WO2018094910A1 - 一种供电电路及音频播放设备 - Google Patents

一种供电电路及音频播放设备 Download PDF

Info

Publication number
WO2018094910A1
WO2018094910A1 PCT/CN2017/076191 CN2017076191W WO2018094910A1 WO 2018094910 A1 WO2018094910 A1 WO 2018094910A1 CN 2017076191 W CN2017076191 W CN 2017076191W WO 2018094910 A1 WO2018094910 A1 WO 2018094910A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
circuit
output
power supply
Prior art date
Application number
PCT/CN2017/076191
Other languages
English (en)
French (fr)
Inventor
张洵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/462,698 priority Critical patent/US10998858B2/en
Priority to CN201780047735.1A priority patent/CN109565261B/zh
Publication of WO2018094910A1 publication Critical patent/WO2018094910A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications

Definitions

  • the present application relates to the field of circuit control, and in particular, to a power supply circuit and an audio playback device.
  • a lossless sound source is usually required, and a high-performance audio encoder decoder (CODer) -DECoder, Codec), DAC (Digital to Analog Converter), Power Amplifier (PA), and high quality headphones (or related devices such as handsets, speakers, speakers, etc.).
  • CODer high-performance audio encoder decoder
  • DAC Digital to Analog Converter
  • PA Power Amplifier
  • the current Hi-Fi mobile phone mainly refers to its high-performance audio codec, several sets of DACs and PAs to play music.
  • the system architecture diagram is shown in FIG. 1 , and the stored audio data of the MP3 format (or other storage format) is read by an application processor (AP) or a digital signal processor (DSP).
  • AP application processor
  • DSP digital signal processor
  • the signal is transmitted to the audio codec for decoding, and the decoded signal is transmitted to the DAC, and the digital signal is converted into an analog signal recognizable by the human ear, and then played through the PA driving speaker.
  • the digital signal is converted into an analog signal by the DAC, and the analog signal is amplified by the PA, and the device such as the earphone or the speaker is driven to play, and there is distortion, and whether the Hi-Fi sound quality can be obtained.
  • the key factor Since the DAC is a sensitive circuit, it is very susceptible to interference. Therefore, if the same power supply circuit is used to supply power to the DAC and the PA, the noise crosstalk generated when the PA drives the speaker will be conducted to the DAC through the power supply circuit, so that the analog signal output from the DAC is distorted. Causes sound quality to be damaged.
  • a set of power supply circuits is usually provided for the DAC and the PA, respectively, to avoid the DAC being affected by crosstalk.
  • the DAC and PA are usually powered by the Class H power amplifier principle.
  • the cost will increase the internal and external design difficulty of the chip and increase the cost of components.
  • the present application provides a power supply circuit and an audio playback device for implementing power supply for a DAC and a PA in an audio playback device, while ensuring sound quality, taking into account power supply efficiency and cost.
  • the present application provides a power supply circuit for powering a DAC and a PA in an audio playback device, the circuit including: a power conversion circuit, a voltage selection circuit, and a voltage regulator. among them:
  • the regulator has one end connected to the DAC and the other end connected to a voltage selection circuit for outputting a regulated voltage to power the DAC.
  • the power conversion circuit has one end for connecting to the PA and the other end for connecting to the first power supply for converting the voltage of the first power supply to an output voltage capable of providing the output power for the PA according to the output power of the PA.
  • a first input end of the voltage selection circuit is connected to the second power supply, a second input is connected to the output end of the power conversion circuit, and an output end is connected to the voltage regulator for output voltage according to the power conversion circuit, DAC
  • the required operating voltage and the voltage difference between the input and output of the regulator are selected to supply power to the regulator by a second power supply or power conversion circuit.
  • the voltage selection circuit is specifically configured to: when the output voltage of the power conversion circuit is within the first preset range, the voltage selection circuit selects a power conversion The circuit supplies power to the voltage regulator; when the output voltage of the power conversion circuit is within the second predetermined range, the voltage selection circuit selects the second power supply to supply power to the voltage regulator; wherein, the first preset range and the second preset The range is determined by the operating voltage required by the DAC and the voltage difference between the input and output of the regulator.
  • the voltage selection circuit includes a voltage comparator, a first switching circuit, and a second switching circuit.
  • the first switching circuit is connected between the inverting input terminal of the voltage comparator and the voltage regulator.
  • a second switching circuit is coupled between the second power supply and the voltage regulator.
  • the non-inverting input of the voltage comparator is configured to receive a set voltage threshold that is determined based on the operating voltage required by the DAC and the voltage difference between the input and output of the regulator; the inverse of the voltage comparator
  • the phase input terminal is connected to the power conversion circuit; the output terminal of the voltage comparator is respectively connected to the control terminal of the first switch circuit and the control terminal of the second switch circuit.
  • the first switching circuit is configured to: when the voltage comparator outputs a high level, the first switching circuit is turned off; otherwise, the first switching circuit is closed.
  • the second switch circuit is configured to close the second switch circuit when the voltage comparator outputs a high level; otherwise, the first switch circuit is turned off.
  • the power conversion circuit includes BUCK and CP.
  • One end of the BUCK is connected to the first power supply, and the other end is connected to the CP and the PA; one end of the CP is connected to the BUCK, and the other end is connected to the PA.
  • the voltage regulator is a low dropout linear regulator LDO.
  • the first power supply and the second power supply may be the same power supply to simplify the circuit.
  • the voltage selection circuit selects the power conversion circuit to supply power to the voltage regulator and further supplies power to the DAC
  • the noise crosstalk generated by the PA when driving the speaker will not be transmitted through the power supply circuit due to the presence of the voltage regulator.
  • the power conversion circuit can output the corresponding voltage according to the power output of the PA, the power conversion circuit supplies power to the DAC and the PA, which can ensure the power use efficiency and reduce the power consumption of the audio playback device.
  • the power conversion circuit outputs the corresponding voltage according to the output power of the PA, if only the power conversion circuit is used to supply power to the regulator and then supply power to the DAC, there may be a voltage output from the power conversion circuit that cannot satisfy the power supply for the DAC.
  • the voltage selection circuit can select the second power supply to supply power to the regulator and supply power to the DAC. Therefore, the above embodiments of the present invention can realize high power quality while powering the DAC and the PA, while taking into consideration power supply efficiency and cost.
  • the present application provides a power supply circuit for powering a DAC and a PA in an audio playback device, the power supply circuit including a power conversion circuit and a voltage regulator.
  • the voltage regulator has one end connected to the DAC; the other end is connected to the power conversion circuit for outputting a stable voltage to supply power to the DAC;
  • the power conversion circuit has one end for connecting the PA and the voltage regulator, and the other end is for connecting a power supply for converting the voltage of the power supply to be able to provide according to the output power of the PA.
  • Output power The output voltage supplies power to the PA and the regulator.
  • the power conversion circuit includes BUCK and CP.
