WO2024109363A1 - 可折叠的电子设备及控制方法 - Google Patents

可折叠的电子设备及控制方法 Download PDF

Info

Publication number
WO2024109363A1
WO2024109363A1 PCT/CN2023/123706 CN2023123706W WO2024109363A1 WO 2024109363 A1 WO2024109363 A1 WO 2024109363A1 CN 2023123706 W CN2023123706 W CN 2023123706W WO 2024109363 A1 WO2024109363 A1 WO 2024109363A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
control elements
charging
charging branch
Prior art date
Application number
PCT/CN2023/123706
Other languages
English (en)
French (fr)
Inventor
石聪
朱辰
曹雷
毛扬
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024109363A1 publication Critical patent/WO2024109363A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of terminal technology, and in particular to a foldable electronic device and a control method thereof.
  • foldable electronic devices such as foldable screen mobile phones
  • foldable screen mobile phones have larger screens and therefore consume more power.
  • multiple batteries can be used to power foldable electronic devices.
  • a battery is usually placed on the main board and the sub-main board of the foldable electronic device. After the foldable electronic device is connected to a charger, the charger charges the two batteries separately, or it can be understood that the two batteries are charged in parallel.
  • the battery on the mainboard of the foldable electronic device is prone to battery overheating, battery deformation, etc., resulting in damage to the battery performance.
  • the embodiment of the present application provides a foldable electronic device and a control method, which are applied to the field of terminal technology.
  • a variable resistance element By setting a variable resistance element at one or more positions in the charging circuit of the foldable electronic device, when the current of the branch where the battery of the mainboard is located is large, the corresponding variable resistance element can increase the resistance value based on the control signal sent by the control unit, thereby reducing the branch current.
  • the embodiment of the present application proposes a foldable electronic device.
  • the electronic device includes a first folding part, a second folding part and a rotating shaft, and the first folding part and the second folding part are connected by the rotating shaft; a first battery and a charging interface are arranged in the first folding part, and a second battery is arranged in the second folding part; wherein, a first charging branch and a second charging branch are arranged between the charging interface of the electronic device and the ground terminal of the electronic device, the first charging branch is located in the first folding part, and the second charging branch is distributed in the first folding part, the second folding part and the rotating shaft; the first battery is in the first charging branch, and the second battery is in the second charging branch; the first charging branch includes M current control elements, M is a positive integer; the electronic device also includes a control unit, and the control unit is used to increase the resistance of some or all of the M current control elements when the current charged to the first battery in the first charging branch is greater than the first preset threshold value, so that the current charged to
  • the first charging branch further includes a first charger chip, the first charger chip is located between the charging interface and the first battery, and M1 of the M current control elements are located between the first charger chip and the first battery. Between the batteries, M1 is a positive integer less than or equal to M. In this way, placing a current control element between the first charger chip and the first battery can effectively adjust the current size of the first charging branch charging the first battery.
  • the first charging branch also includes a first board-to-board connector, which is located between the first charger chip and the first battery; M1 current control elements are located between the first charger chip and the first board-to-board connector; or, M1 current control elements are located between the first board-to-board connector and the first battery; or, some of the M1 current control elements are located between the first charger chip and the first board-to-board connector, and the other part of the M1 current control elements are located between the first board-to-board connector and the first battery.
  • placing the current control element between the first charger chip and the first board-to-board connector, and/or between the first board-to-board connector and the first battery can effectively adjust the current size of the first charging branch charging the first battery.
  • the first charging branch further includes a first charger chip, the first charger chip is located between the charging interface and the first battery, and M2 of the M current control elements are located between the first charger chip and the charging interface, where M2 is a positive integer less than or equal to M. In this way, placing the current control element between the first charger chip and the charging interface can effectively adjust the current size of the first battery charged in the first charging branch.
  • the first charging branch further includes a first detection unit, the first detection unit is located between the first battery and the ground terminal, and the first detection unit is used to detect the current value charged to the first battery. In this way, the current value charged to the first battery can be accurately detected by the first detection unit.
  • control unit is further used to reduce the resistance of some or all of the M current control elements when the current charging to the first battery in the first charging branch is less than a first preset threshold value, so that the difference between the adjusted current charging to the first battery in the first charging branch and the first preset threshold value is less than the first preset value.
  • the control unit is used to, when the current charged to the first battery in the first charging branch is greater than a first preset threshold, first increase the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, and then increase the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, so that the current charged to the first battery in the first charging branch after adjustment is less than or equal to the first preset threshold; or, the control unit is used to, when the current charged to the first battery in the first charging branch is greater than the first preset threshold, first increase the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, so that the current charged to the first battery in the first charging branch after adjustment is less than or equal to the first preset threshold, and then reduce the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, so that the difference between the current charged to the first battery in the first charging branch after adjustment and the first preset threshold is less
  • the second charging branch includes N current control elements, where N is a positive integer; the control unit is also used to reduce the resistance of some or all of the N current control elements when the current charged to the second battery in the second charging branch is less than the second preset threshold, so that the difference between the current charged to the second battery in the adjusted second charging branch and the second preset threshold is less than the second preset value; or, the control unit is also used to increase the resistance of some or all of the N current control elements when the current charged to the second battery in the second charging branch is greater than the second preset threshold, so that the current charged to the second battery in the adjusted second charging branch is less than or equal to the second preset threshold.
  • N is a positive integer
  • the control unit is also used to reduce the resistance of some or all of the N current control elements when the current charged to the second battery in the second charging branch is less than the second preset threshold, so that the difference between the current charged to the second battery in the adjusted second charging branch and the second preset threshold is less than the second preset value
  • the control unit is
  • the second charging branch also includes a second charger chip, and the second charger chip is located at Between the charging interface and the second battery, N1 of the N current control elements are located between the second charger chip and the second battery, and N1 is a positive integer less than or equal to N. In this way, placing the current control element between the second charger chip and the second battery can effectively adjust the current size of the second charging branch charging the first battery.
  • the second charging branch also includes a second board-to-board connector, and the second board-to-board connector is located between the second charger chip and the second battery; N1 current control elements are located between the second charger chip and the second board-to-board connector; or, N1 current control elements are located between the second board-to-board connector and the second battery; or, some of the N1 current control elements are located between the second charger chip and the second board-to-board connector, and another part of the N1 current control elements are located between the second board-to-board connector and the second battery.
  • placing the current control element between the second charger chip and the second board-to-board connector, and/or between the second board-to-board connector and the second battery can effectively adjust the current size of the second charging branch charging the second battery.
  • N2 current control elements among the N current control elements are located between the second charger chip and the charging interface, and N2 is a positive integer less than or equal to N. In this way, placing the current control element between the second charger chip and the charging interface can effectively adjust the current size of the second charging branch charging the second battery.
  • N2 current control elements are located in the first folded portion; or, N2 current control elements are located in the second folded portion; or, some of the N2 current control elements are located in the first folded portion, and the other part of the N2 current control elements are located in the second folded portion.
  • N3 current control elements are included between the second battery and the ground terminal, where N3 is a positive integer less than or equal to N. In this way, placing the current control element between the second battery and the ground terminal can effectively adjust the current size of the second charging branch charging the second battery.
  • N3 flow control elements are located on the first folded portion; or, N3 flow control elements are located in the second folded portion; or, N3 flow control elements are located in the rotating shaft; or, some of the N3 flow control elements are located in the first folded portion, some of the N3 flow control elements are located in the second folded portion, and the rest of the N3 flow control elements are located in the rotating shaft. In this way, the current size of the second battery charged in the second charging branch can be effectively adjusted.
  • L flow control elements are located in the first folded portion; or, L flow control elements are located in the second folded portion; or, some of the L flow control elements are located in the first folded portion, and the other part of the L flow control elements are located in the second folded portion.
  • the second charging branch further includes: a second detection unit, the second detection unit is located between the second battery and the ground terminal, and the second detection unit is used to detect the current value charged to the second battery. In this way, the current value charged to the second battery can be accurately detected by the second detection unit.
  • the control unit is used to, when the current charged to the second battery in the second charging branch is less than the second preset threshold, first reduce the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, and then reduce the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, so that the difference between the current charged to the second battery in the second charging branch after adjustment and the second preset threshold is less than the preset value; or, the control unit is used to, when the current charged to the second battery in the second charging branch is less than the second preset threshold, first reduce the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, so that the current charged to the second battery in the second charging branch after adjustment is greater than the second preset threshold, and then increase the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, so that the difference between the current charged to the second battery in the second charging branch after adjustment and the second preset threshold
  • the battery capacity of the first battery is smaller than the battery capacity of the second battery, and the maximum current that the first battery and the second battery can withstand is positively correlated with their respective battery capacities. In this way, the number of current control elements in the circuit of the foldable electronic device can be effectively limited, and the heat loss generated by the current control elements can be reduced.
  • the control unit is used to increase the resistance of some or all of the M current control elements when the current charged to the first battery in the first charging branch is greater than the first preset threshold, so that the difference between the adjusted first ratio and the second ratio is less than the third preset value;
  • the first ratio is the ratio of the current charged to the first battery in the first charging branch to the current charged to the second battery in the second charging branch, and the second ratio is the ratio of the battery capacity of the first battery to the battery capacity of the second battery.
  • an embodiment of the present application provides a control method for a foldable electronic device, the method comprising: detecting the current charging to a first battery in a first charging branch; when the current charging to the first battery in the first charging branch is greater than a first preset threshold, a control unit increases the resistance of some or all of the M current control elements, so that the adjusted current charging to the first battery in the first charging branch is less than or equal to the first preset threshold.
  • the control unit when the current charged to the first battery in the first charging branch is less than a first preset threshold, the control unit reduces the resistance of some or all of the M current control elements so that the difference between the adjusted current charged to the first battery in the first charging branch and the first preset threshold is less than the first preset value.
  • the second charging branch includes N current control elements, where N is a positive integer; when the current charged to the second battery in the second charging branch is less than a second preset threshold, the control unit reduces the resistance of some or all of the N current control elements, so that the difference between the adjusted current charged to the second battery in the second charging branch and the second preset threshold is less than the second preset value; or, when the current charged to the second battery in the second charging branch is greater than the second preset threshold, the control unit increases the resistance of some or all of the N current control elements, so that the adjusted current charged to the second battery in the second charging branch is less than or equal to the second preset threshold.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the method described in the second aspect is implemented.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is executed, the computer executes the method described in the second aspect.
  • an embodiment of the present application provides a chip, the chip includes a processor, the processor is used to call the memory A computer program in which the method described in the second aspect is executed.
  • FIG1 is a schematic diagram of a variable resistance element provided in an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a foldable electronic device in an unfolded state provided by an embodiment of the present application
  • FIG3 is a schematic diagram of a circuit structure of a foldable electronic device in some implementations.
  • FIG4 is a schematic diagram of the hardware system structure of a foldable electronic device provided in an embodiment of the present application.
  • FIG5 is a circuit diagram of a foldable electronic device provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the position of a flow control element provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the position of another flow control element provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the position of another flow control element provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
  • the current control element is an element used to control the current.
  • the current control element can be an element that controls the current by adjusting the voltage, or a variable resistance element that controls the current by adjusting the resistance, etc.
  • the variable resistance element is a circuit element with a variable resistance value.
  • FIG1 shows a schematic diagram of the structure of a possible variable resistance element.
  • the variable resistance element may include an external communication module, a control signal generator, a flow MOS driving circuit, a flow MOS, a flow detection module, and a voltage detection module.
  • the current detection module is used to detect the current value flowing through the variable resistance element
  • the voltage detection module is used to detect the voltage value at both ends of the variable resistance element.
  • the external communication module can obtain signals sent by other modules in the circuit, such as control signals sent by the control unit, through inter-integrated circuit (I2C) communication, general-purpose input/output (GPIO) communication, etc.
  • the control signal generator is used to generate an adjustment signal according to the control signal obtained by the external communication module, and send the adjustment signal to the through-flow MOS drive control circuit; the through-flow MOS drive control circuit generates a drive signal according to the obtained adjustment signal, and based on the duty cycle of the generated drive signal, the drive circuit can control the through-flow MOS to work in the cut-off region, the linear region (also called the variable resistance region) and the saturation region respectively.
  • the duty cycle refers to the time ratio of a high-level pulse in a pulse cycle to the entire pulse cycle. For example, the duty cycle of a driving signal with a high-level pulse for 1 second and a low-level pulse for 1 second is 50%.
  • the flow-through MOS When the duty cycle of the driving signal is 100%, that is, the driving signal is a continuous high-level signal, the flow-through MOS operates in the saturation region. When the duty cycle of the control signal is less than or equal to a certain value (such as 35%), the flow-through MOS operates in the cut-off region. When the duty cycle of the control signal is greater than a certain value (such as 35%) and less than 100%, the flow-through MOS operates in the linear region and the saturation region, and the resistance value of the flow-through MOS can change.
  • variable resistance element may include more modules than the above modules, and the variable resistance element may also omit one or more modules among the above modules, which is not specifically limited in the embodiments of the present application.
  • At least one refers to one or more, and “more than one” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the "at" in the embodiment of the present application can be the instant when a certain situation occurs, or can be a period of time after a certain situation occurs, and the embodiment of the present application does not specifically limit this.
  • the display interface provided in the embodiment of the present application is only an example, and the display interface can also include more or less content.
  • the foldable electronic device provided in the embodiment of the present application may also be a terminal device with a foldable form.
  • the foldable electronic device may include a handheld device with an image processing function, a vehicle-mounted device, etc.
  • some foldable electronic devices are: mobile phones, tablet computers, PDAs, laptop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, smart Wireless terminals in a smart city, wireless terminals in a smart home, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to a wireless modem, vehicle-mounted devices, wearable devices, terminal devices in a 5G network or terminal devices in a future evolved public land mobile network (PLMN), etc.
  • the foldable electronic device can also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are a general term for wearable devices that use wearable technology to intelligently design and develop wearable devices for daily wear, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the foldable electronic device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network that interconnects people and machines and things.
  • the electronic device or each network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system, or Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • FIG2 is a schematic diagram of the structure of a foldable electronic device in an unfolded state provided in an embodiment of the present application.
  • the foldable electronic device may include a first folding portion 101, a second folding portion 102, and a rotating mechanism 103 located between the first folding portion 101 and the second folding portion 102, and the rotating mechanism 103 may be a rotating shaft.
  • the rotating mechanism 103 is connected to the first folding portion 101 and the second folding portion 102, respectively, and the first folding portion 101 and the second folding portion 102 are located on both sides of the rotating mechanism 103, respectively.
  • the first folding portion 101 is located on the left side of the axis of the rotating mechanism 103
  • the second folding portion 102 is located on the right side of the axis of the rotating mechanism 103.
  • the first folding portion 101 and the second folding portion 102 can rotate around the axis of the rotating mechanism 103, respectively.
  • the foldable electronic device shown in Figure 2 is explained by taking the first folding part and the second folding part of a foldable mobile phone as an example of left-right distribution.
  • the first folding part and the second folding part are distributed up and down.
  • the foldable electronic device in the embodiment of the present application may also be other folding devices, and the embodiment of the present application does not make any specific limitation on this.
  • FIG3 is a schematic diagram of a circuit structure of a foldable electronic device in some implementations.
  • the circuit structure of the foldable electronic device may include a main board, a sub-main board, and a flexible printed circuit (FPC).
  • the main board is disposed on the first folding portion
  • the sub-main board is disposed on the second folding portion
  • the FPC is disposed on the shaft.
  • the FPC of the shaft is provided with wiring, and electrical signals are transmitted between the main board and the sub-main board through the wiring.
  • the mainboard can be welded or loaded with a TypeC board, which includes a TypeC interface.
  • the terminal device can be connected to an external power source through the TypeC interface to charge the battery of the terminal device.
  • the mainboard of the terminal device and the TypeC interface, as well as the sub-mainboard and the TypeC interface, can be connected through FPC to transmit electrical signals.
  • the FPC on the hinge can be called the hinge FPC
  • the FPC between the mainboard, sub-mainboard and Type-C interface can be called the main FPC
  • a first battery may be provided on the main board, and a second battery may be provided on the sub-main board, wherein the first battery may be buckled onto the main board via board-to-board connectors (BTB), and the second battery may be buckled onto the sub-main board via the BTB connector.
  • BTB board-to-board connectors
  • the charger charges the two batteries separately, or it can be understood that the two batteries are charged in parallel.
