WO2023093067A1 - 燃料电池系统及其运行方法 - Google Patents
燃料电池系统及其运行方法 Download PDFInfo
- Publication number
- WO2023093067A1 WO2023093067A1 PCT/CN2022/104455 CN2022104455W WO2023093067A1 WO 2023093067 A1 WO2023093067 A1 WO 2023093067A1 CN 2022104455 W CN2022104455 W CN 2022104455W WO 2023093067 A1 WO2023093067 A1 WO 2023093067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- supply system
- oxygen supply
- auxiliary
- fuel cell
- air compressor
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000001301 oxygen Substances 0.000 claims abstract description 127
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 127
- 238000001514 detection method Methods 0.000 claims description 18
- 238000009423 ventilation Methods 0.000 claims description 16
- 238000011017 operating method Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04432—Pressure differences, e.g. between anode and cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present application relates to the technical field of fuel cells, in particular, to a fuel cell system and its operating method.
- the fuel cell system is a power generation system composed of a battery stack as the core, combined with a fuel supply system, an oxygen supply system, a water/heat management system, and a control system.
- the function of the oxygen supply system is to provide the oxygen required for the reaction, which can be pure oxygen or air.
- the fuel cell system is used with a high-voltage power supply, and the high-voltage power supply supplies power to the blower or air compressor, so that the blower or air compressor delivers air to the stack.
- the fuel cell system stores part of the electricity in the high-voltage power supply, so that the high-voltage power supply provides a power source for other components in the vehicle system.
- the high-voltage power supply fails, making the entire vehicle system unable to operate.
- the present application provides a fuel cell system and its operation method to solve the problem in the prior art that the vehicle system cannot operate after a high-voltage power supply fails.
- a fuel cell system which includes: an electric stack; a low-voltage power supply and an auxiliary oxygen supply system electrically connected to each other, and the auxiliary oxygen supply system is used to feed air into the electric stack; High-voltage power supply and main oxygen supply system, the main oxygen supply system is used to feed air into the stack, the stack is electrically connected to the main oxygen supply system, and the main oxygen supply system and the auxiliary oxygen supply system are set in parallel; the fuel supply system, fuel supply The system is used to supply fuel to the stack; the controller is electrically connected to the auxiliary oxygen supply system and the main oxygen supply system respectively, and the controller is used to control the operation of the auxiliary oxygen supply system and the main oxygen supply system.
- At least one of the high-voltage power supply and the stack is electrically connected to the low-voltage power supply to supply power to the low-voltage power supply.
- the fuel cell system further includes: a pressure detection part electrically connected to the controller, the pressure detection part is used to detect the pressure value of the electric stack; a voltage detection part is electrically connected to the controller, and the voltage detection part is used to detect the pressure value of the electric stack Voltage data; wherein, the controller controls the auxiliary oxygen supply system and the main oxygen supply system to work according to the pressure value and voltage data.
- an operating method of a fuel cell system the fuel cell system is the above-mentioned fuel cell system, and the operating method includes: step 1, starting the auxiliary oxygen supply system through the low-voltage power supply of the fuel cell system, to feed air into the stack; step 2, feed fuel into the stack through the fuel supply system of the fuel cell system; step 3, start the main oxygen supply system when the working parameters of the stack reach the preset standard; step 4, When the main oxygen supply system meets the operating conditions, turn off the auxiliary oxygen supply system.
- the preset standard includes the pressure value of the fuel in the electric stack, the average voltage value of the multiple battery cells of the electric stack, and the lowest voltage value among the multiple battery cells of the electric stack.
- Step 3 specifically includes: Step 31 , to obtain the pressure value, the average voltage value of multiple battery cells of the electric stack and the lowest voltage value among the multiple battery cells of the electric stack; Step 32, when the pressure value reaches the first preset value, the average voltage value and the minimum When the voltage difference is lower than the second preset value and the lowest voltage value reaches the third preset value, the main oxygen supply system is started.
- the auxiliary oxygen supply system includes an auxiliary air compressor and an auxiliary ventilation pipeline connected to each other.
- the operation method further includes: step 5, after the auxiliary air compressor works for a first preset time, obtain the auxiliary The speed of the air compressor, when the speed of the auxiliary air compressor reaches the fourth preset value, perform step 2; when the speed of the auxiliary air compressor does not reach the fourth preset value, the auxiliary air compressor stops working.
- the auxiliary air compressor has a maximum speed Vauxiliary max , and the rotational speed of the auxiliary air compressor is Vauxiliary .
- step 5 after the auxiliary air compressor works for the first preset time, when Vauxiliary ⁇ 85%* Vauxiliary When max , go to step 2.
- the electric stack has a rated output power Pe and an actual output power P.
- the operation method further includes: step 6, judging whether the high-voltage power supply is working normally, and if the high-voltage power supply cannot work normally, then controlling the actual output power of the electric stack. Output power so that the actual output power satisfies 50%*Pe ⁇ P ⁇ 70%*Pe.
- the main oxygen supply system includes a main air compressor and a main ventilation pipeline connected to each other.
- Step 4 specifically includes: after the main oxygen supply system works for a second preset time, obtain the rotation speed of the main air compressor, when the main air compressor When the rotational speed of the main air compressor reaches the fifth preset value, the auxiliary oxygen supply system is turned off; when the rotational speed of the main air compressor does not reach the fifth preset value, the main oxygen supply system and the auxiliary oxygen supply system stop working.
- the first preset value is between 1.1bar and 1.3bar
- the second preset value is between 0.02V and 0.04V
- the third preset value is 0.8V.
- the auxiliary oxygen supply system can be activated through the low-voltage power supply to feed air into the stack to ensure that the stack has power output until the output power can start the main oxygen supply system , and then start the main oxygen supply system through the stack. After starting the main oxygen supply system, turn off the auxiliary oxygen supply system to enable the stack to achieve high voltage and stable output.
- the low-voltage power supply and the auxiliary oxygen supply system make the whole vehicle still capable of running even if the high-voltage power supply fails, thereby ensuring the reliability of the whole vehicle.
- Figure 1 shows a schematic diagram of the gas path structure of the auxiliary oxygen supply system and the main oxygen supply system of the fuel cell system provided according to the present application;
- Fig. 2 shows a flow chart of Embodiment 1 of the operation method of the fuel cell system provided by the present application
- Fig. 3 shows a specific flowchart of step 3 of the operation method of the fuel cell system provided by the present application
- Fig. 4 shows a flow chart of Embodiment 2 of the operation method of the fuel cell system provided by the present application
- Fig. 5 shows a flow chart of Embodiment 3 of the operation method of the fuel cell system provided by the present application
- Fig. 6 shows a specific flowchart of step 4 of the operation method of the fuel cell system provided by the present application
- Fig. 7 shows a flow chart of Embodiment 4 of the operation method of the fuel cell system provided by the present application.
- Main oxygen supply system 41. Main air compressor; 42. Main ventilation pipeline; 421. Flow switching valve; 422. Air filter; 423. Flow sensor; 50. Communication pipeline; 51. Intercooler ; 52. Humidifier;
- the present application provides a fuel cell system, which includes an electric stack 10, a low-voltage power supply 20 and an auxiliary oxygen supply system 30 electrically connected to each other, a high-voltage power supply and a main oxygen supply system 40 electrically connected to each other, and a controller and fuel supply system.