  • One end of the BUCK is connected to the power supply; the other end is connected to the CP and the PA; one end of the CP is connected to the BUCK, and the other end is connected to the PA.
  • the voltage regulator is a low dropout linear regulator LDO.
  • the power conversion circuit can still supply power to the voltage regulator and make the voltage regulator supply power to the DAC normally according to the minimum value of the output voltage adjusted by the output power of the PA
  • the power supply circuit provided by the above embodiment can be used as the DAC and PA power supply, in order to ensure high sound quality while taking into account power efficiency, design costs and other issues.
  • the present application provides an audio playback device, including a DAC, a PA, and any one of the power supply circuits according to the first aspect and the second aspect, to ensure high power supply while powering the DAC and the PA. Sound quality, while taking into account power efficiency and cost issues.
  • FIG. 1 is a schematic structural diagram of a system of an audio playback device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a class H power amplifier according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a power supply circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a voltage selection circuit according to an embodiment of the present invention.
  • FIG. 5 is a timing diagram of a voltage selection circuit according to an embodiment of the present invention.
  • FIG. 6 is a second timing diagram of a voltage selection circuit according to an embodiment of the present invention.
  • FIG. 7 is a second schematic structural diagram of a power supply circuit according to an embodiment of the present invention.
  • FIG. 8 is a third schematic structural diagram of a power supply circuit according to an embodiment of the present invention.
  • a class H power amplifier is usually used.
  • a schematic diagram of a Class H power amplifier is shown in Figure 2, including a PA, a step-down DC-DC converter (BUCK), and a charge pump (CP).
  • BUCK also known as series switching regulator or switching buck regulator
  • CP also known as a switched-capacitor voltage converter
  • CP is a DC-DC converter that uses a capacitor (not an inductor or a transformer) to store energy.
  • the modulation process can guarantee an efficiency of up to 80%. Powering the PA through BUCK and CP can make the output audio distortion less, have higher sound quality, and ensure higher power efficiency.
  • class H power amplifier to power the DAC and the PA can improve the efficiency of the power supply, especially for a portable audio playback device (such as a mobile phone, etc.), so that the user does not have to constantly charge the device and improve the user experience.
  • a portable audio playback device such as a mobile phone, etc.
  • the DAC and the PA cannot directly share the same power supply circuit if high sound quality is desired. If two sets of Class H power amplifier power supply circuits are used to supply power to the DAC and the PA respectively, the cost will increase, and the two types of H power supply circuits are also given to the chip. The design and layout have increased the difficulty.
  • the embodiments of the present invention provide a power supply circuit and an audio playback device, which are used to achieve power supply efficiency and design cost while powering the DAC and the PA.
  • a power supply circuit for powering a DAC and a PA in an audio playback device according to an embodiment of the present invention.
  • the power supply circuit includes a power conversion circuit 301, a voltage selection circuit, and a voltage regulator.
  • VDAC regulated voltage
  • the regulator is a circuit or device that maintains a constant output voltage when input voltage, load, ambient temperature, and circuit parameters change. It can provide a stable DC power supply and is widely used in various electronic devices. Due to the existence of the voltage regulator, even if crosstalk occurs due to the PA driving the speaker, the regulator can output a stable voltage to avoid the DAC being affected by crosstalk, so that the output signal is distorted to ensure that the audio output of the audio device is more High sound quality.
  • One end of the power conversion circuit is used to connect the PA, and the other end is used to connect the first power supply (V1) for converting the power of the first power supply to a voltage corresponding to the power required to provide the PA according to the output power of the PA ( VPA), output to PA.
  • V1 the first power supply
  • the power conversion circuit adjusts the output voltage, and the output voltage is PA power supply; if the output power of the PA is small
  • the power conversion circuit adjusts the output voltage, and the outputted smaller voltage supplies power to the PA. Therefore, the power conversion circuit can be adjusted according to the required voltage of the PA, and the corresponding voltage is output, which can effectively improve the power use efficiency.
  • the first input end of the voltage selection circuit is connected to the second power supply (V2), the second input end is connected to the output end of the power conversion circuit; the output end of the voltage selection circuit is connected to the voltage regulator, and the voltage selection circuit is The output voltage is recorded as VLDO.
  • the voltage selection circuit is configured to select the second power supply or the power conversion circuit for the voltage regulation according to the output voltage VPA of the power conversion circuit, the operating voltage VDAC required by the DAC, and the voltage difference between the input and the output of the voltage regulator. Power supply. If the power conversion circuit is used to supply the above voltage regulator, since the power conversion circuit can adjust the output voltage of the power conversion circuit with the output power of the PA, the power supply efficiency can be improved.
  • the voltage selection circuit can select the second power supply V2 to supply power to the regulator, thereby powering the DAC.
  • the voltage selection circuit can also monitor the voltage outputted by the power conversion circuit. When the output voltage of the power conversion circuit can supply power to the voltage regulator and enable the voltage regulator to output the voltage VDAC required by the DAC, the voltage selection circuit selects the power conversion. The circuit supplies power to the regulator.
  • the voltage of the second power supply V2 is larger than the voltage output by the power conversion circuit, and the output of the voltage regulator is a stable fixed voltage.
  • the power conversion circuit is used to supply the voltage regulator, the voltage difference between the input end and the output end of the voltage regulator is Relatively small, it improves power conversion efficiency.
  • the voltage selection circuit is specifically configured to: when the output voltage of the power conversion circuit is within the first preset range, the voltage selection circuit selects the power conversion circuit to supply power to the voltage regulator; When the output voltage of the circuit is within the second predetermined range, the voltage selection circuit selects the second power supply to supply power to the voltage regulator.
  • the first preset range and the second preset range are determined according to an operating voltage required by the DAC and a voltage difference between the input and the output of the regulator.
  • the voltage selection circuit includes a voltage comparator, a first switch circuit, and a second switch circuit, as shown in FIG.
  • the first switch circuit includes a first switch S1 and an inverter connected between the inverting input terminal of the voltage comparator and the input end of the voltage regulator;
  • the second switch circuit includes a second switch S2 connected to the second Between the power supply V2 and the input of the regulator;
  • the non-inverting input of the voltage comparator is used to receive a set voltage threshold Th, which is based on the operating voltage required by the DAC and the input of the regulator The voltage difference between the output and the output is determined;
  • the inverting input of the voltage comparator is coupled to the output of the power conversion circuit;
  • the output of the voltage comparator is coupled to the control terminal of the first switching circuit and the control terminal of the second switching circuit, respectively
  • the connection that is, the output of the voltage comparator is connected to the control terminal of the first switch S1 through an inverter, and the output of the voltage comparator is connected to the control