  • an overvoltage protection (OVP) circuit and a first charger chip may be provided on the main board, and an OVP circuit and a second charger chip may be provided on the sub-main board.
  • the OVP circuit is used to limit the input voltage to a safe range.
  • the overvoltage protection circuit protects the subsequent electrical devices to prevent damage;
  • the first charger chip and the second charger chip can be The switched capacitor (SC) charger chip, the first charger chip and the second charger chip can both achieve the effect of halving the output voltage and doubling the output current, thereby realizing fast charging of the terminal device.
  • SC switched capacitor
  • Both the first battery and the second battery can be discharged through a DC-DC conversion circuit (BUCK circuit as shown in FIG3 ) to convert the DC power output by the battery into DC power suitable for the working circuit of the terminal device (system Vsys voltage as shown in FIG3 ).
  • BUCK circuit DC-DC conversion circuit
  • the charging path loss is low, while the Type C interface and the battery on the secondary mainboard are far away, the charging path loss is high. Therefore, when charging the first battery and the second battery, the charging current flowing through the first battery is large, and the charging current flowing through the second battery is small. The first battery is prone to battery overheating, battery deformation, etc., resulting in damage to battery performance.
  • the embodiment of the present application provides a foldable electronic device and a control method, by setting a variable resistance element at one or more positions in the charging circuit of the foldable electronic device, when the current of the branch where the battery of the mainboard is located is large, the corresponding variable resistance element can increase the resistance value based on the control signal sent by the control unit, thereby reducing the branch current. In this way, the current of the branch can be made not to exceed the maximum charging current of the battery, avoiding battery overheating, battery deformation, etc., and protecting battery performance.
  • FIG4 is a schematic diagram of the structure of a foldable electronic device 100 provided in an embodiment of the present application.
  • the foldable electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 111, an antenna 222, a mobile communication module 150, a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, a sensor module 180, a button 190, a motor 191, an indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a bone conduction sensor 180M, etc.
  • the foldable electronic device 100 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange the components differently.
  • the components shown in the figure may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include a system on chip (SOC) control chip, an application processor (AP), a modem processor, a graphics processor (GPU), an image signal processor (ISP), a controller, a video codec, a digital signal processor (DSP), a baseband processor, and/or a neural-network processing unit (NPU), etc.
  • SOC system on chip
  • AP application processor
  • modem processor GPU
  • ISP image signal processor
  • controller a video codec
  • DSP digital signal processor
  • NPU neural-network processing unit
  • Different processing units may be independent devices or integrated into one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signal to complete the control of instruction fetching and execution.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in the memory is a high-speed cache memory.
  • the memory can store instructions or data that the processor 110 has just used or cyclically used. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. This avoids repeated access, reduces the waiting time of the processor 110, and thus improves the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an inter-integrated circuit (I2C) interface, an inter-integrated circuit sound (I2S) interface, a pulse code modulation (PCM) interface, a universal asynchronous receiver/transmitter (UART) interface, a mobile industry processor interface (MIPI), a general-purpose input/output (GPIO) interface, a subscriber identity module (SIM) interface, and/or a universal serial bus (USB) interface, etc.
  • I2C inter-integrated circuit
  • I2S inter-integrated circuit sound
  • PCM pulse code modulation
  • UART universal asynchronous receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple groups of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, the charger, the flash, the camera 193, etc. through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 communicates with the touch sensor 180K through the I2C bus interface, thereby realizing the touch function of the foldable electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 can include multiple I2S buses.
  • the processor 110 can be coupled to the audio module 170 via the I2S bus to achieve communication between the processor 110 and the audio module 170.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 via the I2S interface to achieve the function of answering a call through a Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 can be coupled via a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 via the PCM interface to realize the function of answering calls via a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193.
  • the MIPI interface includes a camera serial interface (CSI), a display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate via the CSI interface to realize the shooting function of the foldable electronic device 100.
  • the processor 110 and the display screen 194 communicate via the DSI interface to realize the display function of the foldable electronic device 100.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display 194, the wireless communication module 160, the audio module 170, the sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, an I2S interface, a UART interface, a MIPI interface, etc.
  • the USB interface 130 is an interface that complies with USB standard specifications, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 may be used to connect a charger to charge the foldable electronic device 100.
  • the interface can be used to transmit data between the foldable electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration and does not constitute a structural limitation on the foldable electronic device 100.
  • the foldable electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the wireless communication function of the foldable electronic device 100 can be implemented through the antenna 111, the antenna 222, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • the charging management module 140 is used to receive charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from a wired charger through the USB interface 130.
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the foldable electronic device 100. While the charging management module 140 is charging the battery 142, it may also power the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle number, battery health status (leakage, impedance), etc.
  • the power management module 141 can also be set in the processor 110.
  • the power management module 141 and the charging management module 140 can also be set in the same device.
  • At least one battery 142 is disposed on the main board of the foldable electronic device 100, and at least one battery 142 is also disposed on the sub-main board.
  • the foldable electronic device 100 implements the display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, which connects the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, display videos, and receive sliding operations. In an embodiment of the present application, the display screen 194 may be a bendable flexible screen.
  • the foldable electronic device 100 may further include a rotating mechanism, such as a rotating shaft, and the two folding parts of the foldable electronic device 100 may rotate around the axis of the rotating mechanism.
  • a rotating mechanism such as a rotating shaft
  • FIG5 is a circuit diagram of a foldable electronic device provided in an embodiment of the present application.
  • the foldable electronic device 100 includes a first folding portion 101, a second folding portion 102, and a rotating mechanism 103 located between the first folding portion 101 and the second folding portion 102.
  • the rotating mechanism 103 may be a rotating shaft, and the first folding portion and the second folding portion are connected by the rotating shaft.
  • a main board may be arranged in the first folding portion, and a sub-main board may be arranged in the second folding portion.
  • a first battery and a charging interface are provided in the first folding part, and a second battery is provided in the second folding part; wherein, a first charging branch and a second charging branch are provided between the charging interface of the electronic device and the ground terminal of the electronic device, the first charging branch is located in the first folding part, and the second charging branch is distributed in the first folding part, the second folding part and the rotating shaft; the first battery is in the first charging branch, and the second battery is in the second charging branch.
  • the charging interface may be a Mini USB interface, a Micro USB interface, a Type C interface, etc., which is not specifically limited in the present embodiment.
  • the foldable electronic device When the foldable electronic device is in a charging state, the foldable electronic device may be connected to a charger through the charging interface, and the charger may charge the first battery through the first charging branch, and the charger may charge the first battery through the second charging branch. The second battery is charged.
  • the charging path loss is low, and the distance between the charging interface and the second battery is far, the charging path loss is high. Therefore, when the charger charges the first battery and the second battery, the current charged to the first battery is larger, and the current charged to the second battery is smaller. Compared with the second battery, the first battery is prone to battery overheating, battery deformation, etc., which can easily cause battery performance to be damaged.
  • a current control element may be provided on the first charging branch to reduce the current charged to the first battery, thereby reducing the possibility of damaging the performance of the first battery due to a large current charged to the first battery.
  • the first charging branch may include M current control elements (not shown in FIG. 5 ), where M is a positive integer. That is, the first charging branch may include one or more current control elements.
  • the current control element may be the variable resistance element shown in FIG. 1 or other elements capable of controlling current.
  • the foldable electronic device also includes a control unit.
  • the control unit increases the resistance of some or all of the M variable resistors, so that the current charging the first battery in the adjusted first charging branch is less than or equal to the first preset threshold.
  • control unit may be a SOC control chip. It is understandable that the control unit may be disposed in the first folding portion, and of course, the control unit may also be disposed in the second folding portion according to the actual layout of the product, that is, the control unit may be disposed in the first folding portion 101 or in the second folding portion 102.
  • the first preset threshold value may be a rated charging current of the first battery. Charging the battery at the rated charging current can effectively shorten the battery charging time, improve the battery charging efficiency, extend the battery life, and protect the battery performance from being damaged.
  • the first preset threshold may also be the maximum charging current that the first battery can withstand and a value close to it, which is not specifically limited in the embodiment of the present application.
  • the corresponding current control element can increase the resistance value based on the control signal sent by the control unit, thereby reducing the charging current of the branch.
  • the charging current of the branch can be made not to exceed the maximum charging current of the battery, reducing the occurrence of battery overheating, battery deformation and other phenomena, and protecting battery performance.
  • the first charging branch may further include a first detection unit, the first detection unit is located between the first battery and the ground terminal, and the first detection unit is used to detect the current value charged to the first battery.
  • the first detection unit may be composed of a detection (gauge) element and a resistor connected in parallel therewith.
  • the first detection unit can send the detected current value charged to the first battery to the control unit through a GPIO interface, an I2C interface, etc.
  • the control unit increases the resistance of some or all of the M variable resistance elements according to the acquired current value charged to the first battery.
  • the foldable electronic device controls the current charged to the first battery in the following manner:
  • the charging interface of the foldable electronic device is connected to the charger, and the charger can power the first battery through the first charging branch and power the second battery through the second charging branch.
  • One or more current control elements are provided in the first charging branch.
  • the foldable electronic device detects the current charged to the first battery through the first detection unit, and the control unit obtains the current value charged to the first battery detected by the first detection unit through the GPIO interface or the I2C interface.
  • the control unit can reduce the current charged to the first battery by increasing the resistance of some or all of the current control elements in the first charging branch until the current value charged to the first battery is less than or equal to the preset threshold.
  • the current charged to the first battery can be reduced, thereby preventing the first battery from overheating or deforming. And other phenomena, protect the battery performance from damage.
  • the first charging branch also includes a first charger chip, the first charger chip is located between the charging interface and the first battery, M1 of the M current control elements are located between the first charger chip and the first battery, and M1 is a positive integer less than or equal to M.
  • the first charger chip may be an SC charger chip or a half-voltage charge pump chip (2:1 charge pump), etc.
  • the first charger chip is used to quickly charge the first battery.
  • the first charger chip can achieve the effect of halving the output voltage and doubling the output current, that is, the output voltage of the first fast charging chip is about half of the input voltage of the first fast charging chip, and the output current of the first fast charging chip is about twice the input current of the first fast charging chip.
  • the first charger chip and the first battery may include M1 current control elements among the M current control elements, that is, the M current control elements on the first charging branch may be placed entirely between the first charger chip and the first battery, or partially between the first charger chip and the first battery, and the present application embodiment does not specifically limit this.
  • M1 current control elements among the M current control elements, that is, the M current control elements on the first charging branch may be placed entirely between the first charger chip and the first battery, or partially between the first charger chip and the first battery, and the present application embodiment does not specifically limit this.
  • a total of 3 current control elements are placed on the first charging branch, and 1, 2, or 3 current control elements may be placed between the first charger chip and the first battery.
  • the control strategy of the control unit for the flow control element can be: controlling some of the M1 flow control elements between the first charger chip and the first battery so that the resistance of some of the flow control elements changes, or controlling the M1 flow control elements between the first charger chip and the first battery so that the resistance of all the M1 flow control elements changes.
  • the control unit can control the resistance of the flow control element to change at the same time, or can control the resistance of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • the first charging branch also includes a first board-to-board connector, which is located between the first charger chip and the first battery; M1 current control elements are located between the first charger chip and the first board-to-board connector; or, the M1 current control elements are located between the first board-to-board connector and the first battery; or, some of the M1 current control elements are located between the first charger chip and the first board-to-board connector, and another part of the M1 current control elements are located between the first board-to-board connector and the first battery.
  • the first board-to-board connector is used to buckle the first battery onto the mainboard.
  • the first charger chip and the first board-to-board connector may correspond to position 3 shown in FIG6
  • the first board-to-board connector and the first battery may correspond to position 5 shown in FIG6 .
  • the M1 current control elements included between the first charger chip and the first battery may all be located at position 3, or all be located at position 5, or some may be located at position 3 and the rest may be located at position 5.
  • the two current control elements can be both located at position 3; or both located at position 5; or one located at position 3 and the other located at position 5.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located at position 3 and/or located at position 5 so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located at position 3 and/or located at position 5 so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • placing the current control element between the first charger chip and the first board-to-board connector, and/or between the first board-to-board connector and the first battery can effectively adjust the current in the first charging branch that charges the first battery.
  • the first charging branch also includes a first charger chip, the first charger chip is located between the charging interface and the first battery, M2 of the M current control elements are located between the first charger chip and the charging interface, and M2 is a positive integer less than or equal to M.
  • the position between the first charger chip and the charging interface may correspond to position 1 as shown in FIG. 6 .
  • M2 of the M current control elements may be included between the first charger chip and the charging interface, that is, the M current control elements on the first charging branch may be placed entirely between the first charger chip and the charging interface, or partially between the first charger chip and the charging interface, and this embodiment of the present application does not specifically limit this.
  • a total of 3 current control elements are placed on the first charging branch, and 1, 2, or 3 current control elements may be placed between the first charger chip and the charging interface.
  • M2 of the M current control elements may also be located on the small board where the charging interface is located, such as the type C small board where the type C interface is located.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located at position 1 so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located at position 1 so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • the control unit when the current charged to the first battery in the first charging branch is greater than a first preset threshold, the control unit first increases the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, and then increases the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, so that the current charged to the first battery in the first charging branch after adjustment is less than or equal to the first preset threshold.
  • the control unit when the current charged to the first battery in the first charging branch is greater than the first preset threshold, the control unit first increases the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, so that the current charged to the first battery in the first charging branch after adjustment is less than or equal to the first preset threshold, and then reduces the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, so that the difference between the current charged to the first battery in the first charging branch after adjustment and the first preset threshold is less than the first preset value.
  • the current control element located at the rear stage of the first charger chip that is, the current control element located between the first charger chip and the first battery
  • the resistance value of the current control element between the charging interface and the first charger chip changes.
  • R the corresponding adjusted current value can be K
  • the resistance value of the current control element between the first charger chip and the ground terminal changes R
  • the corresponding adjusted current value can be 4K. It should be noted that K and 4K are example values.
  • the resistance value of the current control element between the first charger chip and the first battery can be controlled to change first to achieve coarse adjustment, and then the resistance value of the current control element between the charging interface and the first charger chip can be controlled to change to achieve fine adjustment.
  • the control unit may first increase the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, and reduce the current charged to the first battery through coarse adjustment, so that the current charged to the first battery is close to the first preset threshold, but still greater than the first preset threshold; the control unit then increases the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, and through fine adjustment, makes the difference between the adjusted current charged to the first battery in the first charging branch and the first preset threshold less than or equal to the first preset threshold.
  • the control unit when the current charged to the first battery in the first charging branch is greater than the first preset threshold, the control unit first increases the resistance of some or all of the M1 current control elements located between the first charger chip and the first battery, and makes a rough adjustment so that the current charged to the first battery in the first charging branch after adjustment is less than the first preset threshold, but the difference with the first preset threshold is large; the control unit then reduces the resistance of some or all of the M2 current control elements located between the first charger chip and the charging interface, and makes a fine adjustment so that the difference between the current charged to the first battery in the first charging branch after adjustment and the first preset threshold is less than the preset value.
  • the current value can be adjusted with a smaller granularity, making the current adjustment effect more accurate and closer to the rated charging current of the battery. In this way, the charging process can be made safe, the battery performance can be protected from damage, and the first battery can be charged faster, so that charging can be completed in a shorter time, thereby improving the user experience.
  • the current charged to the first battery in the first charging branch is greater than the first preset threshold value.
  • the control unit reduces the resistance of some or all of the M current control elements, so that the difference between the adjusted current charged to the first battery in the first charging branch and the first preset threshold value is less than the first preset value.
  • the first preset value can be the difference between the preset current of the first battery and the first preset threshold value.
  • the first preset value can be a smaller value, such as any value between 0A-0.02A, etc., and the embodiment of the present application does not make specific limitations on this.
  • the current charged to the first battery in the first charging branch when the current charged to the first battery in the first charging branch is less than the first preset threshold value, the current charged to the first battery may be less than the first preset threshold value, and the difference between the current charged to the first battery and the first preset threshold value is large, for example, the difference between the current charged to the first battery and the first preset threshold value is greater than 0.1A.
  • the control unit when the control unit obtains that the current charged to the first battery detected by the first detection unit is less than the first preset threshold value, the control unit can send a control signal for reducing the resistance of the current control element to some or all of the M current control elements of the first charging branch, so that the current value charged to the first battery in the first charging branch increases until the current charged to the first battery approaches the first preset threshold value.