- the auxiliary oxygen supply system 30 is used to feed air into the cell stack 10 .
- the main oxygen supply system 40 is used to feed air into the stack 10
- the stack 10 is electrically connected to the main oxygen supply system 40
- the main oxygen supply system 40 and the auxiliary oxygen supply system 30 are arranged in parallel.
- the fuel supply system is used to supply fuel to the cell stack 10 .
- the controller is electrically connected to the auxiliary oxygen supply system 30 and the main oxygen supply system 40 respectively, and the controller is used to control the operation of the auxiliary oxygen supply system 30 and the main oxygen supply system 40 .
- the arrow on the solid line in the figure represents the direction of air transport, and the arrow on the dotted line represents the direction of current transmission.
- the controller transmits a signal to the low-voltage power supply 20, and starts the auxiliary oxygen supply system 30 through the low-voltage power supply 20, so as to pass air into the electric stack 10 to ensure that the electric stack 10 has a power output until the output power can start the main oxygen supply system 40, and then start the main oxygen supply system 40 through the electric stack 10.
- the auxiliary oxygen supply system 30 is turned off, so that the electric stack 10 can realize high-voltage stable output.
- the arrangement of the low-voltage power supply 20 and the auxiliary oxygen supply system 30 enables the entire vehicle to still have operating capability in the event of a failure of the high-voltage power supply, thereby ensuring the reliability of the entire vehicle.
- At least one of the high-voltage power supply and the battery stack 10 is electrically connected to the low-voltage power supply 20 to supply power to the low-voltage power supply 20 .
- the high-voltage power supply is electrically connected to the low-voltage power supply 20 to store electricity for the low-voltage power supply 20 .
- Such setting can ensure that the low-voltage power supply 20 can normally start the auxiliary oxygen supply system 30 when the high-voltage power supply fails.
- the battery stack 10 is electrically connected to the low-voltage power supply 20 and can store electricity for the low-voltage power supply 20 .
- the battery stack 10 can be used to replenish electricity for the low-voltage power supply 20 to ensure the electricity of the low-voltage power supply 20 .
- both the high-voltage power supply and the battery stack 10 are electrically connected to the low-voltage power supply 20 , thus providing double protection for the storage of electricity in the low-voltage power supply 20 , thereby ensuring that the low-voltage power supply 20 can start the auxiliary oxygen supply system 30 smoothly.
- the low-voltage power supply 20 is a 12V battery
- the high-voltage power supply is a power battery
- the stack 10 is electrically connected to the power battery to store electricity in the power battery.
- the main oxygen supply system 40 can be selected to be directly activated by the power battery, so that the main oxygen supply system 40 can input air into the electric stack 10 to ensure the normal operation of the electric stack 10 . It is also possible to choose to start the auxiliary oxygen supply system 30 through the electric low-voltage power supply 20, so that the auxiliary oxygen supply system 30 can input air into the electric stack 10, and when the output power of the electric stack 10 is enough to start the main oxygen supply system 40, it will pass through the electric stack 10 The main oxygen supply system 40 is activated.
- the above settings make it possible to start the main oxygen supply system 40 through the power battery when the battery or the auxiliary oxygen supply system 30 fails during the specific driving process to ensure the power output of the electric stack 10; when the power battery fails,
- the auxiliary oxygen supply system 30 can be activated by the battery to ensure the power output of the electric stack 10 .
- double guarantees can be provided for the normal operation of the fuel cell system, thereby ensuring the reliability of the vehicle operation.
- the battery stack 10 can store power to the power battery in a timely manner, so that the vehicle does not need to use a charging pile to charge the power battery separately, which improves the convenience of power battery storage.
- the fuel cell system cooperates with the power battery, which has the advantages of low power, low energy consumption and environmental protection.
- the fuel cell system also includes a pressure detection element and a voltage detection element.
- the pressure detection part is electrically connected to the controller, and the pressure detection part is used to detect the pressure value of the electric stack 10; the voltage detection part is electrically connected to the controller, and the voltage detection part is used to detect the voltage data of the electric stack 10.
- the controller controls the auxiliary oxygen supply system 30 and the main oxygen supply system 40 to work according to the pressure value and voltage data.
- the pressure detection part is used to detect the pressure of the fuel, and the pressure detection part is electrically connected to the controller, and the voltage detection part is used to detect the average voltage value of a plurality of battery cells of the electric stack 10 and the plurality of batteries of the electric stack 10 The lowest voltage value in the monomer, and the voltage detection part is electrically connected with the controller.
- the auxiliary oxygen supply system 30 includes an auxiliary air compressor 31 and an auxiliary ventilation pipeline 32 connected to each other, and the main oxygen supply system 40 includes a main air compressor 41 and a main ventilation pipeline 42 connected to each other.
- the air output flow of the auxiliary air compressor 31 meets the flow requirement of 10% of the rated power of the electric stack 10 .
- the above setting enables the auxiliary air compressor 31 to start the electric stack 10, and the auxiliary air compressor 31 of this specification is small in size, which ensures the compact structure of the entire fuel cell system.
- the fuel cell system further includes a flow switching valve 421, which is arranged between the auxiliary ventilation pipeline 32 and the main ventilation pipeline 42, and the main oxygen supply system 40 and the auxiliary oxygen supply system 30 pass through the flow switching valve. 421 is set in parallel, and the controller is electrically connected to the flow switching valve 421 to realize switching of the working modes of the auxiliary oxygen supply system 30 and the main oxygen supply system 40 .
- An air filter 422 is arranged on the main ventilation pipeline 42, and the air filter 422 is located on the side of the main air compressor 41 away from the flow switching valve 421. At the same time, the auxiliary ventilation pipeline 32 is also communicated with the air filter 422 set up. The setting of the air filter 422 can absorb the gas harmful to the fuel cell system in the air, prevent the harmful gas in the air from causing damage to the fuel cell system, and prolong the service life of the fuel cell system.
- an air flow sensor 423 is also provided on the main ventilation pipeline 42, the flow sensor 423 is located between the main air compressor 41 and the air filter 422, and the flow sensor 423 is electrically connected to the controller.
- the setting of the flow sensor 423 can monitor and control the flow of air input into the electric stack 10 through the main air compressor 41, and finally control the output power of the electric stack 10 to ensure the controllability of the output power of the electric stack 10 .
- the flow switching valve 421 is a three-way valve
- the fuel cell system further includes a communication pipeline 50 , one end of the communication pipeline 50 communicates with the flow switching valve 421 , and the other end of the communication pipeline 50 communicates with the electric stack 10 .
- the fuel cell system further includes an intercooler 51 disposed between the flow switching valve 421 and the stack 10 .
- the setting of the intercooler 51 can ensure that the temperature of the air input into the stack 10 is consistent with the temperature required for the electrochemical reaction inside the stack 10, so that the air input into the stack 10 does not need to be in contact with the inside of the stack 10.
- the heat exchange is carried out in an environment, thereby ensuring the normal progress of the electrochemical reaction and ensuring the stability of the output power of the stack 10 .
- the fuel cell system further includes a humidifier 52 , the humidifier 52 is arranged on the communication pipeline 50 , and the humidifier 52 is located between the intercooler 51 and the electric stack 10 .
- the relative humidity of the air passing through the humidifier 52 is 80%.