  • the first switch S1 and the second switch S2 are both closed when the control terminal inputs a high level, and are turned off when the control terminal inputs a low level. Therefore, when the voltage comparator outputs a high level, the first switch circuit is turned off, and the second switch circuit is closed, that is, the second power supply is used to supply power to the voltage regulator; otherwise, the first switch circuit is closed, and the first switch circuit is turned off. That is, the power conversion circuit supplies power to the voltage regulator.
  • first switch circuit and the second switch circuit may also be other circuits than the circuit shown in FIG. 4, so that when the output voltage of the power conversion circuit is greater than the set voltage threshold, the power conversion circuit is regulated.
  • the device supplies power, and when the output voltage of the power conversion circuit is less than the set voltage threshold, the second supply voltage is used to supply power to the voltage regulator.
  • the timing diagram of the circuit shown in Figure 4 is shown in Figure 5.
  • the output voltage (VPA) of the power conversion circuit is greater than the set voltage threshold Th, that is, the power conversion circuit can supply power to the regulator and enable the regulator to output the supply voltage required by the DAC.
  • the voltage value of the inverting input terminal of the voltage comparator is greater than the voltage value of the non-inverting input terminal, and the output level of the voltage comparator is low.
  • the second switch S1 is in an off state, and the first switch is in a closed state. Since the first switch is closed, the power conversion circuit supplies power to the voltage regulator, and therefore, the output voltage (VLDO) of the voltage selection circuit is identical to the VPA.
  • VPA is less than the set voltage threshold, that is, the power conversion circuit cannot supply power to the regulator and enables the regulator to output the supply voltage required by the DAC.
  • the inverting input of the voltage comparator The voltage value is less than the voltage value of the positive phase input terminal, and the voltage comparator output level is high.
  • the voltage comparator output level is high, the second switching circuit is in a closed state, and the first switching circuit is in an off state, so that V2 supplies power to the regulator. Therefore, VLDO is consistent with V2.
  • VPA is again greater than the set voltage threshold, that is, the voltage value of the inverting input terminal of the voltage comparator is greater than the voltage value of the positive phase input terminal, and the voltage comparator output level is low.
  • the second switch is turned off, and the first switch is closed, that is, the power conversion circuit supplies power to the voltage regulator. Therefore, VLDO is consistent with VPA.
  • the voltage comparator in FIG. 4 can also be replaced by a hysteresis comparator, which has anti-interference ability compared with the above voltage comparator because When the interference near the variable voltage value does not exceed the threshold threshold, the value of the output voltage of the hysteresis comparator will be stable.
  • the timing diagram can be as shown in Figure 6.
  • the output voltage (VPA) of the power conversion circuit is less than the set voltage threshold, the difference between the VPA and the voltage threshold is less than the threshold threshold, and therefore, the output level of the hysteresis comparator is still Low level, that is, the voltage selection circuit still selects the power conversion circuit to supply power to the voltage regulator.
  • the output voltage (VLDO) of the voltage selection circuit is consistent with the output voltage (VPA) of the power conversion circuit.
  • the difference between the VPA and the set voltage threshold is greater than the threshold threshold.
  • the output level of the hysteresis comparator is high, that is, the voltage selection circuit selects the second power supply (V2).
  • VLDO Power the regulator, at which point VLDO is consistent with V2.
  • the difference between the VPA and the set voltage threshold is less than the threshold threshold. Therefore, the output level of the hysteresis comparator is still high, that is, The voltage selection circuit still selects the second power supply to supply power to the voltage regulator, and the VLDO is consistent with V2.
  • the difference between the VPA and the set voltage threshold is greater than the threshold threshold.
  • the output level of the hysteresis comparator is low, that is, The voltage selection circuit selects the power conversion circuit to supply power to the voltage regulator, and the VLDO is consistent with the VPA.
  • the voltage selection circuit shown in FIG. 4 is only a specific embodiment.
  • the voltage selection circuit may be other circuits than the circuit shown in FIG.
  • the voltage threshold is connected to the inverting input of the voltage comparator
  • the output of the power conversion circuit is connected to the non-inverting input of the voltage comparator
  • the control end of the first switch is connected to the output of the voltage comparator.
  • the control terminal of the second switch is connected to the output of the voltage comparator through an inverter.
  • the first switch and the second switch can also be replaced with a single pole double throw switch.
  • the power conversion circuit may include a BUCK and a CP, and the connection diagram thereof may be as shown in FIG. 2, wherein one end of the BUCK is used to connect with the first power supply, and the other end is connected to the CP and the PA respectively. connection.
  • the power conversion circuit can also be other power supply circuits that use the class H power amplifier principle, or other types of power supply circuits that can balance the sound quality and power usage efficiency.
  • the first power supply and the second power supply may also be the same power supply.
  • the input end of the power conversion circuit is connected to the power supply VDD; the first input of the voltage selection circuit The terminal is also connected to the power supply VDD, and the second input is still connected to the output of the power conversion circuit.
  • the voltage regulator may be a Low Dropout Regulator (LDO).
  • LDO Low Dropout Regulator
  • LDO Low Dropout Regulator
  • the embodiment of the present invention further provides a power supply circuit, which is configured to supply power to the voltage regulator and make the voltage regulator as a DAC when the power conversion circuit adjusts the minimum value of the output voltage according to the output power of the PA.
  • a power supply circuit configured to supply power to the voltage regulator and make the voltage regulator as a DAC when the power conversion circuit adjusts the minimum value of the output voltage according to the output power of the PA.
  • FIG. 8 is a schematic structural diagram of another power supply circuit according to an embodiment of the present invention. As shown, the power supply circuit includes a power conversion circuit and a voltage regulator.
  • One end of the voltage regulator is used to connect the DAC, and the other end is connected to the power conversion circuit for outputting a stable power supply to supply power to the DAC.
  • One end of the power conversion circuit is used to connect the PA and the voltage regulator, and the other end is used to connect the power supply VDD for converting the voltage of the power supply to an output voltage capable of providing the output power according to the output power of the PA.
  • PA and regulator supply is used to connect the power supply VDD for converting the voltage of the power supply to an output voltage capable of providing the output power according to the output power of the PA.
  • the power conversion circuit includes BUCK and CP.
  • One end of the BUCK is connected to the power supply, and the other end is connected to the CP and the PA respectively.
  • One end of the CP is connected to the BUCK, and the other end is connected to the PA.
  • the above regulator is an LDO.
  • an embodiment of the present invention further provides an audio playback device, including a DAC, a PA, and a power supply circuit as in the prior, to ensure power supply for the DAC and the PA while ensuring high sound quality while taking into account the power supply.
  • an audio playback device including a DAC, a PA, and a power supply circuit as in the prior, to ensure power supply for the DAC and the PA while ensuring high sound quality while taking into account the power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