  • the current in the second charging branch may be too large or too small, and the embodiment of the present application can also adjust the current of the second charging branch.
  • the second charging branch includes N current control elements, where N is a positive integer.
  • the second charging branch may include one or more current control elements.
  • the control unit When the current charged to the second battery in the second charging branch is less than the second preset threshold, the control unit reduces the resistance of some or all of the N current control elements so that the difference between the adjusted current charged to the second battery in the second charging branch and the second preset threshold is less than the second preset value.
  • the second preset threshold can refer to the description of the first preset threshold, and will not be repeated in the embodiment of the present application.
  • the second preset value may be the difference between the preset current of the second battery and the second preset threshold value.
  • the second preset value may be a smaller value, such as any value between 0A-0.02A, etc.
  • the embodiment of the present application does not specifically limit this.
  • the current charged to the second battery in the second charging branch when the current charged to the second battery in the second charging branch is less than the second preset threshold value, the current charged to the second battery may be less than the second preset threshold value, and the difference between the current charged to the second battery and the second preset threshold value is large, for example, the difference between the current charged to the second battery and the second preset threshold value is greater than 0.1A.
  • the control unit can send a control signal for reducing the resistance of the current control element to some or all of the N current control elements of the second charging branch, so that the current value charged to the second battery in the second charging branch increases until the current charged to the second battery approaches the second preset threshold.
  • the control unit when the current charging the second battery in the second charging branch is greater than the second preset threshold, the control unit increases the resistance of some or all of the N current control elements so that the current charging the second battery in the adjusted second charging branch is less than or equal to the second preset threshold.
  • the corresponding current control element can increase the resistance value based on the control signal sent by the control unit, thereby reducing the charging current of the branch.
  • the charging current of the branch can be made not to exceed the maximum charging current of the second battery, reducing the occurrence of battery overheating, battery deformation, etc., and protecting battery performance.
  • the second charging branch may further include a second detection unit, the second detection unit is located between the second battery and the ground terminal, and the second detection unit is used to detect the current value charged to the second battery.
  • the second detection unit may be composed of a detection (gauge) element and a resistor connected in parallel therewith.
  • the second detection unit can send the detected current value charged to the second battery to the control unit through the GPIO interface, I2C interface, etc.
  • the control unit increases or decreases the resistance of some or all of the N variable resistance elements according to the acquired current value charged to the second battery.
  • the foldable electronic device controls the current charged to the second battery as follows:
  • the charging interface of the foldable electronic device is connected to the charger, and the charger can power the first battery through the first charging branch and power the second battery through the second charging branch.
  • One or more current control elements are provided in the second charging branch.
  • the foldable electronic device detects the current charged to the second battery through the second detection unit, and the control unit obtains the current value charged to the second battery detected by the second detection unit through the GPIO interface or the I2C interface.
  • the control unit can increase the current charged to the second battery by reducing the resistance of some or all of the current control elements in the second charging branch until the current value charged to the second battery is close to the second preset threshold.
  • control unit can reduce the current charged to the second battery by increasing the resistance of some or all of the current control elements in the second charging branch until the current value charged to the second battery is less than or equal to the preset threshold value.
  • the second battery can be charged at a faster speed to improve the user experience, and the charging process can be made safer, thereby avoiding battery overheating, battery deformation and the like in the second battery and protecting battery performance.
  • the second charging branch also includes a second charger chip, the second charger chip is located between the charging interface and the second battery, N1 of the N current control elements are located between the second charger chip and the second battery, and N1 is a positive integer less than or equal to N.
  • the second charger chip can refer to the relevant description of the first charger chip, and will not be described in detail in this embodiment of the application.
  • N1 of the N current control elements may be included between the second charger chip and the second battery, that is, all of the N current control elements on the second charging branch may be placed between the second charger chip and the second battery, or part of them may be placed between the second charger chip and the second battery, and this is not specifically limited in the present embodiment of the application.
  • a total of 2 current control elements are placed on the second charging branch, and 1 or 2 current control elements may be placed between the second charger chip and the second battery.
  • the control strategy of the control unit for the flow control element can be: controlling some of the N1 flow control elements between the second charger chip and the second battery so that the resistance of some of the flow control elements changes, or controlling the N1 flow control elements between the second charger chip and the second battery so that the resistance of all the N1 flow control elements changes.
  • the control unit can control the resistance of the flow control element to change at the same time, or can control the resistance of the flow control element to change sequentially, which is not specifically limited in the embodiments of the present application.
  • the second charging branch also includes a second board-to-board connector, and the second board-to-board connector is located between the second charger chip and the second battery; N1 current control elements are located between the second charger chip and the second board-to-board connector; or, N1 current control elements are located between the second board-to-board connector and the second battery; or, some of the N1 current control elements are located between the second charger chip and the second board-to-board connector, and another part of the N1 current control elements are located between the second board-to-board connector and the second battery.
  • the second board-to-board connector may refer to the relevant description of the first board-to-board connector, and will not be described in detail in the embodiment of the present application.
  • the position between the second charger chip and the second board-to-board connector may correspond to position 9 shown in FIG. 7
  • the position between the second board-to-board connector and the second battery may correspond to position 10 shown in FIG. 7 .
  • the N1 current control elements included between the second charger chip and the second battery may all be located at position 9, or all be located at position 10, or some may be located at position 9 and the rest may be located at position 10.
  • two current control elements are included between the second charger chip and the second battery.
  • the two current control elements can be both located at position 9; or both located at position 10; or one can be located at position 9 and the other at position 10.
  • the current control element located between the charger chip and the second board-to-board connector is far away from the battery and is in the cold zone (also called the low temperature zone) of the foldable electronic device, and the current control element located between the second board-to-board connector and the second battery is closer to the battery and is in the hot zone (also called the heat concentration zone) of the foldable electronic device. Therefore, compared with position 10, position 9 is more friendly to the heat consumption of the foldable electronic device.
  • the control strategy of the control unit for the flow control element can be: control the control element at position 9 and/or the control element at position 10. Some of the flow control elements in the flow element change the resistance of some of the flow control elements, or all of the flow control elements at position 9 and/or at position 10 are controlled so that the resistance of all the flow control elements changes.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • placing the current control element between the second charger chip and the second board-to-board connector, and/or between the second board-to-board connector and the second battery can effectively adjust the current in the second charging branch that charges the second battery.
  • N2 current control elements among the N current control elements are located between the second charger chip and the charging interface, and N2 is a positive integer less than or equal to N.
  • the area between the second charger chip and the charging interface may correspond to position 2 or position 8 as shown in FIG. 7 .
  • N2 current control elements among the N current control elements may be included between the second charger chip and the charging interface, that is, the N current control elements on the second charging branch may be placed entirely between the second charger chip and the charging interface, or partially between the second charger chip and the charging interface, and this is not specifically limited in the embodiments of the present application.
  • a total of 3 current control elements are placed on the second charging branch, and 1, 2, or 3 current control elements may be placed between the second charger chip and the charging interface.
  • N2 of the N current control elements can also be located on the small board where the charging interface is located, such as the type C small board where the type C interface is located.
  • the control strategy of the control unit for the current control element can be: controlling some of the current control elements located between the second charger chip and the charging interface so that the resistance values of some of the current control elements change, or controlling all of the current control elements located between the second charger chip and the charging interface so that the resistance values of all the current control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • N2 flow control elements are located in the first folded portion; or, N2 flow control elements are located in the second folded portion; or, some of the N2 flow control elements are located in the first folded portion, and another part of the N2 flow control elements are located in the second folded portion.
  • the position located between the second charger chip and the charging interface and in the first folding part may correspond to position 2 as shown in FIG. 7
  • the position located between the second charger chip and the charging interface and in the second folding part may correspond to position 8 as shown in FIG. 7 .
  • the N2 current control elements included between the second charger chip and the charging interface can all be located at position 2, or all be located at position 8, or some can be located at position 2 and the rest can be located at position 8.
  • the three current control elements can all be located at position 2; or all be located at position 8; or one can be located at position 2 and the other two can be located at position 8; or two can be located at position 2 and the other one can be located at position 8.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located at position 2 and/or located at position 8 so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located at position 2 and/or located at position 8 so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • placing the current control element between the second charger chip and the charging interface and in the first folding portion, and/or placing the current control element between the second charger chip and the charging interface and in the second folding portion can effectively adjust the current charging the second battery in the second charging branch.
  • N3 current control elements are included between the second battery and the ground terminal, where N3 is a positive integer less than or equal to N.
  • the area between the second battery and the ground terminal may correspond to position 6, position 11 or position 12 as shown in FIG. 7 .
  • N3 of the N current control elements may be included between the second battery and the ground terminal, that is, the N current control elements on the second charging branch may be placed entirely between the second battery and the ground terminal, or partially between the second battery and the ground terminal, and this is not specifically limited in the present embodiment of the application.
  • a total of 3 current control elements are placed on the second charging branch, and 1, 2, or 3 current control elements may be placed between the second battery and the ground terminal.
  • the control strategy of the control unit for the flow control element may be: controlling some of the flow control elements located between the second battery and the ground terminal so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located between the second battery and the ground terminal so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • N3 flow-control elements are located on the first folded portion; or, N3 flow-control elements are located in the second folded portion; or, N3 flow-control elements are located in the rotating shaft; or, some of the N3 flow-control elements are located in the first folded portion, some of the N3 flow-control elements are located in the second folded portion, and the rest of the N3 flow-control elements are located in the rotating shaft.
  • the position located between the second battery and the ground terminal and in the first folding part may correspond to position 12 as shown in Figure 7
  • the position located between the second battery and the ground terminal and in the second folding part may correspond to position 11 as shown in Figure 7
  • the position located between the second battery and the ground terminal and in the rotating shaft may correspond to position 6 as shown in Figure 7.
  • the current control element located between the second battery and the ground terminal and in the rotating shaft can be connected to the second charging branch in a manner of being connected in parallel with the ground resistance in the rotating shaft.
  • the N3 current control elements included between the second battery and the ground terminal can all be located at position 6, or all at position 11, or all at position 12; they can also be partially located at position 6 and the rest at position 11; they can also be partially located at position 6 and the rest at position 12; they can also be partially located at position 11 and the rest at position 12; they can also be partially located at position 6, partially located at position 11, and the rest at position 12.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located at position 6, at position 11, and/or at position 12 so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located at position 6, at position 11, and/or at position 12 so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • the first charging branch includes a first board-to-board connector
  • the second charging branch includes a second board-to-board connector
  • L current control elements are included between the first board-to-board connector and the second board-to-board connector, where L is a positive integer. number.
  • the first board-to-board connector and the second board-to-board connector may correspond to position 4 or position 7 as shown in FIG. 8 .
  • the current flow direction of the branch between the first board-to-board connector and the second board-to-board connector is not fixed.
  • the voltage at the second board-to-board connector is higher than the voltage at the first board-to-board connector
  • the current flows to the first battery, and the resistance value of the current control element between the first board-to-board connector and the second board-to-board connector is changed, and/or the resistance value of the current control element between the charging interface and the second board-to-board connector in the second charging branch is changed, which can affect the current value charged to the first battery
  • the voltage of the first board-to-board connector is higher than the voltage of the second board-to-board connector
  • the current flows to the second battery, and the resistance value of the current control element between the first board-to-board connector and the second board-to-board connector is changed, and/or the resistance value of the current control element between the charging interface and the first board-to-board connector is changed, which can affect the current value charged to the second battery.
  • the current control element located between the first board-to-board connector and the second board-to-board connector can also control the current charging to the first battery and/or the current charging to the second battery without being combined with the current control element in the first branch and/or the second branch.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located between the first board-to-board connector and the second board-to-board connector so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located between the first board-to-board connector and the second board-to-board connector so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • L flow control elements are located in the first folded portion; or, the L flow control elements are located in the second folded portion; or, some of the L flow control elements are located in the first folded portion, and another part of the L flow control elements are located in the second folded portion.
  • the position located between the first board-to-board connector and the second board-to-board connector and in the first folded portion may correspond to position 4 as shown in Figure 8
  • the position located between the first board-to-board connector and the second board-to-board connector and in the second folded portion may correspond to position 7 as shown in Figure 8.
  • the L flow control elements included between the first board-to-board connector and the second board-to-board connector may all be located at position 4, or all be located at position 7, or some may be located at position 4 and the rest may be located at position 7.
  • the three flow control elements can all be located at position 4; or all be located at position 7; or one can be located at position 4 and the other two can be located at position 7; or two can be located at position 4 and the other one can be located at position 7.
  • the control strategy of the control unit for the flow control element can be: controlling some of the flow control elements located at position 4 and/or located at position 7 so that the resistance values of some of the flow control elements change, or controlling all of the flow control elements located at position 4 and/or located at position 7 so that the resistance values of all the flow control elements change.
  • control unit may control the resistance value of the flow control element to change simultaneously, or may control the resistance value of the flow control element to change sequentially, and the embodiment of the present application does not make specific limitations on this.
  • the flow control element is placed between the first board-to-board connector and the second board-to-board connector and in the first folded portion.
  • placing the current control element between the first board-to-board connector and the second board-to-board connector and in the second folded portion can effectively adjust the current size charged to the first battery or the second battery.
  • the control unit when the current charged to the second battery in the second charging branch is less than the second preset threshold, the control unit first reduces the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, and then reduces the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, so that the difference between the current charged to the second battery in the second charging branch after adjustment and the second preset threshold is less than the preset value.
  • the control unit when the current charged to the second battery in the second charging branch is less than the second preset threshold, the control unit first reduces the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, so that the current charged to the second battery in the second charging branch after adjustment is greater than the second preset threshold, and then increases the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, so that the difference between the current charged to the second battery in the second charging branch after adjustment and the second preset threshold is less than the preset value.
  • the current control element located at the rear stage of the second charger chip that is, the current control element located between the second charger chip and the ground terminal
  • the resistance value of the current control element between the charging interface and the second charger chip changes by R, and the corresponding current value adjusted can be K
  • the resistance value of the current control element between the second charger chip and the ground terminal changes by R
  • the corresponding current value adjusted can be 4K. It should be noted that K and 4K are example values.
  • the resistance value of the current control element between the second charger chip and the ground terminal can be controlled to change first to achieve coarse adjustment, and then the resistance value of the current control element between the charging interface and the second charger chip can be controlled to change to achieve fine adjustment.
  • the control unit may first reduce the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, and increase the current charged to the second battery through coarse adjustment, so that the current charged to the second battery is close to the second preset threshold, but the difference with the second preset threshold is large; the control unit then reduces the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, and makes the difference between the adjusted current charged to the second battery in the second charging branch and the second preset threshold less than the preset value through fine adjustment, that is, the current charged to the second battery is very close to the second preset threshold.
  • the control unit when the current charged to the second battery in the second charging branch is less than the second preset threshold, the control unit first reduces the resistance of some or all of the N1 current control elements located between the second charger chip and the second battery, and makes a rough adjustment so that the current charged to the second battery in the second charging branch after adjustment is greater than the second preset threshold; the control unit then increases the resistance of some or all of the N2 current control elements located between the second charger chip and the charging interface, and makes a fine adjustment so that the difference between the current charged to the second battery in the second charging branch after adjustment and the second preset threshold is less than the preset value.
  • control unit between the second charger chip and the ground terminal may include the control unit between the second charger chip and the second battery, and may also include a control unit between the second battery and the ground terminal.
  • the current value can be adjusted with a smaller granularity, making the current adjustment effect more accurate and closer to the rated charging current of the battery. In this way, the charging process can be made safe, the battery performance can be protected from damage, and the second battery can be charged faster, completing the charging in a shorter time, improving the user experience.
  • the battery capacity of the first battery is smaller than the battery capacity of the second battery, and the maximum current that the first battery and the second battery can each withstand is positively correlated with their respective battery capacities.
  • the maximum current that the battery can withstand is positively correlated with the battery capacity, which means that when the battery capacity is large, the maximum current that the battery can withstand is also large, and conversely, when the battery capacity is small, the maximum current that the battery can withstand is also small. For example, if the battery capacity is C, the maximum current that the battery can withstand may be 0.3C-0.4C.