- the setting of the humidifier 52 makes the air entering the electric stack 10 have a certain humidity, so as to ensure the normal progress of the electrochemical reaction in the electric stack 10, thereby ensuring the normal operation of the fuel cell system.
- the cell stack 10 has an air inlet 11 and an air outlet 12 , and the air outlet 12 is provided in communication with the humidifier 52 .
- the fuel cell system further includes a mixing chamber 60 , and the humidifier 52 is communicated with the mixing chamber 60 .
- the cell stack 10 has a fuel inlet and a fuel outlet, and the fuel outlet communicates with the mixing chamber 60 .
- the fuel is hydrogen, and the above-mentioned setting makes the hydrogen discharged into the mixing chamber 60 from the fuel outlet and the air discharged into the mixing chamber 60 from the air outlet 12 mix in the mixing chamber 60, so that the hydrogen meets the discharge direction. Atmospheric requirements to ensure the safety of the fuel cell system.
- the fuel cell system further includes an air circuit back pressure valve 70 , and the air circuit back pressure valve 70 is arranged between the humidifier 52 and the mixing chamber 60 .
- the setting of the air circuit back pressure valve 70 can control the flow of air discharged into the dynamic mixing chamber 60 to ensure the mixing effect of air and hydrogen in the mixing chamber 60 and further ensure the safety of the fuel cell system.
- Embodiment 1 of the present application provides an operation method of a fuel cell system
- the fuel cell system is the above-mentioned fuel cell system
- the operation method includes:
- Step 1 start the auxiliary oxygen supply system 30 through the low-voltage power supply 20 of the fuel cell system to feed air into the electric stack 10;
- Step 2 feed fuel into the stack 10 through the fuel supply system of the fuel cell system;
- Step 3 when the working parameters of the electric stack 10 reach the preset standard, start the main oxygen supply system 40;
- Step 4 when the main oxygen supply system 40 meets the operating conditions, the auxiliary oxygen supply system 30 is turned off.
- the electric stack 10 is purged through the auxiliary oxygen supply system 30 , and fuel is fed into the electric stack 10 after purging for a period of time.
- the above settings can provide a reaction environment for the reaction of air and fuel, and ensure the normal progress of the electrochemical reaction.
- the preset standard includes the pressure value of the fuel in the electric stack 10, the average voltage value of the multiple battery cells of the electric stack 10, and the lowest voltage value among the multiple battery cells of the electric stack 10, step 3 specifically include:
- Step 31 obtaining the pressure value, the average voltage value of the multiple battery cells of the electric stack 10, and the lowest voltage value among the multiple battery cells of the electric stack 10;
- Step 32 when the pressure value reaches the first preset value, the difference between the average voltage value and the minimum voltage value is lower than the second preset value, and the minimum voltage value reaches the third preset value, start the main oxygen supply system 40 .
- the oxygen in the air and the fuel undergo an electrochemical reaction, so that the battery cells in the electric stack 10 have voltage.
- the pressure value in the stack 10 of the fuel cell, the average voltage value of multiple battery cells in the stack 10 and the lowest voltage value of multiple battery cells in the stack 10 can be fed back to the controller in real time.
- the output power of the electric stack 10 can reach Oxygen system 40 power. After the electric stack 10 can start the main oxygen supply system 40 normally, air is delivered to the electric stack 10 through the main oxygen supply system 40, so that the output power of the electric stack 10 ensures that the vehicle has limp capability.
- the first preset value is between 1.1bar and 1.3bar
- the second preset value is between 0.02V and 0.04V
- the third preset value is 0.8V.
- the first preset value can be set to 1.1 bar, 1.2 bar, 1.3 bar.
- the second preset value can be set to 0.02V, 0.03V, 0.04V
- the third preset value can be set to 0.8V, 0.85V.
- the first preset value is set to 1.2 bar
- the second preset value is set to 0.03V
- the third preset value is set to 0.8V.
- the auxiliary oxygen supply system 30 includes an auxiliary air compressor 31 and an auxiliary ventilation pipeline 32 connected to each other. As shown in FIG. The reason is: before step 2 is executed, the operation method also includes step 5, and step 5 is specifically: after the auxiliary air compressor 31 works for the first preset time, obtain the rotational speed of the auxiliary air compressor 31, when the auxiliary air compressor 31 When the rotation speed of the auxiliary air compressor 31 reaches the fourth preset value, step 2 is executed; when the rotation speed of the auxiliary air compressor 31 does not reach the fourth preset value, the auxiliary air compressor 31 stops working. During actual operation, there may be a failure of the auxiliary air compressor 31 or failure of the auxiliary ventilation pipeline 32. The above instructions can promptly determine whether the auxiliary air compressor 31 is malfunctioning, so as to adjust the solution.
- the auxiliary air compressor 31 has a maximum speed Vaux max , and the speed of the auxiliary air compressor 31 is Vaux .
- step 5 after the auxiliary air compressor 31 works for the first preset time, when Vaux ⁇ 85% *When V auxiliary max , go to step 2.
- the auxiliary air compressor 31 is started, and after 10 seconds of starting, if the rotational speed of the auxiliary air compressor 31 has not reached 85% of the maximum rotational speed of the auxiliary air compressor 31, then it is proved that the auxiliary air compressor 31 breaks down. At this point the controller receives the signal and stops the startup procedure.
- the controller After starting the auxiliary air compressor 31 for 10 seconds, if the rotational speed of the auxiliary air compressor 31 has reached 85% of the maximum rotational speed of the auxiliary air compressor 31, it proves that the auxiliary air compressor 31 is operating normally, and the starting procedure is continued.
- the above judging procedure has fewer steps, so that the controller can judge whether the auxiliary air compressor 31 is faulty in a short period of time, so that the driver can quickly adjust the solution to the fault.
- the maximum rotational speed of the auxiliary air compressor 31 may specifically be 2000 rpm.
- Embodiment 3 of the present application provides a fuel cell system operating method, which differs from Embodiment 2 in that: the electric stack 10 has a rated output power Pe and an actual output power P, and in step 4 Afterwards, the operation method further includes: step 6, judging whether the high-voltage power supply is working normally, and if the high-voltage power supply is not working normally, then controlling the actual output power of the electric stack 10 so that the actual output power satisfies 50%*Pe ⁇ P ⁇ 70%* Pe.
- the electric stack 10 has a rated output power. When the high-voltage power supply fails, the output power of the fuel cell system no longer acts on the high-voltage power supply.
- the rated power of the stack 10 may specifically be 130kw.
- the output power of the electric stack 10 is controlled by the flow of air and fuel delivered to the electric stack 10 .
- the flow rate of the air delivered to the electric stack 10 is controlled by the flow sensor 423 to adjust the actual output power of the electric stack 10 .
- the actual power of the electric stack 10 can be set to 50%, 60%, 70% of the rated power of the electric stack 10, in the present embodiment, the actual power of the electric stack 10 is set to 60% of the rated power of the electric stack 10 .
- the output power change rate of the fuel cell system is set between 5kw/s and 40kw/s. Specifically, the output power change rate of the fuel cell system can be set to 5kw/s, 15kw/s, 25kw/s, 40kw/s.
- the rate of change of the output power of the fuel cell system is lower than 5kw/s, it takes a long time to start the main oxygen supply system 40, which is not conducive to the quick start of the vehicle; when the rate of change of the output power of the fuel cell system is higher than 40kw/s s, the stability of the output power of the fuel cell is poor.