一种供电电路及音频播放设备。该电路用于为音频播放设备中的数模转换器(DAC)和功率放大器(PA)供电,包括:电源转换电路、电压选择电路以及稳压器。其中,稳压器一端用于连接数模转换器(DAC);另一端连接电压选择电路,用于输出稳定电压为数模转换器(DAC)供电;电源转换电路一端用于连接功率放大器(PA),另一端用于连接第一供电电源(V 1),用于根据功率放大器(PA)的输出功率,将第一供电电源(V 1)的电压转换为能够提供该输出功率的输出电压为功率放大器(PA)供电;电压选择电路的第一输入端用于与第二供电电源(V 2)连接,第二输入端与电源转换电路的输出端连接,输出端与稳压器连接,用于根据电源转换电路的输出电压、数模转换器(DAC)所需工作电压及稳压器的输入和输出之间的压差,选择第二供电电源(V 2)或电源转换电路为稳压器供电。

Description

一种供电电路及音频播放设备
本申请要求在2016年11月22日提交中国专利局、申请号为201611048663.6、发明名称为“一种音频供电电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉电路控制领域,尤其涉及一种供电电路及音频播放设备。
背景技术
为了在便携式设备中实现高保真(High-Fidelity,Hi-Fi)音质,即播放出与原来的声音高度相似的重放声音,通常需要无损的音源,高性能的音频编码器译码器(CODer-DECoder,Codec)、DAC(数模转换器)、功率放大器(Power Amplifier,PA),以及高品质的耳机(或者听筒、音箱、扬声器等相关播放设备)。
目前所称的Hi-Fi手机主要是指其具有一颗高性能的音频Codec、若干组DAC以及PA,来播放音乐。其系统架构图如图1所示,通过应用处理器(Application Processor,AP)或者数字信号处理器(Digital Signal Processor,DSP)将存储的MP3格式(或者其它存储格式)的音频数据读取出来,传输给音频Codec实现解码,解码后的信号传递给DAC,将数字信号转换为人耳能够辨识的模拟信号,再通过PA驱动扬声器播放出来。
在上述过程中,将数字信号经过DAC转换成为模拟信号,以及通过PA将该模拟信号放大,并驱动耳机或者音箱等设备播放出来的过程中,是否存在失真,是能否获得Hi-Fi音质的关键因素。由于DAC为敏感电路,十分容易受到干扰,因此,若使用同一供电电路为DAC与PA供电,那么PA在驱动扬声器时产生的噪声串扰将通过供电电路传导至DAC,使得DAC输出的模拟信号失真,导致音质受损。为了解决上述问题,通常为DAC和PA分别提供一组供电电路,以避免DAC受到串扰影响。为了兼顾获得的音质以及电源的效率,通常采用H类功放原理对DAC和PA进行供电。然而,若采用两组H类功放电路分别为DAC和PA进行供电,成本则会增加芯片内部、外部设计难度以及增加元器件的成本。
因此,在保证获得Hi-Fi音质的同时,如何兼顾电源效率以及设计成本,是困扰音频播放设备设计者的一个难题。
发明内容
本申请提供一种供电电路以及音频播放设备,用以实现为音频播放设备中的DAC和PA供电,在保证音质的同时,兼顾电源使用效率及成本问题。
第一方面,本申请提供了一种供电电路,用于为音频播放设备中的DAC和PA供电,该电路包括:电源转换电路、电压选择电路以及稳压器。其中:
稳压器,一端用于连接DAC;另一端连接电压选择电路,用于输出稳定电压为DAC供电。
电源转换电路,一端用于连接PA,另一端用于连接第一供电电源,用于根据PA的输出功率,将第一供电电源的电压转换为能够提供所述输出功率的输出电压为PA供电。
电压选择电路的第一输入端用于与第二供电电源连接,第二输入端与电源转换电路的输出端连接,输出端与所述稳压器连接,用于根据电源转换电路的输出电压、DAC所 需的工作电压以及所述稳压器的输入和输出之间的压差,选择第二供电电源或电源转换电路为所述稳压器供电。
结合第一方面,在第一方面的第一种可能的实现方式中,上述电压选择电路,具体用于:当电源转换电路的输出电压位于第一预设范围内时,电压选择电路选择电源转换电路为稳压器供电;当电源转换电路的输出电压位于第二预设范围内时,电压选择电路选择所述第二供电电源为稳压器供电;其中,第一预设范围和第二预设范围是根据DAC所需的工作电压以及稳压器的输入和输出的压差确定的。
结合第一方面,在第一方面的第二种可能的实现方式中,上述电压选择电路包括电压比较器、第一开关电路和第二开关电路。其中,第一开关电路连接于所述电压比较器的反相输入端和所述稳压器之间。第二开关电路连接于所述第二供电电源和所述稳压器之间。电压比较器的正相输入端用于接收一个设定的电压阈值,该电压阈值是根据DAC所需的工作电压以及稳压器的输入和输出之间的压差确定的;电压比较器的反相输入端与电源转换电路连接;电压比较器的输出端分别与第一开关电路的控制端和第二开关电路的控制端连接。
第一开关电路,用于当电压比较器输出高电平时,第一开关电路断开;否则,第一开关电路闭合。
第二开关电路,用于当电压比较器输出高电平时,第二开关电路闭合;否则,第一开关电路断开。
结合第一方面,在第一方面的第三种可能的实现方式中,电源转换电路包括BUCK和CP。其中,BUCK的一端用于与第一供电电源连接,另一端与所述CP和所述PA连接;CP的一端与所述BUCK连接,另一端与PA连接。
结合第一方面,在第一方面的第四种可能的实现方式中,上述稳压器为低压差线性稳压器LDO。
结合第一方面,在第一方面的第五种可能的实现方式中,第一供电电源和第二供电电源可以是同一供电电源,以简化电路。
在上述实施例中,当电压选择电路选择电源转换电路为稳压器供电,进而为DAC供电时,由于稳压器的存在,使得PA在驱动扬声器时产生的噪声串扰将不会通过供电电路传导至DAC,以保证输出音频具有较高的音质。由于电源转换电路可以根据PA输出的功率输出相应的电压,因此由电源转换电路为DAC和PA供电,能够保证电源使用效率,降低音频播放设备的耗电量。此外,由于电源转换电路是根据PA的输出功率输出相应的电压,因此,若仅使用电源转换电路为稳压器供电进而为DAC供电,那么可能存在电源转换电路输出的电压无法满足为DAC供电的情况,而在上述实施例中,若发送此种情况,电压选择电路可以选择第二供电电源为稳压器供电进而为DAC供电。因此,本发明上述实施例可以实现为DAC和PA供电的同时,保证较高的音质,同时兼顾电源效率和成本问题。