  • the battery capacity of the first battery placed on the main board may be smaller than the battery capacity of the second battery placed on the sub-main board, and the maximum current that the first battery and the second battery can each withstand may be positively correlated with their respective battery capacities. Therefore, the maximum charging current corresponding to the first battery is smaller, and the maximum charging current corresponding to the second battery is larger.
  • the charging path loss is low, while the Type C interface and the battery on the sub-mainboard are far away, the charging path loss is high. Therefore, when charging the first battery and the second battery, the charging current flowing through the first battery is larger, and the charging current flowing through the second battery is smaller. Moreover, since the maximum charging current corresponding to the first battery is smaller, the first battery is more prone to battery overheating, battery deformation, etc. compared to the second battery, resulting in damage to battery performance.
  • the current charging to the first battery can be mainly controlled.
  • the number of current control elements in the circuit of the foldable electronic device can be effectively limited, and the heat consumption generated by the current control elements can be reduced.
  • the control unit when the current charging the first battery in the first charging branch is greater than a first preset threshold, the control unit increases the resistance of some or all of the M current control elements so that the difference between the adjusted first ratio and the second ratio is less than a third preset value.
  • the first ratio may refer to the ratio of the current charged to the first battery in the first charging branch to the current charged to the second battery in the second charging branch
  • the second ratio may refer to the ratio of the battery capacity of the first battery to the battery capacity of the second battery.
  • the third preset value may be a smaller value, such as any value within 0.1, etc., and the embodiment of the present application does not specifically limit this.
  • control unit can obtain the current charged to the first battery and the current charged to the second battery.
  • the control unit can adjust the current charged to the first battery and the current charged to the second battery by increasing or decreasing the resistance of the current control element according to the battery capacity of the first battery and the battery capacity of the second battery, so that the first ratio is close to the second ratio.
  • the ratio of the battery capacity of the first battery to the battery capacity of the second battery is 1:2.
  • the control unit can increase the resistance of some or all of the M current control elements in the first branch, so that the current charged to the first battery is reduced until the difference between the first ratio and the second ratio is less than the third preset value, that is, the first ratio is about 1:2.
  • the resistance of the current control element in the second branch can be adjusted according to the current charged to the second battery.
  • the control unit can increase the resistance of some or all of the N current control elements in the second branch; when the current charged to the second battery is less than the second preset threshold, the control unit can reduce the resistance of some or all of the N current control elements in the second branch.
  • the control unit may be triggered to adjust the current charged to the first battery and the current charged to the second battery.
  • the current charged to the first battery can be increased or decreased; the current charged to the second battery can be increased or decreased, and the result of the control unit adjusting the current needs to satisfy: the difference between the adjusted first ratio and the second ratio is less than the third preset value.
  • the ratio of the current charged to the first battery to the current charged to the second battery is close to the capacity ratio of the two batteries, which can ensure the safety of the two batteries during the charging process and improve the charging speed of the batteries.
  • the foldable electronic device provided in the embodiment of the present application can also detect whether the current in the branch is greater than the threshold value through the current control element or the current control element detects whether the voltage on both sides of the current control element is greater than the threshold value, thereby enabling the control unit to adjust the resistance of the current control element and control the current charging to the battery.
  • variable resistance element may include a current detection module and a voltage detection module.
  • corresponding current threshold values may be set for variable resistance elements located at different positions.
  • the resistance value of some or all variable resistance elements in the variable resistance element of the first charging branch can be increased.
  • the resistance value of some or all variable resistance elements in the variable resistance element of the second charging branch can be increased.
  • the resistance value of some or all variable resistance elements in the variable resistance element of the first charging branch can be reduced.
  • the resistance value of some or all variable resistance elements in the variable resistance element of the second charging branch can be reduced.
  • corresponding voltage threshold values may be set for variable resistance elements located at different positions.
  • the control unit can control the variable resistor element in the charging circuit to change the resistance value of the variable resistor element.
  • the control strategy can refer to the way in which the control unit controls the current according to the current value detected by the current detection module, and can make adaptive changes. The embodiments of the present application will not be described in detail.
  • the current charged to the battery can be made not to exceed the maximum charging current of the battery, thus avoiding battery overheating, battery deformation and the like, and protecting battery performance.
  • the foldable electronic device in the embodiment of the present application may further include an OVP circuit, which is respectively arranged in the first folding portion 101 and the second folding portion 102.
  • the OVP circuit disposed in the first folding portion 101 is connected in series between the charging interface and the first charger chip, and is used to protect the first charger chip from being damaged by a sudden high voltage or high current charged by the charger.
  • the OVP circuit disposed in the second folding portion 102 is connected in series between the charging interface and the second charger chip, and is used to protect the second charger chip from being damaged by a sudden high voltage or high current charged by the charger.
  • the method provided in the embodiment of the present application for controlling the current value charging to the battery by placing a current control element in the charging circuit of a foldable electronic device can also be applied to electronic devices that contain two or more batteries and the batteries are charged in parallel.
  • the above embodiments show various positions where the current control element can be set in the charging circuit of the foldable electronic device, and each position can correspond to position 1-position 12 as shown in Figures 6 to 8.
  • the current charged to the battery in the foldable electronic device can be adjusted to avoid excessive charging current to protect the battery performance from being damaged.
  • the charging current charged to the battery can also be made close to the rated charging current corresponding to the battery to increase the charging speed of the battery; in addition, the battery capacity can be designed according to the stacking space of the foldable electronic device. Under the condition of a certain space, the larger the current charged to the battery, the smaller the battery capacity. Therefore, the method of placing the current control element in the charging circuit of the foldable electronic device provided in the embodiment of the present application can be used to achieve the maximum design of the battery capacity.
  • the flow control element when setting the flow control element, can be set at the same position of a single branch according to actual needs, or the flow control element can be set at multiple positions of a single branch, or the flow control element can be set on multiple branches at the same time.
  • the number of flow control elements in each branch is not specifically limited. It is understandable that the number of flow control elements set in the foldable electronic device should not be too large to avoid excessive heat released by the flow control element when charging the foldable electronic device.
  • Table 1 shows the position characteristics, current regulation effects, advantages and disadvantages, and preferred levels corresponding to the above-mentioned current control elements at each position.
  • the preferred levels corresponding to different positions may be related to the advantages and disadvantages corresponding to each position, and may also be related to the difficulty of placing the flow control element at each position during actual implementation.
  • the embodiment of the present application also provides a control method for a foldable electronic device, and the control method is applied to the foldable electronic device provided by any one of the embodiments in FIG. 6 to FIG. 8 above.
  • the method includes:
  • the control unit increases the resistance of some or all of the M current control elements, so that the adjusted current charged to the first battery in the first charging branch is less than or equal to the first preset threshold.