- the rate of change of the output power of the fuel cell system is set within the above range, which can not only ensure the quick start of the vehicle, but also ensure the stability of the fuel cell system operation.
- the output power of the fuel cell system is set to 25kw/s.
- the main oxygen supply system 40 includes a main air compressor 41 and a main ventilation pipeline 42 connected to each other.
- Step 4 specifically includes: after the main oxygen supply system 40 works for a second preset time, obtain the main air pressure
- the auxiliary oxygen supply system 30 is closed; when the rotating speed of the main air compressor 41 does not reach the fifth preset value, the main oxygen supply system 40 and the The auxiliary oxygen supply system 30 stops working.
- the speed of the main air compressor 41 does not reach the fifth preset value at the second preset time, it proves that the main air compressor 41 has failed.
- the controller receives the signal, and stops the subsequent start-up procedure of the electric stack 10; when the speed of the main air compressor 41 reaches the fifth preset value at the second preset time, it proves that the main air compressor 41 has not If a fault occurs, the controller receives the signal and continues the start-up procedure of the electric stack 10 .
- the above instructions can promptly and quickly determine whether the main air compressor 41 is faulty, so that the driver can adjust the solution conveniently. Specifically, when the stack 10 continues to output power to the main air compressor 41 for 10 seconds, and the speed of the main air compressor 41 reaches the minimum speed requirement of the main air compressor 41, it proves that the main air compressor 41 is not faulty, Close the auxiliary air compressor 31.
- the electric stack 10 continues to output power to the main air compressor 41 for 10 seconds, and the speed of the main air compressor 41 does not reach the minimum speed requirement of the main air compressor 41, it proves that the main air compressor 41 is faulty, and the electric stack 10 is terminated.
- the minimum rotational speed of the main air compressor 41 is 1000rpm.
- Embodiment 4 of the present application provides a method for operating a fuel cell system, and its specific scheme is as follows:
- Step 1 start the auxiliary air compressor 31 to feed fuel into the electric stack 10;
- Step 5 after the auxiliary air compressor 31 works for 10 seconds, judge whether the rotational speed of the auxiliary air compressor 31 reaches the preset value, and when the rotational speed of the auxiliary air compressor 31 reaches 85% of its maximum rotational speed, then perform step 2; If the rotational speed of the auxiliary air compressor 31 does not reach 85% of its maximum rotational speed, then stop the auxiliary air compressor 31 and terminate the start-up procedure;
- Step 2 obtain the pressure value of the electric stack 10, the average voltage value of a plurality of single cells of the electric stack 10, and the lowest voltage value among the plurality of battery cells of the electric stack 10, until the pressure value of the fuel of the electric stack 10 reaches 1.2bar, and the difference between the average voltage value and the minimum voltage value is less than 0.03V, and after the minimum voltage value reaches 0.8V, start the main air compressor 41;
- Step 3 after the main air compressor 41 works for 10 seconds, judge whether the rotating speed of the main air compressor 41 reaches the preset value, if the rotating speed of the main air compressor 41 reaches 1000rpm, then perform step 4; if the main air compressor 41 If the rotating speed does not reach 1000rpm, then stop the main air compressor 41 and the auxiliary air compressor 31, and terminate the start-up procedure;
- Step 4 close the auxiliary air compressor 31;
- Step 6 Determine whether the power battery is working normally.
