 may be a flexible screen 20 .
  • the foldable electronic device 100 can implement the shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194 and an application processor.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the foldable electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the foldable electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area can store data created during use of the foldable electronic device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the processor 110 executes various functional applications and data processing of the foldable electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the foldable electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the buttons 190 include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the foldable electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the foldable electronic device 100 .
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the foldable electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the foldable electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • FIG. 6 is a schematic circuit structure diagram of a foldable electronic device provided by an embodiment of the present application.
  • the foldable electronic device 100 includes a first folding part 11 , a second folding part 12 , and a rotating mechanism 13 located between the first folding part 11 and the second folding part 12 .
  • the first folding part 11 includes a first power management module 141, a first load and a first battery group.
  • the first battery group includes one battery, and the battery included in the first battery group can be called a first battery, that is,
  • the first power management module 141 , the first load and the first battery are all located in the first folding part 11 .
  • the first power management module 141 is connected to the first battery and the first load respectively. Specifically, the first power management module 141 is connected to the positive electrode of the first battery, and the negative electrode of the first battery is connected to the ground terminal GND.
  • the second folding part 12 includes a second power management module 142, a second load and a second battery group.
  • the second battery group includes one battery.
  • the battery included in the second battery group may be called a second battery, that is, a second battery.
  • the power management module 142 , the second load and the second battery are all located in the second folding part 12 .
  • the second power management module 142 is connected to the second battery and the second load respectively. Specifically, the second power management module 142 is connected to the positive electrode of the second battery, and the negative electrode of the second battery is connected to the ground terminal GND.
  • the first power management module 141 When the foldable electronic device 100 is in a discharge state, the first power management module 141 is used to control the first battery to power the first load. That is to say, the battery voltage provided by the first battery is transmitted to the first power management module 141, and the first power management module 141 converts it into a system voltage and provides it to the first load to power the first load.
  • the second power management module 142 when the foldable electronic device 100 is in a discharge state, the second power management module 142 is used to control the second battery to power the second load. That is to say, the battery voltage provided by the second battery is transmitted to the second power management module 142, and the second power management module 142 converts it into a system voltage and provides it to the second load to power the second load.
  • the wiring corresponding to the power transmission path when the first battery supplies power to the first load is shorter, and the wiring corresponding to the power transmission path when the second battery supplies power to the second load is also shorter, thereby reducing the power transmission path. Losses caused by trace impedance. Correspondingly, there is no need to increase the wiring width of the power transmission path, thereby improving the reliability of the rotating mechanism 13 itself and the reliability of the flexible screen 20 supported by the rotating mechanism 13 .
  • the first battery and the second battery in the foldable electronic device 100 Due to the production, maintenance and use of the first battery and the second battery in the foldable electronic device 100, there may be a large voltage difference between the first battery and the second battery.
  • the voltage difference between the first battery and the second battery is large, if the first battery and the second battery are directly connected in parallel, it will easily lead to a large mutual charge current between the first battery and the second battery, and thus It is easy to cause the traces distributed on the FPC to be burned.
  • an isolation circuit 30 can be provided between the first battery and the second battery to achieve isolation, that is, The isolation circuit 30 reduces the voltage difference between the first battery and the second battery, thereby limiting the mutual charge current between the first battery and the second battery.
  • the foldable electronic device 100 further includes an isolation circuit 30 connected between the first battery and the second battery. Specifically, one end of the isolation circuit 30 is connected to the positive electrode of the first battery, and the other end of the isolation circuit 30 is connected to the positive electrode of the second battery.
  • the isolation circuit 30 is used to equalize the voltages of the first battery and the second battery connected thereto. Specifically, the isolation circuit 30 can reduce the voltage difference between the first battery and the second battery by changing the impedance on the path between the first battery and the second battery.
  • the isolation circuit 30 may be located in the second folding part 12.
  • the isolation circuit 30 may also be disposed in the first folding part 11 according to the actual layout of the product, that is, the isolation circuit 30 may be located in the first folding part 11. In the folding part 11 or the second folding part 12.
  • the foldable electronic device 100 further includes an electrical parameter detection module (not shown in FIG. 6 ) and a processor 110 (not shown in FIG. 6 ).
  • the processor 110 may be a SOC processor, and the processor 110 and the isolation circuit 30 are two different components.
  • the isolation circuit 30 includes an isolation module (not shown in FIG. 6 ), and the processor 110 is connected to the electrical parameter detection module and the isolation module in the isolation circuit 30 respectively.
  • the electrical parameter detection module is used to detect electrical parameters related to the first battery and the second battery.
  • the electrical parameters include the voltage of the first battery and the voltage of the second battery, or the electrical parameters include the current flowing through the isolation module.
  • the electrical parameter detection module can send the detected electrical parameters to the processor 110.
  • the processor 110 is used to control the working state of the isolation module in the isolation circuit 30 according to the electrical parameters; the working state of the isolation module includes a conduction state, a balanced state and any of the off states.
  • the isolation module in the isolation circuit 30 When the isolation module in the isolation circuit 30 is in a conductive state, the path between the first battery and the second battery is conductive.
  • the charger charges the first battery and supplies power to the first load through the USB interface and the first power management module 141 , and the charger uses the USB interface and the second power management module 142 Charge the second battery and supply power to the second load; when the foldable electronic device 100 is in a discharge state, the first battery supplies power to the first load through the first power management module 141, and the second battery supplies power to the first load through the second power management module 142 Supply power to the second load.
  • the isolation module in the isolation circuit 30 When the isolation module in the isolation circuit 30 is in a balanced state, a certain impedance is formed on the path between the first battery and the second battery, and the impedance formed on the path between the first battery and the second battery is adjustable, thereby achieving The voltage between the first battery and the second battery is equalized to reduce the voltage difference between the first battery and the second battery. In this way, the mutual charge current generated between the first battery and the second battery can be reduced, thereby reducing the possibility of the traces distributed on the FPC being burned.
  • the isolation module in the isolation circuit 30 When the isolation module in the isolation circuit 30 is in the off state, the path between the first battery and the second battery is disconnected, and there is no mutual charge current between the first battery and the second battery.
  • the electrical parameter detection module includes a first voltage detection element and a second voltage detection element.
  • the first voltage detection element is connected to the first battery, and the second voltage detection element is connected to the second battery.
  • the first voltage detection element is used to detect the voltage of the first battery, and the second voltage detection element is used to detect the voltage of the second battery. That is, the electrical parameters include the voltage of the first battery and the voltage of the second battery.
  • the first voltage detection element may send the detected voltage of the first battery to the processor 110
  • the second voltage detection element may send the detected voltage of the second battery to the processor 110
  • the processor 110 is used to calculate the voltage difference between the first battery and the second battery, and control the working state of the isolation module in the isolation circuit 30 according to the voltage difference between the first battery and the second battery.
  • the voltage difference between the first battery and the second battery may be the absolute value of the difference between the voltage of the first battery and the voltage of the second battery.
  • the first voltage detection element can be integrated in the first power management module 141, or the first voltage detection element can also be integrated in the isolation circuit 30, or the first voltage detection element can also be integrated with the first power management module. 141 and the isolation circuit 30 are both set separately.
  • the second voltage detection element can be integrated in the second power management module 142, or the second voltage detection element can also be integrated in the isolation circuit 30, or the second voltage detection element can also be integrated with the second power management module 142 and The isolation circuits 30 are all provided separately.
  • the electrical parameter detection module includes a current detection element, and the current detection element is connected in the path between the first battery and the second battery. Specifically, the current detection element is connected in series between the first battery and the second battery. in the passage. The current detection element is used to detect the current flowing through the isolation module in the isolation circuit 30 , that is, the electrical parameters include the current flowing through the isolation module.
  • the current detection element can send the detected current flowing through the isolation module to the processor 110, and the processor 110 is used to control the working state of the isolation module according to the current flowing through the isolation module.
  • the current detection element can be integrated into the isolation circuit 30 , or the current detection element can also be provided separately from the isolation circuit 30 .
  • the foldable electronic device 100 further includes an electrical parameter detection module
  • the isolation circuit 30 includes an isolation module and a first control unit.
  • the first control unit is connected to the electrical parameter detection module and the isolation module respectively.
  • the electrical parameter detection module is used to detect electrical parameters related to the first battery and the second battery.
  • the electrical parameters include the voltage of the first battery and the voltage of the second battery, or the electrical parameters include the current flowing through the isolation module.
  • the electrical parameter detection module can send the detected electrical parameters to the first control unit, and the first control unit is used to control the working state of the isolation module in the isolation circuit 30 according to the electrical parameters; the working state of the isolation module includes conduction state, equalization state and shutdown state.
  • the electrical parameter detection module includes a first voltage detection element and a second voltage detection element.
  • the first voltage detection element is connected to the first battery, and the second voltage detection element is connected to the second battery.
  • the first voltage detection element is used to detect the voltage of the first battery, and the second voltage detection element is used to detect the voltage of the second battery. That is, the electrical parameters include the voltage of the first battery and the voltage of the second battery.
  • the first voltage detection element may send the detected voltage of the first battery to the first control unit
  • the second voltage detection element may send the detected voltage of the second battery to the first control unit.
  • the first control unit is used to calculate the voltage difference between the first battery and the second battery, and control the working state of the isolation module according to the voltage difference between the first battery and the second battery.
  • the electrical parameter detection module includes a current detection element, and the current detection element is connected in the path between the first battery and the second battery. Specifically, the current detection element is connected in series between the first battery and the second battery. in the passage. The current detection element is used to detect the current flowing through the isolation module in the isolation circuit 30 , that is, the electrical parameters include the current flowing through the isolation module.
  • the current detection element can send the detected current flowing through the isolation module to the first control unit, and the first control unit is used to control the working state of the isolation module according to the current flowing through the isolation module.
  • the working state of the isolation module in the isolation circuit 30 can be controlled by the processor 110 provided separately from the isolation circuit 30 , or the first control unit provided in the isolation circuit 30 can also be used to actively control the isolation circuit 30 .
  • the processor 110 and the first control unit in the isolation circuit 30 may be called a processing module.
  • the above-mentioned electrical parameter detection module can control the working state of the isolation module in the isolation circuit 30 according to the following rules.
  • the isolation module in the above isolation circuit 30 is in the off state by default. For example, when the foldable electronic device 100 is in a shutdown state, the isolation module in the isolation circuit 30 is in a shutdown state, and the path between the first battery and the second battery is disconnected.
  • the isolation module When the foldable electronic device 100 is in the shutdown state, if the isolation module is not in the shutdown state, in some actual scenarios, maintenance personnel may replace one of the batteries when the foldable electronic device 100 is in the shutdown state, and the replaced battery The battery may have a different charge than the one that was not replaced, causing two batteries with different charges to be connected together. If the power difference between the replaced battery and the unreplaced battery is large, the voltage difference between the replaced battery and the unreplaced battery is also large, causing the traces distributed on the FPC to be easily burned. For example, if the first battery fails and the foldable electronic device 100 is in a shutdown state, the first battery can be replaced.
  • the replaced first battery If the voltage of the replaced first battery is greater than the voltage of the unreplaced second battery, and the replaced first battery When the voltage difference between the replaced first battery and the unreplaced second battery is large, a certain amount of current will flow from the replaced first battery to the unreplaced second battery, charging the unreplaced second battery, which may cause The traces distributed on the FPC are burned.
  • the isolation module when the foldable electronic device 100 is in the shutdown state, the isolation module is in the shutdown state, thereby replacing one of the batteries when the foldable electronic device 100 is in the shutdown state, and disconnecting the replaced battery from the unreplaced battery. connections between batteries, thereby reducing the possibility of the traces distributed on the FPC being burned.
  • the isolation module in the isolation circuit 30 is still in the off state by default.
  • the first voltage detection element can detect the voltage of the first battery and send it to the processor 110 (or the first control unit)
  • the second voltage detection element can detect the voltage of the second battery and send it to the processor 110 (or the first control unit)
  • the processor 110 (or the first control unit) calculates the voltage difference between the first battery and the second battery, and compares the voltage difference with the preset voltage.
  • the foldable electronic device 100 If the voltage difference between the first battery and the second battery is less than or equal to the preset voltage, the foldable electronic device 100 is powered on normally. If the voltage difference between the first battery and the second battery is greater than the preset voltage, it is necessary to determine whether the foldable electronic device 100 is in a charging state or a discharging state.
  • the voltage difference between the first battery and the second battery is greater than the preset voltage
  • the processor 110 determines the relationship between the voltage of the first battery and the voltage of the second battery. , the processor 110 controls the power management module connected to the battery with lower voltage to charge the battery with lower voltage, and controls the power management module connected to the battery with higher voltage not to charge the battery with higher voltage until the third The voltage difference between the first battery and the second battery is less than or equal to the preset voltage.
  • the processor 110 can control the isolation module in the isolation circuit 30 to be in a conductive state, and start to control the original voltage of the higher battery.
  • the power management module connected to the battery starts charging the battery with a higher voltage.
  • the foldable electronic device 100 is powered on normally.
  • the processor 110 determines that the voltage difference between the first battery and the second battery is greater than the preset voltage, and the voltage of the first battery is greater than the voltage of the second battery, the processor 110 controls the second power management module 142 to perform the operation on the second battery. Charging, and controlling the first power management module 141 not to charge the first battery until the voltage difference between the first battery and the second battery is less than or equal to the preset voltage. After the second power management module 142 is used to equalize the voltages of the first battery and the second battery, the processor 110 can control the isolation module in the isolation circuit 30 to be in a conductive state, and the processor 110 starts to control the first power management module. 141 charges the first battery.
  • the first control unit in the isolation circuit 30 detects the magnitude relationship between the voltage of the first battery and the voltage of the second battery, and determines the magnitude relationship between the voltage of the first battery and the voltage of the second battery. Afterwards, a corresponding signal is sent to the processor 110 to inform the processor 110 whether the battery with the lower voltage is the first battery or the second battery.
  • the processor 110 controls the power management module connected to the battery with the lower voltage to control the battery with the lower voltage. The battery is charged, but the power management module connected to the battery with a higher voltage is controlled not to charge the battery with a higher voltage until the first control unit determines that the voltage difference between the first battery and the second battery is less than or equal to the preset voltage.
  • the first control unit in the isolation circuit 30 can control the isolation module in the isolation circuit 30 to be in a conductive state, and , when the first control unit determines that the voltage difference between the first battery and the second battery is equalized to less than or equal to the preset voltage, the first control unit sends the corresponding signal to the processor 110 again, so that the processor 110 begins to control the original voltage.
  • the power management module connected to the battery with higher voltage begins to charge the battery with higher voltage.
  • the processor 110 controls the isolation module to be in a balanced state to adjust the third
  • the impedance formed by the path between the first battery and the second battery reduces the voltage difference between the first battery and the second battery, thereby achieving voltage balance between the first battery and the second battery.
  • the processor 110 may control the isolation module to change from the equilibrium state to the conduction state; and, when When the voltage difference between the first battery and the second battery is less than or equal to the preset voltage, the foldable electronic device 100 is powered on normally.
  • the processor 110 (or the first control unit) will still obtain the voltage of the first battery detected by the first voltage detection element and the voltage of the second battery detected by the second voltage detection element. And compare the calculated voltage difference between the first battery and the second battery with the preset voltage.
  • the processor 110 controls the isolation module to be in a conductive state, so that the first The battery and the second battery are discharged in parallel, that is, the first battery supplies power to the first load through the first power management module 141 , and the second battery supplies power to the second load through the second power management module 142 .
  • the processor 110 controls the isolation module to be in a balancing state to balance the voltages between the first battery and the second battery.
  • the voltage difference between one battery and the second battery is equalized to less than or equal to the preset voltage, and the processor 110 (or the first control unit) controls the isolation module to be in a conductive state again.
  • the processor 110 controls the isolation module to be in a conductive state, and the first The battery and the second battery are charged in parallel, that is, the charger charges the first battery through the USB interface and the first power management module 141 , and the charger charges the second battery through the USB interface and the second power management module 142 . If the voltage difference between the first battery and the second battery is greater than the preset voltage, the processor 110 (or the first control unit) controls the isolation module to be in a shutdown state, and the processor 110 controls the power management module connected to the battery with a lower voltage.