  • the control unit when the current charged to the first battery in the first charging branch is less than a first preset threshold, the control unit reduces the resistance of some or all of the M current control elements so that the difference between the adjusted current charged to the first battery in the first charging branch and the first preset threshold is less than the first preset value.
  • the second charging branch includes N current control elements, where N is a positive integer; when the current charged to the second battery in the second charging branch is less than a second preset threshold, the control unit reduces some or all of the current control elements in the N current control elements.
  • the resistance of the element is set so that the difference between the current charged to the second battery in the adjusted second charging branch and the second preset threshold is less than the second preset value.
  • the control unit increases the resistance of some or all of the N current control elements so that the adjusted current charged to the second battery in the second charging branch is less than or equal to the second preset threshold.
  • the charging process can be made safe, the battery performance can be protected from damage, and a faster charging speed of the battery can be achieved, the charging can be completed in a shorter time, and the user experience can be improved.
  • FIG9 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
  • the electronic device includes a processor 901, a communication line 904 and at least one communication interface (the communication interface 903 is exemplified in FIG9 ).
  • Processor 901 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communications link 904 may include circuitry to transmit information between the above-described components.
  • the communication interface 903 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, wireless local area networks (WLAN), etc.
  • the electronic device may further include a memory 902 .
  • the memory 902 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory may be independent and connected to the processor via a communication line 904. The memory may also be integrated with the processor.
  • the memory 902 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 901.
  • the processor 901 is used to execute the computer-executable instructions stored in the memory 902, thereby implementing the method provided by the embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, and the embodiments of the present application do not specifically limit this.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the electronic device may include multiple processors, such as processor 901 and processor 905 in FIG. 9.
  • processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be pre-written in the memory, or downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the process or function according to the embodiment of the present application is generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network or other programmable device.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, computer instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • wired e.g., coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that a computer can store or a data storage device such as a server or data center that includes one or more available media integrated.
  • available media may include magnetic media (e.g., floppy disks, hard disks or tapes), optical media (e.g., digital versatile discs (DVD)), or semiconductor media (e.g., solid state drives (SSD)), etc.
  • Computer-readable media may include computer storage media and communication media, and may also include any medium that can transfer a computer program from one place to another.
  • the storage medium may be any target medium that can be accessed by a computer.
  • the computer-readable medium may include a compact disc read-only memory (CD-ROM), RAM, ROM, EEPROM or other optical disc storage; the computer-readable medium may include a magnetic disk storage or other magnetic disk storage device.
  • any connecting line may also be appropriately referred to as a computer-readable medium.
  • the software is transmitted from a website, server or other remote source using a coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, radio and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
  • Disks and discs as used herein include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), floppy disks and Blu-ray discs, where disks typically reproduce data magnetically, while optical discs reproduce data optically using lasers.
  • user information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • user information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种可折叠的电子设备及控制方法。该电子设备包括第一折叠部、第二折叠部和转轴,第一折叠部中设置有第一电池和充电接口,第二折叠部中设置有第二电池;其中,电子设备的充电接口与电子设备的接地端之间有第一充电支路和第二充电支路,第一电池在第一充电支路中,第二电池在第二充电支路中;第一充电支路中包括M个控流元件;电子设备还包括控制单元,控制单元用于当第一充电支路中充向第一电池的电流大于第一预设阈值时,增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流小于或等于第一预设阈值。这样,可以使得支路的电流不超过电池的最大充电电流,保护电池性能。

Description

可折叠的电子设备及控制方法
本申请要求于2022年11月21日提交中国国家知识产权局、申请号为202211459679.1、申请名称为“可折叠的电子设备及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种可折叠的电子设备及控制方法。
背景技术
随着终端技术的进步,可折叠电子设备(如折叠屏手机)也逐渐得到了发展。相对直板机而言,折叠屏手机的屏幕更大因而耗电量更多,且由于折叠屏手机的内部结构,可能无法放置较大的单电池,为实现可折叠电子设备的续航需求,可以采用多电池为可折叠电子设备供电。
目前,通常在可折叠电子设备的主板和副主板上,各放置一个电池。在可折叠电子设备接入充电器后,充电器分别为两个电池充电,或者可以理解为两个电池采用并联的方式充电。
然而,上述实现中,给电池充电时,可折叠电子设备主板上的电池容易出现电池过热、电池变形等现象,导致电池性能受损。
发明内容
本申请实施例提供一种可折叠的电子设备及控制方法,应用于终端技术领域。通过在可折叠的电子设备的充电电路中的一个或多个位置设置变阻元件,当主板的电池所在支路的电流较大时,对应的变阻元件可以基于控制单元发送的控制信号,调大阻值,从而减小支路电流。
第一方面,本申请实施例提出一种可折叠的电子设备。该电子设备包括第一折叠部、第二折叠部和转轴,第一折叠部和第二折叠部通过转轴连接;第一折叠部中设置有第一电池和充电接口,第二折叠部中设置有第二电池;其中,电子设备的充电接口与电子设备的接地端之间有第一充电支路和第二充电支路,第一充电支路位于第一折叠部,第二充电支路分布在第一折叠部、第二折叠部以及转轴中;第一电池在第一充电支路中,第二电池在第二充电支路中;第一充电支路中包括M个控流元件,M为正整数;电子设备还包括控制单元,控制单元用于当第一充电支路中充向第一电池的电流大于第一预设阈值时,增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流小于或等于第一预设阈值。这样,可以使充向第一电池的电流减小,从而避免第一电池出现电池过热、电池变形等现象,保护电池性能不受损害。
一种可能的实现中,第一充电支路中还包括有第一充电器芯片,第一充电器芯片位于充电接口与第一电池之间,M个控流元件中的M1个控流元件位于第一充电器芯片与第一 电池之间,M1为小于或等于M的正整数。这样,在第一充电器芯片与第一电池之间放置控流元件,可以有效调节第一充电支路中充向第一电池的电流大小。
第一充电支路中还包括有第一板对板连接器,第一板对板连接器位于第一充电器芯片与第一电池之间;M1个控流元件位于第一充电器芯片与第一板对板连接器之间;或者,M1个控流元件位于第一板对板连接器与第一电池之间;或者,M1个控流元件中的部分控流元件位于第一充电器芯片与第一板对板连接器之间,M1个控流元件中的另外部分控流元件位于第一板对板连接器与第一电池之间。这样,将控流元件放置于第一充电器芯片与第一板对板连接器之间,和/或,放置于第一板对板连接器与第一电池之间,可以有效调节第一充电支路中充向第一电池的电流大小。
一种可能的实现中,第一充电支路中还包括有第一充电器芯片,第一充电器芯片位于充电接口与第一电池之间,M个控流元件中的M2个控流元件位于第一充电器芯片与充电接口之间,M2为小于或等于M的正整数。这样,在第一充电器芯片与充电接口之间放置控流元件,可以有效调节第一充电支路中充向第一电池的电流大小。
一种可能的实现中,第一充电支路还包括有第一检测单元,第一检测单元位于第一电池与接地端之间,第一检测单元,用于检测充向第一电池的电流值。这样,可以通过第一检测单元准确的检测到的充向第一电池的电流值。
一种可能的实现中,控制单元还用于当第一充电支路中充向第一电池的电流小于第一预设阈值时,减小M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。
一种可能的实现中,控制单元,用于当第一充电支路中充向第一电池的电流大于第一预设阈值时,先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,再增加位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流小于或等于第一预设阈值;或者,控制单元,用于当第一充电支路中充向第一电池的电流大于第一预设阈值时,先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流小于或等于第一预设阈值,再减小位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。这样,可以使充电过程安全,保护电池性能不受损害,还可以达到第一电池的较快充电速度,在较短时间内完成充电,提升用户使用体验。
一种可能的实现中,第二充电支路中包括N个控流元件,N为正整数;控制单元还用于当第二充电支路中充向第二电池的电流小于第二预设阈值时,减小N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于第二预设值;或者,控制单元还用于当第二充电支路中充向第二电池的电流大于第二预设阈值时,增加N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流小于或等于第二预设阈值。这样,既可以达到第二电池的较快充电速度,提升用户的使用体验,还可以使充电过程安全,避免第二电池出现电池过热、电池变形等现象,保护电池性能。
一种可能的实现中,第二充电支路中还包括有第二充电器芯片,第二充电器芯片位于 充电接口与第二电池之间,N个控流元件中的N1个控流元件位于第二充电器芯片与第二电池之间,N1为小于或等于N的正整数。这样,在第二充电器芯片与第二电池之间放置控流元件,可以有效调节第二充电支路中充向第一电池的电流大小。
一种可能的实现中,第二充电支路中还包括有第二板对板连接器,第二板对板连接器位于第二充电器芯片与第二电池之间;N1个控流元件位于第二充电器芯片与第二板对板连接器之间;或者,N1个控流元件位于第二板对板连接器与第二电池之间;或者,N1个控流元件中的部分控流元件位于第二充电器芯片与第二板对板连接器之间,N1个控流元件中的另外部分控流元件位于第二板对板连接器与第二电池之间。这样,将控流元件放置于第二充电器芯片与第二板对板连接器之间,和/或,放置于第二板对板连接器与第二电池之间,可以有效调节第二充电支路中充向第二电池的电流大小。
一种可能的实现中,N个控流元件中的N2个控流元件位于第二充电器芯片与充电接口之间,N2为小于或等于N的正整数。这样,在第二充电器芯片与充电接口之间放置控流元件,可以有效调节第二充电支路中充向第二电池的电流大小。
一种可能的实现中,N2个控流元件位于第一折叠部中;或者,N2个控流元件位于第二折叠部中;或者,N2个控流元件中的部分控流元件位于第一折叠部中,N2个控流元件的另外部分控流元件位于第二折叠部中。这样,将控流元件放置于第二充电器芯片与充电接口之间且在第一折叠部中,和/或,将控流元件放置于第二充电器芯片与充电接口之间且在第二折叠部中,可以有效调节第二充电支路中充向第二电池的电流大小。
一种可能的实现中,第二电池与接地端之间,包括N3个控流元件,N3为小于或等于N的正整数。这样,在第二电池与接地端之间放置控流元件,可以有效调节第二充电支路中充向第二电池的电流大小。
一种可能的实现中,N3个控流元件位于第一折叠部上;或者,N3个控流元件位于第二折叠部中;或者,N3个控流元件位于转轴中;或者,N3个控流元件中的部分控流元件位于第一折叠部中,N3个控流元件的部分控流元件位于第二折叠部中,N3个控流元件的其余部分控流元件位于转轴中。这样,可以有效调节第二充电支路中充向第二电池的电流大小。
一种可能的实现中,根据权利要求8的电子设备,第一充电支路中包括第一板对板连接器,第二充电支路中包括第二板对板连接器,第一板对板连接器与第二板对板连接器之间,包括L个控流元件,L为正整数。这样,在第一板对板连接器与第二板对板连接器之间放置控流元件,可以有效调节充向第一电池或者充向第二电池的电流大小。
一种可能的实现中,L个控流元件位于第一折叠部中;或者,L个控流元件位于第二折叠部中;或者,L个控流元件中的部分控流元件位于第一折叠部中,L个控流元件的另外部分控流元件位于第二折叠部中。这样,将控流元件放置于第一板对板连接器与第二板对板连接器之间且在第一折叠部中,和/或,将控流元件放置于第一板对板连接器与第二板对板连接器之间且在第二折叠部中,可以有效调节充向第一电池或者充向第二电池的电流大小。
一种可能的实现中,第二充电支路还包括:第二检测单元,第二检测单元位于第二电池与接地端之间,第二检测单元,用于检测充向第二电池的电流值。这样,可以通过第二检测单元准确的检测到的充向第二电池的电流值。
一种可能的实现中,控制单元,用于当第二充电支路中充向第二电池的电流小于第二预设阈值时,先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,再减小位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值;或者,控制单元,用于当第二充电支路中充向第二电池的电流小于第二预设阈值时,先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流大于第二预设阈值,再增加位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值。这样,可以使充电过程安全,保护电池性能不受损害,还可以达到第二电池的较快充电速度,在较短时间内完成充电,提升用户使用体验。
一种可能的实现中,第一电池的电池容量小于第二电池的电池容量,第一电池与第二电池各自能承受的最大电流与各自的电池容量正相关。这样,可以有效限制可折叠的电子设备电路中控流元件的数量,减少由控流元件产生的热耗。
一种可能的实现中,控制单元,用于当第一充电支路中充向第一电池的电流大于第一预设阈值时,增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一比值与第二比值的差值小于第三预设值;第一比值为第一充电支路中充向第一电池的电流与第二充电支路中充向第二电池的电流的比值,第二比值为第一电池的电池容量与第二电池的电池容量的比值。这样,通过控制单元对控流元件的控制,使得充向第一电池的电流与充向第二电池的电流之比接近两个电池的容量比,可以保证两个电池在充电过程中的安全性,提高电池的充电速度。
第二方面,本申请实施例提供一种可折叠的电子设备的控制方法,该方法包括:检测第一充电支路中充向第一电池的电流;当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流小于或等于第一预设阈值。
一种可能的实现中,当第一充电支路中充向第一电池的电流小于第一预设阈值时,控制单元减小M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。
一种可能的实现中,第二充电支路中包括N个控流元件,N为正整数;当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元减小N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于第二预设值;或者,当第二充电支路中充向第二电池的电流大于第二预设阈值时,控制单元增加N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流小于或等于第二预设阈值。
第三方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序。计算机程序被处理器执行时实现如第二方面所述的方法。
第四方面,本申请实施例提供一种计算机程序产品,计算机程序产品包括计算机程序,当计算机程序被运行时,使得计算机执行如第二方面所述的方法。
第五方面,本申请实施例提供了一种芯片,芯片包括处理器,处理器用于调用存储器 中的计算机程序,以执行如第二方面所述的方法。
应当理解的是,本申请的第二方面至第五方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例提供的变阻元件的示意图;