- the power battery is working normally, set the actual output power of the electric stack 10 to the rated power of the electric stack 10, and the electric stack 10 supplies power to the power battery and the storage battery; when the power battery fails , the actual output power of the electric stack 10 is set to 60% of the rated power of the electric stack 10, and the electric stack 10 supplies power to the battery.
- the electric stack 10 starts under the action of the auxiliary oxygen supply system 30 and has output power. After the high-voltage power supply fails, the main air compressor 41 can be started through the electric stack, so that the main air compressor 41 can Air is input into the electric stack 10, and the normal operation of the electric stack 10 is maintained, so as to ensure that the vehicle is capable of running.
- orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
- spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本申请提供了一种燃料电池系统及其运行方法,其包括电堆;相互电连接的低压电源和辅助供氧系统,辅助供氧系统用于向电堆通入空气;相互电连接的高压电源和主供氧系统,主供氧系统用于向电堆通入空气,电堆与主供氧系统电连接,且主供氧系统和辅助供氧系统并联设置;燃料供给系统,燃料供给系统用于向电堆供给燃料;控制器,控制器分别与辅助供氧系统与主供氧系统电连接,控制器用于控制辅助供氧系统和主供氧系统工作。通过本申请提供的技术方案,可以解决现有技术中的高压电源出现故障后,整车系统无法运行的问题。
Description
本申请要求于2021年11月23日提交至中国国家知识产权局,申请号为202111398236.1、发明名称为“燃料电池系统及其运行方法”的专利申请的优先权。
本申请涉及燃料电池技术领域,具体而言,涉及一种燃料电池系统及其运行方法。
燃料电池系统是以电池电堆为核心,结合燃料供给系统、氧气供给系统、水/热管理系统、控制系统等组成的一种发电系统。其中,氧气供给系统的作用是提供反应所需要的氧,其可以是纯氧,也可以是空气。通常情况下,燃料电池系统配合高压电源使用,通过高压电源为送风机或者空压机进行供电,以使送风机或者空压机为电堆输送空气。当燃料电池系统正常运行后,燃料电池系统将部分电量存储至高压电源,使得高压电源为整车系统中的其他元件提供动力源。但是,在实际使用的过程中,可能存在高压电源出现故障的情况,使得整车系统无法运行。
发明内容
本申请提供一种燃料电池系统及其运行方法,以解决现有技术中的高压电源出现故障后,整车系统无法运行的问题。
根据本申请的一个方面,提供了一种燃料电池系统,其包括:电堆;相互电连接的低压电源和辅助供氧系统,辅助供氧系统用于向电堆通入空气;相互电连接的高压电源和主供氧系统,主供氧系统用于向电堆通入空气,电堆与主供氧系统电连接,且主供氧系统和辅助供氧系统并联设置;燃料供给系统,燃料供给系统用于向电堆供给燃料;控制器,控制器分别与辅助供氧系统与主供氧系统电连接,控制器用于控制辅助供氧系统和主供氧系统工作。
进一步地,高压电源和电堆的至少一个与低压电源电连接,以对低压电源供电。
进一步地,燃料电池系统还包括:压力检测件,与控制器电连接,压力检测件用于检测电堆的压力值;电压检测件,与控制器电连接,电压检测件用于检测电堆的电压数据;其中,控制器根据压力值和电压数据控制辅助供氧系统和主供氧系统工作。
根据本申请的另一方面,提供了一种燃料电池系统的运行方法,燃料电池系统为上述中的燃料电池系统,运行方法包括:步骤1,通过燃料电池系统的低压电源启动辅助供氧系统,以向电堆通入空气;步骤2,通过燃料电池系统的燃料供给系统向电堆通入燃料;步骤3,当电堆的工作参数达到预设标准后,启动主供氧系统;步骤4,当主供氧系统满足运行条件时,关闭辅助供氧系统。
进一步地,预设标准包括燃料在电堆内的压力值、电堆的多个电池单体的平均电压值以及电堆的多个电池单体中的最低电压值,步骤3具体包括:步骤31,获取压力值、电堆的多个电池单体的平均电压值以及电堆的多个电池单体中的最低电压值;步骤32,当压力值达到第一预设值、平均电压值与最低电压值的差值低于第二预设值且最低电压值达到第三预设值时,启动主供氧系统。
进一步地,辅助供氧系统包括相互连接的辅助空压机和辅助通气管路,在执行步骤2之前,运行方法还包括:步骤5,在辅助空压机工作第一预设时间后,获取辅助空压机的转速,当辅助空压机的转速达到第四预设值时,执行步骤2;当辅助空压机的转速未达到第四预设值时,辅助空压机停止工作。
进一步地,辅助空压机具有最大转速V
辅max,辅助空压机的转速为V
辅,步骤5中,在辅助空压机工作第一预设时间后,当V
辅≥85%*V
辅max时,执行步骤2。
进一步地,电堆具有额定输出功率Pe和实际输出功率P,在执行步骤4之后,运行方法还包括:步骤6,判断高压电源是否正常工作,若高压电源无法正常工作,则控制电堆的实际输出功率,以使实际输出功率满足50%*Pe≤P≤70%*Pe。
进一步地,主供氧系统包括相互连接的主空压机和主通气管路,步骤4具体包括:在主供氧系统工作第二预设时间后,获取主空压机的转速,当主空压机的转速达到第五预设值时,则关闭辅助供氧系统;当主空压机的转速未达到第五预设值时,主供氧系统和辅助供氧系统停止工作。
进一步地,第一预设值为1.1bar至1.3bar之间,第二预设值为0.02V至0.04V之间,第三预设值为0.8V。
应用本申请的技术方案,当高压电源出现故障时,可通过低压电源启动辅助供氧系统,以向电堆中通入空气,保证电堆具有功率输出,直至该输出功率能够启动主供氧系统,再通过电堆启动主供氧系统。启动主供氧系统后,关闭辅助供氧系统,以使电堆实现高压稳定输出。与传统的技术方案相比,低压电源和辅助供氧系统的设置,使得在高压电源出现故障的情况下,整车仍然具备运行能力,进而能够保证整车的可靠性。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请提供的燃料电池系统的辅助供氧系统和主供氧系统配合的气路结构示意图;
图2示出了本申请提供的燃料电池系统的运行方法的实施例一的流程图;
图3示出了本申请提供的燃料电池系统的运行方法的步骤3的具体流程图;
图4示出了本申请提供的燃料电池系统的运行方法的实施例二的流程图;
图5示出了本申请提供的燃料电池系统的运行方法的实施例三的流程图;
图6示出了本申请提供的燃料电池系统的运行方法的步骤4的具体流程图;
图7示出了本申请提供的燃料电池系统的运行方法的实施例四的流程图。
其中,上述附图包括以下附图标记:
10、电堆;11、空气入口;12、空气出口;
20、低压电源;
30、辅助供氧系统;31、辅助空压机;32、辅助通气管路;
40、主供氧系统;41、主空压机;42、主通气管路;421、流量切换阀;422、空气滤清器;423、流量传感器;50、连通管路;51、中冷器;52、加湿器;
60、混合室;70、空气回路背压阀。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请提供一种燃料电池系统,其包括电堆10、相互电连接的低压电源20和辅助供氧系统30、相互电连接的高压电源和主供氧系统40、控制器和燃料供给系统。其中辅助供氧系统30用于向电堆10通入空气。主供氧系统40用于向电堆10通入空气,电堆10与主供氧系统40电连接,且主供氧系统40和辅助供氧系统30并联设置。燃料供给系统用于向电堆10供给燃料。控制器分别与辅助供氧系统30与主供氧系统40电连接,控制器用于控制辅助供氧系统30和主供氧系统40工作。其中,图中实线上的箭头代表空气输送方向,虚线上的箭头代表电流传输方向。
通过本申请提供的技术方案,当高压电源出现故障时,通过控制器向低压电源20传递信号,并通过低压电源20启动辅助供氧系统30,以向电堆10中通入空气,保证电堆10具有功率输出,直至该输出功率能够启动主供氧系统40,再通过电堆10启动主供氧系统40。之后,关闭辅助供氧系统30,以使电堆10实现高压稳定输出。与传统的技术方案相比,低压电源20和辅助供氧系统30的设置,使得在高压电源出现故障的情况下,整车仍然具备运行能力,进而能够保证整车的可靠性。