  • the processor 110 (or the first control unit) can control the isolation module in the isolation circuit 30 to be in a conductive state, and controlling the power management module connected to the battery with a higher voltage to continue charging the battery with a higher voltage.
  • control of the state of the isolation module based on the voltage difference between the first battery and the second battery can also be replaced by using the current flowing through the isolation module to control the state of the isolation module.
  • the current detection element detects the current flowing through the isolation module, and sends the detected current flowing through the isolation module to the processor 110 (or the first control unit).
  • the processor 110 (or the first control unit) compares the current flowing through the isolation module with the preset current.
  • the processor 110 controls the isolation module to be in a conductive state, so that the first battery and the second battery are discharged in parallel. If the current flowing through the isolation module is greater than the preset current, the processor 110 (or the first control unit) controls the isolation module to be in a balancing state to balance the voltages between the first battery and the second battery. The voltage difference between the two batteries is equalized to less than or equal to the preset voltage, and the processor 110 (or the first control unit) controls the isolation module to be in a conductive state again.
  • the processor 110 determines that the current flowing through the isolation module is less than or equal to the preset current, the processor 110 (or the first control unit) controls the isolation module to be in the charging state. On state, and the first battery and the second battery are charged in parallel.
  • the processor 110 determines that the current flowing through the isolation module is greater than the preset current, the processor 110 (or the first control unit) controls the isolation module to be in a shutdown state, and the processor 110 according to the flow direction of the current,
  • the power management module connected to the battery with lower voltage is controlled to charge the battery with lower voltage
  • the power management module connected to the battery with higher voltage is controlled to stop charging the battery with higher voltage until the battery flowing through the isolation module
  • the current is less than or equal to the preset current; when the power management module connected to a battery with a lower voltage makes the current flowing through the isolation module less than or equal to the preset current, the processor 110 (or the first control unit) can control the isolation circuit
  • the isolation module in 30 is in a conductive state, and controls the power management module connected to the battery with a higher voltage to continue charging the battery with a higher voltage.
  • the processor 110 can be used to control the isolation module to be in a balanced state when the foldable electronic device 100 is in a discharge state and the electrical parameters do not meet the preset conditions, so as to balance the first battery and the second battery. voltage for voltage equalization.
  • the processor 110 (or the first control unit) is also used to control the power management module connected to the third target battery to charge the third target battery when the foldable electronic device 100 is in the charging state and the electrical parameters do not meet the preset conditions. , until the electrical parameters meet the preset conditions; the third target battery is the battery with a lower voltage among the first battery and the second battery.
  • the processor 110 When the foldable electronic device 100 is in a discharging state or a charging state, the processor 110 (or the first control unit) is used to control the isolation module to be in a conductive state when the electrical parameters meet the preset conditions, so that the first battery and the second battery Discharge in parallel, or charge the first battery and the second battery in parallel.
  • the electrical parameters when the voltage difference between the first battery and the second battery is less than or equal to the preset voltage, the electrical parameters meet the preset conditions; or, when the current flowing through the isolation module is less than or equal to the preset current, the electrical parameters meet the preset conditions. condition.
  • the first battery and the second battery may be over-discharged. At this time, the voltages of the first battery and the second battery are too low to ensure normal startup of the foldable electronic device 100 . Therefore, in the scenario where the first battery and the second battery are over-discharged, when the foldable electronic device 100 is ready to be turned on and the foldable electronic device 100 is in a charging state, the processor 110 can obtain the voltage of the first battery and the voltage of the second battery.
  • the processor 110 controls the first power supply
  • the management module 141 charges the first battery, and at this time the second power management module 142 stops charging the second battery.
  • the voltage of the first battery is charged to a level greater than or equal to the preset power-on threshold, the above-mentioned voltage equalization process when the foldable electronic device 100 is ready to be powered on is performed, which will not be described again here.
  • isolation circuit 30 The specific circuit structure and working principle of the isolation circuit 30 will be described below with reference to the five different isolation circuits 30 shown in FIGS. 7 to 11 .
  • the isolation circuit 30 only includes an isolation module, and the isolation module includes the first switching element Q1.
  • the control end of the first switching element Q1 is connected to the processor 110, the first end of the first switching element Q1 is connected to the positive electrode of the first battery, and the second end of the first switching element Q1 is connected to the positive electrode of the second battery.
  • the processor 110 determines that the voltage difference between the first battery and the second battery is greater than the preset voltage
  • the processor 110 controls the first switching element Q1 to operate in the linear region. , so that the isolation module is in a balanced state
  • the processor 110 determines that the voltage difference between the first battery and the second battery is less than or equal to the preset voltage
  • the processor 110 controls the first switching element Q1 to work in the saturation region, so that the isolation module is in a conducting state. communication status.
  • the processor 110 determines that the current flowing through the first terminal and the second terminal of the first switching element Q1 is greater than the preset current, the processor 110 controls the first switching element Q1 Work in the linear region so that the isolation module is in a balanced state; when the processor 110 determines that the current flowing through the first end and the second end of the first switching element Q1 is less than or equal to the preset current, the processor 110 controls the first switching element Q1 Working in the saturation zone makes the isolation module in a conductive state.
  • the processor 110 when the foldable electronic device 100 is in the charging state, when the processor 110 determines that the voltage difference between the first battery and the second battery is greater than the preset voltage, the processor 110 will control the corresponding power management module to perform voltage charging. Equilibrium, at this time the processor 110 controls the first switching element Q1 to work in the cut-off area, that is, the isolation module is in the off state at this time; when the processor 110 determines that the voltage difference between the first battery and the second battery is less than or equal to the preset voltage When , the processor 110 controls the first switching element Q1 to operate in the saturation region, so that the isolation module is in a conductive state.
  • the processor 110 determines that the current flowing through the first terminal and the second terminal of the first switching element Q1 is greater than the preset current, the processor 110 will control the corresponding power management.
  • the module performs voltage balancing.
  • the processor 110 controls the first switching element Q1 to work in the cut-off area, that is, the isolation module is in an off state at this time; when the processor 110 determines that the first terminal flowing through the first switching element Q1 and the When the current at both ends is less than or equal to the preset current, the processor 110 controls the first switching element Q1 to operate in the saturation region, so that the isolation module is in a conductive state.
  • the processor 110 can control the first switching element Q1 to operate in the cutoff region, the linear region and the saturation region respectively by controlling the duty cycle of the control signal provided to the control end of the first switching element Q1.
  • the duty cycle refers to the proportion of time occupied by a high-level pulse within a pulse cycle in the entire pulse cycle. For example, the duty cycle of a control signal with a high-level pulse of 1 second and a low-level pulse of 1 second is 50%.
  • the duty cycle of the control signal is 100%, that is, when the control signal is a continuous high-level signal, the first switching element Q1 works in the saturation region.
  • the first switching element Q1 When the duty cycle of the control signal is less than or equal to a certain value (such as 35% ), the first switching element Q1 operates in the cut-off region. When the duty cycle of the control signal is greater than a certain value (such as 35%) and less than 100%, the first switching element Q1 operates in the linear region.
  • a certain value such as 35%
  • the isolation circuit 30 includes a first control unit and an isolation module, and the isolation module includes a first switching element Q1.
  • the control terminal of the first switching element Q1 is connected to the first control unit, the first terminal of the first switching element Q1 is connected to the positive electrode of the first battery, and the second terminal of the first switching element Q1 is connected to the positive electrode of the second battery.
  • the first control unit may also be connected to the processor 110 .
  • the control end of the first switching element Q1 in the isolation circuit 30 shown in Figure 7 is connected to the processor 110 , which controls the working state of the first switching element Q1 through the control signal sent by the processor 110
  • the isolation circuit 30 shown in Figure 8 is also provided with a first control unit, and the control end of the first switching element Q1 is connected to The first control unit is connected, and controls the working state of the first switching element Q1 through the control signal sent by the first control unit.
  • the specific implementation process of the first control unit controlling the working state of the first switching element Q1 is similar to the specific implementation process of the processor 110 controlling the working state of the first switching element Q1, and will not be described again in order to avoid duplication.
  • control signal provided to the control terminal of the first switching element Q1 may be a pulse width modulation (pulse width modulation, PWM) signal. Therefore, the isolation circuit 30 shown in FIG. 8 may also be provided with a control signal generator for generating a PWM signal.
  • PWM pulse width modulation
  • the above-mentioned first switching element Q1 may be a metal-oxide-semiconductor (MOS) transistor or other switching device.
  • the first switching element Q1 may be an NMOS transistor.
  • the control terminal of the first switching element Q1 refers to the gate of the first switching element Q1
  • the first terminal of the first switching element Q1 refers to the source of the first switching element Q1
  • the first terminal of the first switching element Q1 refers to the source of the first switching element Q1.
  • the second terminal refers to the drain of the first switching element Q1.
  • the isolation circuit 30 only includes an isolation module, and the isolation module includes a first switching element Q1 and a second switching element Q2.
  • the control end of the first switching element Q1 is connected to the first end of the second switching element Q2.
  • the first end of the first switching element Q1 is connected to the positive electrode of the first battery.
  • the second end of the first switching element Q1 is connected to the second end of the first switching element Q1.
  • the control terminal of the second switching element Q2 is connected to the processor 110, and the second terminal of the second switching element Q2 is connected to the ground terminal GND.
  • the difference between the isolation circuit shown in Figure 9 and the isolation circuit shown in Figure 7 is that the first switching element Q1 in the isolation circuit shown in Figure 9 is implemented by a PMOS tube, and a second switching element Q2 is added.
  • the element Q2 can be implemented as an NMOS transistor with a parasitic diode, and the working state of the first switching element Q1 is controlled through the second switching element Q2.
  • the control terminal of the first switching element Q1 refers to the gate of the first switching element Q1
  • the first terminal of the first switching element Q1 may refer to the drain of the first switching element Q1
  • the second terminal of the first switching element Q1 The terminal may refer to the source of the first switching element Q1.
  • the control terminal of the second switching element Q2 refers to the gate of the second switching element Q2
  • the first terminal of the second switching element Q2 refers to the drain of the second switching element Q2
  • the second terminal of the second switching element Q2 Refers to the source of the second switching element Q2.
  • the processor 110 can control the second switching element Q2 to operate in the cut-off region, the linear region and the saturation region respectively.
  • the first switching element Q1 also works in the cut-off area, so that the isolation module is in an off state
  • the second switching element Q2 works in the linear area
  • the first switching element Q1 also works in the cut-off area. It works in the linear region, so that the isolation module is in a balanced state
  • the second switching element Q2 works in the saturation region
  • the first switching element Q1 also works in the saturation region, so that the isolation module is in a conductive state.
  • the embodiment of the present application can also provide a first control unit in the isolation circuit 30, use the first control unit to replace the processor 110, and provide a control signal to the second switching element Q2 based on the first control unit to control the second switch.
  • Component Q2 works in the cut-off region, linear region and saturation region respectively.
  • the isolation circuit 30 only includes an isolation module, and the isolation module includes a third switching element Q3 and a fourth switching element Q4.
  • the control end of the third switching element Q3 and the control end of the fourth switching element Q4 are both connected to the processor 110.
  • the first end of the third switching element Q3 is connected to the positive electrode of the first battery.
  • the second end of the third switching element Q3 It is connected to the first terminal of the fourth switching element Q4, and the second terminal of the fourth switching element Q4 is connected to the second battery.
  • the third switching element Q3 and the fourth switching element Q4 can both be implemented using NMOS transistors with parasitic diodes.
  • the control terminal of the third switching element Q3 refers to the gate of the third switching element Q3, the first terminal of the third switching element Q3 refers to the source of the third switching element Q3, and the second terminal of the third switching element Q3 Refers to the drain of the third switching element Q3.
  • the control terminal of the fourth switching element Q4 refers to the gate of the fourth switching element Q4, the first terminal of the fourth switching element Q4 refers to the drain of the fourth switching element Q4, and the second terminal of the fourth switching element Q4 Refers to the source of the fourth switching element Q4.
  • the processor 110 can control the third switching element Q3 and the fourth switching element Q4 to respectively operate in the cut-off region by controlling the duty cycle of the control signal provided to the control terminals of the third switching element Q3 and the fourth switching element Q4. , linear region and saturation region.
  • the isolation module is in the off state; when the third switching element Q3 and the fourth switching element Q4 work in the linear area, the isolation module is in the equilibrium state. ; When the third switching element Q3 and the fourth switching element Q4 operate in the saturation region, the isolation module is in a conductive state.
  • a first control unit may also be provided in the isolation circuit 30, the first control unit may be used to replace the processor 110, and based on the first control unit, the control signal may be provided to the third switching element Q3 and the fourth switching element Q4. , to control the third switching element Q3 and the fourth switching element Q4 to operate in the cut-off region, linear region and saturation region respectively.
  • the isolation circuit 30 only includes an isolation module, and the isolation module includes a third switching element Q3, a fourth switching element Q4, and a fifth switching element Q5.
  • the control end of the third switching element Q3 and the control end of the fourth switching element Q4 are both connected to the first end of the fifth switching element Q5.
  • the first end of the third switching element Q3 is connected to the positive electrode of the first battery.
  • the third switch The second terminal of the element Q3 is connected to the first terminal of the fourth switching element Q4, and the second terminal of the fourth switching element Q4 is connected to the positive electrode of the second battery.
  • the control terminal of the fifth switching element Q5 is connected to the processor 110, and the second terminal of the fifth switching element Q5 is connected to the ground terminal GND.
  • the difference between the isolation circuit 30 shown in Figure 11 and the isolation circuit 30 shown in Figure 10 is that the third switching element Q3 and the fourth switching element Q4 in the isolation circuit 30 shown in Figure 11 are implemented using PMOS with parasitic diodes. , and a fifth switching element Q5 is added.
  • the fifth switching element Q5 can be implemented by an NMOS transistor with a parasitic diode, and the working status of the third switching element Q3 and the fourth switching element Q4 is controlled through the fifth switching element Q5.
  • the control terminal of the third switching element Q3 refers to the gate of the third switching element Q3, the first terminal of the third switching element Q3 refers to the drain of the third switching element Q3, and the second terminal of the third switching element Q3 refers to the source of the third switching element Q3; the control terminal of the fourth switching element Q4 refers to the gate of the fourth switching element Q4; the first terminal of the fourth switching element Q4 refers to the gate of the fourth switching element Q4 The source, the second end of the fourth switching element Q4 refers to the drain of the fourth switching element Q4; the control end of the fifth switching element Q5 refers to the gate of the fifth switching element Q5, and the The first terminal refers to the drain of the fifth switching element Q5, and the second terminal of the fifth switching element Q5 refers to the source of the fifth switching element Q5.
  • the processor 110 can control the fifth switching element Q5 to operate in the cutoff region, the linear region and the saturation region respectively by controlling the duty cycle of the control signal provided to the control end of the fifth switching element Q5.
  • the fifth switching element Q5 works in the cut-off area
  • the third switching element Q3 and the fourth switching element Q4 also work in the cut-off area, so that the isolation module is in the off state
  • the fifth switching element Q5 works in the linear area
  • the third switching element Q3 and the fourth switching element Q4 also work in the linear region, so that the isolation module is in a balanced state
  • the fifth switching element Q5 works in the saturation region
  • the third switching element Q3 and the fourth switching element Q4 also work in the saturation zone, making the isolation module in a conductive state.
  • a first control unit may also be provided in the isolation circuit 30, the first control unit may be used to replace the processor 110, and based on the first control unit, the control signal may be provided to the fifth switching element Q5 to control the fifth switch.
  • Component Q5 works in the cutoff region, linear region and saturation region respectively.
  • the isolation circuit 30 shown in FIGS. 7 to 11 are only some optional implementations, and they do not constitute a specific limitation on the isolation circuit 30 .
  • the isolation circuit 30 may further include more components than the isolation circuit 30 shown in FIGS. 7 to 11 , for example, between the control end of the first switching element Q1 and the processor 110 shown in FIG. 7 Add a filter module composed of capacitors and resistors.
  • both the first power management module 141 and the second power management module 142 include a first switch unit, a second switch unit and a second control unit.
  • the control end of the first switch unit is connected to the second control unit, the first end of the first switch unit is connected to the charging interface (such as a USB interface), and the second end of the first switch unit is connected to the corresponding load; the first switch unit
  • the input voltage provided by the charging interface is converted into a system voltage to supply power to a load connected thereto.