图2为本申请实施例提供的可折叠的电子设备处于展开状态下的结构示意图;
图3为一些实现中的可折叠的电子设备的电路结构示意图;
图4为本申请实施例提供的可折叠的电子设备的硬件系统结构示意图;
图5为本申请实施例提供的一种可折叠的电子设备的电路示意图;
图6为本申请实施例提供的一种控流元件的位置示意图;
图7为本申请实施例提供的另一种控流元件的位置示意图;
图8为本申请实施例提供的另一种控流元件的位置示意图;
图9为本申请实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,以下,对本申请实施例中所涉及的部分术语和技术进行简单介绍:
1、控流元件
控流元件是用于控制电流的元件。例如,控流元件可以是通过调节电压控制电流的元件,也可以是通过调节电阻控制电流的变阻元件等。
2、变阻元件
变阻元件为阻值可变的电路元件。示例性的,图1示出了一种可能的变阻元件的结构示意图。如图1所示,本申请实施例中,变阻元件可以包括对外通信模块、控制信号发生器、通流MOS驱动电路、通流MOS、通流检测模块和电压检测模块等。
通流检测模块用于检测流经变阻元件的电流值,电压检测模块用于检测变阻元件两端的电压值。
对外通信模块可以通过集成电路(inter-integrated circuit,I2C)通信,通用输入输出(general-purpose input/output,GPIO)通信等方式获取电路中其他模块发送的信号,例如控制单元发送的控制信号。控制信号发生器用于根据对外通信模块获取的控制信号,生成调节信号,并将调节信号发送至通流MOS驱动控制电路;通流MOS驱动控制电路根据获取到的调节信号生成驱动信号,基于生成的驱动信号的占空比,驱动电路可以控制通流MOS分别工作在截止区、线性区(也可以称为可变电阻区)和饱和区。
其中,占空比是指一个脉冲周期内高电平脉冲在整个脉冲周期内所占的时间比例,例如1秒高电平脉冲1秒低电平脉冲的驱动信号的占空比为50%。
当驱动信号的占空比为100%时,即驱动信号为持续的高电平信号时,通流MOS工作在饱和区,当控制信号的占空比小于或等于一定值(如35%)时,通流MOS工作在截止区,当控制信号的占空比大于一定值(如35%)且小于100%时,通流MOS工作在线性区和饱和区时,通流MOS的阻值可以改变。
可以理解的是,变阻元件可以包括比上述模块更多的模块,变阻元件也可以省略上述模块中的一个或多个模块,本申请实施例不做具体限定。
3、术语
为了便于清楚描述本申请实施例的技术方案,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
需要说明的是,本申请实施例中的“在……时”,可以为在某种情况发生的瞬时,也可以为在某种情况发生后的一段时间内,本申请实施例对此不作具体限定。此外,本申请实施例提供的显示界面仅作为示例,显示界面还可以包括更多或更少的内容。
4、可折叠的电子设备
本申请实施例提供的可折叠的电子设备也可以为具有可折叠形态的终端设备,例如,可折叠的电子设备可以包括具有图像处理功能的手持式设备、车载设备等。例如,一些可折叠的电子设备为:手机(mobile phone)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该可折叠的电子设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,可折叠的电子设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,电子设备或各个网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
可以理解的是,本申请实施例对可折叠的电子设备所采用的具体技术和具体设备形态不做限定。
示例性的,图2为本申请实施例提供的可折叠的电子设备处于展开状态下的结构示意图。
如图2所示,折叠电子设备可以包括第一折叠部101、第二折叠部102以及位于第一折叠部101与第二折叠部102之间的转动机构103,转动机构103可以为转轴。转动机构103分别与第一折叠部101和第二折叠部102相连接,且第一折叠部101和第二折叠部102分别位于转动机构103的两侧。例如,第一折叠部101位于转动机构103轴线的左侧,第二折叠部102位于转动机构103轴线的右侧。第一折叠部101和第二折叠部102可以分别围绕转动机构103的轴线进行转动。
需要说明的是,图2所示的可折叠的电子设备是以折叠手机的第一折叠部、第二折叠部左右分布为例进行说明,在具体的实现中,还可以有其他的分布方式,例如,第一折叠部、第二折叠部上下分布的方式,当然,本申请实施例中的可折叠的电子设备也可以是其他折叠设备,本申请实施例对此不做具体限定。
图3为一些实现中的可折叠的电子设备的电路结构示意图。如图3所示,可折叠的电子设备的电路结构可以包括主板、副主板和柔性电路板(flexible printed circuit,FPC)。可能的实现中,主板设置于第一折叠部上,副主板设置于第二折叠部上,FPC设置于转轴上,转轴的FPC上分布有走线,主板与副主板之间通过该走线进行电信号传输。
主板上可以焊接或承载有TypeC小板,TypeC小板上包括TypeC接口,终端设备可以通过TypeC接口,接入外界电源,实现给终端设备的电池充电。其中,终端设备的主板与TypeC接口之间、副主板和TypeC接口之间,均可以通过FPC连接,进行电信号传输。
为便于描述,可以将转轴上的FPC称为转轴FPC,主板、副主板与TypeC接口之间的FPC,称为主FPC。
主板上可以设置有第一电池,副主板上可以设置有第二电池,其中,第一电池可以通过板对板连接器(board-to-board connectors,BTB)扣装到主板上,第二电池可以通过BTB连接器扣装到副主板上。在可折叠的电子设备接入充电器后,充电器分别为两个电池充电,或者可以理解为两个电池采用并联的方式充电。此外,主板上还可以设置有过压保护(over voltage protect,OVP)电路和第一充电器芯片等,副主板上还设置有OVP电路和第二充电器芯片等。其中,OVP电路用于将输入电压限定在安全范围内,当出现过压现象时,过压保护电路对后级用电器件进行保护,防止损坏;第一充电器芯片和第二充电器芯片可以为 开关电容(switched capacitor,SC)充电器芯片,第一充电器芯片和第二充电器芯片均可以实现输出电压减半、输出电流加倍的效果,从而实现终端设备的快速充电。
第一电池和第二电池,均可以通过直流-直流变换电路(如图3所示的BUCK电路)放电,将电池输出的直流电转化为终端设备的工作电路适用的直流电(如图3所示的系统Vsys电压)。
需要说明的是,在具体的实现中,主板和副主板上还可以焊接/承载其他更多的微型电子器件、应用芯片、电路、模块等,本申请实施例对此不做具体限定。
可以理解的是,由于TypeC接口和主板上的电池距离较近,充电路径损耗低,TypeC接口和副主板上的电池距离较远,充电路径损耗高。因此,为第一电池和第二电池充电时,流经第一电池的充电电流较大,流经第二电池的充电电流较小,第一电池容易出现电池过热、电池变形等现象,导致电池性能受损。
有鉴于此,本申请实施例提供了一种可折叠的电子设备及控制方法,通过在可折叠的电子设备的充电电路中的一个或多个位置设置变阻元件,当主板的电池所在支路的电流较大时,对应的变阻元件可以基于控制单元发送的控制信号,调大阻值,从而减小支路电流。这样,可以使得支路的电流不超过电池的最大充电电流,避免出现电池过热、电池变形等现象,保护电池性能。
示例性的,图4为本申请实施例提供的可折叠的电子设备100的结构示意图。
可折叠的电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线111,天线222,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对可折叠的电子设备100的具体限定。在本申请另一些实施例中,可折叠的电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括片上系统(system on chip,SOC)控制芯片,应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110 中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现可折叠的电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。I2S接口和PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现可折叠的电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现可折叠的电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB TypeC接口等。USB接口130可以用于连接充电器为可折叠的电子设备100充 电,也可以用于可折叠的电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对可折叠的电子设备100的结构限定。在本申请另一些实施例中,可折叠的电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
可折叠的电子设备100的无线通信功能可以通过天线111,天线222,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过可折叠的电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
本申请实施例中,可折叠的电子设备100的主板上设置有至少一个电池142,副主板上也设置有至少一个电池142。
可折叠的电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。显示屏194用于显示图像、显示视频和接收滑动操作等,本申请实施例中,显示屏194可以为可弯折的柔性屏。
可折叠的电子设备100还可以包括转动机构,如转轴,可折叠的电子设备100的两个折叠部可以围绕转动机构的轴线转动。
示例性的,图5为本申请实施例提供的一种可折叠的电子设备的电路示意图。
如图5所示,该可折叠的电子设备100包括第一折叠部101、第二折叠部102,以及位于第一折叠部101与第二折叠部102之间的转动机构103,转动机构103可以为转轴,第一折叠部和第二折叠部通过转轴连接。其中,第一折叠部中可以设置主板、第二折叠部中可以设置副主板。
第一折叠部中设置有第一电池和充电接口,第二折叠部中设置有第二电池;其中,电子设备的充电接口与电子设备的接地端之间有第一充电支路和第二充电支路,第一充电支路位于第一折叠部,第二充电支路分布在第一折叠部、第二折叠部以及转轴中;第一电池在第一充电支路中,第二电池在第二充电支路中。
其中,充电接口可以为Mini USB接口,Micro USB接口,TypeC接口等,本申请实施例对此不做具体限定。当可折叠的电子设备处于充电状态时,可折叠的电子设备可以通过充电接口连接充电器,充电器通过第一充电支路为第一电池充电,充电器通过第二充电支 路为第二电池充电。
由于充电接口和第一电池的距离较近,充电路径损耗低,充电接口和第二电池的距离较远,充电路径损耗高,因此,在充电器为第一电池、第二电池充电时,充向第一电池的电流较大,充向第二电池的电流较小,相较于第二电池,第一电池容易出现电池过热、电池变形等现象,进而容易导致电池性能受损。
因此,可以在第一充电支路上设置控流元件,通过控流元件减小充向第一电池的电流,从而降低因充向第一电池的电流较大而导致第一电池性能受损的可能性。
第一充电支路中可以包括M个控流元件(图5中未示出),M为正整数。也就是说,第一充电支路中可以包括一个或多个控流元件。本申请实施例中,控流元件可以为图1所示的变阻元件或其他能够控流的元件。
可折叠的电子设备还包括控制单元,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元增加M个变阻元件中部分或全部变阻元件的阻值,使得调整后的第一充电支路中充向第一电池的电流小于或等于第一预设阈值。
本申请实施例中,控制单元可以为SOC控制芯片。可以理解的是,控制单元可以设置于第一折叠部内,当然,也可以根据产品的实际布局,将控制单元设置于第二折叠部内,即控制单元可以设置于第一折叠部101内或第二折叠部102内。
第一预设阈值可以为第一电池的额定充电电流。在额定充电电流下为电池充电,可以有效缩短电池充电时间,提高电池充电效率,还可以延长电池使用寿命,保护电池性能不受损害。
当然,第一预设阈值也可以是第一电池能够承受的最大充电电流及其附近的值,本申请实施例不做具体限定。
也就是说,当电池所在支路的充电电流较大时,对应的控流元件可以基于控制单元发送的控制信号,调大阻值,从而减小支路的充电电流。这样,可以使得支路的充电电流不超过电池的最大充电电流,减少电池过热、电池变形等现象的产生,保护电池性能。
其中,第一充电支路还可以包括第一检测单元,第一检测单元位于第一电池与接地端之间,第一检测单元用于检测充向第一电池的电流值。本申请实施例中,第一检测单元可以由检测(gauge)元件和与其并联的电阻组成。
第一检测单元可以将检测到的充向第一电池的电流值,通过GPIO接口、I2C接口等方式将检测到的电流值发送至控制单元,控制单元根据获取到的充向第一电池的电流值,增加M个变阻元件中部分或全部变阻元件的阻值。
基于图5所示的电路,充电过程中,可折叠的电子设备对充向第一电池的电流的控制原理如下:
可折叠的电子设备的充电接口连接至充电器,充电器可以通过第一充电支路为第一电池供电、通过第二充电支路为第二电池供电。在第一充电支路中,设置有一个或多个控流元件。可折叠的电子设备通过第一检测单元检测充向第一电池的电流,控制单元通过GPIO接口或者I2C接口等方式获取第一检测单元检测的充向第一电池的电流值,当充向第一电池的电流值大于预设阈值时,控制单元可以通过增加第一充电支路中部分或全部控流元件的阻值,使得充向第一电池的电流减小,直至充向第一电池的电流值小于或等于预设阈值。
这样,可以使充向第一电池的电流减小,从而避免第一电池出现电池过热、电池变形 等现象,保护电池性能不受损害。
需要说明的是,第一支路中控流元件所能设置的位置有多种可能的实现方式,第一支路中控流元件的数量也可以有多种可能的实现方式,下面将结合图6至图8说明第一支路中设置控流元件的几种方式。
可能的实现中,如图6所示,第一充电支路中还包括有第一充电器芯片,第一充电器芯片位于充电接口与第一电池之间,M个控流元件中的M1个控流元件位于第一充电器芯片与第一电池之间,M1为小于或等于M的正整数。
其中,第一充电器芯片可以为SC charger芯片,也可以为半压电荷泵芯片(2:1 charge pump)等,第一充电器芯片用于对第一电池快速充电。第一充电器芯片可以实现输出电压减半、输出电流加倍的效果,也就是说,第一快充芯片的输出电压约为第一快充芯片输入电压的一半,第一快充芯片的输出电流约为第一快充芯片输入电流的2倍。
第一充电器芯片与第一电池之间可以包括M个控流元件中的M1个控流元件,也就是说,第一充电支路上的M个控流元件,可以全部放置于第一充电器芯片与第一电池之间,也可以部分放置于第一充电器芯片与第一电池之间,本申请实施例对此不做具体限定。例如,第一充电支路上共放置3个控流元件,第一充电器芯片与第一电池之间,可以放置1个、2个或3个控流元件。
控制单元对控流元件的控制策略可以为:控制第一充电器芯片与第一电池之间的M1个控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制第一充电器芯片与第一电池之间的M1个控流元件,使得M1个控流元件的阻值均发生改变。在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第一充电器芯片与第一电池之间放置控流元件,可以有效调节第一充电支路中充向第一电池的电流大小。
可能的实现中,第一充电支路中还包括有第一板对板连接器,第一板对板连接器位于第一充电器芯片与第一电池之间;M1个控流元件位于第一充电器芯片与第一板对板连接器之间;或者,M1个控流元件位于第一板对板连接器与第一电池之间;或者,M1个控流元件中的部分控流元件位于第一充电器芯片与第一板对板连接器之间,M1个控流元件中的另外部分控流元件位于第一板对板连接器与第一电池之间。
其中,第一板对板连接器用于将第一电池扣装到主板上。第一充电器芯片与第一板对板连接器之间可以对应于图6中所示的位置3,第一板对板连接器与第一电池之间可以对应于图6中所示的位置5。
也就是说,第一充电器芯片与第一电池之间包括的M1个控流元件,可以全部位于位置3,也可以全部位于位置5,还可以部分位于位置3,其余部分位于位置5。
例如,第一充电器芯片与第一电池之间包括2个控流元件,2个控流元件可以全部位于位置3;也可以全部位于位置5;还可以1个位于位置3,另一个位于位置5。
可以理解的是,由于电池在充电过程中可能发热,位于充电器芯片与第一板对板连接器之间的控流元件距离电池较远,处于可折叠的电子设备的冷区(也可以称为低温区),位于第一板对板连接器与第一电池之间的控流元件距离电池较近,处于可折叠的电子设备的热区(也可以称为发热集中区),所以位置3相较于位置5,对可折叠的电子设备的热耗 更友好。
控制单元对控流元件的控制策略可以为:控制位于位置3,和/或,位于位置5的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置3,和/或,位于位置5的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,将控流元件放置于第一充电器芯片与第一板对板连接器之间,和/或,放置于第一板对板连接器与第一电池之间,可以有效调节第一充电支路中充向第一电池的电流大小。
可能的实现中,第一充电支路中还包括有第一充电器芯片,第一充电器芯片位于充电接口与第一电池之间,M个控流元件中的M2个控流元件位于第一充电器芯片与充电接口之间,M2为小于或等于M的正整数。
其中,第一充电器芯片与充电接口之间可以对应于如图6所示的位置1。
第一充电器芯片与充电接口之间可以包括M个控流元件中的M2个控流元件,也就是说,第一充电支路上的M个控流元件,可以全部放置于第一充电器芯片与充电接口之间,也可以部分放置于第一充电器芯片与充电接口之间,本申请实施例对此不做具体限定。例如,第一充电支路上共放置3个控流元件,第一充电器芯片与充电接口之间,可以放置1个、2个或3个控流元件。
可以理解的是,M个控流元件中的M2个控流元件也可以位于充电接口所在的小板上,例如typeC接口所在的typeC小板上。
控制单元对控流元件的控制策略可以为:控制位于位置1的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置1的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第一充电器芯片与充电接口之间放置控流元件,可以有效调节第一充电支路中充向第一电池的电流大小。
可能的实现中,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,再增加位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流小于或等于第一预设阈值。
或者,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流小于或等于第一预设阈值,再减小位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,使得调整后第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。
可以理解的是,由于第一充电器芯片可以实现输出电流加倍的效果,所以位于第一充电器芯片后级的控流元件,即位于第一充电器芯片与第一电池之间的控流元件,相较于位于第一充电器芯片前级的控流元件,即位于充电接口与第一充电器芯片之间的控流元件,调节电流的效果更好。例如,位于充电接口与第一充电器芯片之间的控流元件的阻值变化 R,对应调节的电流值可以为K;位于第一充电器芯片与接地端之间的控流元件的阻值变化R,对应调节的电流值可以为4K,需要说明的是,K和4K为举例的数值。因此,可以基于上述特性,先控制位于第一充电器芯片与第一电池之间的控流元件的阻值发生变化,实现粗调,再控制位于充电接口与第一充电器芯片之间的控流元件的阻值发生变化,实现精调。
也就是说,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元可以先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,通过粗调减小充向第一电池的电流,使得充向第一电池的电流接近第一预设阈值,但仍大于第一预设阈值;控制单元再增加位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,通过精调使得调整后第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于或等于第一预设阈值。
或者,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元先增加位于第一充电器芯片与第一电池之间的M1个控流元件中部分或全部控流元件的阻值,通过粗调使得调整后第一充电支路中充向第一电池的电流小于第一预设阈值,但与第一预设阈值的差值较大;控制单元再减小位于第一充电器芯片与充电接口之间的M2个控流元件中部分或全部控流元件的阻值,通过精调使得调整后第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于预设值。
通过对充向第一电池的电流的先粗调再精调,可以实现以更小颗粒度对电流值进行调节,使得电流的调节效果更精准,还可以更接近电池的额定充电电流。这样,可以使充电过程安全,保护电池性能不受损害,还可以达到第一电池的较快充电速度,在较短时间内完成充电,提升用户使用体验。
需要说明的是,上述实施例中以第一充电支路中充向第一电池的电流大于第一预设阈值为例进行说明,可能的实现中,当第一充电支路中充向第一电池的电流小于第一预设阈值时,控制单元减小M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。
其中,第一预设值可以为预先设定的第一电池的电流与第一预设阈值之间的差值,第一预设值可以为较小的数值,例如0A-0.02A之间的任一数值等,本申请实施例对此不做具体限定。
本申请实施例中,第一充电支路中充向第一电池的电流小于第一预设阈值时,可以是充向第一电池的电流小于第一预设阈值,且充向第一电池的电流与第一预设阈值的差值较大,例如,充向第一电池的电流与第一预设阈值的差值大于0.1A。
也就是说,当控制单元获取到第一检测单元检测到的充向第一电池的电流小于第一预设阈值时,控制单元可以向第一充电支路的M个控流元件中的部分或全部控流元件,发送用于减小控流元件阻值的控制信号,使得第一充电支路中充向第一电池的电流值增大,直至充向第一电池的电流接近第一预设阈值。
这样,可以达到第一电池的较快充电速度,提升用户使用体验,且可以使充电过程安全。
可以理解的是,在第二充电支路中也可能存在电流过大或过小的情况,本申请实施例也可以实现对第二充电支路的电流调整。
一种可能的实现中,第二充电支路中包括N个控流元件,N为正整数。也就是说,第二充电支路中可以包括一个或多个控流元件。