进一步地,高压电源和电堆10的至少一个与低压电源20电连接,以对低压电源20供电。本方案中,高压电源与低压电源20电连接,以为低压电源20存储电量。如此设置,能够保证在高压电源出现故障时,低压电源20能够正常启动辅助供氧系统30。同时,本方案中,电堆10与低压电源20电连接,能够为低压电源20存储电量。这样,在高压电源不能够及时为低压电源20补充电量时,可通过电堆10向低压电源20补充电量,以保证低压电源20的电量。本方案中,高压电源和电堆10均与低压电源20电连接,如此,能够为低压电源20存储电量提供双重保障,进而能够保证低压电源20顺利地启动辅助供氧系统30。
本实施例中,低压电源20为12V的蓄电池,高压电源为动力电池,并且,电堆10与动力电池电连接,以向动力电池内存储电量。具体地,本实施例中,可选择通过动力电池直接启动主供氧系统40,以使主供氧系统40向电堆10内输入空气,保证电堆10的正常运行。也可选择通过电低压电源20启动辅助供氧系统30,以使辅助供氧系统30向电堆10内输入空气,当电堆10的输出功率足以启动主供氧系统40后,通过电堆10启动主供氧系统40。上述设置,使得在具体的行车过程中,当蓄电池或者辅助供氧系统30出现故障时,可通过动力电池启动主供氧系统40,以保证电堆10的功率输出;当动力电池出现故障时,可通过蓄电池启动辅助供氧系统30,以保证电堆10的功率输出。如此,便能够为燃料电池系统的正常运行提供双重保障,进而能够保证整车运行的可靠性。除此之外,电堆10能够及时地向动力电池储存电量,使得整车不需要单独地采用充电桩为动力电池进行充电,提升为动力电池蓄电的便捷性。本方案中,燃料电池系统配合动力电池,具有低功率、能耗小且环保的优点。
进一步地,燃料电池系统还包括压力检测件和电压检测件。其中压力检测件与控制器电连接,压力检测件用于检测电堆10的压力值;电压检测件与控制器电连接,电压检测件用于检测电堆10的电压数据。其中,控制器根据压力值和电压数据控制辅助供氧系统30和主供氧系统40工作。具体地,压力检测件用于检测燃料的压力,且压力检测件与控制器电连接,电压检测件用于检测电堆10的多个电池单体的平均电压值以及电堆10的多个电池单体中的最低电压值,且电压检测件与控制器电连接。
具体地,辅助供氧系统30包括相互连接的辅助空压机31和辅助通气管路32,主供氧系统40包括相互连接的主空压机41和主通气管路42。本实施例中,辅助空压机31的空气输出流量满足电堆10的10%的额定功率的流量需求。上述设置,使得辅助空压机31能够启动电堆10,并且该规格的辅助空压机31体积小,保证整个燃料电池系统结构的紧凑性。
本实施例中,燃料电池系统还包括流量切换阀421,流量切换阀421设置在辅助通气管路32和主通气管路42之间,主供氧系统40和辅助供氧系统30通过流量切换阀421实现并联设置,并且控制器与流量切换阀421电连接,以实现辅助供氧系统30和主供氧系统40的工作模式的切换。
主通气管路42上设置有空气滤清器422,空气滤清器422位于主空压机41的远离流量切换阀421的一侧,同时,辅助通气管路32也与空气滤清器422连通设置。空气滤清器422的设置,能够吸附空气中的对燃料电池系统有害的气体,防止空气中有害气体对燃料电池系统造成损害,延长燃料电池系统的使用寿命。
进一步地,主通气管路42上还设置有空气流量传感器423,流量传感器423位于主空压机41和空气滤清器422之间,且流量传感器423与控制器电连接。流量传感器423的设置,能够监测并控制通过主空压机41输入到电堆10内的空气的流量,最终控制电堆10的输出功率的大小,以保证电堆10的输出功率的可控性。
具体地,流量切换阀421为三通阀,燃料电池系统还包括连通管路50,连通管路50的一端与流量切换阀421连通,连通管路50的另一端与电堆10连通。燃料电池系统还包括中冷器51,中冷器51设置在流量切换阀421与电堆10之间。中冷器51的设置,能够保证输入到电堆10内的空气的温度与电堆10内部发生电化学反应需要的温度保持一致,使得输入到电堆10内的空气不需要与电堆10内部的环境进行热交换,进而能够保证电化学反应的正常进行,保证电堆10的输出功率的稳定性。
进一步地,燃料电池系统还包括加湿器52,加湿器52设置在连通管路50上,且加湿器52位于中冷器51与电堆10之间。本实施例中,通过加湿器52的空气的相对湿度为80%。加湿器52的设置,使得进入到电堆10内的空气具有一定的湿度,以保证电堆10内的电化学反应的正常进行,进而能够保证燃料电池系统的正常运行。
具体地,电堆10具有空气入口11和空气出口12,空气出口12与加湿器52连通设置。燃料电池系统还包括混合室60,加湿器52与混合室60连通设置。并且,电堆10具有燃料入口和燃料出口,燃料出口与混合室60连通设置。本实施例中,燃料为氢气,上述设置,使得由燃料出口排入到混合室60的氢气、由空气出口12排入到混合室60的空气在混合室60内混合,以使氢气满足排向大气的要求,保证燃料电池系统的安全性。
进一步地,燃料电池系统还包括空气回路背压阀70,空气回路背压阀70设置在加湿器52和混合室60之间。空气回路背压阀70的设置,能够控制排入动混合室60内的空气的流量,以保证混合室60内空气与氢气的混合效果,进一步保证燃料电池系统工作的安全性。
如图2所示,本申请实施例一提供了一种燃料电池系统的运行方法,燃料电池系统为上述中的燃料电池系统,运行方法包括:
步骤1,通过燃料电池系统的低压电源20启动辅助供氧系统30,以向电堆10通入空气;
步骤2,通过燃料电池系统的燃料供给系统向电堆10通入燃料;
步骤3,当电堆10的工作参数达到预设标准后,启动主供氧系统40;
步骤4,当主供氧系统40满足运行条件时,关闭辅助供氧系统30。
应用本申请的技术方案,通过上述四个步骤,使得在高压电源出现故障时,能够保证电堆10的正常启动,并通过电堆10的输出功率保证整车能够行驶至维修处,进而以保证驾驶人员的安全以及车辆的可靠性。
具体地,步骤1中的开始阶段,通过辅助供氧系统30向电堆10进行吹扫操作,吹扫一段时间后,再向电堆10中通入燃料。上述设置能够为空气和燃料的反应提供反应环境,保证电化学反应的正常进行。
如图3所示,预设标准包括燃料在电堆10内的压力值、电堆10的多个电池单体的平均电压值以及电堆10的多个电池单体中的最低电压值,步骤3具体包括:
步骤31,获取压力值、电堆10的多个电池单体的平均电压值以及电堆10的多个电池单体中的最低电压值;
步骤32,当压力值达到第一预设值、平均电压值与最低电压值的差值低于第二预设值且最低电压值达到第三预设值时,启动主供氧系统40。当向电堆10内输入空气和燃料后,空气中的氧气和燃料发生电化学反应,以使电堆10内的电池单体具有电压。通过上述设置,能够实时地将燃料电池的电堆10内的压力值和电堆10多个电池单体的平均电压值以及电堆10的多个电池单体的最低电压值反馈至控制器。当压力值达到第一预设值、平均电压值与最低电压值的差值低于第二预设值且最低电压值达到第三预设值后,则电堆10的输出功率能够达到启动主供氧系统40的功率。电堆10能够正常启动主供氧系统40后,通过主供氧系统40向电堆10输送空气,以使电堆10的输出功率保证车辆具备跛行能力。
进一步地,第一预设值为1.1bar至1.3bar之间,第二预设值为0.02V至0.04V之间,第三预设值为0.8V。其中,第一预设值可设置为1.1bar、1.2bar、1.3bar。第二预设值可设置为0.02V、0.03V、0.04V,第三预设值可设置为0.8V、0.85V。本实施例中,第一预设值设置为1.2bar、第二预设值设置为0.03V、第三预设值设置为0.8V。当电堆10同时满足上述三个条件后,能够保证电堆10具有稳定的功率输出并且能够延长电堆10的使用寿命。
辅助供氧系统30包括相互连接的辅助空压机31和辅助通气管路32,如图4所示,本申请实施例二提供了一种燃料电池系统的运行方法,与实施例一的不同之处在于:在执行步骤2之前,运行方法还包括步骤5,步骤5具体为:在辅助空压机31工作第一预设时间后,获取辅助空压机31的转速,当辅助空压机31的转速达到第四预设值时,执行步骤2;当辅助空压机31的转速未达到第四预设值时,辅助空压机31停止工作。在实际运行过程中,可能出现辅助空压机31出现故障或者辅助通气管路32出现故障的情况,上述指令能够及时判断辅助空压机31是否出现故障,以调整解决方案。
进一步地,辅助空压机31具有最大转速V
辅max,辅助空压机31的转速为V
辅,步骤5中,在辅助空压机31工作第一预设时间后,当V
辅≥85%*V
辅max时,执行步骤2。本实施例中,启动辅助空压机31,启动10秒后,如果辅助空压机31的转速还未达到辅助空压机31的最大转速的85%,则证明辅助空压机31出现故障,此时控制器接收到该信号,并停止启动程序。当启动辅助空压机31持续10秒后,如果辅助空压机31的转速已经达到辅助空压机31的最大转速的85%,则证明辅助空压机31运行正常,继续进行启动程序。上述判断程序,步骤较少,使得控制器能够在较短的时间内便可判断辅助空压机31是否出现故障,以方便驾驶人员快速调整解决故障的方案。本实施例中,辅助空压机31的最大转速具体可以为2000rpm。