第二方面,本申请提供了一种供电电路,用于为音频播放设备中的DAC和PA供电,该供电电路包括电源转换电路和稳压器。其中,所述稳压器,一端用于连接所述DAC;另一端连接所述电源转换电路,用于输出稳定电压为所述DAC供电;
所述电源转换电路,一端用于连接所述PA和所述稳压器,另一端用于连接供电电源,用于根据所述PA的输出功率,将所述供电电源的电压转换为能够提供所述输出功率 的输出电压为所述PA和所述稳压器供电。
结合第二方面,在第二方面的第一种可能的实现方式中,电源转换电路包括BUCK和CP。其中,BUCK的一端用于与所述供电电源连接;另一端与所述CP和所述PA连接;所述CP的一端与所述BUCK连接,另一端与所述PA连接。
结合第二方面,在第二方面的第二种可能的实现方式中,上述稳压器为低压差线性稳压器LDO。
当电源转换电路根据所述PA的输出功率调节的输出电压的最小值,仍能够满足为稳压器供电并使得稳压器为DAC正常供电时,可以采用上述实施例提供的供电电路为DAC和PA供电,以在保证较高的音质的同时兼顾电源效率、设计成本等问题。
第三方面,本申请提供了一种音频播放设备,包括DAC、PA以及如第一方面和第二方面所述的任一种供电电路,以实现为DAC和PA供电的同时,保证较高的音质,同时兼顾电源效率和成本问题。
附图说明
图1为本发明实施例提供的音频播放设备的系统架构示意图;
图2为本发明实施例提供的H类功放示意图;
图3为本发明实施例提供的供电电路结构示意图之一;
图4为本发明实施例提供的电压选择电路的结构示意图;
图5为本发明实施例提供的电压选择电路的时序图之一;
图6为本发明实施例提供的电压选择电路的时序图之二;
图7为本发明实施例提供的供电电路结构示意图之二;
图8为本发明实施例提供的供电电路结构示意图之三。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
在现有技术中,为了保证音频播放设备输出具有较高音质的音频,以及同时兼顾电源效率,通常采用H类功率放大器。H类功率放大器的一种结构示意图如图2所示,包括PA、降压型直流-直流变换器(BUCK)以及电荷泵(CP)。其中,BUCK又称串联开关稳压器或开关型降压稳压器,用于将输入的电源电压(VDD)降低,以输出驱动负载。CP又称为开关电容式电压变换器,是一种利用电容(而非电感或变压器)来储能的直流-直流变换器,它可以以一定方式控制快速电容的充电和放电,从而使输出电压以一定因数倍增或降低,从而得到所需要的输出电压,调制过程可以保证高达80%的效率。通过BUCK和CP为PA供电,能够使得输出的音频失真较小,有较高的音质,同时保证了较高的电源使用效率。
采用上述H类功放的原理为DAC和PA供电,可以使得电源的效率提高,尤其对于便携式音频播放设备(例如手机等)来说,能够使得用户不必经常为设备充电,提高用户体验。然而,为了避免PA驱动扬声器时产生的串扰通过供电电路传导至DAC,因此,若想要获得较高的音质,DAC和PA不能直接共享同一供电电路。若通过两组H类功放供电电路为DAC和PA分别供电,那么必然导致成本的升高,且两种H类供电电路也给芯片 的设计、布局增加了难度。
因此,本发明实施例提供了一种供电电路及音频播放设备,用于实现在为DAC和PA供电的同时,兼顾电源使用效率以及设计成本。
参见图3,为本发明实施例提供的一种供电电路,用于为音频播放设备中的DAC和PA供电。如图3所示,该供电电路包括:电源转换电路301、电压选择电路以及稳压器。
其中,稳压器的一端用于连接DAC,另一端连接电压选择电路的输出端。该稳压器用于输出稳定的电压(VDAC)为DAC供电。稳压器是在输入电压、负载、环境温度、电路参数等发生变化时仍能保持输出电压恒定的电路或设备,能够提供稳定的直流电源,广为各种电子设备所采用。由于稳压器的存在,使得即使由于PA驱动扬声器时产生了串扰,稳压器也能够输出稳定的电压,以避免DAC受到串扰的影响使得输出的信号失真,以保证音频设备输出的音频具有较高的音质。
电源转换电路的一端用于连接PA,另一端用于连接第一供电电源(V1),用于根据PA的输出功率,将第一供电电源的电源转换为能够提供PA所需功率相应的电压(VPA),输出给PA。通俗来说,若PA的输出功率较大,相应的需要较大的输入电压为其供电,那么电源转换电路则调节输出电压,输出的较大的电压为PA供电;若PA的输出功率较小,相应的需要较小的输入电压为其供电即可,那么电源转换电路则调节输出电压,输出的较小的电压为PA供电。因此,电源转换电路可以根据PA的所需要的电压进行调节,输出相应的电压,能够有效的提高电源使用效率。
电压选择电路的第一输入端用于与第二供电电源(V2)连接,第二输入端与电源转换电路的输出端连接;电压选择电路的输出端与上述稳压器连接,电压选择电路的输出电压记为VLDO。电压选择电路用于根据电源转换电路的输出电压VPA、DAC所需的工作电压VDAC以及所述稳压器的输入和输出之间的压差,选择第二供电电源或电源转换电路为上述稳压器供电。若采用电源转换电路为上述稳压器供电,由于电源转换电路可以随PA的输出功率调节电源转换电路的输出电压,可以提高电源使用效率。但是,正由于电源转换电路的输出电压随PA的输出功率的变化而变化,因此,可能存在电源转换电路输出的电压无法为稳压器供电、以使稳压器无法输出DAC所需的工作电压VDAC的情况。当这种情况发生时,电压选择电路可以选择第二供电电源V2为稳压器供电,进而为DAC供电。而电压选择电路还可以对电源转换电路输出的电压进行监控,当电源转换电路的输出电压可以为稳压器供电且使得稳压器能够输出DAC所需的电压VDAC时,电压选择电路选择电源转换电路为稳压器进行供电。第二供电电源V2的电压比电源转换电路输出的电压大,稳压器输出的是稳定的固定电压,当采用电源转换电路为稳压器供电时,稳压器的输入端和输出端的压差相对较小,提升了电源转换效率。
在一种可能的实现方式中,上述电压选择电路,具体用于:当电源转换电路的输出电压位于第一预设范围内时,电压选择电路选择电源转换电路为稳压器供电;当电源转换电路的输出电压位于第二预设范围内时,电压选择电路选择第二供电电源为稳压器供电。其中,第一预设范围和第二预设范围是根据DAC所需的工作电压以及上述稳压器的输入和输出之间的压差确定的。