当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元减小N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于第二预设值。
其中,第二预设阈值可以参考对第一预设阈值的描述,本申请实施例不再赘述。
第二预设值可以为预先设定的第二电池的电流与第二预设阈值之间的差值,第二预设值可以为较小的数值,例如0A-0.02A之间的任一数值等,本申请实施例对此不做具体限定。
可以理解的是,本申请实施例中,第二充电支路中充向第二电池的电流小于第二预设阈值时,可以是充向第二电池的电流小于第二预设阈值,且充向第二电池的电流与第二预设阈值的差值较大,例如,充向第二电池的电流与第二预设阈值的差值大于0.1A。
也就是说,当充向第二电池的电流小于第二预设阈值时,控制单元可以向第二充电支路的N个控流元件中的部分或全部控流元件,发送用于减小控流元件阻值的控制信号,使得第二充电支路中充向第二电池的电流值增大,直至充向第二电池的电流接近第二预设阈值。
这样,可以达到第二电池的较快充电速度,提升用户使用体验,且可以使充电过程安全。
另一种可能的实现中,当第二充电支路中充向第二电池的电流大于第二预设阈值时,控制单元增加N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流小于或等于第二预设阈值。
也就是说,当第二电池所在支路的充电电流较大时,对应的控流元件可以基于控制单元发送的控制信号,调大阻值,从而减小支路的充电电流。这样,可以使得支路的充电电流不超过第二电池的最大充电电流,减少电池过热、电池变形等现象的产生,保护电池性能。
其中,第二充电支路还可以包括第二检测单元,第二检测单元位于第二电池与接地端之间,第二检测单元用于检测充向第二电池的电流值。本申请实施例中,第二检测单元可以由检测(gauge)元件和与其并联的电阻组成。
第二检测单元可以将检测到的充向第二电池的电流值,通过GPIO接口、I2C接口等方式将检测到的电流值发送至控制单元,控制单元根据获取到的充向第二电池的电流值,增加或减小N个变阻元件中部分或全部变阻元件的阻值。
基于图5所示的电路,充电过程中,可折叠的电子设备对充向第二电池的电流的控制原理如下:
可折叠的电子设备的充电接口连接至充电器,充电器可以通过第一充电支路为第一电池供电、通过第二充电支路为第二电池供电。在第二充电支路中,设置有一个或多个控流元件。可折叠的电子设备通过第二检测单元检测充向第二电池的电流,控制单元通过GPIO接口或者I2C接口等方式获取第二检测单元检测的充向第二电池的电流值,当充向第二电池的电流值小于第二预设阈值时,控制单元可以通过减小第二充电支路中部分或全部控流元件的阻值,使得充向第二电池的电流增大,直至充向第二电池的电流值接近第二预设阈 值,或者,当充向第二电池的电流值大于预设阈值时,控制单元可以通过增加第二充电支路中部分或全部控流元件的阻值,使得充向第二电池的电流减小,直至充向第二电池的电流值小于或等于预设阈值。
这样,既可以达到第二电池的较快充电速度,提升用户的使用体验,还可以使充电过程安全,避免第二电池出现电池过热、电池变形等现象,保护电池性能。
可能的实现中,第二充电支路中还包括有第二充电器芯片,第二充电器芯片位于充电接口与第二电池之间,N个控流元件中的N1个控流元件位于第二充电器芯片与第二电池之间,N1为小于或等于N的正整数。
第二充电器芯片可以参考第一充电器芯片的相关描述,本申请实施例不再赘述。
第二充电器芯片与第二电池之间可以包括N个控流元件中的N1个控流元件,也就是说,第二充电支路上的N个控流元件,可以全部放置于第二充电器芯片与第二电池之间,也可以部分放置于第二充电器芯片与第二电池之间,本申请实施例对此不做具体限定。例如,第二充电支路上共放置2个控流元件,第二充电器芯片与第二电池之间,可以放置1个或2个控流元件。
控制单元对控流元件的控制策略可以为:控制第二充电器芯片与第二电池之间的N1个控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制第二充电器芯片与第二电池之间的N1个控流元件,使得N1个控流元件的阻值均发生改变。在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第二充电器芯片与第二电池之间放置控流元件,可以有效调节第二充电支路中充向第一电池的电流大小。
可能的实现中,第二充电支路中还包括有第二板对板连接器,第二板对板连接器位于第二充电器芯片与第二电池之间;N1个控流元件位于第二充电器芯片与第二板对板连接器之间;或者,N1个控流元件位于第二板对板连接器与第二电池之间;或者,N1个控流元件中的部分控流元件位于第二充电器芯片与第二板对板连接器之间,N1个控流元件中的另外部分控流元件位于第二板对板连接器与第二电池之间。
第二板对板连接器可以参考第一板对板连接器的相关描述,本申请实施例不再赘述。
第二充电器芯片与第二板对板连接器之间可以对应于图7中所示的位置9,第二板对板连接器与第二电池之间可以对应于图7中所示的位置10。
也就是说,第二充电器芯片与第二电池之间包括的N1个控流元件,可以全部位于位置9,也可以全部位于位置10,还可以部分位于位置9,其余部分位于位置10。
例如,第二充电器芯片与第二电池之间包括2个控流元件,2个控流元件可以全部位于位置9;也可以全部位于位置10;还可以1个位于位置9,另一个位于位置10。
可以理解的是,由于电池在充电过程中可能发热,位于充电器芯片与第二板对板连接器之间的控流元件距离电池较远,处于可折叠的电子设备的冷区(也可以称为低温区),位于第二板对板连接器与第二电池之间的控流元件距离电池较近,处于可折叠的电子设备的热区(也可以称为发热集中区),所以位置9相较于位置10,对可折叠的电子设备的热耗更友好。
控制单元对控流元件的控制策略可以为:控制位于位置9,和/或,位于位置10的控 流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置9,和/或,位于位置10的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,将控流元件放置于第二充电器芯片与第二板对板连接器之间,和/或,放置于第二板对板连接器与第二电池之间,可以有效调节第二充电支路中充向第二电池的电流大小。
可能的实现中,N个控流元件中的N2个控流元件位于第二充电器芯片与充电接口之间,N2为小于或等于N的正整数。
其中,第二充电器芯片与充电接口之间可以对应于如图7所示的位置2或位置8。
第二充电器芯片与充电接口之间可以包括N个控流元件中的N2个控流元件,也就是说,第二充电支路上的N个控流元件,可以全部放置于第二充电器芯片与充电接口之间,也可以部分放置于第二充电器芯片与充电接口之间,本申请实施例对此不做具体限定。例如,第二充电支路上共放置3个控流元件,第二充电器芯片与充电接口之间,可以放置1个、2个或3个控流元件。
可以理解的是,N个控流元件中的N2个控流元件也可以位于充电接口所在的小板上,例如typeC接口所在的typeC小板上。
控制单元对控流元件的控制策略可以为:控制位于第二充电器芯片与充电接口之间的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于第二充电器芯片与充电接口之间的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第二充电器芯片与充电接口之间放置控流元件,可以有效调节第二充电支路中充向第二电池的电流大小。
可能的实现中,N2个控流元件位于第一折叠部中;或者,N2个控流元件位于第二折叠部中;或者,N2个控流元件中的部分控流元件位于第一折叠部中,N2个控流元件的另外部分控流元件位于第二折叠部中。
其中,位于第二充电器芯片与充电接口之间且在第一折叠部中可以对应于如图7所示的位置2,位于第二充电器芯片与充电接口之间且在第二折叠部中可以对应于如图7所示的位置8。
也就是说,第二充电器芯片与充电接口之间包括的N2个控流元件,可以全部位于位置2,也可以全部位于位置8,还可以部分位于位置2,其余部分位于位置8。
例如,第二充电器芯片与充电接口之间包括3个控流元件,3个控流元件可以全部位于位置2;也可以全部位于位置8;还可以1个位于位置2,另外2个位于位置8,或者,2个位于位置2,另1个位于位置8。
控制单元对控流元件的控制策略可以为:控制位于位置2,和/或,位于位置8的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置2,和/或,位于位置8的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,将控流元件放置于第二充电器芯片与充电接口之间且在第一折叠部中,和/或,将控流元件放置于第二充电器芯片与充电接口之间且在第二折叠部中,可以有效调节第二充电支路中充向第二电池的电流大小。
可能的实现中,第二电池与接地端之间,包括N3个控流元件,N3为小于或等于N的正整数。
其中,第二电池与接地端之间可以对应于如图7所示的位置6、位置11或位置12。
第二电池与接地端之间可以包括N个控流元件中的N3个控流元件,也就是说,第二充电支路上的N个控流元件,可以全部放置于第二电池与接地端之间,也可以部分放置于第二电池与接地端之间,本申请实施例对此不做具体限定。例如,第二充电支路上共放置3个控流元件,第二电池与接地端之间,可以放置1个、2个或3个控流元件。
控制单元对控流元件的控制策略可以为:控制位于第二电池与接地端之间的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于第二电池与接地端之间的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第二电池与接地端之间放置控流元件,可以有效调节第二充电支路中充向第二电池的电流大小。
可能的实现中,N3个控流元件位于第一折叠部上;或者,N3个控流元件位于第二折叠部中;或者,N3个控流元件位于转轴中;或者,N3个控流元件中的部分控流元件位于第一折叠部中,N3个控流元件的部分控流元件位于第二折叠部中,N3个控流元件的其余部分控流元件位于转轴中。
其中,位于第二电池与接地端之间且在第一折叠部中可以对应于如图7所示的位置12,位于第二电池与接地端之间且在第二折叠部中可以对应于如图7所示的位置11,位于第二电池与接地端之间且在转轴中可以对应于如图7所示的位置6。
可以理解的是,位于第二电池与接地端之间且在转轴中的控流元件,可以按照与转轴中地阻并联的方式,接入第二充电支路中。
也就是说,第二电池与接地端之间包括的N3个控流元件,可以全部位于位置6,或全部位于位置11,或全部位于位置12;还可以部分位于位置6,其余部分位于位置11;还可以部分位于位置6,其余部分位于位置12;还可以部分位于位置11,其余部分位于位置12;还可以部分位于位置6,部分位于位置11,其余部分位于位置12。
控制单元对控流元件的控制策略可以为:控制位于位置6、位于位置11,和/或,位于位置12的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置6、位于位置11,和/或,位于位置12的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,可以有效调节第二充电支路中充向第二电池的电流大小。
可能的实现中,第一充电支路中包括第一板对板连接器,第二充电支路中包括第二板对板连接器,第一板对板连接器与第二板对板连接器之间,包括L个控流元件,L为正整 数。
其中,第一板对板连接器与第二板对板连接器之间可以对应于如图8所示的位置4或位置7。
可以理解的是,第一板对板连接器与第二板对板连接器之间的支路的电流流向不固定。当第二板对板连接器处的电压高于第一板对板连接器处的电压时,电流流向第一电池,改变位于第一板对板连接器与第二板对板连接器之间的控流元件的阻值,和/或,改变第二充电支路中位于充电接口与第二板对板连接器之间的控流元件的阻值,可以对充向第一电池的电流值产生影响;当第一板对板连接器的电压高于第二板对板连接器的电压时,电流流向第二电池,改变位于第一板对板连接器与第二板对板连接器之间的控流元件的阻值,和/或,改变充电接口与第一板对板连接器之间的控流元件的阻值,可以对充向第二电池的电流值产生影响。
可以理解的是,位于第一板对板连接器与第二板对板连接器之间的控流元件,在不与第一支路,和/或,第二支路中的控流元件组合的情况下,也可以对充向第一电池的电流大小,和/或,充向第二电池的电流大小进行控制。
控制单元对控流元件的控制策略可以为:控制位于第一板对板连接器与第二板对板连接器之间的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于第一板对板连接器与第二板对板连接器之间的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,在第一板对板连接器与第二板对板连接器之间放置控流元件,可以有效调节充向第一电池或者充向第二电池的电流大小。
可能的实现中,L个控流元件位于第一折叠部中;或者,L个控流元件位于第二折叠部中;或者,L个控流元件中的部分控流元件位于第一折叠部中,L个控流元件的另外部分控流元件位于第二折叠部中。
其中,位于第一板对板连接器与第二板对板连接器之间且在第一折叠部中可以对应于如图8所示的位置4,位于第一板对板连接器与第二板对板连接器之间且在第二折叠部中可以对应于如图8所示的位置7。
也就是说,第一板对板连接器与第二板对板连接器之间包括的L个控流元件,可以全部位于位置4,也可以全部位于位置7,还可以部分位于位置4,其余部分位于位置7。
例如,第一板对板连接器与第二板对板连接器之间包括3个控流元件,3个控流元件可以全部位于位置4;也可以全部位于位置7;还可以1个位于位置4,另外2个位于位置7,或者,2个位于位置4,另1个位于位置7。
控制单元对控流元件的控制策略可以为:控制位于位置4,和/或,位于位置7的控流元件中的部分控流元件,使得部分控流元件的阻值发生改变,或者,控制位于位置4,和/或,位于位置7的全部控流元件,使得控流元件的阻值均发生改变。
在控制单元控制控流元件的过程中,控制单元可以同时控制控流元件的阻值发生改变,也可以依次控制控流元件的阻值发生改变,本申请实施例对此不做具体限定。
这样,将控流元件放置于第一板对板连接器与第二板对板连接器之间且在第一折叠部 中,和/或,将控流元件放置于第一板对板连接器与第二板对板连接器之间且在第二折叠部中,可以有效调节充向第一电池或者充向第二电池的电流大小。
可能的实现中,当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,再减小位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值。
或者,当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流大于第二预设阈值,再增加位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值。
可以理解的是,由于第二充电器芯片可以实现输出电流加倍的效果,所以位于第二充电器芯片后级的控流元件,即位于第二充电器芯片与接地端之间的控流元件,相较于位于第二充电器芯片前级的控流元件,即位于充电接口与第二充电器芯片之间的控流元件,调节电流的效果更好。例如,位于充电接口与第二充电器芯片之间的控流元件的阻值变化R,对应调节的电流值可以为K;位于第二充电器芯片与接地端之间的控流元件的阻值变化R,对应调节的电流值可以为4K,需要说明的是,K和4K为举例的数值。因此,可以基于上述特性,先控制位于第二充电器芯片与接地端之间的控流元件的阻值发生变化,实现粗调,再控制位于充电接口与第二充电器芯片之间的控流元件的阻值发生变化,实现精调。
也就是说,当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元可以先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,通过粗调增大充向第二电池的电流,使得充向第二电池的电流接近第二预设阈值,但与第二预设阈值的差值较大;控制单元再减小位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,通过精调使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值,即充向第二电池的电流与第二预设阈值非常接近。
或者,当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元先减小位于第二充电器芯片与第二电池之间的N1个控流元件中部分或全部控流元件的阻值,通过粗调使得调整后第二充电支路中充向第二电池的电流大于第二预设阈值;控制单元再增加位于第二充电器芯片与充电接口之间的N2个控流元件中部分或全部控流元件的阻值,通过精调使得调整后第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于预设值。
可以理解的是,第二充电器芯片与接地端之间的控制单元,可以包括上述第二充电器芯片与第二电池之间的控制单元,还可以包括第二电池与接地端之间的控制单元。
通过对充向第二电池的电流的先粗调再精调,可以实现以更小颗粒度对电流值进行调节,使得电流的调节效果更精准,还可以更接近电池的额定充电电流。这样,可以使充电过程安全,保护电池性能不受损害,还可以达到第二电池的较快充电速度,在较短时间内完成充电,提升用户使用体验。
可能的实现中,第一电池的电池容量小于第二电池的电池容量,第一电池与第二电池各自能承受的最大电流与各自的电池容量正相关。
可以理解的是,对于可折叠的电子设备,通常情况下,主板上的器件相对较多,副主板上的器件相对较少,因此主板上可放置的电池体积较小,对应的电池容量也较小副主板上可放置的电池体积较大,对应的电池容量也较大。
其中,电池能承受的最大电流可以与各自的电池容量正相关是指,当电池容量较大时,电池能承受的最大电流也较大,相反的,当电池容量较小时,电池能承受的最大电流也较小。例如,电池的容量为C,电池能承受的最大电流可以为0.3C-0.4C。
也就是说,置于主板上的第一电池的电池容量,可以小于置于副主板上的第二电池的电池容量,第一电池与第二电池各自能承受的最大电流可以与各自的电池容量正相关,因此,第一电池对应的最大充电电流较小,第二电池对应的最大充电电流较大。
由于TypeC接口和主板上的电池距离较近,充电路径损耗低,TypeC接口和副主板上的电池距离较远,充电路径损耗高。因此,为第一电池和第二电池充电时,流经第一电池的充电电流较大,流经第二电池的充电电流较小,且由于第一电池对应的最大充电电流较小,第一电池相较于第二电池,容易出现电池过热、电池变形等现象,导致电池性能受损。
为避免可折叠的电子设备的电池出现电池过热、电池变形等现象,可以主要对充向第一电池的电流控制,这样,可以有效限制可折叠的电子设备电路中控流元件的数量,减少由控流元件产生的热耗。
可能的实现中,当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一比值与第二比值的差值小于第三预设值。
其中,第一比值可以指第一充电支路中充向第一电池的电流与第二充电支路中充向第二电池的电流的比值,第二比值可以指第一电池的电池容量与第二电池的电池容量的比值。第三预设值可以为较小的数值,例如0.1以内的任一数值等,本申请实施例对此不做具体限定。
也就是说,控制单元可以获取到充向第一电池的电流,以及充向第二电池的电流,控制单元可以根据第一电池的电池容量和第二电池的电池容量,通过增大或减小控流元件的阻值,调节充向第一电池的电流以及充向第二电池的电流,使得第一比值接近第二比值。
例如,第一电池的电池容量与第二电池的电池容量之比也就是第二比值为1:2,当第一充电支路中充向第一电池的电流大于第一预设阈值时,以充向第一电池的电流与充向第二电池的电流之比也就是第一比值为3:2为例,控制单元可以增加第一支路中M个控流元件中部分或全部控流元件的阻值,使得充向第一电池的电流减小,直至第一比值与第二比值之间的差值小于第三预设值,也就是第一比值约为1:2。其中,第二支路中控流元件的阻值可以根据充向第二电池的电流大小,进行调整,当充向第二电池的电流大于第二预设阈值时,控制单元可以增加第二支路中N个控流元件中部分或全部控流元件的阻值;当充向第二电池的电流小于第二预设阈值时,控制单元可以减小第二支路中N个控流元件中部分或全部控流元件的阻值。
可以理解的是,在第一充电支路中充向第一电池的电流小于第一预设阈值时,或者,第二充电支路中充向第二电池的电流小于第一预设阈值时,或者,第二充电支路中充向第 二电池的电流大于第一预设阈值时,都可能触发控制单元,对充向第一电池的电流以及充向第二电池的电流进行调整。充向第一电池的电流可以增加,也可以减小;充向第二电池的电流可以增加,也可以减小,控制单元调节电流的结果需要满足:调整后的第一比值与第二比值的差值小于第三预设值。
这样,通过控制单元对控流元件的控制,使得充向第一电池的电流与充向第二电池的电流之比接近两个电池的容量比,可以保证两个电池在充电过程中的安全性,提高电池的充电速度。
需要说明的是,上述实施例中以检测充向第一电池的电流是否大于第一预设阈值,或者,检测充向第二电池的电流是否大于第二预设阈值为例进行说明,可能的实现中,本申请实施例提供的可折叠的电子设备,还可以通过控流元件检测所在支路中的电流是否大于门限值或者控流元件检测控流元件两侧的电压是否大于门限值,进而实现控制单元对控流元件阻值的调整以及对充向电池电流的控制。
以图1中所示的变阻元件为例,变阻元件可以包括通流检测模块和电压检测模块。
一种可能的实现中,可以为位于不同位置的变阻元件设定对应的电流门限值。
当位于第一充电支路的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值大于电流门限值时,可以增加第一充电支路的变阻元件中部分或全部变阻元件的阻值。当位于第二充电支路的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值大于电流门限值时,可以增加第二充电支路的变阻元件中部分或全部变阻元件的阻值。当位于第一板对板连接器与第二板对板连接器之间的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值大于电流门限值时,如果第一板对板连接器与第二板对板连接器之间支路的电流流向第一电池,可以增加第一板对板连接器与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值,和/或,增加充电接口与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值;如果第一板对板连接器与第二板对板连接器之间支路的电流流向第二电池,可以增加第一板对板连接器与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值,和/或,增加充电接口与第一板对板连接器之间的变阻元件中部分或全部变阻元件的阻值。
当位于第一充电支路的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值小于电流门限值且差值较大时,可以减小第一充电支路的变阻元件中部分或全部变阻元件的阻值。当位于第二充电支路的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值小于电流门限值且差值较大时,可以减小第二充电支路的变阻元件中部分或全部变阻元件的阻值。当位于第一板对板连接器与第二板对板连接器之间的某一变阻元件的通流检测模块,检测到流经该变阻元件的电流值小于电流门限值且差值较大时,如果第一板对板连接器与第二板对板连接器之间支路的电流流向第一电池,可以减小第一板对板连接器与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值,和/或,减小充电接口与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值;如果第一板对板连接器与第二板对板连接器之间支路的电流流向第二电池,可以减小第一板对板连接器与第二板对板连接器之间的变阻元件中部分或全部变阻元件的阻值,和/或,减小充电接口与第一板对板连接器之间的变阻元件中部分或全部变阻元件的阻值。
另一种可能的实现中,可以为位于不同位置的变阻元件,设定对应的电压门限值。当 某一变阻元件的电压检测模块,检测到该变阻元件两侧的电压值大于电压门限值时,或者,检测到该变阻元件两侧的电压值小于电压门限值且差值较大时,控制单元可以控制充电电路中的变阻元件,使得变阻元件的阻值变化,控制策略可以参考上述控制单元根据通流检测模块检测的电流值进行电流控制的方式,做适应性改变即可,本申请实施例不做具体赘述。
这样,可以使得充向电池的电流不超过电池的最大充电电流,避免出现电池过热、电池变形等现象,保护电池性能。
此外,本申请实施例中的可折叠的电子设备,还可以包括OVP电路,OVP电路分别设置在第一折叠部101和第二折叠部102内。
设置在第一折叠部101内的OVP电路,串联在充电接口与第一充电器芯片之间,其用于保护第一充电器芯片,防止充电器突然充入大电压或大电流而损坏第一充电器芯片。设置在第二折叠部102内的OVP电路,串联在充电接口与第二充电器芯片之间,其用于保护第二充电器芯片,防止充电器突然充入大电压或大电流而损坏第二充电器芯片。
需要说明的是,本申请实施例提供的,在可折叠的电子设备的充电电路中通过放置控流元件来实现控制充向电池电流值的方法,也可以适用于包含两个及以上电池且电池采用并联方式充电的电子设备。
综上,上述实施例中示出了控流元件在可折叠的电子设备的充电电路中可以设置的各位置,各位置可以对应于如图6至图8所示的位置1-位置12。通过调节部分或全部控流元件的阻值,可以调节可折叠的电子设备中充向电池的电流大小,避免充电电流过大,以保护电池性能不受损害,还可以使充向电池的充电电流接近电池对应的额定充电电流,提高电池的充电速度;此外,电池容量可以根据可折叠电子设备的堆叠空间进行设计,在空间一定的情况下,充向电池的电流越大则电池的容量越小,因此,可以通过本申请实施例提供的在可折叠的电子设备的充电电路中放置控流元件的方式,实现电池容量的最大化设计。
本申请实施例中,在设置控流元件时,可以根据实际需求,将控流元件设置在单个支路的同一位置上,也可以将控流元件设置在单个支路的多个位置上,还可以同时在多个支路上都设置控流元件,另外,各支路中控流元件的数量也不做具体限制。可以理解的是,可折叠的电子设备中设置的控流元件的数量不可过多,以避免为可折叠的电子设备充电时控流元件释放的热量过多。
示例性的,表1中示出了上述各位置控流元件对应的位置特征、电流调节效果、优缺点以及优选等级。
表1

可以理解的是,不同位置对应的优选等级,既可以与各位置对应的优缺点有关,也可以与实际实现时,各位置放置控流元件的难易程度有关。
本申请实施例还提供了一种可折叠的电子设备的控制方法,该控制方法应用于上述图6至图8中任意一项实施例提供的可折叠的电子设备。方法包括:
检测第一充电支路中充向第一电池的电流;当第一充电支路中充向第一电池的电流大于第一预设阈值时,控制单元增加M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流小于或等于第一预设阈值。
可能的实现中,当第一充电支路中充向第一电池的电流小于第一预设阈值时,控制单元减小M个控流元件中部分或全部控流元件的阻值,使得调整后的第一充电支路中充向第一电池的电流与第一预设阈值之间的差值小于第一预设值。
可能的实现中,第二充电支路中包括N个控流元件,N为正整数;当第二充电支路中充向第二电池的电流小于第二预设阈值时,控制单元减小N个控流元件中部分或全部控流 元件的阻值,使得调整后的第二充电支路中充向第二电池的电流与第二预设阈值之间的差值小于第二预设值。
或者,当第二充电支路中充向第二电池的电流大于第二预设阈值时,控制单元增加N个控流元件中部分或全部控流元件的阻值,使得调整后的第二充电支路中充向第二电池的电流小于或等于第二预设阈值。
这样,可以基于本申请实施例提供的可折叠的电子设备的控制方法,使充电过程安全,保护电池性能不受损害,还可以达到电池的较快充电速度,在较短时间内完成充电,提升用户使用体验。
图9为本申请实施例提供的一种电子设备的硬件结构示意图,如图9所示,该电子设备包括处理器901,通信线路904以及至少一个通信接口(图9中示例性的以通信接口903为例进行说明)。
处理器901可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路904可包括在上述组件之间传送信息的电路。
通信接口903,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线局域网(wireless local area networks,WLAN)等。
可能的,该电子设备还可以包括存储器902。
存储器902可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路904与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器902用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器902中存储的计算机执行指令,从而实现本申请实施例所提供的方法。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实 现。其中,计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。例如,可用介质可以包括磁性介质(例如,软盘、硬盘或磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括紧凑型光盘只读储存器(compact disc read-only memory,CD-ROM)、RAM、ROM、EEPROM或其它光盘存储器;计算机可读介质可以包括磁盘存储器或其它磁盘存储设备。而且,任何连接线也可以被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,DSL或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(digital versatile disc,DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。
上述的组合也应包括在计算机可读介质的范围内。以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,并且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准,并提供有相应的操作入口,供用户选择授权或者拒绝。

Claims (25)

  1. 一种可折叠的电子设备,其特征在于,所述电子设备包括第一折叠部、第二折叠部和转轴,所述第一折叠部和所述第二折叠部通过所述转轴连接;
    所述第一折叠部中设置有第一电池和充电接口,所述第二折叠部中设置有第二电池;其中,所述电子设备的充电接口与所述电子设备的接地端之间有第一充电支路和第二充电支路,所述第一充电支路位于所述第一折叠部,所述第二充电支路分布在所述第一折叠部、所述第二折叠部以及所述转轴中;所述第一电池在所述第一充电支路中,所述第二电池在所述第二充电支路中;
    所述第一充电支路中包括M个控流元件,所述M为正整数;
    所述电子设备还包括控制单元,所述控制单元用于当所述第一充电支路中充向所述第一电池的电流大于第一预设阈值时,增加所述M个控流元件中部分或全部控流元件的阻值,使得调整后的所述第一充电支路中充向所述第一电池的电流小于或等于第一预设阈值。
  2. 根据权利要求1所述的电子设备,其特征在于,所述第一充电支路中还包括有第一充电器芯片,所述第一充电器芯片位于所述充电接口与所述第一电池之间,所述M个控流元件中的M1个控流元件位于所述第一充电器芯片与所述第一电池之间,所述M1为小于或等于所述M的正整数。
  3. 根据权利要求2所述的电子设备,其特征在于,所述第一充电支路中还包括有第一板对板连接器,所述第一板对板连接器位于所述第一充电器芯片与所述第一电池之间;
    所述M1个控流元件位于所述第一充电器芯片与所述第一板对板连接器之间;
    或者,所述M1个控流元件位于所述第一板对板连接器与所述第一电池之间;
    或者,所述M1个控流元件中的部分控流元件位于所述第一充电器芯片与所述第一板对板连接器之间,所述M1个控流元件中的另外部分控流元件位于所述第一板对板连接器与所述第一电池之间。
  4. 根据权利要求1-3任一项所述的电子设备,其特征在于,所述第一充电支路中还包括有第一充电器芯片,所述第一充电器芯片位于所述充电接口与所述第一电池之间,所述M个控流元件中的M2个控流元件位于所述第一充电器芯片与所述充电接口之间,所述M2为小于或等于所述M的正整数。
  5. 根据权利要求4所述的电子设备,其特征在于,所述第一充电支路还包括有第一检测单元,所述第一检测单元位于所述第一电池与所述接地端之间,所述第一检测单元,用于检测充向所述第一电池的电流值。
  6. 根据权利要求1-3任一项所述的电子设备,其特征在于,所述控制单元还用于当所述第一充电支路中充向所述第一电池的电流小于所述第一预设阈值时,减小所述M个控流元件中部分或全部控流元件的阻值,使得调整后的所述第一充电支路中充向所述第一电池的电流与所述第一预设阈值之间的差值小于第一预设值。
  7. 根据权利要求6所述的电子设备,其特征在于,
    所述控制单元,用于当所述第一充电支路中充向所述第一电池的电流大于第一预设阈值时,先增加位于所述第一充电器芯片与所述第一电池之间的所述M1个控流元件中部分或全部控流元件的阻值,再增加位于所述第一充电器芯片与所述充电接口之间的所述M2个控流元件中部分或全部控流元件的阻值,使得调整后所述第一充电支路中充向所述第一 电池的电流小于或等于第一预设阈值;
    或者,所述控制单元,用于当所述第一充电支路中充向所述第一电池的电流大于第一预设阈值时,先增加位于所述第一充电器芯片与所述第一电池之间的所述M1个控流元件中部分或全部控流元件的阻值,使得调整后所述第一充电支路中充向所述第一电池的电流小于或等于第一预设阈值,再减小位于所述第一充电器芯片与所述充电接口之间的所述M2个控流元件中部分或全部控流元件的阻值,使得调整后所述第一充电支路中充向所述第一电池的电流与所述第一预设阈值之间的差值小于所述第一预设值。
  8. 根据权利要求1-3任一项所述的电子设备,其特征在于,所述第二充电支路中包括N个控流元件,所述N为正整数;
    所述控制单元还用于当所述第二充电支路中充向所述第二电池的电流小于第二预设阈值时,减小所述N个控流元件中部分或全部控流元件的阻值,使得调整后的所述第二充电支路中充向所述第二电池的电流与所述第二预设阈值之间的差值小于第二预设值;
    或者,所述控制单元还用于当所述第二充电支路中充向所述第二电池的电流大于第二预设阈值时,增加所述N个控流元件中部分或全部控流元件的阻值,使得调整后的所述第二充电支路中充向所述第二电池的电流小于或等于所述第二预设阈值。
  9. 根据权利要求8所述的电子设备,其特征在于,所述第二充电支路中还包括有第二充电器芯片,所述第二充电器芯片位于所述充电接口与所述第二电池之间,所述N个控流元件中的N1个控流元件位于所述第二充电器芯片与所述第二电池之间,所述N1为小于或等于所述N的正整数。
  10. 根据权利要求9所述的电子设备,其特征在于,所述第二充电支路中还包括有第二板对板连接器,所述第二板对板连接器位于所述第二充电器芯片与所述第二电池之间;
    所述N1个控流元件位于所述第二充电器芯片与所述第二板对板连接器之间;
    或者,所述N1个控流元件位于所述第二板对板连接器与所述第二电池之间;
    或者,所述N1个控流元件中的部分控流元件位于所述第二充电器芯片与所述第二板对板连接器之间,所述N1个控流元件中的另外部分控流元件位于所述第二板对板连接器与所述第二电池之间。
  11. 根据权利要求8所述的电子设备,其特征在于,所述N个控流元件中的N2个控流元件位于所述第二充电器芯片与所述充电接口之间,所述N2为小于或等于所述N的正整数。
  12. 根据权利要求11所述的电子设备,其特征在于,所述N2个控流元件位于所述第一折叠部中;
    或者,所述N2个控流元件位于所述第二折叠部中;
    或者,所述N2个控流元件中的部分控流元件位于所述第一折叠部中,所述N2个控流元件的另外部分控流元件位于所述第二折叠部中。
  13. 根据权利要求8所述的电子设备,其特征在于,所述第二电池与所述接地端之间,包括所述N3个控流元件,所述N3为小于或等于所述N的正整数。
  14. 根据权利要求13所述的电子设备,其特征在于,所述N3个控流元件位于所述第一折叠部上;
    或者,所述N3个控流元件位于所述第二折叠部中;
    或者,所述N3个控流元件位于所述转轴中;
    或者,所述N3个控流元件中的部分控流元件位于所述第一折叠部中,所述N3个控流元件的部分控流元件位于所述第二折叠部中,所述N3个控流元件的其余部分控流元件位于所述转轴中。
  15. 根据权利要求8所述的电子设备,其特征在于,所述第一充电支路中包括第一板对板连接器,所述第二充电支路中包括第二板对板连接器,所述第一板对板连接器与所述第二板对板连接器之间,包括L个控流元件,所述L为正整数。
  16. 根据权利要求15所述的电子设备,其特征在于,所述L个控流元件位于所述第一折叠部中;
    或者,所述L个控流元件位于所述第二折叠部中;
    或者,所述L个控流元件中的部分控流元件位于所述第一折叠部中,所述L个控流元件的另外部分控流元件位于所述第二折叠部中。
  17. 根据权利要求8所述的电子设备,其特征在于,所述第二充电支路还包括:第二检测单元,所述第二检测单元位于所述第二电池与所述接地端之间,所述第二检测单元,用于检测充向所述第二电池的电流值。
  18. 根据权利要求17所述的电子设备,其特征在于,
    所述控制单元,用于当所述第二充电支路中充向所述第二电池的电流小于第二预设阈值时,先减小位于所述第二充电器芯片与所述第二电池之间的所述N1个控流元件中部分或全部控流元件的阻值,再减小位于所述第二充电器芯片与所述充电接口之间的所述N2个控流元件中部分或全部控流元件的阻值,使得调整后所述第二充电支路中充向所述第二电池的电流与第二预设阈值之间的差值小于预设值;
    或者,所述控制单元,用于当所述第二充电支路中充向所述第二电池的电流小于第二预设阈值时,先减小位于所述第二充电器芯片与所述第二电池之间的所述N1个控流元件中部分或全部控流元件的阻值,使得调整后所述第二充电支路中充向所述第二电池的电流大于第二预设阈值,再增加位于所述第二充电器芯片与所述充电接口之间的所述N2个控流元件中部分或全部控流元件的阻值,使得调整后所述第二充电支路中充向所述第二电池的电流与第二预设阈值之间的差值小于预设值。
  19. 根据权利要求1所述的电子设备,其特征在于,所述第一电池的电池容量小于所述第二电池的电池容量,所述第一电池与所述第二电池各自能承受的最大电流与各自的电池容量正相关。
  20. 根据权利要求19所述的电子设备,其特征在于,所述控制单元,用于当所述第一充电支路中充向所述第一电池的电流大于第一预设阈值时,增加所述M个控流元件中部分或全部控流元件的阻值,使得调整后的第一比值与第二比值的差值小于第三预设值;所述第一比值为所述第一充电支路中充向所述第一电池的电流与所述第二充电支路中充向所述第二电池的电流的比值,所述第二比值为所述第一电池的电池容量与所述第二电池的电池容量的比值。
  21. 一种可折叠的电子设备的控制方法,其特征在于,应用于如权利要求1-20任一项所述的可折叠的电子设备,所述方法包括:
    检测所述第一充电支路中充向所述第一电池的电流;
    当所述第一充电支路中充向所述第一电池的电流大于第一预设阈值时,所述控制单元增加所述M个控流元件中部分或全部控流元件的阻值,使得调整后的所述第一充电支路中充向所述第一电池的电流小于或等于第一预设阈值。
  22. 根据权利要求21所述的方法,其特征在于,当所述第一充电支路中充向所述第一电池的电流小于所述第一预设阈值时,所述控制单元减小所述M个控流元件中部分或全部控流元件的阻值,使得调整后的所述第一充电支路中充向所述第一电池的电流与所述第一预设阈值之间的差值小于第一预设值。
  23. 根据权利要求21所述的方法,其特征在于,第二充电支路中包括N个控流元件,所述N为正整数;
    当所述第二充电支路中充向所述第二电池的电流小于第二预设阈值时,所述控制单元减小所述N个控流元件中部分或全部控流元件的阻值,使得调整后的所述第二充电支路中充向所述第二电池的电流与所述第二预设阈值之间的差值小于第二预设值;
    或者,当所述第二充电支路中充向所述第二电池的电流大于第二预设阈值时,所述控制单元增加所述N个控流元件中部分或全部控流元件的阻值,使得调整后的所述第二充电支路中充向所述第二电池的电流小于或等于所述第二预设阈值。
  24. 一种电子设备,其特征在于,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述电子设备执行如权利要求21-23中任一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求21-23中任一项所述的方法。
PCT/CN2023/123706 2022-11-21 2023-10-10 可折叠的电子设备及控制方法 WO2024109363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211459679.1A CN118057701A (zh) 2022-11-21 2022-11-21 可折叠的电子设备及控制方法
CN202211459679.1 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024109363A1 true WO2024109363A1 (zh) 2024-05-30

Family

ID=91069487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123706 WO2024109363A1 (zh) 2022-11-21 2023-10-10 可折叠的电子设备及控制方法

Country Status (2)

Country Link
CN (1) CN118057701A (zh)
WO (1) WO2024109363A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293754A (zh) * 2020-03-20 2020-06-16 Oppo广东移动通信有限公司 充电系统、方法、电子设备和计算机可读存储介质
CN111817387A (zh) * 2020-07-14 2020-10-23 Oppo广东移动通信有限公司 充电电路及其控制方法、电子设备
CN113141030A (zh) * 2020-01-17 2021-07-20 华为技术有限公司 供电电路和终端设备
CN113452100A (zh) * 2020-03-28 2021-09-28 华为技术有限公司 一种电池充放电电路的控制方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113141030A (zh) * 2020-01-17 2021-07-20 华为技术有限公司 供电电路和终端设备
CN111293754A (zh) * 2020-03-20 2020-06-16 Oppo广东移动通信有限公司 充电系统、方法、电子设备和计算机可读存储介质
CN113452100A (zh) * 2020-03-28 2021-09-28 华为技术有限公司 一种电池充放电电路的控制方法及相关装置
CN111817387A (zh) * 2020-07-14 2020-10-23 Oppo广东移动通信有限公司 充电电路及其控制方法、电子设备

Also Published As

Publication number Publication date
CN118057701A (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
US11288407B2 (en) Method and electronic device for controlling voltage output to external electronic device according to size of voltage detected at signal terminal connected to external electronic device
JP4806076B2 (ja) Usb類似コネクタを有する充電ケーブル
US20140156884A1 (en) Adaptive accessory detection and mode negotiation
WO2024016616A1 (zh) 折叠电子设备
CN113009995B (zh) 一种供电装置及供电方法
CN111522425A (zh) 一种电子设备的功耗控制方法及电子设备
EP4181341A1 (en) Data transmission method employing charging cable, and electronic devices
KR20160111270A (ko) 데이터 전송 속도를 개선시키는 방법 및 이를 구현한 전자장치
WO2022063067A1 (zh) 电源适配器、终端设备、电子设备及其充电控制方法
US20180224888A1 (en) Wireless charging mouse with battery
WO2018032503A1 (zh) 一种电源适配器、终端设备、充电系统及充电方法
TWI559125B (zh) 行動電源裝置及其電源控制方法
WO2024109363A1 (zh) 可折叠的电子设备及控制方法
CN113422410A (zh) 充电装置及移动终端
CN116315185B (zh) 电子设备及电池管理方法
CN113489079B (zh) 终端设备和充电系统
US20230208156A1 (en) Method for switching connection status of cell, power supply system, and electronic device
WO2024093575A1 (zh) 终端设备及充电控制方法
GB2541797A (en) Multipin variable rate interface
CN114490491A (zh) 一种基于充电线缆的数据传输方法及装置
TWI678609B (zh) 一種無芯筆記型電腦及筆記型電腦
WO2023001034A1 (zh) 一种放电电路及终端设备
CN117134009B (zh) 充电方法及电子设备
WO2024131169A1 (zh) 线路板、相关装置和控制方法
CN114498811B (zh) 充电管理模块、充电电路、充电控制方法及电子设备