如图5所示,本申请实施例三提供了一种燃料电池系统的运行方法,与实施例二的不同之处在于:电堆10具有额定输出功率Pe和实际输出功率P,在执行步骤4之后,运行方法还包括:步骤6,判断高压电源是否正常工作,若高压电源无法正常工作,则控制电堆10的实际输出功率,以使实际输出功率满足50%*Pe≤P≤70%*Pe。电堆10具有额定的输出功率,当高压电源出现故障后,燃料电池系统的输出功率不再作用于高压电源,此时,只需要保证电堆10的实际输出功率在电堆10的额定功率的50%至70%之间即可。如此设置,可保证燃料电池系统的正常运行,同时能够减少能源的浪费。本实施例中,电堆10的额定功率具体可以为130kw。
具体地,电堆10的输出功率由输送至电堆10内的空气流量和燃料的流量控制。本实施例中,通过流量传感器423控制输送至电堆10内的空气的流量,以调节电堆10的实际输出功率。其中,电堆10的实际功率可设置为电堆10的额定功率的50%、60%、70%,本实施例中,将电堆10的实际功率设置为电堆10的额定功率的60%。
进一步地,当高压电源无法正常工作时,将燃料电池系统的输出功率变化率设置为5kw/s至40kw/s之间。具体地,可将燃料电池系统的输出功率变化率设置为5kw/s、15kw/s、25kw/s、40kw/s。当燃料电池系统的输出功率变化率低于5kw/s,启动主供氧系统40所需的时间较长,不利于整车的快速启动;当燃料电池系统的输出功率的变化率高于40kw/s,燃料电池的输出功率的稳定性差。因此,本方案将燃料电池系统的输出功率的变化率设置在上述范围,既能够保证整车的快速启动,也能够保证燃料电池系统运行的稳定性。本实施例中,将燃料电池系统的输出功率设置为25kw/s。
如图6所示,主供氧系统40包括相互连接的主空压机41和主通气管路42,步骤4具体包括:在主供氧系统40工作第二预设时间后,获取主空压机41的转速,当主空压机41的转速达到第五预设值时,则关闭辅助供氧系统30;当主空压机41的转速未达到第五预设值时,主供氧系统40和辅助供氧系统30停止工作。在实际运行过程中,可能存在主空压机41出现故障的情况,当在第二预设时间时,主空压机41的转速未达到第五预设值,则证明主空压机41出现故障,控制器接收到该信号,并停止后续的电堆10启动程序;当在第二预设时间时,主空压机41的转速达到第五预设值,则证明主空压机41未出现故障,控制器接收到该信号,继续电堆10的启动程序。上述指令能够及时快速地判断主空压机41是否出现故障,以方便驾驶人员调整解决方案。具体地,当在电堆10持续向主空压机41输出功率10秒时,主空压机41的转速达到主空压机41的最低转速需求,则证明主空压机41未出现故障,关闭辅助空压机31。在电堆10持续向主空压机41输出功率10秒时,主空压机41的转速未达到主空压机41的最低转速需求,则证明主空压机41出现故障,终止电堆10的启动程序,本实施例中,主空压机41的最低转速为1000rpm。
如图7所示,本申请实施例四提供了一种燃料电池系统的运行方法,其具体方案如下:
步骤1,启动辅助空压机31,以向电堆10通入燃料;
步骤5,在辅助空压机31工作10秒后,判断辅助空压机31的转速是否达到预设值,当辅助空压机31的转速达到其最大转速的85%,则执行步骤2;当辅助空压机31的转速未达到其最大转速的85,则停止辅助空压机31,并终止启动程序;
步骤2,获取电堆10的压力值、电堆10的多个单体电池的平均电压值以及电堆10的多个电池单体中的最低电压值,直至电堆10的燃料的压力值达到1.2bar,且平均电压值与最低电压值的差值低于0.03V,且最低电压值达到0.8V后,启动主空压机41;
步骤3,在主空压机41工作10秒后,判断主空压机41的转速是否达到预设值,若主空压机41的转速达到1000rpm,则执行步骤4;若主空压机41的转速未达到1000rpm,则停止主空压机41和辅助空压机31,并终止启动程序;
步骤4,关闭辅助空压机31;
步骤6,判断动力电池是否正常工作,当动力电池正常工作时,将电堆10的实际输出功率设置为电堆10的额定功率,且电堆10向动力电池和蓄电池供电;当动力电池出现故障时,将电堆10的实际输出功率设置为电堆10的额定功率的60%,且电堆10向蓄电池供电。
应用本申请的技术方案,电堆10在辅助供氧系统30的作用下启动并具有输出功率,在高压电源出现故障后,可通过电堆启动主空压机41,使主空压机41向电堆10内输入空气,并维持电堆10的正常运行,以保证车辆具备运行能力。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (10)
- 一种燃料电池系统,其特征在于,所述燃料电池系统包括:电堆(10);相互电连接的低压电源(20)和辅助供氧系统(30),所述辅助供氧系统(30)用于向所述电堆(10)通入空气;相互电连接的高压电源和主供氧系统(40),所述主供氧系统(40)用于向所述电堆(10)通入空气,所述电堆(10)与所述主供氧系统(40)电连接,且所述主供氧系统(40)和所述辅助供氧系统(30)并联设置;燃料供给系统,所述燃料供给系统用于向所述电堆(10)供给燃料;控制器,所述控制器分别与所述辅助供氧系统(30)与所述主供氧系统(40)电连接,所述控制器用于控制所述辅助供氧系统(30)和所述主供氧系统(40)工作。
- 根据权利要求1所述的燃料电池系统,其特征在于,所述高压电源和所述电堆(10)的至少一个与所述低压电源(20)电连接,以对所述低压电源(20)供电。
- 根据权利要求1所述的燃料电池系统,其特征在于,所述燃料电池系统还包括:压力检测件,与所述控制器电连接,所述压力检测件用于检测所述电堆(10)的压力值;电压检测件,与所述控制器电连接,所述电压检测件用于检测所述电堆(10)的电压数据;其中,所述控制器根据所述压力值和所述电压数据控制所述辅助供氧系统(30)和所述主供氧系统(40)工作。
- 一种燃料电池系统的运行方法,其特征在于,所述燃料电池系统为权利要求1至3中任一项所述的燃料电池系统,所述运行方法包括:步骤1,通过所述燃料电池系统的低压电源(20)启动辅助供氧系统(30),以向电堆(10)通入空气;步骤2,通过所述燃料电池系统的燃料供给系统向所述电堆(10)通入燃料;步骤3,当所述电堆(10)的工作参数达到预设标准后,启动主供氧系统(40);步骤4,当所述主供氧系统(40)满足运行条件时,关闭所述辅助供氧系统(30)。
- 根据权利要求4所述的燃料电池系统的运行方法,其特征在于,所述预设标准包括所述燃料在所述电堆(10)内的压力值、所述电堆(10)的多个电池单体的平均电压值以及所述电堆(10)的多个电池单体中的最低电压值,所述步骤3具体包括:步骤31,获取所述压力值、所述电堆(10)的多个电池单体的平均电压值以及所述 电堆(10)的多个电池单体中的最低电压值;步骤32,当所述压力值达到第一预设值、所述平均电压值与所述最低电压值的差值低于第二预设值且所述最低电压值达到第三预设值时,启动所述主供氧系统(40)。
- 根据权利要求4所述的燃料电池系统的运行方法,其特征在于,所述辅助供氧系统(30)包括相互连接的辅助空压机(31)和辅助通气管路(32),在执行步骤2之前,所述运行方法还包括:步骤5,在所述辅助空压机(31)工作第一预设时间后,获取所述辅助空压机(31)的转速,当所述辅助空压机(31)的转速达到第四预设值时,执行所述步骤2;当所述辅助空压机(31)的转速未达到第四预设值时,所述辅助空压机(31)停止工作。
- 根据权利要求4所述的燃料电池系统的运行方法,其特征在于,所述电堆(10)具有额定输出功率Pe和实际输出功率P,在执行步骤4之后,所述运行方法还包括:步骤6,判断高压电源是否正常工作,若所述高压电源无法正常工作,则控制所述电堆(10)的实际输出功率,以使所述实际输出功率满足50%*Pe≤P≤70%*Pe。
- 根据权利要求4所述的燃料电池系统的运行方法,其特征在于,所述主供氧系统(40)包括相互连接的主空压机(41)和主通气管路(42),所述步骤4具体包括:在所述主供氧系统(40)工作第二预设时间后,获取所述主空压机(41)的转速,当所述主空压机(41)的转速达到第五预设值时,则关闭所述辅助供氧系统(30);当所述主空压机(41)的转速未达到第五预设值时,所述主供氧系统(40)和所述辅助供氧系统(30)停止工作。
- 根据权利要求5所述的燃料电池系统的运行方法,其特征在于,所述第一预设值为1.1bar至1.3bar之间,所述第二预设值为0.02V至0.04V之间,所述第三预设值为0.8V。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111398236.1 | 2021-11-23 | ||
CN202111398236.1A CN114094143A (zh) | 2021-11-23 | 2021-11-23 | 燃料电池系统及其运行方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023093067A1 true WO2023093067A1 (zh) | 2023-06-01 |