在一种可能的实现方式中,上述电压选择电路包括电压比较器、第一开关电路和第二开关电路,如图4所示。其中,第一开关电路包括第一开关S1和反向器,连接于电压比较器的反相输入端和稳压器的输入端之间;第二开关电路包括第二开关S2,连接于第二 供电电源V2和稳压器的输入端之间;电压比较器的正相输入端用于接收一个设定的电压阈值Th,该电压阈值Th是根据DAC所需的工作电压以及稳压器的输入和输出之间的压差确定的;电压比较器的反相输入端与电源转换电路的输出端连接;电压比较器的输出端分别与第一开关电路的控制端和第二开关电路的控制端连接,即电压比较器的输出端通过反向器与第一开关S1的控制端连接,电压比较器的输出端与第二开关S2的控制端连接。其中,第一开关S1和第二开关S2均是当控制端输入高电平时闭合,当控制端输入低电平时断开。因此,当电压比较器输出高电平时,第一开关电路断开,第二开关电路闭合,即由第二供电电源为稳压器供电;否则,第一开关电路闭合,第一开关电路断开,即由电源转换电路为稳压器供电。
当然,第一开关电路和第二开关电路也可以是图4所示电路之外的其他电路,以实现当电源转换电路的输出电压大于设定的电压阈值时,使得由电源转换电路为稳压器供电,当电源转换电路的输出电压小于设定的电压阈值时,使得由第二供电电压为稳压器供电。
图4所示的电路的时序图如图5所示。在0~t1时刻时,电源转换电路的输出电压(VPA)大于设定的电压阈值Th,即电源转换电路能够为稳压器供电并使得稳压器能够输出DAC所需的供电电压,此时,电压比较器的反相输入端的电压值大于正相输入端的电压值,电压比较器输出电平为低电平。当电压比较器输出电平为低电平时,第二开关S1为断开状态,第一开关为闭合状态。由于第一开关闭合,使得电源转换电路为稳压器供电,因此,电压选择电路的输出电压(VLDO)与VPA一致。使用电源转换电路为稳压器供电,能够有效提高电源的使用效率。在t1~t2时刻时,VPA小于设定的电压阈值,即电源转换电路不能为稳压器供电并使得稳压器能够输出DAC所需的供电电压,此时,电压比较器的反相输入端的电压值小于正相输入端的电压值,电压比较器输出电平为高电平。当电压比较器输出电平为高电平时,第二开关电路为闭合状态,第一开关电路为断开状态,使得V2为稳压器供电。因此,VLDO与V2一致。当t2时刻后,VPA再次大于设定的电压阈值,即电压比较器的反相输入端的电压值大于正相输入端的电压值,电压比较器输出电平为低电平。当电压比较器输出电平为低电平时,第二开关断开,第一开关闭合,即电源转换电路为稳压器供电。因此,VLDO与VPA一致。
在另外一种可能的实现方式中,图4中的电压比较器也可以替换为磁滞比较器(Hysteresis Comparator),磁滞比较器与上述电压比较器相比,具有抗干扰性,因为在跳变电压值附近的干扰不超过门限阈值时,磁滞比较器的输出电压的值将是稳定的。将磁滞比较器替换电压比较器后,其时序图可如图6所示。在t1~t2时刻时,虽然电源转换电路的输出电压(VPA)小于设定的电压阈值,但VPA与电压阈值之间的差值小于门限阈值,因此,磁滞比较器的输出电平仍为低电平,即电压选择电路仍选择电源转换电路为稳压器供电,此时电压选择电路的输出电压(VLDO)与电源转换电路的输出电压(VPA)一致。在t2~t3时刻时,VPA与设定的电压阈值之间的差值大于门限阈值,此时,磁滞比较器的输出电平为高电平,即电压选择电路选择第二供电电源(V2)为稳压器供电,此时VLDO与V2一致。在t3~t4时刻时,虽然VPA大于设定的电压阈值,但VPA与设定的电压阈值之间的差值小于门限阈值,因此,磁滞比较器的输出电平仍为高电平,即电压选择电路仍选择第二供电电源为稳压器供电,此时VLDO与V2一致。在t4时刻后,VPA与设定的电压阈值之间的差值大于门限阈值,此时,磁滞比较器的输出电平为低电平,即 电压选择电路选择电源转换电路为稳压器供电,此时VLDO与VPA一致。
图4所示的电压选择电路仅为一个具体的实施例,当然,电压选择电路也可以是除图4所示电路之外的其他电路。例如,将电压阈值与电压比较器的反相输入端连接,将电源转换电路的输出端与电压比较器的正相输入端连接,将第一开关的控制端与电压比较器的输出端连接,而第二开关的控制端则通过反向器与电压比较器的输出端连接。再例如,还可以用一个单刀双掷开关替换第一开关和第二开关。
在一种可能的实现方式中,电源转换电路可以包括BUCK和CP,其连接示意图可以如图2所示,其中,BUCK的一端用于与第一供电电源连接,另一端分别与CP连接和PA连接。当然,电源转换电路还可以是应用H类功放原理的其他供电电路,或者,也可以是其他类型能够兼顾音质和电源使用效率的供电电路。
在一种可能的实现方式中,上述第一供电电源和第二供电电源也可以是同一供电电源,如图7所示,电源转换电路输入端与供电电源VDD连接;电压选择电路的第一输入端也与供电电源VDD连接,第二输入端仍与电源转换电路的输出端连接。通过上述实施例,可以简化电路,简化芯片设计。
在一种可能的实现方式中,上述稳压器可以是低压差线性稳压器(Low Dropout Regulator,LDO)。传统的线性稳压器,如78xx系列的芯片要求输入电压要比输出电压高出2V~3V以上,否则就不能正常工作。但是在一些情况下,输入电压为5V,但要求的输出电压为3.3V,输入与输出的压差只有1.7V,此时可使用LDO实现。使用LDO,可以尽可能减小为了保证DAC正常工作需要为LDO提供的供电电压,即尽可能降低上述电压阈值,使得较多地采用电源转换电路为稳压器供电,以提高电源使用效率。
此外,本发明实施例还提供了一种供电电路,用于当电源转换电路根据所述PA的输出功率调节的输出电压的最小值,仍能够满足为稳压器供电并使得稳压器为DAC正常供电时,为DAC和PA供电,以实现进一步简化电路结构。
参加图8,为本发明实施例提供的另一种供电电路的结构示意图。如图所示,该供电电路包括电源转换电路和稳压器。
其中,稳压器的一端用于连接DAC,另一端连接电源转换电路,用于输出稳定电源为DAC供电。
电源转换电路的一端用于连接PA和稳压器,另一端用于连接供电电源VDD,用于根据PA的输出功率,将供电电源的电压转换为能够提供所述输出功率的输出电压为所述PA和稳压器供电。
在一种可能的实现方式中,电源转换电路包括BUCK和CP。其中,BUCK的一端用于与供电电源连接,另一端分别与CP和PA连接。CP的一端与所述BUCK连接,另一端与所述PA连接。
在一种可能的实现方式中,上述稳压器为LDO。
基于相同的技术构思,本发明实施例还提供了一种音频播放设备,包括DAC、PA以及如前任一种供电电路,以实现为DAC和PA供电的同时,保证较高的音质,同时兼顾电源效率和成本问题。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围 之内,则本申请也意图包含这些改动和变型在内。

Claims (8)

  1. 一种供电电路,用于为音频播放设备中的数模转换器DAC和功率放大器PA供电,其特征在于,包括电源转换电路、电压选择电路以及稳压器;
    所述稳压器,一端用于连接所述DAC;另一端连接所述电压选择电路,用于输出稳定电压为所述DAC供电;
    所述电源转换电路,一端用于连接所述PA,另一端用于连接第一供电电源,用于根据所述PA的输出功率,将所述第一供电电源的电压转换为能够提供所述输出功率的输出电压为所述PA供电;
    所述电压选择电路的第一输入端用于与第二供电电源连接,所述电压选择电路的第二输入端与所述电源转换电路的输出端连接,所述电压选择电路的输出端与所述稳压器连接,用于根据所述电源转换电路的输出电压、所述DAC所需的工作电压以及所述稳压器的输入和输出之间的压差,选择所述第二供电电源或选择所述电源转换电路为所述稳压器供电。
  2. 如权利要求1所述的电路,其特征在于,所述电压选择电路,具体用于:
    当所述电源转换电路的输出电压位于第一预设范围内时,所述电压选择电路选择所述电源转换电路为所述稳压器供电;
    当所述电源转换电路的输出电压位于第二预设范围内时,所述电压选择电路选择所述第二供电电源为所述稳压器供电;
    所述第一预设范围和所述第二预设范围是根据所述DAC所需的工作电压以及所述稳压器的输入和输出之间的压差确定的。
  3. 如权利要求1所述的电路,其特征在于,所述电压选择电路包括电压比较器、第一开关电路和第二开关电路;
    所述第一开关电路连接于所述电压比较器的反相输入端和所述稳压器的输入端之间;
    所述第二开关电路连接于所述第二供电电源和所述稳压器的输入端之间;
    所述电压比较器的正相输入端用于接收一个设定的电压阈值;所述电压比较器的反相输入端与所述电源转换电路连接;所述电压比较器的输出端分别与所述第一开关电路的控制端和所述第二开关电路的控制端连接;
    当所述电压比较器输出低电平时,所述第一开关电路闭合,使所述电源转换电路为所述稳压器供电;
    当所述电压比较器输出高电平时,所述第二开关电路闭合;使所述第二供电电源为所述稳压器供电。
  4. 如权利要求1所述的电路,其特征在于,所述电源转换电路包括降压型直流-直流变换器BUCK和电荷泵CP;
    所述BUCK的一端用于与所述第一供电电源连接;另一端与所述CP和所述PA连接;
    所述CP的一端与所述BUCK连接,另一端与所述PA连接。
  5. 如权利要求1所述的电路,其特征在于,所述稳压器为低压差线性稳压器LDO。
  6. 如权利要求1所述的电路,其特征在于,所述第一供电电源与所述第二供电电源为同一供电电源。
  7. 一种供电电路,用于为音频播放设备中的数模转换器DAC和功率放大器PA供电,其特征在于,包括电源转换电路和稳压器;其中:
    所述稳压器,一端用于连接所述DAC;另一端连接所述电源转换电路,用于输出稳定电压为所述DAC供电;
    所述电源转换电路,一端用于连接所述PA和所述稳压器,另一端用于连接供电电源,用于根据所述PA的输出功率,将所述供电电源的电压转换为能够提供所述输出功率的输出电压为所述PA和所述稳压器供电。
  8. 一种音频播放设备,其特征在于,包括数模转换器DAC、功率放大器PA以及如权利要求1-7中任一项所述的供电电路。
PCT/CN2017/076191 2016-11-22 2017-03-09 一种供电电路及音频播放设备 WO2018094910A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/462,698 US10998858B2 (en) 2016-11-22 2017-03-09 Power supply circuit and audio play device
CN201780047735.1A CN109565261B (zh) 2016-11-22 2017-03-09 一种供电电路及音频播放设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611048663.6 2016-11-22
CN201611048663 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018094910A1 true WO2018094910A1 (zh) 2018-05-31

Family

ID=62194803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076191 WO2018094910A1 (zh) 2016-11-22 2017-03-09 一种供电电路及音频播放设备

Country Status (3)

Country Link
US (1) US10998858B2 (zh)
CN (1) CN109565261B (zh)
WO (1) WO2018094910A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300544B1 (ko) * 2017-04-07 2021-09-09 (주)드림어스컴퍼니 모듈형 신호 변환 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299620A (zh) * 2010-06-24 2011-12-28 安凯(广州)微电子技术有限公司 一种电压转换电路及手持设备
CN102545568A (zh) * 2012-01-09 2012-07-04 华为终端有限公司 终端电源电路及多模数据卡
CN203435076U (zh) * 2013-08-28 2014-02-12 广州视源电子科技股份有限公司 一种电视板卡的电源电路
EP2744103A1 (en) * 2012-12-13 2014-06-18 Dialog Semiconductor GmbH Boosted differential Class H Amplifier
CN104518743A (zh) * 2013-09-27 2015-04-15 亚德诺半导体集团 Hd类功率放大器
CN104754484A (zh) * 2013-12-27 2015-07-01 Gn瑞声达A/S 具有可切换电源电压的听力设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201039005Y (zh) * 2007-05-31 2008-03-19 杭州华三通信技术有限公司 一种电源转换电路
US7863841B2 (en) * 2007-06-15 2011-01-04 Paolo Menegoli Class H drive
US8391094B2 (en) * 2009-02-10 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Memory circuits, systems, and operating methods thereof
CN102075146B (zh) 2009-10-20 2013-07-10 成都芯源系统有限公司 G类音频放大系统及方法
CN202206350U (zh) 2011-07-09 2012-04-25 杭州谱声电子有限公司 H类专业功率放大器
US8742843B2 (en) * 2011-12-19 2014-06-03 Intel Corporation Power management in transceivers
EP2840694A1 (en) * 2013-08-20 2015-02-25 St Microelectronics S.A. Multiple level charge pump generating four voltages with four distinctive levels, and method for the same
KR102275497B1 (ko) 2014-10-20 2021-07-09 삼성전자주식회사 전원 경로 제어기를 포함하는 시스템 온 칩 및 전자 기기
CN105955439A (zh) * 2016-05-31 2016-09-21 浪潮电子信息产业股份有限公司 一种供电的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299620A (zh) * 2010-06-24 2011-12-28 安凯(广州)微电子技术有限公司 一种电压转换电路及手持设备
CN102545568A (zh) * 2012-01-09 2012-07-04 华为终端有限公司 终端电源电路及多模数据卡
EP2744103A1 (en) * 2012-12-13 2014-06-18 Dialog Semiconductor GmbH Boosted differential Class H Amplifier
CN203435076U (zh) * 2013-08-28 2014-02-12 广州视源电子科技股份有限公司 一种电视板卡的电源电路
CN104518743A (zh) * 2013-09-27 2015-04-15 亚德诺半导体集团 Hd类功率放大器
CN104754484A (zh) * 2013-12-27 2015-07-01 Gn瑞声达A/S 具有可切换电源电压的听力设备

Also Published As

Publication number Publication date
CN109565261B (zh) 2021-02-23
US20200076371A1 (en) 2020-03-05
US10998858B2 (en) 2021-05-04
CN109565261A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
KR101118867B1 (ko) 전력 증폭 회로, dc-dc 컨버터, 피크 홀딩 회로, 및 피크 홀딩 회로를 포함하는 출력 전압 제어 회로
US10284090B2 (en) Combined boost converter and power converter
US11463008B2 (en) Decreasing output droop in a power converter via an energy storage capacitor
US10848061B2 (en) Switching power converter
JP5192481B2 (ja) スイッチング増幅器にバイアスを供給する高効率コンバータ
US20170207755A1 (en) Switched mode converter with variable common mode voltage buffer
CN114424440A (zh) 开关功率转换器中的能量的有效使用
US11437935B2 (en) High efficiency transducer driver
US9209757B1 (en) Energy-efficient personal audio device output stage with signal polarity-dependent power supply update rate
CN109983691B (zh) 电荷泵输入电流限制器
CN116389976B (zh) 提高外放声音效果的方法及相关装置
US20180376252A1 (en) High efficiency transducer driver
US9301046B1 (en) Systems and methods for minimizing distortion in an audio output stage
WO2018094910A1 (zh) 一种供电电路及音频播放设备
CN110881158B (zh) 集成电路装置和音频播放装置
US9225238B2 (en) Multiple level charge pump generating voltages with distinct levels and associated methods
US10790749B2 (en) Switched-mode power supply with energy storage
KR20230125219A (ko) 입력 전압 피드포워드 및 출력 부하 피드포워드를 갖는입력 전류 조절 및 액티브-전력 필터를 위한 방법
US20180234055A1 (en) Boosted amplifier with current limiting
Wen et al. A load-adaptive class-G headphone amplifier with supply-rejection bandwidth enhancement technique
KR20210135847A (ko) 벅 컨버터를 포함하는 오디오 전자 장치 및 그의 동작 방법
CN221081536U (zh) 一种低功耗蓝牙音频播放系统
CN116782092B (zh) 一种音频功放稳压控制电路、芯片和音频功放装置
WO2022056930A1 (zh) 一种电压调节电路、设备及方法
WO2023093156A1 (zh) 一种电源变换电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875040

Country of ref document: EP

Kind code of ref document: A1