  • the control end of the second switch unit is connected to the second control unit, the first end of the second switch unit is connected to the second end of the first switch unit, and the second end of the second switch unit is connected to the corresponding battery; the second switch The unit is configured to use the system voltage to charge the battery connected to the foldable electronic device 100 when it is in a charging state, and to use the battery voltage provided by the battery connected to the foldable electronic device 100 to power the load connected to it when the foldable electronic device 100 is in a discharge state.
  • the first switching unit includes a sixth switching element Q6, a seventh switching element Q7, an eighth switching element Q8 and an inductor L1, and the second switching unit includes a ninth switching element Q9.
  • the control end of the sixth switching element Q6 is connected to the second control unit (not shown in Figure 6), the first end of the sixth switching element Q6 is connected to the charging interface, and the second end of the sixth switching element Q6 is connected to the seventh
  • the first end of the switching element Q7 is connected;
  • the control end of the seventh switching element Q7 is connected with the second control unit;
  • the second end of the seventh switching element Q7 is connected with the first end of the inductor L1;
  • the second end of the inductor L1 is connected with the power supply
  • the control end of the eighth switching element Q8 is connected to the second control unit, the first end of the eighth switching element Q8 is connected to the second end of the seventh switching element Q7, and the third end of the eighth switching element Q8
  • the two ends
  • the second end of the inductor L1 in the first power management module 141 is connected to the first load, and the second end of the ninth switching element Q9 in the first power management module 141 is connected to the first battery.
  • the second end of the inductor L1 in the second power management module 142 is connected to the second load, and the second end of the ninth switching element Q9 in the second power management module 142 is connected to the second battery.
  • the sixth switching element Q6, the seventh switching element Q7, the eighth switching element Q8 and the ninth switching element Q9 can all be NMOS transistors, or the sixth switching element Q6, the seventh switching element Q7, the eighth switching element Q8 and the The nine switching elements Q9 can also be NMOS transistors with parasitic diodes.
  • the control terminal of the sixth switching element Q6 refers to the gate of the sixth switching element Q6, the first terminal of the sixth switching element Q6 refers to the source of the sixth switching element Q6, and the second terminal of the sixth switching element Q6 Refers to the drain of the sixth switching element Q6.
  • the control terminal of the seventh switching element Q7 refers to the gate of the seventh switching element Q7, the first terminal of the seventh switching element Q7 refers to the drain of the seventh switching element Q7, and the second terminal of the seventh switching element Q7 Refers to the source of the seventh switching element Q7.
  • the control terminal of the eighth switching element Q8 refers to the gate of the eighth switching element Q8, the first terminal of the eighth switching element Q8 refers to the drain of the eighth switching element Q8, and the second terminal of the eighth switching element Q8 Refers to the source of the eighth switching element Q8.
  • the control terminal of the ninth switching element Q9 refers to the gate of the ninth switching element Q9, the first terminal of the ninth switching element Q9 refers to the drain of the ninth switching element Q9, and the second terminal of the ninth switching element Q9 Refers to the source of the ninth switching element Q9.
  • first power management module 141 and the second power management module 142 also include a first capacitor C1 and a second capacitor C2.
  • the first terminal of the first capacitor C1 is connected to the second terminal of the sixth switching element Q6, and the second terminal of the first capacitor C1 is connected to the ground terminal GND.
  • the first capacitor C1 may also be called a decoupling capacitor.
  • the first end of the second capacitor C2 is connected to the second end of the inductor L1, and the second end of the second capacitor C2 is connected to the ground terminal GND. It can filter the system voltage output by the power management module to increase the output system voltage. stability.
  • the first power management module 141 and the second power management module 142 can be divided into a chip part and a peripheral circuit part. That is, the first power management module 141 and the second power management module 142 both include a power management chip and peripheral circuit parts. circuit.
  • the power management chip can also be called a PMIC chip or a buck charger chip, etc. It is used to control the conduction or shutdown between the battery and the load, and to control the current-limiting charging of the battery.
  • the sixth switching element Q6, the seventh switching element Q7, the eighth switching element Q8, the ninth switching element Q9 and the second control unit are all integrated in the power management chip, that is, the power management chip includes the sixth switching element Q6, The seventh switching element Q7, the eighth switching element Q8, the ninth switching element Q9 and the second control unit, and the peripheral circuit includes an inductor L1, a first capacitor C1 and a second capacitor C2.
  • the power management chip includes the power input pin USB_IN, serial clock (SCL) pin, serial data (SDA) pin, PMID pin, VSW pin, VPH_PWR pin pin and VCHG_OUT pin etc.
  • the power input pin USB_IN is used to connect to the USB interface in the foldable electronic device 100 , and the USB interface may be located in the first folding part 11 .
  • the charger is connected to the USB interface in the foldable electronic device 100 through the universal serial bus, and the input voltage provided by the charger is transmitted to the power input pin USB_IN through the USB interface to provide the input voltage to the power management module.
  • the SCL pin and SDA pin of the power management chip are respectively connected to corresponding pins of the processor 110, thereby realizing data transmission between the processor 110 and the power management chip.
  • the first end of the sixth switching element Q6 is actually connected to the USB interface through the power input pin USB_IN; the first end of the first capacitor C1 and the second end of the sixth switching element Q6 are connected through the PMID pin ; the second end of the seventh switching element Q7 and the first end of the inductor L1 are connected through the VSW pin; the first end of the ninth switching element Q9 and the second end of the inductor L1 are connected through the VPH_PWR pin; The second terminal of the ninth switching element Q9 is connected to the corresponding battery through the VCHG_OUT pin.
  • the sixth switching element Q6, the seventh switching element Q7, the eighth switching element Q8 and the inductor L1 can input the power input pin USB_IN.
  • the voltage is converted into a system voltage.
  • the system voltage can be provided to the corresponding load to power the load.
  • the system voltage can be provided to the ninth switching element Q9 through the VPH_PWR pin. At this time, the ninth switching element is controlled.
  • Q9 is turned on, the system voltage can be provided to the corresponding battery through the ninth switching element Q9 and the VCHG_OUT pin to charge the battery.
  • the ninth switching element Q9 can be controlled to be in a cut-off state to disconnect the path between the VCHG_OUT pin and the VPH_PWR pin.
  • the load takes power through the first switching unit composed of the sixth switching element Q6, the seventh switching element Q7, the eighth switching element Q8 and the inductor L1, so that when the battery continues to be connected to the charger after being fully charged, all the power consumed by the load is from the charger so that the battery does not lose power.
  • the ninth switching element Q9 can be controlled to be turned on again to control the path between the VCHG_OUT pin and the VPH_PWR pin to be turned on. Then the battery provided by the battery The voltage can be transmitted to the corresponding load through the ninth switching element Q9 to power the load.
  • the charging voltage and charging current of the battery can also be monitored in real time.
  • the second control unit can control the working state of the ninth switching element Q9 to change The impedance of the ninth switching element Q9 increases to reduce the charging voltage and/or charging current.
  • one battery when using a charger to charge the first battery and the second battery, one battery may be fully charged first while the other battery is not. For example, the first battery is charged first but the second battery is not.
  • the embodiment of the present application can also use the processor 110 to control the on or off state of the second switch unit in the first power management module 141 and the second power management module 142, so that the first battery and the second battery are both full.
  • the foldable electronic device 100 also includes a processor 110, which is connected to the first power management module 141 and the second power management module 142 respectively.
  • the processor 110 may be connected to the second control unit in the first power management module 141 and the second power management module 142 respectively.
  • the processor 110 is configured to control the second switch unit in the power management module connected to the fourth target battery to turn off when the foldable electronic device 100 is in a charging state and the fourth target battery is full but the fifth target battery is not full, and controls the The second switch unit in the power management module connected to the fifth target battery is turned on; the fourth target battery is at least one battery in the foldable electronic device 100 , and the fifth target battery is at least one battery in the foldable electronic device 100 .
  • the processor 110 may send a control signal to the second control unit in the first power management module 141 so that the second control unit in the first power management module 141 controls the ninth switching element in the first power management module 141
  • the processor 110 can also send a control signal to the second control unit in the second power management module 142, so that the second power management module
  • the second control unit in 142 controls the ninth switching element Q9 in the second power management module 142 to turn on, then the second power management module 142 continues to charge the second battery until the second battery is full and then controls the ninth switch. Component Q9 is cut off.
  • the relevant technology is used to only provide an internal power management module in the first folding part 11 but not in the second folding part, when the first battery is full and the second battery is not full, the first battery will be disconnected.
  • the ninth switching element Q9 in the power management module is disposed in the folding portion 11 , causing the second battery to be unable to continue to be fully charged.
  • the power management module is provided in the first folding part 11 but not in the second folding part.
  • the second battery needs to draw power from the power management module provided in the first folding part 11. Due to the wiring resistance and isolation circuit between the second battery and the power management module provided in the first folding part 11, it will cause the final input voltage of the power management module provided in the first folding part 11 to the second battery to be smaller than its input voltage. Give the voltage of the first battery. In this way, the first battery will be fully charged and the second battery will not be fully charged.
  • the second power management module 142 is directly installed in the second folding part 12 to charge the second battery, which can reduce the wiring resistance and the impedance loss of the isolation circuit, so that the second battery can be fully charged.
  • power management modules are provided in both the first folding part 11 and the second folding part 12, and the dual batteries can realize normal operation based on the dual power management modules. It performs forward charging, reverse discharging, current limiting charging, etc., and realizes voltage equalization and isolation based on the isolation circuit 30 and the dual power management module to prevent the voltage difference between the first battery and the second battery from being too large and causing a large current.
  • the dual power management module can enable both batteries to be fully charged in the charging scenario, thereby solving the problem of the dual battery single power management module causing one of the batteries to be unable to be fully charged; in addition, it can also solve the problem of the first load and the second load being switched from their respective corresponding The problem of recharging the battery when taking power makes the first load take power from the first battery, and the second load takes power from the second battery, which reduces the loss caused by wiring impedance during power transmission and saves folding electronic equipment. 100 of electrical energy.
  • the foldable electronic device 100 in the embodiment of the present application may also include OVP circuits respectively provided in the first folding part 11 and the second folding part 12, as well as a first fast charging chip provided in the first folding part 11 and The second fast charging chip is provided in the second folding part 12 .
  • the OVP circuit provided in the first folding part 11 is connected in series between the USB interface and the power input pin USB_IN in the first power management module 141. It is used to protect the first power management module 141 and prevent the charger from suddenly charging. Large voltage or large current may damage the first power management module 141 .
  • the OVP circuit provided in the second folding part 12 is connected in series between the USB interface and the power input pin USB_IN in the second power management module 142. It is used to protect the second power management module 142 and prevent the charger from suddenly charging. Large voltage or large current may damage the second power management module 142 .
  • the first fast charging chip is used to quickly charge the first battery.
  • the sixth switching element Q6, the seventh switching element Q7 and the eighth switching element Q8 in the first power management module 141 are all in a cut-off state, and the first power supply
  • the ninth switching element Q9 in the management module 141 is turned on to power the first load.
  • the second fast charging chip is used to quickly charge the second battery.
  • the sixth switching element Q6, the seventh switching element Q7 and the eighth switching element Q8 in the second power management module 142 are all in a cut-off state, and the second power supply
  • the ninth switching element Q9 in the management module 142 is turned on to power the second load.
  • first battery, first power management module 141, first load, USB interface and other devices included in the first folding part 11 can all be located on the motherboard provided in the first folding part 11; while the second folding part 11
  • the second battery, isolation circuit, second power management module 142, second load and other devices included in the second folding part 12 can all be located on the motherboard provided in the second folding part 12 .
  • the above embodiments all take dual batteries (that is, one battery is provided in both the first folding part 11 and the second folding part 12) as an example.
  • the embodiments of the present application can also be applied to multi-battery solutions with more than two batteries.
  • the foldable electronic device 100 includes three batteries, four batteries, etc.
  • the foldable electronic device 100 includes a first folding part 11 and a second folding part 12.
  • the first folding part 11 includes a first battery pack
  • the second folding part 12 includes a second battery pack.
  • the first battery group includes at least two batteries
  • the second battery group includes one battery; or the first battery group includes one battery, and the second battery group includes at least two batteries; or both the first battery group and the second battery group Includes at least two batteries.
  • the batteries included in the first battery group are all connected to the first power management module 141, and the first power management module 141 controls the batteries in the first battery group to power the first load.
  • the batteries included in the second battery group are all connected to the second power management module 142, and the second power management module 142 controls the batteries in the second battery group to power the second load.
  • an isolation circuit 30 is connected between the two batteries connected to each other.
  • the specific composition and working principle of the isolation circuit 30 can be referred to the above description.
  • FIG. 12 is a schematic circuit structure diagram of another foldable electronic device provided by an embodiment of the present application.
  • the second folding part 12 further includes a third battery, and another isolation circuit connected between the second battery and the third battery.
  • the foldable electronic device 100 includes three batteries, the first battery is located in the first folding part 11, the second battery and the third battery are both located in the second folding part 12, one end of an isolation circuit is connected to the positive electrode of the first battery , the other end is connected to the positive electrode of the second battery, one end of the other isolation circuit is connected to the positive electrode of the second battery, and the other end is connected to the positive electrode of the third battery.
  • the isolation circuit connected between the second battery and the third battery is used to balance the voltage of the connected second battery and the third battery by changing the impedance on the path between the second battery and the third battery. Reduce the voltage difference between the second battery and the third battery.
  • the electrical parameters related to the second battery and the third battery can be detected through the electrical parameter detection module, so that the processor 110 or the first control unit connected in the isolation circuit between the second battery and the third battery controls.
  • the electrical parameters related to the second battery and the third battery include the voltage of the second battery and the voltage of the third battery, or the electrical parameters related to the second battery and the third battery include the flow path connected to the second battery and The current of the isolation module in the isolation circuit between the third battery.
  • first target battery and the second target battery two batteries connected by any isolation circuit can be called the first target battery and the second target battery respectively.
  • the first target battery may be the first battery
  • the second target battery may be the second battery.
  • the isolation circuit connected between the second battery and the third battery the first target battery may be the second battery
  • the second target battery may be the third battery.
  • the number of isolation circuits in the embodiment of the present application can be determined according to the number of batteries. For example, if the foldable electronic device 100 includes three batteries as shown in Figure 12, the number of isolation circuits in the foldable electronic device 100 is 2; or if the foldable electronic device 100 includes four batteries, the number of isolation circuits in the foldable electronic device 100 is 2.
  • a battery pack includes two batteries and a second battery includes two batteries. An isolation circuit is connected between the two batteries included in the first battery pack, and an isolation circuit is connected between the two batteries included in the second battery pack. An isolation circuit is provided, and an isolation circuit is connected between the first battery pack and the second battery pack, that is, the number of isolation circuits at this time is three.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种折叠电子设备,应用于电子技术领域。该折叠电子设备的第一折叠部内设置有第一电源管理模块、第一负载和第一电池组,该折叠电子设备的第二折叠部内设置有第二电源管理模块、第二负载和第二电池组,第一电源管理模块控制第一电池组为第一负载供电,第二电源管理模块控制第二电池组为第二负载供电;该折叠电子设备还包括隔离电路,其可以对连接的两个电池的电压进行电压均衡。这样,可降低第一电池组对第一负载供电时的电源传输路径以及第二电池组对第二负载供电时的电源传输路径,相应的,可提高转动机构和柔性屏的可靠性;并且,隔离电路可降低与连接的两个电池的电压差,提高了折叠电子设备的安全性和可靠性。

Description

折叠电子设备
本申请要求于2022年07月22日提交中国国家知识产权局、申请号为202221900700.2、申请名称为“折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子技术领域,尤其涉及一种折叠电子设备。
背景技术
随着手机等电子设备的不断发展,具有可折叠形态的电子设备逐渐成为行业发展的趋势。折叠电子设备在展开状态下,能够获得较大的显示面积,提升观影效果;折叠电子设备在折叠状态下,能够获得较小的体积,便于用户携带。
为了提高折叠电子设备的续航能力,可以在折叠电子设备中的第一折叠部和第二折叠部内均设置至少一个电池。
但是,目前的折叠电子设备中的一些电池在对负载进行供电时,其电源传输路径较长,使得通路阻抗引起的损耗较大。为了降低通路阻抗,可以增加电源传输路径中的走线宽度,但是电源传输路径中的走线宽度的增加,又会导致折叠电子设备中的转动机构以及柔性屏的可靠性降低。
发明内容
本申请实施例提供一种折叠电子设备,通过在第一折叠部和第二折叠部内均设置电源管理模块,来控制对应的电池对负载供电,从而减小电源传输路径对应的走线长度,且提高折叠电子设备中的转动机构以及柔性屏的可靠性。
第一方面,本申请实施例提出一种折叠电子设备,该折叠电子设备包括第一折叠部、第二折叠部,以及位于第一折叠部与第二折叠部之间的转动机构;第一折叠部包括第一电源管理模块、第一负载和第一电池组,第一电池组包括至少一个电池;第二折叠部包括第二电源管理模块、第二负载和第二电池组,第二电池组包括至少一个电池。第一电源管理模块分别与第一电池组和第一负载连接,用于控制第一电池组为第一负载供电;第二电源管理模块分别与第二电池组和第二负载连接,用于控制第二电池组为第二负载供电;折叠电子设备还包括隔离电路,隔离电路分别与两个电池连接,用于对其连接的两个电池的电压进行电压均衡。
这样,第一电池组提供的电池电压可通过第一电源管理模块转换为系统电压,以对第一折叠部内设置的第一负载供电,且第二电池组提供的电池电压可通过第二电源管理模块转换为系统电压,以对第二折叠部内设置的第二负载供电,从而使得第一电池组对第一负载供电时的电源传输路径对应的走线较短,且第二电池组对第二负载供电时的电源传输路径对应的走线也较短,从而可降低电源传输路径的走线阻抗引起的损耗。相应的,也就无需增加电源传输路径的走线宽度,从而可提高转动机构自身的可靠性以及转动机构所支撑的柔性屏的可靠性。并且,隔离电路可以对其连接的两个电池的电压均衡,以降低隔离电路连接的两个电池的电压差,进而限制隔离电路连接 的两个电池之间的互充电流,也就降低因隔离电路连接的两个电池之间产生的大电流互充而烧毁FPC上分布的走线的可能性,提高折叠电子设备的安全性和可靠性。
在一种可能的实现方式中,隔离电路连接于第一目标电池和第二目标电池之间;折叠电子设备还包括电学参数检测模块和处理模块,隔离电路包括隔离模块,处理模块分别与电学参数检测模块和隔离模块连接。电学参数检测模块用于检测与第一目标电池和第二目标电池相关的电学参数,电学参数包括第一目标电池的电压和第二目标电池的电压,或者,电学参数包括流经隔离模块的电流;处理模块用于根据电学参数控制隔离模块的工作状态,隔离模块的工作状态包括导通状态、均衡状态以及关断状态中的任意一种。这样,基于电学参数检测模块检测到的电学参数,控制隔离模块的工作状态,以在控制隔离模块处于均衡状态时,可降低隔离电路连接的两个电池之间的互充电流。
在一种可能的实现方式中,处理模块为折叠电子设备中的处理器,处理器和隔离电路为两个不同的部件;或者,处理模块为隔离电路中的第一控制单元。这样,可采用处理器或隔离电路中的第一控制单元,来控制隔离模块的工作状态,丰富了折叠电子设备的可实现方式。
在一种可能的实现方式中,电学参数检测模块包括第一电压检测元件和第二电压检测元件,第一电压检测元件与第一目标电池连接,第二电压检测元件与第二目标电池连接;第一电压检测元件用于检测第一目标电池的电压;第二电压检测元件用于检测第二目标电池的电压;其中,电学参数包括第一目标电池的电压和第二目标电池的电压。这样,提供了一种基于第一目标电池和第二目标电池的电压,来控制隔离模块的工作状态的方式。
在一种可能的实现方式中,电学参数检测模块包括电流检测元件,电流检测元件连接于第一目标电池与第二目标电池之间的通路中;电流检测元件用于检测流经隔离模块的电流;其中,电学参数包括流经隔离模块的电流。这样,提供了一种基于流经隔离模块的电流,来控制隔离模块的工作状态的方式。
在一种可能的实现方式中,处理模块具体用于当折叠电子设备处于放电状态,且电学参数不满足预设条件时,控制隔离模块处于均衡状态,以对第一目标电池与第二目标电池的电压进行电压均衡;处理模块还用于当折叠电子设备处于充电状态,且电学参数不满足预设条件时,控制与第三目标电池连接的电源管理模块对第三目标电池进行充电,直至电学参数满足预设条件,第三目标电池为第一目标电池和第二目标电池中电压较低的电池。其中,当第一目标电池与第二目标电池的电压差大于预设电压时,电学参数不满足预设条件;或者,当流经隔离模块的电流大于预设电流时,电学参数不满足预设条件。这样,当折叠电子设备处于放电状态且电学参数不满足预设条件时,基于隔离模块实现电压均衡;而当折叠电子设备处于充电状态且电学参数不满足预设条件时,基于电压较低的电池所连接的电源管理模块实现电压均衡,在降低隔离电路连接的两个电池之间的互充电流的基础上,可提高折叠电子设备的充电效率。
在一种可能的实现方式中,处理模块具体用于当电学参数满足预设条件时,控制隔离模块处于导通状态,以使第一目标电池和第二目标电池并联放电,或者对第一目标电池和第二目标电池进行并联充电。其中,当第一目标电池与第二目标电池的电压 差小于或等于预设电压时,电学参数满足预设条件;或者,当流经隔离模块的电流小于或等于预设电流时,电学参数满足预设条件。
在一种可能的实现方式中,隔离模块包括第一开关元件;第一开关元件的第一端与第一目标电池连接,第一开关元件的第二端与第二目标电池连接。
在一种可能的实现方式中,第一开关元件的控制端与处理模块连接。或者,隔离模块还包括第二开关元件,第二开关元件的控制端与处理模块连接,第二开关元件的第一端与第一开关元件的控制端连接,第二开关元件的第二端与接地端连接。
在一种可能的实现方式中,隔离模块包括第三开关元件和第四开关元件;第三开关元件的第一端与第一目标电池连接,第三开关元件的第二端与第四开关元件的第一端连接,第四开关元件的第二端与第二目标电池连接。
在一种可能的实现方式中,第三开关元件的控制端和第四开关元件的控制端均与处理模块连接。或者,隔离模块还包括第五开关元件,第五开关元件的控制端与处理模块连接,第五开关元件的第一端与第三开关元件的控制端和第四开关元件的控制端连接,第五开关元件的第二端与接地端连接。
在一种可能的实现方式中,第一电源管理模块和第二电源管理模块均包括第一开关单元、第二开关单元和第二控制单元;第一开关单元的控制端与第二控制单元连接,第一开关单元的第一端与充电接口连接,第一开关单元的第二端与对应的负载连接;第一开关单元用于在折叠电子设备处于充电状态时,将充电接口提供的输入电压转换为系统电压,以对与其连接的负载进行供电;第二开关单元的控制端与第二控制单元连接,第二开关单元的第一端与第一开关单元的第二端连接,第二开关单元的第二端与对应的电池连接;第二开关单元用于在折叠电子设备处于充电状态时,采用系统电压对其连接的电池进行充电,以及在折叠电子设备处于放电时,采用与其连接的电池提供的电池电压对与其连接的负载进行供电。
在一种可能的实现方式中,折叠电子设备还包括处理器,处理器分别与第一电源管理模块和第二电源管理模块连接;处理器用于当折叠电子设备处于充电状态,且第四目标电池充满而第五目标电池未充满时,控制与第四目标电池连接的电源管理模块内的第二开关单元截止,而控制与第五目标电池连接的电源管理模块内的第二开关单元导通;第四目标电池为折叠电子设备中的至少一个电池,第五目标电池为折叠电子设备中的至少一个电池。这样,通过在第一折叠部内设置第一电源管理模块,并在第二折叠部内设置第二电源管理模块,可使得第一电池组和第二电池组中的电池均可以充满。
在一种可能的实现方式中,第一开关单元包括第六开关元件、第七开关元件、第八开关元件和电感,第二开关单元包括第九开关元件;第六开关元件的控制端与第二控制单元连接,第六开关元件的第一端与充电接口连接,第六开关元件的第二端与第七开关元件的第一端连接;第七开关元件的控制端与第二控制单元连接,第七开关元件的第二端与电感的第一端连接;电感的第二端与电源管理模块对应的负载连接;第八开关元件的控制端与第二控制单元连接,第八开关元件的第一端与第七开关元件的第二端连接,第八开关元件的第二端与接地端连接;第九开关元件的控制端与第二控制单元连接,第九开关元件的第一端与电感的第二端连接,第九开关元件的第二端与 对应的电池连接。
在一种可能的实现方式中,第一电池组和第二电池组均包括一个电池,折叠电子设备包括一个隔离电路,隔离电路位于第一折叠部或第二折叠部内。这样,本申请实施例可以适用于双电池双电源管理模块的折叠电子设备中。
附图说明
图1为本申请实施例提供的折叠电子设备处于展开状态下的结构示意图;
图2为本申请实施例提供的折叠电子设备处于折叠状态下的结构示意图;
图3为本申请实施例提供的折叠电子设备的拆分结构示意图;
图4为相关技术提供的折叠电子设备的电路结构示意图;
图5为本申请实施例提供的折叠电子设备的硬件系统结构示意图;
图6为本申请实施例提供的一种折叠电子设备的电路结构示意图;
图7为本申请实施例提供的第一种隔离电路的电路图;
图8为本申请实施例提供的第二种隔离电路的电路图;
图9为本申请实施例提供的第三种隔离电路的电路图;
图10为本申请实施例提供的第四种隔离电路的电路图;
图11为本申请实施例提供的第五种隔离电路的电路图;
图12为本申请实施例提供的另一种折叠电子设备的电路结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一芯片和第二芯片仅仅是为了区分不同的芯片,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的折叠电子设备可以是手机、笔记本电脑、平板电脑(Pad)、可穿戴设备(如智能手表、智能手环)、车载设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等具有可折叠形态的电子设备。本申请实施例对折叠电子设备所采用的具体技术和具体设备形态不做限定。
折叠电子设备由于其在展开状态下,能够获得较大的显示面积,提升用户观影效果,以及其在折叠状态下,能够获得较小的体积,便于用户携带等优点,逐渐成为行业发展的趋势。
如图1和图2所示,折叠电子设备可以包括第一折叠部11、第二折叠部12以及位于第一折叠部11与第二折叠部12之间的转动机构13,转动机构13可以为转轴。转动机构13分别与第一折叠部11和第二折叠部12相连接,且第一折叠部11和第二折叠部12分别位于转动机构13的两侧。例如,第一折叠部11位于转动机构13轴线的左侧,第二折叠部12位于转动机构13轴线的右侧。第一折叠部11和第二折叠部12可以分别围绕转动机构13的轴线进行转动。
折叠电子设备还包括设置在第一折叠部11、第二折叠部12和转动机构13同一侧的柔性屏20,第一折叠部11、第二折叠部12和转动机构13用于承载柔性屏20。
柔性屏20用于显示图像、视频等,其可以为有机发光二极管(organic light-emitting diode,OLED)显示屏,或者其他柔性的显示屏。柔性屏20包括第一非弯折区21、第二非弯折区22和弯折区23,弯折区23位于第一非弯折区21与第二非弯折区22之间。第一非弯折区21可以通过胶层固定在第一折叠部11上,第二非弯折区22可以通过胶层固定在第二折叠部12上。柔性屏20的弯折区23采用柔性材料制作,而柔性屏20的第一非弯折区21和第二非弯折区22可以采用柔性材料,也可以采用刚性材料制作,本申请实施例对此不作限定。
这样,柔性屏20可以随着第一折叠部11和第二折叠部12相对于转动机构13的转动,相应的呈现折叠或展开等状态。
示意性的,如图1所示,当第一折叠部11和第二折叠部12相对于转动机构13转动至最大角度时,可使得柔性屏20呈展开状态。此时,第一折叠部11和第二折叠部12之间的夹角可以为180°,当然,受到某些工艺误差的影响,当折叠电子设备处于展开状态时,第一折叠部11和第二折叠部12之间的夹角也可以为175°或者185°等。
如图2所示,而当第一折叠部11和第二折叠部12相对于转动机构13朝向靠近彼此的方向转动,以减少第一折叠部11与第二折叠部12之间的夹角时,可使得柔性屏20呈折叠状态。当柔性屏20处于折叠状态时,弯折区23被弯折,且第一非弯折区21与第二非弯折区22相对设置。
当柔性屏20处于展开状态时,此时的柔性屏20具有较大的显示面积,即柔性屏20中的第一非弯折区21、第二非弯折区22和弯折区23均可以进行显示,从而提升用户的观影效果。而当柔性屏20处于折叠状态时,此时的折叠电子设备具有较小的体积,从而便于用户携带。
需要说明的是,图1和图2所示的折叠电子设备是以折叠手机为例进行说明,该折叠手机可以为内折折叠手机(即柔性屏20向内折叠),也可以为外折折叠手机(即柔性屏20向外折叠)。当然,本申请实施例中的折叠电子设备也可以是其他折叠设备。
为了更好地理解本申请实施例中的第一折叠部11和第二折叠部12相对于转动机构13的转动,下面结合图3所示的折叠电子设备的拆分结构示意图进行说明。
其中,转动机构13可以包括转轴本体131、第一叶片132和第二叶片133。第一叶片132的数量可以为多个,第二叶片133的数量也可以为多个,例如,第一叶片132 和第二叶片133的数量可以为如图3所示的两个。
转轴本体131包括同轴设置的第一转动轴1311和第二转动轴1312,第一转动轴1311和第二转动轴1312的轴线作为转动机构13的轴线。
第一叶片132也可称为第一摆臂,第一叶片132的一端与转轴本体131中的第一转动轴1311相连接,第一叶片132的另一端伸入第一折叠部11下方的凹槽内,并与第一折叠部11相连接。
第二叶片133也可称为第二摆臂,第二叶片133的一端与转轴本体131中的第二转动轴1312相连接,第二叶片133的另一端伸入第二折叠部12下方的凹槽内,并与第二折叠部12相连接。
第一转动轴1311通过第一叶片132带动第一折叠部11绕第一转动轴1311的轴线转动,相应的,第二转动轴1312通过第二叶片133带动第二折叠部12绕第二转动轴1312的轴线转动。由于第一转动轴1311和第二转动轴1312的轴线作为转动机构13的轴线,从而可以使得第一折叠部11和第二折叠部12分别绕转动机构13的轴线进行转动。
如图3所示,两个第一叶片132之间的避让空间以及两个第二叶片133之间的避让空间,主要用于放置柔性电路板(flexible printed circuit,FPC)。FPC上分布有第一折叠部11与第二折叠部12之间进行电信号传输的走线。
在相关技术中,为了提高折叠电子设备的续航能力,可以在折叠电子设备的第一折叠部11和第二折叠部12内均设置至少一个电池,以提高折叠电子设备的待机时长。
如图4所示,在第一折叠部11内设置有一个第一电池,在第二折叠部12内设置有一个第二电池,即第一电池和第二电池分别位于转动机构13的左右两侧。
而转动机构13的左右两侧也分别设置有不同类型的负载外设。第一折叠部11内设置有第一负载,例如,第一负载可以为处理器、存储器等负载外设;而第二折叠部12内设置有第二负载,例如,第二负载可以为扬声器、摄像头等负载外设。
如图4所示,仅在第一折叠部11内设置是有一个电源管理模块140,提供给第一负载和第二负载的系统电压统一由第一折叠部11内设置的电源管理模块140进行管理和输出。
此外,第一折叠部11内还设置有通用串行总线(universal serial bus,USB)接口、过压保护(over voltage protect,OVP)电路和第一快充芯片等,电源管理模块140包括电源管理集成电路(power management IC,PMIC)芯片和一些外围电路,外围电路可以包括第一电容C1、第二电容C2以及电感L1等。第二折叠部12内还设置有第二快充芯片和隔离电路等。
电源管理模块140可以分别与第一负载和第二负载连接。电源管理模块140可以将第一电池提供的电池电压转换为系统电压并提供给第一负载,以对第一负载进行供电,电源管理模块140也可以将第二电池提供的电池电压转换为系统电压并提供给第二负载,以对第二负载进行供电。
对于第二折叠部12内的第二负载而言,第二电池提供的电池电压经过转动机构13内设置的FPC上分布的电源走线,传输至第一折叠部11内设置的电源管理模块140,电源管理模块140将第二电池提供的电池电压转换为系统电压Vsys,该系统电压Vsys 再通过转动机构13内设置的FPC上分布的电源走线,传输至第二折叠部12内设置的第二负载,从而对第二折叠部12内设置的第二负载进行供电。
因此,可以得知,第二折叠部12内设置的第二电池在对第二折叠部12内设置的第二负载进行供电时,电源传输路径对应的走线构成了一个罗圈通路,使得电源传输路径对应的走线较长。由于电源传输路径对应的走线存在一定的阻抗,当电源传输路径对应的走线较长时,电源传输路径的走线阻抗引起的损耗也较大。
若要降低电源传输路径的走线阻抗引起的损耗,可以增加电源传输路径的走线宽度,来降低电源传输路径的走线阻抗。但是,当电源传输路径的走线宽度增加时,会使得转动机构13内设置的FPC的宽度增加。
在转动机构13内设置的FPC所在的位置处,无法设置转动机构13包括的第一叶片132和第二叶片133。当转动机构13内设置的FPC的宽度增加时,会使得转动机构13内的主体结构(即第一叶片132和第二叶片133)对FPC的避让空间增加,即图3中的两个第一叶片132以及两个第二叶片133之间的避让空间沿Y方向上的宽度d增加。
相应的,也就使得转动机构13内的第一叶片132和第二叶片133的占用空间减小,从而降低了转动机构13自身的可靠性。并且,由于第一叶片132和第二叶片133还可以起到对柔性屏20支撑的作用,而对于FPC所在的区域,由于缺少第一叶片132和第二叶片133,则该区域无法对柔性屏20起到支撑的作用,当FPC所在的区域的宽度d越大时,转动机构13对柔性屏20的支撑效果也就越差,因此,在用户使用折叠电子设备的过程中,若用户按压柔性屏20,则会影响转动机构13所支撑的柔性屏20的可靠性。
需要说明的是,第二折叠部12内设置的第二负载不直接从第二折叠部12内设置的第二电池取电,而必须从第一折叠部11内设置的电源管理模块140来取电,其是因为复充问题导致的。复充原理为:当电池充满之后,若用户仍然没有拔掉接入USB接口的充电器,此时不能再继续对电池进行充电,且折叠电子设备中的负载也不能继续消耗电池的电量,否则当用户使用一段时间后拔掉充电器时会导致电池的电量没有达到100%。因此,为了解决复充问题,在电池充满之后,负载消耗的电量需要从充电器取电而把电池旁路,实现此功能的模块也就是电源管理模块140。
在电源管理模块140内设置有一个开关元件,如图4所示的第九开关元件Q9,第九开关元件Q9连接在负载与电池之间。当采用充电器对电池进行充电时,第九开关元件Q9导通,以通过第九开关元件Q9对电池充电;当需要电池对负载进行供电时,第九开关元件Q9导通,以通过第九开关元件Q9使得负载消耗电池的电量。而在电池充满之后且USB接口仍然接入有充电器时,第九开关元件Q9处于截止状态,使得电池被旁路于负载之外,负载消耗的电量由充电器供应。
基于此,本申请实施例提供了一种折叠电子设备,通过在第一折叠部11内设置第一电源管理模块、第一负载和第一电池组,以及在第二折叠部12内设置第二电源管理模块、第二负载和第二电池组,第一电源管理模块分别与第一电池组和第一负载连接,用于控制第一电池组为第一负载供电;第二电源管理模块分别与第二电池组和第二负载连接,用于控制第二电池组为第二负载供电。这样,第一电池组提供的电池电压可 通过第一电源管理模块转换为系统电压,以对第一折叠部11内设置的第一负载供电,且第二电池组提供的电池电压可通过第二电源管理模块转换为系统电压,以对第二折叠部12内设置的第二负载供电,从而使得第一电池组对第一负载供电时的电源传输路径对应的走线较短,且第二电池组对第二负载供电时的电源传输路径对应的走线也较短,从而可降低电源传输路径的走线阻抗引起的损耗。相应的,也就无需增加电源传输路径的走线宽度,从而可提高转动机构13自身的可靠性以及转动机构13所支撑的柔性屏20的可靠性。
并且,该折叠电子设备还包括隔离电路,该隔离电路分别与两个电池连接,用于对其连接的两个电池的电压进行电压均衡。这样,可使得隔离电路连接的两个电池的电压均衡,以降低隔离电路连接的两个电池的电压差,进而限制隔离电路连接的两个电池之间的互充电流,也就降低因隔离电路连接的两个电池之间产生的大电流互充而烧毁FPC上分布的走线的可能性,提高折叠电子设备的安全性和可靠性。
为了能够更好地理解本申请实施例,下面对本申请实施例的折叠电子设备的结构进行介绍。
示例性的,图5为本申请实施例提供的一种折叠电子设备100的结构示意图。折叠电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,USB接口130,电源管理模块140,电池143,第一天线,第二天线,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriberidentification module,SIM)卡接口195等。其中,传感器模块180可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,骨传导传感器等。
可以理解的是,本申请实施例示意的结构并不构成对折叠电子设备100的具体限定。在本申请另一些实施例中,折叠电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括片上系统(system on chip,SOC)处理器,应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuitsound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或USB接口等。
电源管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,电源管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,电源管理模块140可以通过折叠电子设备100的无线充电线圈接收无线充电输入。
电源管理模块140为电池143充电的同时,还可以为折叠电子设备100供电。电源管理模块140用于连接电池143和处理器110。在折叠电子设备100未接入充电器时,电源管理模块140接收电池143的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块140还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块140也可以设置于处理器110中。
在本申请实施例中,折叠电子设备100包括两个电源管理模块,其分别为第一电源管理模块和第二电源管理模块,第一电源管理模块位于第一折叠部11内,第二电源管理模块位于第二折叠部12内。
并且,在第一折叠部11内还设置有第一电池组,第一电池组包括至少一个电池143;第二折叠部12内还设置有第二电池组,第二电池组也包括至少一个电池143。
折叠电子设备100的无线通信功能可以通过第一天线,第二天线,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
折叠电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。显示屏194用于显示图像、显示视频和接收滑动操作等,显示屏194可以为柔性屏20。
折叠电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,折叠电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展折叠电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储折叠电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行折叠电子设备100的各种功能应用以及数据处理。
折叠电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。折叠电子设备100可以接收按键输入,产生与折叠电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和折叠电子设备100的接触和分离。折叠电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
下面的实施例中,可以以第一折叠部11和第二折叠部12内均设置有一个电池143为例进行说明。当然,本申请实施例也可根据实际需求扩展第一折叠部11和/或第二折叠部12内设置的电池143的数量。
示例性的,图6为本申请实施例提供的一种折叠电子设备的电路结构示意图。参照图6所示,该折叠电子设备100包括第一折叠部11、第二折叠部12,以及位于第一折叠部11与第二折叠部12之间的转动机构13。
其中,第一折叠部11包括第一电源管理模块141、第一负载和第一电池组,第一电池组包括一个电池,可将第一电池组包括的这一个电池称为第一电池,即第一电源管理模块141、第一负载和第一电池均位于第一折叠部11内。第一电源管理模块141分别与第一电池和第一负载连接,具体的,第一电源管理模块141是与第一电池的正极连接,第一电池的负极与接地端GND连接。
第二折叠部12包括第二电源管理模块142、第二负载和第二电池组,第二电池组包括一个电池,可将第二电池组包括的这一个电池称为第二电池,即第二电源管理模块142、第二负载和第二电池均位于第二折叠部12内。第二电源管理模块142分别与第二电池和第二负载连接,具体的,第二电源管理模块142是与第二电池的正极连接,第二电池的负极与接地端GND连接。
在折叠电子设备100处于放电状态下,第一电源管理模块141用于控制第一电池 为第一负载供电。也就是说,第一电池提供的电池电压传输至第一电源管理模块141,第一电源管理模块141将其转换为系统电压提供给第一负载,以对第一负载进行供电。
相应的,在折叠电子设备100处于放电状态下,第二电源管理模块142用于控制第二电池为第二负载供电。也就是说,第二电池提供的电池电压传输至第二电源管理模块142,第二电源管理模块142将其转换为系统电压提供给第二负载,以对第二负载进行供电。
这样,第一电池对第一负载供电时的电源传输路径对应的走线较短,且第二电池对第二负载供电时的电源传输路径对应的走线也较短,从而可降低电源传输路径的走线阻抗引起的损耗。相应的,也就无需增加电源传输路径的走线宽度,从而可提高转动机构13自身的可靠性以及转动机构13所支撑的柔性屏20的可靠性。
由于折叠电子设备100中的第一电池和第二电池在生产、维修以及使用过程中,可能会存在第一电池与第二电池之间的电压差较大的情况。当第一电池与第二电池之间的电压差较大时,若直接将第一电池和第二电池并联,则容易导致第一电池与第二电池之间产生较大的互充电流,进而容易导致FPC上分布的走线被烧毁。
因此,为了降低因第一电池和第二电池之间产生的互充电流而烧毁FPC上分布的走线的可能性,可以在第一电池和第二电池之间设置隔离电路30实现隔离,即基于隔离电路30降低第一电池与第二电池之间的电压差,从而限制第一电池与第二电池之间的互充电流。
如图6所示,折叠电子设备100还包括一个隔离电路30,该隔离电路30连接于第一电池与第二电池之间。具体的,该隔离电路30的一端与第一电池的正极连接,该隔离电路30的另一端与第二电池的正极连接。
隔离电路30用于对其连接的第一电池和第二电池进行电压均衡。具体的,隔离电路30可通过改变第一电池与第二电池之间的通路上的阻抗,以降低第一电池和第二电池之间的电压差。
在本申请实施例中,隔离电路30可以位于第二折叠部12内,当然,也可以根据产品的实际布局,将隔离电路30设置在第一折叠部11内,即隔离电路30可以位于第一折叠部11或第二折叠部12内。
在一些实施中,折叠电子设备100还包括电学参数检测模块(未在图6中示出)和处理器110(未在图6中示出)。处理器110可以为SOC处理器,处理器110与隔离电路30为两个不同的部件。并且,隔离电路30包括隔离模块(未在图6中示出),处理器110分别与电学参数检测模块和隔离电路30中的隔离模块连接。
电学参数检测模块用于检测与第一电池和第二电池相关的电学参数,电学参数包括第一电池的电压和第二电池的电压,或者,电学参数包括流经隔离模块的电流。电学参数检测模块可以将检测到的电学参数发送至处理器110,处理器110用于根据电学参数控制隔离电路30中的隔离模块的工作状态;隔离模块的工作状态包括导通状态、均衡状态以及关断状态中的任意一种。
在隔离电路30中的隔离模块处于导通状态时,第一电池与第二电池之间的通路导通。此时,当折叠电子设备100处于充电状态时,充电器通过USB接口和第一电源管理模块141向第一电池充电以及向第一负载供电,且充电器通过USB接口和第二电源 管理模块142向第二电池充电以及向第二负载供电;而当折叠电子设备100处于放电状态时,第一电池通过第一电源管理模块141向第一负载供电,且第二电池通过第二电源管理模块142向第二负载供电。
在隔离电路30中的隔离模块处于均衡状态时,第一电池与第二电池之间的通路上形成一定的阻抗,第一电池与第二电池之间的通路上形成的阻抗可调,从而实现第一电池与第二电池之间的电压均衡,以降低第一电池与第二电池之间的电压差。这样,可降低第一电池与第二电池之间产生的互充电流,从而降低FPC上分布的走线被烧毁的可能性。
在隔离电路30中的隔离模块处于关断状态时,第一电池与第二电池之间的通路断开,第一电池与第二电池之间不存在互充电流。
一种情况,电学参数检测模块包括第一电压检测元件和第二电压检测元件,第一电压检测元件与第一电池连接,第二电压检测元件与第二电池连接。第一电压检测元件用于检测第一电池的电压,第二电压检测元件用于检测第二电池的电压,即电学参数包括第一电池的电压和第二电池的电压。
第一电压检测元件可以将检测到的第一电池的电压发送至处理器110,第二电压检测元件将检测到的第二电池的电压发送至处理器110。处理器110用于计算第一电池与第二电池的电压差,并根据第一电池与第二电池的电压差控制隔离电路30中的隔离模块的工作状态。第一电池与第二电池和电压差可以为第一电池的电压与第二电池的电压之间的差值的绝对值。
在实际产品中,第一电压检测元件可以集成在第一电源管理模块141内,或者第一电压检测元件也可以集成在隔离电路30内,或者第一电压检测元件还可以与第一电源管理模块141和隔离电路30均单独设置。相应的,第二电压检测元件可以集成在第二电源管理模块142内,或者第二电压检测元件也可以集成在隔离电路30内,或者第二电压检测元件还可以与第二电源管理模块142和隔离电路30均单独设置。
另一种情况,电学参数检测模块包括电流检测元件,电流检测元件连接于第一电池与第二电池之间的通路中,具体的,电流检测元件串联在第一电池与第二电池之间的通路中。电流检测元件用于检测流经隔离电路30中的隔离模块的电流,即电学参数包括流经隔离模块的电流。
电流检测元件可以将检测到的流经隔离模块的电流发送至处理器110,处理器110用于根据流经隔离模块的电流控制隔离模块的工作状态。
在实际产品中,电流检测元件可集成在隔离电路30内,或者,电流检测元件也可以与隔离电路30单独设置。
在另一些实施例中,折叠电子设备100还包括电学参数检测模块,隔离电路30包括隔离模块和第一控制单元,第一控制单元分别与电学参数检测模块和隔离模块连接。
电学参数检测模块用于检测与第一电池和第二电池相关的电学参数,电学参数包括第一电池的电压和第二电池的电压,或者,电学参数包括流经隔离模块的电流。电学参数检测模块可以将检测到的电学参数发送至第一控制单元,第一控制单元用于根据电学参数控制隔离电路30中的隔离模块的工作状态;隔离模块的工作状态包括导通状态、均衡状态以及关断状态中的任意一种。
一种情况,电学参数检测模块包括第一电压检测元件和第二电压检测元件,第一电压检测元件与第一电池连接,第二电压检测元件与第二电池连接。第一电压检测元件用于检测第一电池的电压,第二电压检测元件用于检测第二电池的电压,即电学参数包括第一电池的电压和第二电池的电压。
第一电压检测元件可以将检测到的第一电池的电压发送至第一控制单元,第二电压检测元件将检测到的第二电池的电压发送至第一控制单元。第一控制单元用于计算第一电池与第二电池的电压差,并根据第一电池与第二电池的电压差控制隔离模块的工作状态。
另一种情况,电学参数检测模块包括电流检测元件,电流检测元件连接于第一电池与第二电池之间的通路中,具体的,电流检测元件串联在第一电池与第二电池之间的通路中。电流检测元件用于检测流经隔离电路30中的隔离模块的电流,即电学参数包括流经隔离模块的电流。
电流检测元件可以将检测到的流经隔离模块的电流发送第一控制单元,第一控制单元用于根据流经隔离模块的电流控制隔离模块的工作状态。
上述可以通过与隔离电路30单独设置的处理器110来控制隔离电路30中的隔离模块的工作状态,或者,也可以通过设置在隔离电路30中的第一控制单元,来主动控制隔离电路30中的隔离模块的工作状态。可以将处理器110和隔离电路30中的第一控制单元,称为处理模块。
示例性的,上述的电学参数检测模块可以按照如下的规则,控制隔离电路30中的隔离模块的工作状态。
上述隔离电路30中的隔离模块默认处于关断状态。例如,在折叠电子设备100处于关机状态时,隔离电路30中的隔离模块处于关断状态,第一电池与第二电池之间的通路断开连接。
在折叠电子设备100处于关机状态下,若隔离模块未处于关断状态时,在一些实际场景中,维修人员可能会在折叠电子设备100处于关机状态时来更换其中一个电池,而更换后的电池与未更换的电池的电量可能不同,从而导致电量不同的两个电池被连接在一起。若更换后的电池与未更换的电池的电量差异较大,更换后的电池与未更换的电池之间的电压差也较大,从而导致FPC上分布的走线容易被烧毁。例如,第一电池出现故障,在折叠电子设备100处于关机状态下,可以更换第一电池,若更换后的第一电池的电压大于未更换的第二电池的电压,且更换后的第一电池与未更换的第二电池之间的电压差较大时,则更换后的第一电池会存在一定的电流流向未更换的第二电池,对未更换的第二电池进行灌电,其可能导致FPC上分布的走线被烧毁。
因此,本申请实施例通过在折叠电子设备100处于关机状态时,使得隔离模块处于关断状态,从而在折叠电子设备100处于关机状态时更换其中一个电池,断开更换后的电池与未更换的电池之间的连接,从而降低FPC上分布的走线被烧毁的可能性。
在折叠电子设备100准备开机时,如用户按压折叠电子设备100上设置的开机键以请求开机时,此时隔离电路30中的隔离模块依旧默认处于关断状态。并且,第一电压检测元件可以检测第一电池的电压并将其发送至处理器110(或第一控制单元),第二电压检测元件可以检测第二电池的电压并将其发送至处理器110(或第一控制单 元),处理器110(或第一控制单元)计算第一电池与第二电池的电压差,并将电压差与预设电压进行比较。
若第一电池与第二电池的电压差小于或等于预设电压,则折叠电子设备100正常开机。若第一电池与第二电池的电压差大于预设电压,此时需要确定折叠电子设备100是处于充电状态还是处于放电状态。
一种情况下,第一电池与第二电池的电压差大于预设电压,且折叠电子设备100处于充电状态时,处理器110确定第一电池的电压与第二电池的电压之间的大小关系,处理器110控制电压较低的电池所连接的电源管理模块对电压较低的电池进行充电,而控制电压较高的电池所连接的电源管理模块没有对电压较高的电池进行充电,直至第一电池与第二电池的电压差小于或等于预设电压。当采用电压较低的电池所连接的电源管理模块对第一电池和第二电池进行电压均衡后,处理器110可控制隔离电路30中的隔离模块处于导通状态,以及开始控制原本电压较高的电池所连接的电源管理模块,开始对原本电压较高的电池进行充电。并且,当第一电池与第二电池的电压差小于或等于预设电压时,折叠电子设备100正常开机。
例如,处理器110确定第一电池与第二电池的电压差大于预设电压,且第一电池的电压大于第二电池的电压时,处理器110控制第二电源管理模块142对第二电池进行充电,而控制第一电源管理模块141不对第一电池进行充电,直至第一电池与第二电池的电压差小于或等于预设电压。当采用第二电源管理模块142对第一电池和第二电池进行电压均衡后,处理器110可控制隔离电路30中的隔离模块处于导通状态,并且,处理器110开始控制第一电源管理模块141对第一电池进行充电。
当然,也可以是隔离电路30中的第一控制单元检测第一电池的电压与第二电池的电压之间的大小关系,在确定第一电池的电压与第二电池的电压之间的大小关系之后,向处理器110发送相应的信号,以告知处理器110电压较低的电池是第一电池还是第二电池,处理器110控制电压较低的电池所连接的电源管理模块对电压较低的电池进行充电,而控制电压较高的电池所连接的电源管理模块不对电压较高的电池进行充电,直至第一控制单元确定第一电池与第二电池的电压差小于或等于预设电压。当采用电压较低的电池所连接的电源管理模块对第一电池和第二电池进行电压均衡后,隔离电路30中的第一控制单元可控制隔离电路30中的隔离模块处于导通状态,并且,第一控制单元确定第一电池与第二电池的电压差被均衡至小于或等于预设电压时,第一控制单元向处理器110再次发送相应的信号,使得处理器110开始控制原本电压较高的电池所连接的电源管理模块,开始对原本电压较高的电池进行充电。
另一种情况,第一电池与第二电池的电压差大于预设电压,且折叠电子设备100处于放电状态时,处理器110(或第一控制单元)控制隔离模块处于均衡状态,以调节第一电池与第二电池之间的通路形成的阻抗,来降低第一电池与第二电池之间的电压差,从而实现第一电池与第二电池之间的电压均衡。在将第一电池与第二电池之间的电压差降低至小于或等于预设电压时,处理器110(或第一控制单元)可控制隔离模块从均衡状态变为导通状态;并且,当第一电池与第二电池的电压差小于或等于预设电压时,折叠电子设备100正常开机。
在折叠电子设备100开机后,处理器110(或第一控制单元)依旧会获取第一电 压检测元件检测到的第一电池的电压,以及第二电压检测元件检测到的第二电池的电压,并将计算到的第一电池与第二电池的电压差,与预设电压进行比较。
针对折叠电子设备100处于放电状态的场景,若第一电池与第二电池的电压差小于或等于预设电压,处理器110(或第一控制单元)控制隔离模块处于导通状态,使得第一电池和第二电池并联放电,即第一电池通过第一电源管理模块141向第一负载供电,且第二电池通过第二电源管理模块142向第二负载供电。若第一电池与第二电池的电压差大于预设电压,处理器110(或第一控制单元)控制隔离模块处于均衡状态,以对第一电池与第二电池之间的电压均衡,当第一电池与第二电池之间的电压差被均衡至小于或等于预设电压,处理器110(或第一控制单元)再次控制隔离模块处于导通状态。
针对折叠电子设备100处于充电状态的场景,若第一电池与第二电池的电压差小于或等于预设电压,处理器110(或第一控制单元)控制隔离模块处于导通状态,且第一电池和第二电池并联充电,即充电器通过USB接口和第一电源管理模块141向第一电池充电,且充电器通过USB接口和第二电源管理模块142向第二电池充电。若第一电池与第二电池的电压差大于预设电压,处理器110(或第一控制单元)控制隔离模块处于关断状态,且处理器110控制电压较低的电池所连接的电源管理模块对电压较低的电池进行充电,而控制电压较高的电池所连接的电源管理模块停止对电压较高的电池进行充电,直至第一电池与第二电池的电压差小于或等于预设电压;当采用电压较低的电池所连接的电源管理模块对第一电池和第二电池进行电压均衡后,处理器110(或第一控制单元)可控制隔离电路30中的隔离模块处于导通状态,以及控制原本电压较高的电池所连接的电源管理模块继续对原本电压较高的电池进行充电。
当然,可以理解的是,上述基于第一电池与第二电池之间的电压差来控制隔离模块的状态,也可以替换成采用流经隔离模块的电流来控制隔离模块的状态。
在折叠电子设备100处于放电状态的场景下,电流检测元件检测流经隔离模块的电流,并将检测到的流经隔离模块的电流发送至处理器110(或第一控制单元),处理器110(或第一控制单元)将流经隔离模块的电流与预设电流进行比较。
若流经隔离模块的电流小于或等于预设电流,处理器110(或第一控制单元)控制隔离模块处于导通状态,使得第一电池和第二电池并联放电。若流经隔离模块的电流大于预设电流,处理器110(或第一控制单元)控制隔离模块处于均衡状态,以对第一电池与第二电池之间的电压均衡,当第一电池与第二电池之间的电压差被均衡至小于或等于预设电压,处理器110(或第一控制单元)再次控制隔离模块处于导通状态。
在折叠电子设备100处于充电状态的场景,若处理器110(或第一控制单元)确定流经隔离模块的电流小于或等于预设电流,处理器110(或第一控制单元)控制隔离模块处于导通状态,且第一电池和第二电池并联充电。若处理器110(或第一控制单元)确定流经隔离模块的电流大于预设电流,处理器110(或第一控制单元)控制隔离模块处于关断状态,且处理器110根据电流的流向,控制电压较低的电池所连接的电源管理模块对电压较低的电池进行充电,而控制电压较高的电池所连接的电源管理模块停止对电压较高的电池进行充电,直至流经隔离模块的电流小于或等于预设电 流;当采用电压较低的电池所连接的电源管理模块使得流经隔离模块的电流小于或等于预设电流后,处理器110(或第一控制单元)可控制隔离电路30中的隔离模块处于导通状态,以及控制原本电压较高的电池所连接的电源管理模块继续对原本电压较高的电池进行充电。
综上,处理器110(或第一控制单元)可用于当折叠电子设备100处于放电状态,且电学参数不满足预设条件时,控制隔离模块处于均衡状态,以对第一电池与第二电池的电压进行电压均衡。处理器110(或第一控制单元)还用于当折叠电子设备100处于充电状态,且电学参数不满足预设条件时,控制与第三目标电池连接的电源管理模块对第三目标电池进行充电,直至电学参数满足预设条件;第三目标电池为第一电池和第二电池中电压较低的电池。其中,当第一电池与第二电池的电压差大于预设电压时,电学参数不满足预设条件;或者,当流经隔离模块的电流大于预设电流时,电学参数不满足预设条件。
在折叠电子设备100处于放电状态或充电状态,处理器110(或第一控制单元)用于当电学参数满足预设条件时,控制隔离模块处于导通状态,以使第一电池和第二电池并联放电,或者对第一电池和第二电池进行并联充电。其中,当第一电池与第二电池的电压差小于或等于预设电压时,电学参数满足预设条件;或者,当流经隔离模块的电流小于或等于预设电流时,电学参数满足预设条件。
此外,在实际使用过程中,第一电池和第二电池还存在过放的情况,此时的第一电池和第二电池的电压均过低无法保证折叠电子设备100的正常开机。因此,针对第一电池和第二电池过放的场景下,在折叠电子设备100准备开机,且折叠电子设备100处于充电状态时,处理器110可获取第一电池的电压与第二电池的电压,当第一电池的电压和第二电池的电压均小于预设开机门限(如预设开机门限为3V),且第一电池的电压大于第二电池的电压时,处理器110控制第一电源管理模块141对第一电池进行充电,此时第二电源管理模块142停止对第二电池充电。在将第一电池的电压充至大于或等于预设开机门限时,再执行上述的折叠电子设备100准备开机时的电压均衡过程,在此不再赘述。
下面结合图7至图11所示的五种不同的隔离电路30,说明隔离电路30的具体电路结构和工作原理。
如图7所示,隔离电路30仅包括隔离模块,隔离模块包括第一开关元件Q1。第一开关元件Q1的控制端与处理器110连接,第一开关元件Q1的第一端与第一电池的正极连接,第一开关元件Q1的第二端与第二电池的正极连接。
一种情况,在折叠电子设备100处于放电状态的情况下,当处理器110确定第一电池与第二电池的电压差大于预设电压时,处理器110控制第一开关元件Q1工作在线性区,使得隔离模块处于均衡状态;当处理器110确定第一电池与第二电池的电压差小于或等于预设电压时,处理器110控制第一开关元件Q1工作在饱和区,使得隔离模块处于导通状态。
或者,在折叠电子设备100处于放电状态的情况下,当处理器110确定流经第一开关元件Q1的第一端与第二端的电流大于预设电流时,处理器110控制第一开关元件Q1工作在线性区,使得隔离模块处于均衡状态;当处理器110确定流经第一开关 元件Q1的第一端与第二端的电流小于或等于预设电流时,处理器110控制第一开关元件Q1工作在饱和区,使得隔离模块处于导通状态。
另一种情况,在折叠电子设备100处于充电状态的情况下,当处理器110确定第一电池与第二电池的电压差大于预设电压时,处理器110会控制对应的电源管理模块进行电压均衡,此时处理器110控制第一开关元件Q1工作在截止区,即此时的隔离模块处于关断状态;当处理器110确定第一电池与第二电池的电压差小于或等于预设电压时,处理器110控制第一开关元件Q1工作在饱和区,使得隔离模块处于导通状态。
或者,在折叠电子设备100处于充电状态的情况下,当处理器110确定流经第一开关元件Q1的第一端与第二端的电流大于预设电流时,处理器110会控制对应的电源管理模块进行电压均衡,此时处理器110控制第一开关元件Q1工作在截止区,即此时的隔离模块处于关断状态;当处理器110确定流经第一开关元件Q1的第一端与第二端的电流小于或等于预设电流时,处理器110控制第一开关元件Q1工作在饱和区,使得隔离模块处于导通状态。
具体的,处理器110通过控制向第一开关元件Q1的控制端提供的控制信号的占空比,可控制第一开关元件Q1分别工作在截止区、线性区和饱和区。占空比是指一个脉冲周期内高电平脉冲在整个脉冲周期内所占的时间比例,例如1秒高电平脉冲1秒低电平脉冲的控制信号的占空比为50%。当控制信号的占空比为100%时,即控制信号为持续的高电平信号时,第一开关元件Q1工作在饱和区,当控制信号的占空比小于或等于一定值(如35%)时,第一开关元件Q1工作在截止区,当控制信号的占空比大于一定值(如35%)且小于100%时,第一开关元件Q1工作在线性区。
如图8所示,隔离电路30包括第一控制单元和隔离模块,隔离模块包括第一开关元件Q1。第一开关元件Q1的控制端与第一控制单元连接,第一开关元件Q1的第一端与第一电池的正极连接,第一开关元件Q1的第二端与第二电池的正极连接。第一控制单元还可以与处理器110连接。
需要说明的是,图8所示的隔离电路30与图7所示的隔离电路30的区别在于,图7所示的隔离电路30中的第一开关元件Q1的控制端是与处理器110连接的,其通过处理器110发送的控制信号控制第一开关元件Q1的工作状态,而图8所示的隔离电路30中还设置有第一控制单元,且第一开关元件Q1的控制端是与第一控制单元连接的,其通过第一控制单元发送的控制信号控制第一开关元件Q1的工作状态。第一控制单元控制第一开关元件Q1的工作状态具体实现过程,与处理器110控制第一开关元件Q1的工作状态的具体实现过程类似,为避免重复,在此不再赘述。
另外,上述提供给第一开关元件Q1的控制端的控制信号可以是脉冲宽度调制(pulse width modulation,PWM)信号。因此,在图8所示的隔离电路30中,还可设置有控制信号发生器,其用于生成PWM信号。
上述的第一开关元件Q1可以为金属氧化物半导体(metal-oxide-semiconductor,MOS)晶体管或其他开关器件。示例性的,第一开关元件Q1可以为NMOS管。具体的,第一开关元件Q1的控制端指的是第一开关元件Q1的栅极,第一开关元件Q1的第一端指的是第一开关元件Q1的源极,第一开关元件Q1的第二端指的是第一开关元 件Q1的漏极。
如图9所示,隔离电路30仅包括隔离模块,隔离模块包括第一开关元件Q1和第二开关元件Q2。第一开关元件Q1的控制端与第二开关元件Q2的第一端连接,第一开关元件Q1的的第一端与第一电池的正极连接,第一开关元件Q1的第二端与第二电池的正极连接。第二开关元件Q2的控制端与处理器110连接,第二开关元件Q2的第二端与接地端GND连接。
图9所示的隔离电路与图7所示的隔离电路的区别在于,图9所示的隔离电路中的第一开关元件Q1采用PMOS管实现,并增加了第二开关元件Q2,第二开关元件Q2可以采用带有寄生二极管的NMOS管实现,通过第二开关元件Q2来控制第一开关元件Q1的工作状态。
第一开关元件Q1的控制端指的是第一开关元件Q1的栅极,第一开关元件Q1的第一端可以指的是第一开关元件Q1的漏极,第一开关元件Q1的第二端可以指的是第第一开关元件Q1的源极。第二开关元件Q2的控制端指的是第二开关元件Q2的栅极,第二开关元件Q2的第一端指的是第二开关元件Q2的漏极,第二开关元件Q2的第二端指的是第二开关元件Q2的源极。
具体的,处理器110通过控制向第二开关元件Q2的控制端提供的控制信号的占空比,可控制第二开关元件Q2分别工作在截止区、线性区和饱和区。当第二开关元件Q2工作在截止区时,第一开关元件Q1也工作在截止区,从而使得隔离模块处于关断状态;当第二开关元件Q2工作在线性区时,第一开关元件Q1也工作在线性区,从而使得隔离模块处于均衡状态;当第二开关元件Q2工作在饱和区时,第一开关元件Q1也工作在饱和区,从而使得隔离模块处于导通状态。
当然,本申请实施例也可以在隔离电路30中设置第一控制单元,采用第一控制单元替换处理器110,基于第一控制单元实现向第二开关元件Q2提供控制信号,以控制第二开关元件Q2分别工作在截止区、线性区和饱和区。
如图10所示,隔离电路30仅包括隔离模块,隔离模块包括第三开关元件Q3和第四开关元件Q4。第三开关元件Q3的控制端和第四开关元件Q4的控制端均与处理器110连接,第三开关元件Q3的第一端与第一电池的正极连接,第三开关元件Q3的第二端与第四开关元件Q4的第一端连接,第四开关元件Q4的第二端与第二电池连接。
第三开关元件Q3和第四开关元件Q4可以均采用带有寄生二极管的NMOS管实现。第三开关元件Q3的控制端指的是第三开关元件Q3的栅极,第三开关元件Q3的第一端指的是第三开关元件Q3的源极,第三开关元件Q3的第二端指的是第三开关元件Q3的漏极。第四开关元件Q4的控制端指的是第四开关元件Q4的栅极,第四开关元件Q4的第一端指的是第四开关元件Q4的漏极,第四开关元件Q4的第二端指的是第四开关元件Q4的源极。
具体的,处理器110通过控制向第三开关元件Q3和第四开关元件Q4的控制端提供的控制信号的占空比,可控制第三开关元件Q3和第四开关元件Q4分别工作在截止区、线性区和饱和区。当第三开关元件Q3和第四开关元件Q4工作在截止区时,使得隔离模块处于关断状态;当第三开关元件Q3和第四开关元件Q4工作在线性区时,使得隔离模块处于均衡状态;当第三开关元件Q3和第四开关元件Q4工作在饱和区时, 使得隔离模块处于导通状态。
当然,本申请实施例也可以在隔离电路30中设置第一控制单元,采用第一控制单元替换处理器110,基于第一控制单元实现向第三开关元件Q3和第四开关元件Q4提供控制信号,以控制第三开关元件Q3和第四开关元件Q4分别工作在截止区、线性区和饱和区。
如图11所示,隔离电路30仅包括隔离模块,隔离模块包括第三开关元件Q3、第四开关元件Q4和第五开关元件Q5。第三开关元件Q3的控制端和第四开关元件Q4的控制端均与第五开关元件Q5的第一端连接,第三开关元件Q3的第一端与第一电池的正极连接,第三开关元件Q3的第二端与第四开关元件Q4的第一端连接,第四开关元件Q4的第二端与第二电池的正极连接。第五开关元件Q5的控制端与处理器110连接,第五开关元件Q5的第二端与接地端GND连接。
图11所示的隔离电路30与图10所示的隔离电路30的区别在于,图11所示的隔离电路30中的第三开关元件Q3和第四开关元件Q4采用带有寄生二极管的PMOS实现,并增加了第五开关元件Q5,第五开关元件Q5可以采用带有寄生二极管的NMOS管实现,通过第五开关元件Q5来控制第三开关元件Q3和第四开关元件Q4的工作状态。
第三开关元件Q3的控制端指的是第三开关元件Q3的栅极,第三开关元件Q3的第一端指的是第三开关元件Q3的漏极,第三开关元件Q3的第二端指的是第三开关元件Q3的源极;第四开关元件Q4的控制端指的是第四开关元件Q4的栅极,第四开关元件Q4的第一端指的是第四开关元件Q4的源极,第四开关元件Q4的第二端指的是第四开关元件Q4的漏极;第五开关元件Q5的控制端指的是第五开关元件Q5的栅极,第五开关元件Q5的第一端指的是第五开关元件Q5的漏极,第五开关元件Q5的第二端指的是第五开关元件Q5的源极。
具体的,处理器110通过控制向第五开关元件Q5的控制端提供的控制信号的占空比,可控制第五开关元件Q5分别工作在截止区、线性区和饱和区。当第五开关元件Q5工作在截止区时,第三开关元件Q3和第四开关元件Q4也工作在截止区时,使得隔离模块处于关断状态;当第五开关元件Q5工作在线性区时,第三开关元件Q3和第四开关元件Q4也工作在线性区,使得隔离模块处于均衡状态;当第五开关元件Q5工作在饱和区时,第三开关元件Q3和第四开关元件Q4也工作在饱和区,使得隔离模块处于导通状态。
当然,本申请实施例也可以在隔离电路30中设置第一控制单元,采用第一控制单元替换处理器110,基于第一控制单元实现向第五开关元件Q5提供控制信号,以控制第五开关元件Q5分别工作在截止区、线性区和饱和区。
需要说明的是,上述图7至图11示出的五种不同的隔离电路30,仅仅是一些可选的实现方式,其并不构成对隔离电路30的具体限定。在一些实施例中,隔离电路30还可包括比图7至图11示出的隔离电路30更多的部件,例如,在图7所示的第一开关元件Q1的控制端与处理器110之间增加由电容和电阻组成的滤波模块等。
在本申请实施例中,第一电源管理模块141和第二电源管理模块142均包括第一开关单元、第二开关单元和第二控制单元。第一开关单元的控制端与第二控制单元连 接,第一开关单元的第一端与充电接口(如USB接口)连接,第一开关单元的第二端与对应的负载连接;第一开关单元用于在折叠电子设备100处于充电状态时,将充电接口提供的输入电压转换为系统电压,以对与其连接的负载进行供电。第二开关单元的控制端与第二控制单元连接,第二开关单元的第一端与第一开关单元的第二端连接,第二开关单元的第二端与对应的电池连接;第二开关单元用于在折叠电子设备100处于充电状态时,采用系统电压对其连接的电池进行充电,以及在折叠电子设备100处于放电时,采用与其连接的电池提供的电池电压对与其连接的负载进行供电。
其中,第一开关单元包括第六开关元件Q6、第七开关元件Q7、第八开关元件Q8和电感L1,第二开关单元包括第九开关元件Q9。第六开关元件Q6的控制端与第二控制单元(未在图6中示出)连接,第六开关元件Q6的第一端与充电接口连接,第六开关元件Q6的第二端与第七开关元件Q7的第一端连接;第七开关元件Q7的控制端与第二控制单元连接,第七开关元件Q7的第二端与电感L1的第一端连接;电感L1的第二端与电源管理模块对应的负载连接;第八开关元件Q8的控制端与第二控制单元连接,第八开关元件Q8的第一端与第七开关元件Q7的第二端连接,第八开关元件Q8的第二端与接地端GND连接;第九开关元件Q9的控制端与第二控制单元连接,第九开关元件Q9的第一端与电感L1的第二端连接,第九开关元件Q9的第二端与对应的电池连接。
具体的,第一电源管理模块141中的电感L1的第二端是与第一负载连接的,第一电源管理模块141中的第九开关元件Q9的第二端是与第一电池连接的。第二电源管理模块142中的电感L1的第二端是与第二负载连接的,第二电源管理模块142中的第九开关元件Q9的第二端是与第二电池连接的。
第六开关元件Q6、第七开关元件Q7、第八开关元件Q8和第九开关元件Q9可以均为NMOS管,或者,第六开关元件Q6、第七开关元件Q7、第八开关元件Q8和第九开关元件Q9也可以均为带有寄生二极管的NMOS管。
第六开关元件Q6的控制端指的是第六开关元件Q6的栅极,第六开关元件Q6的第一端指的是第六开关元件Q6的源极,第六开关元件Q6的第二端指的是第六开关元件Q6的漏极。第七开关元件Q7的控制端指的是第七开关元件Q7的栅极,第七开关元件Q7的第一端指的是第七开关元件Q7的漏极,第七开关元件Q7的第二端指的是第七开关元件Q7的源极。第八开关元件Q8的控制端指的是第八开关元件Q8的栅极,第八开关元件Q8的第一端指的是第八开关元件Q8的漏极,第八开关元件Q8的第二端指的是第八开关元件Q8的源极。第九开关元件Q9的控制端指的是第九开关元件Q9的栅极,第九开关元件Q9的第一端指的是第九开关元件Q9的漏极,第九开关元件Q9的第二端指的是第九开关元件Q9的源极。
此外,第一电源管理模块141和第二电源管理模块142还包括第一电容C1和第二电容C2。第一电容C1的第一端与第六开关元件Q6的第二端连接,第一电容C1的第二端与接地端GND连接,第一电容C1也可称为退耦电容。第二电容C2的第一端与电感L1的第二端连接,第二电容C2的第二端与接地端GND连接,其可以与电源管理模块输出的系统电压进行滤波处理,提高输出的系统电压的稳定性。
在实际产品中,可以将第一电源管理模块141和第二电源管理模块142划分为芯 片部分和外围电路部分,即第一电源管理模块141和第二电源管理模块142均包括电源管理芯片和外围电路。电源管理芯片也可称为PMIC芯片或降压充电器(buck chager)芯片等,其用于控制电池与负载之间的导通或关断,以及控制对电池的限流充电等。
具体的,第六开关元件Q6、第七开关元件Q7、第八开关元件Q8、第九开关元件Q9以及第二控制单元均集成在电源管理芯片内,即电源管理芯片包括第六开关元件Q6、第七开关元件Q7、第八开关元件Q8、第九开关元件Q9以及第二控制单元,而外围电路包括电感L1、第一电容C1和第二电容C2。
如图6所示,电源管理芯片包括电源输入引脚USB_IN、串行时钟(serial clock,SCL)引脚、串行数据(serial data,SDA)引脚、PMID引脚、VSW引脚、VPH_PWR引脚和VCHG_OUT引脚等。
电源输入引脚USB_IN用于与折叠电子设备100中的USB接口连接,USB接口可位于第一折叠部11内。充电器通过通用串行总线连接到折叠电子设备100中的USB接口,充电器提供的输入电压经过USB接口传输至电源输入引脚USB_IN,以向电源管理模块提供输入电压。
电源管理芯片的SCL引脚和SDA引脚分别与处理器110对应的引脚连接,从而实现处理器110与电源管理芯片之间进行数据传输。
第六开关元件Q6的第一端实际上是通过电源输入引脚USB_IN与USB接口连接的;第一电容C1的第一端与第六开关元件Q6的第二端之间是通过PMID引脚连接的;第七开关元件Q7的第二端与电感L1的第一端是通过VSW引脚连接的;第九开关元件Q9的第一端与电感L1的第二端是通过VPH_PWR引脚连接的;第九开关元件Q9的第二端与对应的电池是通过VCHG_OUT引脚连接的。
在折叠电子设备100处于充电状态下,即USB接口接入充电器时,第六开关元件Q6、第七开关元件Q7、第八开关元件Q8和电感L1,可以将电源输入引脚USB_IN输入的输入电压转换为系统电压,该系统电压一方面可提供给对应的负载,以对负载进行供电,该系统电压另一方面可通过VPH_PWR引脚提供给第九开关元件Q9,此时控制第九开关元件Q9导通,则系统电压可通过第九开关元件Q9和VCHG_OUT引脚提供给对应的电池,以对电池进行充电。
在采用充电器对电池进行充电使得电池充满后,可控制第九开关元件Q9处于截止状态,以断开VCHG_OUT引脚与VPH_PWR引脚之间的通路。负载通过第六开关元件Q6、第七开关元件Q7、第八开关元件Q8和电感L1组成的第一开关单元取电,从而使得电池在充满后继续接入充电器时,负载所消耗的电量都来自充电器,从而使得电池不会掉电。
而当用户拔掉充电器,使得折叠电子设备100处于放电状态时,可再次控制第九开关元件Q9导通,以控制VCHG_OUT引脚与VPH_PWR引脚之间的通路导通,则电池提供的电池电压可通过第九开关元件Q9传输给对应的负载,以对负载进行供电。
在采用电池对负载供电的场景下,也可以实时监测电池的充电电压和充电电流,在充电电压和/或充电电流超出阈值时,第二控制单元可控制第九开关元件Q9的工作状态,将第九开关元件Q9的阻抗增大,来降低充电电压和/或充电电流。
在一些使用过程中,在采用充电器对第一电池和第二电池进行充电时,可能会出 现其中一个电池先充满,而另一个电池未充满的现象。例如,第一电池先充满而第二电池未充满。
因此,本申请实施例还可以采用处理器110来控制第一电源管理模块141和第二电源管理模块142中的第二开关单元的导通或截止状态,来使得第一电池和第二电池均充满。
具体的,折叠电子设备100还包括处理器110,处理器110分别与第一电源管理模块141和第二电源管理模块142连接。例如,处理器110可分别与第一电源管理模块141和第二电源管理模块142中的第二控制单元连接。
处理器110用于当折叠电子设备100处于充电状态,且第四目标电池充满而第五目标电池未充满时,控制与第四目标电池连接的电源管理模块内的第二开关单元截止,而控制与第五目标电池连接的电源管理模块内的第二开关单元导通;第四目标电池为折叠电子设备100中的至少一个电池,第五目标电池为折叠电子设备100中的至少一个电池。
一种情况,假设第一电池充满而第二电池未充满,则第四目标电池为第一电池,第五目标电池为第二电池。此时,处理器110可以向第一电源管理模块141中的第二控制单元发送控制信号,使得第一电源管理模块141中的第二控制单元控制第一电源管理模块141中的第九开关元件Q9截止,则第一电源管理模块141不再继续对第一电池进行充电;并且,处理器110还可以向第二电源管理模块142中的第二控制单元发送控制信号,使得第二电源管理模块142中的第二控制单元控制第二电源管理模块142中的第九开关元件Q9导通,则第二电源管理模块142继续对第二电池进行充电,直至第二电池被充满再控制第九开关元件Q9截止。
若采用相关技术中仅在第一折叠部11设置内电源管理模块,而未在第二折叠部内设置电源管理模块的方式,在第一电池充满且第二电池未充满时,会断开第一折叠部11内设置电源管理模块中的第九开关元件Q9,从而导致第二电池无法继续充满。
因此,本申请实施例通过在第一折叠部11内设置第一电源管理模块141,并在第二折叠部12内设置第二电源管理模块142,在第一电池充满而第二电池未充满时,控制第一电源管理模块141中的第九开关元件Q9截止,以停止对第一电池充电,而控制第二电源管理模块142中的第九开关元件Q9导通,以继续对第二电池进行充电,从而使得第一电池和第二电池均可以充满。
此外,相关技术中仅在第一折叠部11内设置电源管理模块,而未在第二折叠部内设置电源管理模块的方式,第二电池需要从第一折叠部11内设置电源管理模块取电,由于第二电池与第一折叠部11内设置电源管理模块之间存在走线电阻和隔离电路,其会导致第一折叠部11内设置电源管理模块最终输入给第二电池的电压,小于其输入给第一电池的电压。这样,也会导致第一电池充满且第二电池未充满。而本申请实施例是直接采用第二折叠部12内设置第二电源管理模块142对第二电池充满,可减少走线电阻和隔离电路的阻抗损耗,从而使得第二电池可以被充满。
综上,本申请实施例通过在折叠电子设备100的双电池设计方案中,在第一折叠部11和第二折叠部12内均设置电源管理模块,双电池间基于双电源管理模块各自实现正向充电、反向放电以及限流充电等,并基于隔离电路30和双电源管理模块实现均 压隔离作用,防止第一电池与第二电池的压差过大而形成大电流。
并且,双电源管理模块可以使得充电场景下双电池均能充满,以解决了双电池单电源管理模块导致其中一个电池无法充满的问题;此外,还可以解决第一负载和第二负载从各自对应的电池取电时的复充问题,使得第一负载从第一电池取电,而第二负载从第二电池取电,减少了电能传输时因走线阻抗引起的损耗,节省了折叠电子设备100的电能。
此外,本申请实施例中的折叠电子设备100,还可以包括分别设置在第一折叠部11和第二折叠部12的OVP电路,以及设置在第一折叠部11内的第一快充芯片和设置在第二折叠部12内的第二快充芯片。
设置在第一折叠部11内的OVP电路,串联在USB接口与第一电源管理模块141中的电源输入引脚USB_IN之间,其用于保护第一电源管理模块141,防止充电器突然充入大电压或大电流而损坏第一电源管理模块141。设置在第二折叠部12内的OVP电路,串联在USB接口与第二电源管理模块142中的电源输入引脚USB_IN之间,其用于保护第二电源管理模块142,防止充电器突然充入大电压或大电流而损坏第二电源管理模块142。
第一快充芯片用于对第一电池进行快速充电。在采用第一快充芯片对第一电池进行快速充电时,第一电源管理模块141内的第六开关元件Q6、第七开关元件Q7和第八开关元件Q8均处于截止状态,而第一电源管理模块141内的第九开关元件Q9导通,以对第一负载进行供电。
相应的,第二快充芯片用于对第二电池进行快速充电。在采用第二快充芯片对第二电池进行快速充电时,第二电源管理模块142内的第六开关元件Q6、第七开关元件Q7和第八开关元件Q8均处于截止状态,而第二电源管理模块142内的第九开关元件Q9导通,以对第二负载进行供电。
需要说明的是,第一折叠部11包括的第一电池、第一电源管理模块141、第一负载、USB接口等器件,均可位于第一折叠部11内设置的主板上;而第二折叠部12包括的第二电池、隔离电路、第二电源管理模块142、第二负载等器件,均可位于第二折叠部12内设置的主板上。
以上实施例均针对的是双电池(即第一折叠部11和第二折叠部12内均设置有一个电池)为例进行说明。当然,本申请实施例也可以适用于大于两个电池的多电池方案,例如,折叠电子设备100包括三个电池、四个电池等。
在一种可实现的方式中,折叠电子设备100包括第一折叠部11和第二折叠部12,第一折叠部11包括第一电池组,第二折叠部12包括第二电池组。第一电池组包括至少两个电池,第二电池组包括一个电池;或者,第一电池组包括一个电池,第二电池组包括至少两个电池;或者,第一电池组和第二电池组均包括至少两个电池。
第一电池组包括的电池均与第一电源管理模块141连接,第一电源管理模块141控制第一电池组中的电池为第一负载供电。第二电池组包括的电池均与第二电源管理模块142连接,第二电源管理模块142控制第二电池组中的电池为第二负载供电。
若折叠电子设备100包括至少三个电池时,彼此连接的两个电池之间连接有一个隔离电路30,隔离电路30的具体组成和工作原理可参照上面的描述。
示例性的,图12为本申请实施例提供的另一种折叠电子设备的电路结构示意图。在图6的基础上,第二折叠部12还包括第三电池,以及连接于第二电池与第三电池之间的另一隔离电路。此时,折叠电子设备100包括三个电池,第一电池位于第一折叠部11,第二电池和第三电池均位于第二折叠部12,其中一个隔离电路的一端与第一电池的正极连接,另一端与第二电池的正极连接,另外一个隔离电路的一端与第二电池的正极连接,另一端与第三电池的正极连接。
连接于第二电池和第三电池之间的隔离电路,用于对其连接的第二电池和第三电池进行电压均衡,通过改变第二电池与第三电池之间的通路上的阻抗,以降低第二电池和第三电池之间的电压差。
具体的,可通过电学参数检测模块检测第二电池和第三电池相关的电学参数,使得处理器110或者连接于第二电池和第三电池之间的隔离电路中的第一控制单元,来控制连接于第二电池和第三电池之间的隔离电路中的隔离模块的工作状态。其中,与第二电池和第三电池相关的电学参数包括第二电池的电压和第三电池的电压,或者,与第二电池和第三电池相关的电学参数包括流经连接于第二电池和第三电池之间的隔离电路中的隔离模块的电流。
可以理解的是,本申请实施例可以将任意一个隔离电路连接的两个电池,分别称为第一目标电池和第二目标电池。以连接于第一电池和第二电池之间的隔离电路为例,第一目标电池可以为第一电池,第二目标电池可以为第二电池。或者,以连接于第二电池和第三电池之间的隔离电路为例,第一目标电池可以为第二电池,第二目标电池可以为第三电池。
另外,本申请实施例中的隔离电路的数量可根据电池的数量进行确定。示例性的,若折叠电子设备100包括如图12所示的三个电池时,折叠电子设备100中的隔离电路的数量为2个;或者,若折叠电子设备100包括四个电池时,以第一电池组包括两个电池且第二电池包括两个电池为例,则第一电池组包括的两个电池之间连接有一个隔离电路,第二电池组包括的两个电池之间连接有一个隔离电路,且第一电池组与第二电池组之间连接有一个隔离电路,即此时的隔离电路的数量为3个。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (15)

  1. 一种折叠电子设备,其特征在于,所述折叠电子设备包括第一折叠部、第二折叠部,以及位于所述第一折叠部与所述第二折叠部之间的转动机构;所述第一折叠部包括第一电源管理模块、第一负载和第一电池组,所述第一电池组包括至少一个电池;所述第二折叠部包括第二电源管理模块、第二负载和第二电池组,所述第二电池组包括至少一个电池;
    所述第一电源管理模块,分别与所述第一电池组和所述第一负载连接,用于控制所述第一电池组为所述第一负载供电;
    所述第二电源管理模块,分别与所述第二电池组和所述第二负载连接,用于控制所述第二电池组为所述第二负载供电;
    所述折叠电子设备还包括隔离电路,所述隔离电路分别与两个电池连接,用于对其连接的两个电池的电压进行电压均衡。
  2. 根据权利要求1所述的折叠电子设备,其特征在于,所述隔离电路连接于第一目标电池和第二目标电池之间;所述折叠电子设备还包括电学参数检测模块和处理模块,所述隔离电路包括隔离模块,所述处理模块分别与所述电学参数检测模块和所述隔离模块连接;
    所述电学参数检测模块,用于检测与所述第一目标电池和所述第二目标电池相关的电学参数,所述电学参数包括所述第一目标电池的电压和所述第二目标电池的电压,或者,所述电学参数包括流经所述隔离模块的电流;
    所述处理模块,用于根据所述电学参数控制所述隔离模块的工作状态;所述隔离模块的工作状态包括导通状态、均衡状态以及关断状态中的任意一种。
  3. 根据权利要求2所述的折叠电子设备,其特征在于,所述处理模块为所述折叠电子设备中的处理器,所述处理器和所述隔离电路为两个不同的部件;
    或者,所述处理模块为所述隔离电路中的第一控制单元。
  4. 根据权利要求2所述的折叠电子设备,其特征在于,所述电学参数检测模块包括第一电压检测元件和第二电压检测元件,所述第一电压检测元件与所述第一目标电池连接,所述第二电压检测元件与所述第二目标电池连接;
    所述第一电压检测元件,用于检测所述第一目标电池的电压;
    所述第二电压检测元件,用于检测所述第二目标电池的电压;
    其中,所述电学参数包括所述第一目标电池的电压和所述第二目标电池的电压。
  5. 根据权利要求2所述的折叠电子设备,其特征在于,所述电学参数检测模块包括电流检测元件,所述电流检测元件连接于所述第一目标电池与所述第二目标电池之间的通路中;
    所述电流检测元件,用于检测流经所述隔离模块的电流;
    其中,所述电学参数包括流经所述隔离模块的电流。
  6. 根据权利要求2所述的折叠电子设备,其特征在于,所述处理模块,具体用于当所述折叠电子设备处于放电状态,且所述电学参数不满足预设条件时,控制所述隔离模块处于均衡状态,以对所述第一目标电池与所述第二目标电池的电压进行电压均衡;
    所述处理模块,还用于当所述折叠电子设备处于充电状态,且所述电学参数不满足所述预设条件时,控制与第三目标电池连接的电源管理模块对所述第三目标电池进行充电,直至所述电学参数满足所述预设条件;所述第三目标电池为所述第一目标电池和所述第二目标电池中电压较低的电池;
    其中,当所述第一目标电池与所述第二目标电池的电压差大于预设电压时,所述电学参数不满足所述预设条件;或者,当流经所述隔离模块的电流大于预设电流时,所述电学参数不满足所述预设条件。
  7. 根据权利要求2所述的折叠电子设备,其特征在于,所述处理模块,具体用于当所述电学参数满足预设条件时,控制所述隔离模块处于导通状态,以使所述第一目标电池和所述第二目标电池并联放电,或者对所述第一目标电池和所述第二目标电池进行并联充电;
    其中,当所述第一目标电池与所述第二目标电池的电压差小于或等于预设电压时,所述电学参数满足所述预设条件;或者,当流经所述隔离模块的电流小于或等于预设电流时,所述电学参数满足所述预设条件。
  8. 根据权利要求2至7中任一项所述的折叠电子设备,其特征在于,所述隔离模块包括第一开关元件;所述第一开关元件的第一端与所述第一目标电池连接,所述第一开关元件的第二端与所述第二目标电池连接。
  9. 根据权利要求8所述的折叠电子设备,其特征在于,所述第一开关元件的控制端与所述处理模块连接;
    或者,所述隔离模块还包括第二开关元件;所述第二开关元件的控制端与所述处理模块连接,所述第二开关元件的第一端与所述第一开关元件的控制端连接,所述第二开关元件的第二端与接地端连接。
  10. 根据权利要求2至7中任一项所述的折叠电子设备,其特征在于,所述隔离模块包括第三开关元件和第四开关元件;
    所述第三开关元件的第一端与所述第一目标电池连接,所述第三开关元件的第二端与所述第四开关元件的第一端连接,所述第四开关元件的第二端与所述第二目标电池连接。
  11. 根据权利要求10所述的折叠电子设备,其特征在于,所述第三开关元件的控制端和所述第四开关元件的控制端均与所述处理模块连接;
    或者,所述隔离模块还包括第五开关元件,所述第五开关元件的控制端与所述处理模块连接,所述第五开关元件的第一端与所述第三开关元件的控制端和所述第四开关元件的控制端连接,所述第五开关元件的第二端与接地端连接。
  12. 根据权利要求1所述的折叠电子设备,其特征在于,所述第一电源管理模块和所述第二电源管理模块均包括第一开关单元、第二开关单元和第二控制单元;
    所述第一开关单元的控制端与所述第二控制单元连接,所述第一开关单元的第一端与充电接口连接,所述第一开关单元的第二端与对应的负载连接;所述第一开关单元,用于在所述折叠电子设备处于充电状态时,将所述充电接口提供的输入电压转换为系统电压,以对与其连接的负载进行供电;
    所述第二开关单元的控制端与所述第二控制单元连接,所述第二开关单元的第一 端与所述第一开关单元的第二端连接,所述第二开关单元的第二端与对应的电池连接;所述第二开关单元,用于在所述折叠电子设备处于充电状态时,采用所述系统电压对其连接的电池进行充电,以及在所述折叠电子设备处于放电时,采用与其连接的电池提供的电池电压对与其连接的负载进行供电。
  13. 根据权利要求12所述的折叠电子设备,其特征在于,所述折叠电子设备还包括处理器,所述处理器分别与所述第一电源管理模块和所述第二电源管理模块连接;
    所述处理器,用于当所述折叠电子设备处于充电状态,且第四目标电池充满而第五目标电池未充满时,控制与所述第四目标电池连接的电源管理模块内的所述第二开关单元截止,而控制与所述第五目标电池连接的电源管理模块内的所述第二开关单元导通;所述第四目标电池为所述折叠电子设备中的至少一个电池,所述第五目标电池为所述折叠电子设备中的至少一个电池。
  14. 根据权利要求12所述的折叠电子设备,其特征在于,所述第一开关单元包括第六开关元件、第七开关元件、第八开关元件和电感,所述第二开关单元包括第九开关元件;
    所述第六开关元件的控制端与所述第二控制单元连接,所述第六开关元件的第一端与所述充电接口连接,所述第六开关元件的第二端与所述第七开关元件的第一端连接;
    所述第七开关元件的控制端与所述第二控制单元连接,所述第七开关元件的第二端与所述电感的第一端连接;所述电感的第二端与所述电源管理模块对应的负载连接;
    所述第八开关元件的控制端与所述第二控制单元连接,所述第八开关元件的第一端与所述第七开关元件的第二端连接,所述第八开关元件的第二端与接地端连接;
    所述第九开关元件的控制端与所述第二控制单元连接,所述第九开关元件的第一端与所述电感的第二端连接,所述第九开关元件的第二端与对应的电池连接。
  15. 根据权利要求1所述的折叠电子设备,其特征在于,所述第一电池组和所述第二电池组均包括一个电池,所述折叠电子设备包括一个所述隔离电路,所述隔离电路位于所述第一折叠部或所述第二折叠部内。
PCT/CN2023/071626 2022-07-22 2023-01-10 折叠电子设备 WO2024016616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221900700.2U CN218497411U (zh) 2022-07-22 2022-07-22 折叠电子设备
CN202221900700.2 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016616A1 true WO2024016616A1 (zh) 2024-01-25

Family

ID=85185090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071626 WO2024016616A1 (zh) 2022-07-22 2023-01-10 折叠电子设备

Country Status (2)

Country Link
CN (1) CN218497411U (zh)
WO (1) WO2024016616A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218829140U (zh) * 2022-07-22 2023-04-07 荣耀终端有限公司 双电池管理电路和电子设备
CN116504177B (zh) * 2023-06-19 2023-10-20 荣耀终端有限公司 显示屏控制方法、电子设备、存储介质和芯片
CN117233684B (zh) * 2023-11-14 2024-04-12 荣耀终端有限公司 校准电路、电子设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213406A (zh) * 2019-05-05 2019-09-06 珠海格力电器股份有限公司 一种折叠电子设备
US20210124396A1 (en) * 2019-10-29 2021-04-29 Beijing Xiaomi Mobile Software Co., Ltd. Folding screen device and magnetic-field detection method
US20210208655A1 (en) * 2020-01-03 2021-07-08 Beijing Xiaomi Mobile Software Co., Ltd. Electronic device, charging method and device, and computer-readable storage medium
CN113489103A (zh) * 2021-07-13 2021-10-08 Oppo广东移动通信有限公司 电源装置、用电设备、控制方法和电子设备
CN114498803A (zh) * 2021-07-21 2022-05-13 荣耀终端有限公司 一种充放电电路和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213406A (zh) * 2019-05-05 2019-09-06 珠海格力电器股份有限公司 一种折叠电子设备
US20210124396A1 (en) * 2019-10-29 2021-04-29 Beijing Xiaomi Mobile Software Co., Ltd. Folding screen device and magnetic-field detection method
US20210208655A1 (en) * 2020-01-03 2021-07-08 Beijing Xiaomi Mobile Software Co., Ltd. Electronic device, charging method and device, and computer-readable storage medium
CN113489103A (zh) * 2021-07-13 2021-10-08 Oppo广东移动通信有限公司 电源装置、用电设备、控制方法和电子设备
CN114498803A (zh) * 2021-07-21 2022-05-13 荣耀终端有限公司 一种充放电电路和电子设备

Also Published As

Publication number Publication date
CN218497411U (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2024016616A1 (zh) 折叠电子设备
JP5791007B2 (ja) 電力供給の装置および方法ならびにユーザ装置
US8339101B2 (en) Portable computer system and related power supply device and charging method
US20220247190A1 (en) Foldable electronic device
CN108988453B (zh) 一种移动终端
US8975871B2 (en) Power management method and electronic system using the same
JP5735115B2 (ja) 電子機器およびシステム
US9882403B2 (en) Battery module
KR20120039502A (ko) 전자 기기용 충전 장치
WO2022063067A1 (zh) 电源适配器、终端设备、电子设备及其充电控制方法
US20100180138A1 (en) Power switching circuit of portable electronic device
US9991729B2 (en) Electronic device having a charging voltage regulation circuit
CN115276173A (zh) 充电电路及电子设备
TWI559125B (zh) 行動電源裝置及其電源控制方法
US9116678B2 (en) I/O module with power-uninterruptible USB port
US9401626B2 (en) Battery, power supply apparatus and electronic apparatus
CN114498811B (zh) 充电管理模块、充电电路、充电控制方法及电子设备
US20160043595A1 (en) Electronic device and method
CN118119913A (zh) 折叠电子设备
TWI527339B (zh) 充電裝置
US20200117257A1 (en) Method and device for power control
WO2024109363A1 (zh) 可折叠的电子设备及控制方法
WO2023001034A1 (zh) 一种放电电路及终端设备
WO2024045698A1 (zh) 一种电路系统及可折叠终端
US20110107121A1 (en) Power supply and computer having external power source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841694

Country of ref document: EP

Kind code of ref document: A1