Family
ID=80303674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/104455 WO2023093067A1 (zh) | 2021-11-23 | 2022-07-07 | 燃料电池系统及其运行方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114094143A (zh) |
WO (1) | WO2023093067A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114094143A (zh) * | 2021-11-23 | 2022-02-25 | 中国第一汽车股份有限公司 | 燃料电池系统及其运行方法 |
CN115799570B (zh) * | 2023-01-09 | 2023-04-14 | 北京亿华通科技股份有限公司 | 高海拔自适应燃料电池进气系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633349A (zh) * | 2012-08-21 | 2014-03-12 | 现代自动车株式会社 | 燃料电池启动装置与方法 |
CN204793041U (zh) * | 2015-05-08 | 2015-11-18 | 郑州宇通客车股份有限公司 | 一种燃料电池发电系统及使用该系统的车辆 |
CN110061263A (zh) * | 2018-01-19 | 2019-07-26 | 郑州宇通客车股份有限公司 | 一种混合式燃料电池空气子系统、车辆及控制方法 |
CN211017252U (zh) * | 2019-12-30 | 2020-07-14 | 东风汽车集团有限公司 | 一种提高氢燃料电池响应速度供氧结构 |
CN114094143A (zh) * | 2021-11-23 | 2022-02-25 | 中国第一汽车股份有限公司 | 燃料电池系统及其运行方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134148A (ja) * | 2000-10-23 | 2002-05-10 | Matsushita Seiko Co Ltd | 燃料電池システム |
KR101201809B1 (ko) * | 2005-03-09 | 2012-11-20 | 삼성에스디아이 주식회사 | 연료 전지 시스템 |
KR101526379B1 (ko) * | 2009-11-26 | 2015-06-08 | 현대자동차 주식회사 | 연료전지차량의 전원관리장치 및 방법 |
KR20120020686A (ko) * | 2010-08-31 | 2012-03-08 | 현대자동차주식회사 | 연료전지 차량의 비상 시동 장치 및 방법 |
KR101683504B1 (ko) * | 2015-02-09 | 2016-12-07 | 현대자동차 주식회사 | 저전압 배터리 충전 장치 및 방법 |
DE102015012047A1 (de) * | 2015-09-15 | 2017-03-16 | Daimler Ag | Verfahren zum Starten eines Brennstoffzellensystems |
KR102565339B1 (ko) * | 2018-03-14 | 2023-08-09 | 현대자동차주식회사 | 연료전지의 시동 제어방법 및 제어시스템 |
CN110957503B (zh) * | 2019-11-29 | 2021-06-04 | 同济大学 | 一种燃料电池低温启动的空气加热回流系统及控制方法 |
CN111048804B (zh) * | 2019-12-30 | 2021-06-04 | 东风汽车集团有限公司 | 一种氢燃料电池供氧方法及供氧系统、控制系统 |
CN112072142B (zh) * | 2020-08-07 | 2021-09-03 | 同济大学 | 一种基于模型预测控制的燃料电池控制方法和系统 |
-
2021
- 2021-11-23 CN CN202111398236.1A patent/CN114094143A/zh active Pending
-
2022
- 2022-07-07 WO PCT/CN2022/104455 patent/WO2023093067A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633349A (zh) * | 2012-08-21 | 2014-03-12 | 现代自动车株式会社 | 燃料电池启动装置与方法 |
CN204793041U (zh) * | 2015-05-08 | 2015-11-18 | 郑州宇通客车股份有限公司 | 一种燃料电池发电系统及使用该系统的车辆 |
CN110061263A (zh) * | 2018-01-19 | 2019-07-26 | 郑州宇通客车股份有限公司 | 一种混合式燃料电池空气子系统、车辆及控制方法 |
CN211017252U (zh) * | 2019-12-30 | 2020-07-14 | 东风汽车集团有限公司 | 一种提高氢燃料电池响应速度供氧结构 |
CN114094143A (zh) * | 2021-11-23 | 2022-02-25 | 中国第一汽车股份有限公司 | 燃料电池系统及其运行方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114094143A (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10038205B2 (en) | Fuel cell system | |
WO2023093067A1 (zh) | 燃料电池系统及其运行方法 | |
JP5091584B2 (ja) | 始動及び停止による電池の劣化を、スタックの電気的短絡と組み合わされたカソード再循環によって緩和させる方法 | |
JP5959463B2 (ja) | 燃料電池車両及び移動体 | |
US20100310955A1 (en) | Combustion of hydrogen in fuel cell cathode upon startup | |
US10177390B2 (en) | Fuel cell system and method for controlling the same | |
JP2005259692A (ja) | 周囲空気及び低電圧ブロワ−を使用した燃料電池システムを始動する方法 | |
US7943260B2 (en) | System and method for recirculating unused fuel in fuel cell application | |
JP2010510764A (ja) | 燃料電池システム装置 | |
KR101567644B1 (ko) | 연료 전지 스택 및 그 제어 방법 | |
CN113594508A (zh) | 燃料电池系统的控制方法、控制装置和燃料电池系统 | |
JP3858799B2 (ja) | 燃料電池車両及びその制御方法 | |
US8828568B2 (en) | Fuel cell system | |
CN114927728B (zh) | 燃料电池系统停机泄放控制方法及装置、车辆 | |
JP2009295505A (ja) | 燃料電池システム | |
JP2014192047A (ja) | 燃料電池車両の制御方法 | |
CA2579123A1 (en) | Fuel cell system with specific shutdown process | |
US20110053015A1 (en) | Control Method for a Fuel Cell System and Fuel Cell System | |
JP2004296340A (ja) | 燃料電池システム | |
JP2007149621A (ja) | 燃料電池システムおよびその起動時における制御方法 | |
JP2007141779A (ja) | 燃料電池システム | |
JP2008108538A (ja) | 燃料電池システム | |
US9643494B2 (en) | Fuel cell system | |
JP2005129243A (ja) | 燃料電池システムおよび燃料電池の運転方法 | |
JP2005158554A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22897163 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |