WO2023092991A1 - 分离装置、换热器和制冷设备 - Google Patents
分离装置、换热器和制冷设备 Download PDFInfo
- Publication number
- WO2023092991A1 WO2023092991A1 PCT/CN2022/097773 CN2022097773W WO2023092991A1 WO 2023092991 A1 WO2023092991 A1 WO 2023092991A1 CN 2022097773 W CN2022097773 W CN 2022097773W WO 2023092991 A1 WO2023092991 A1 WO 2023092991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation
- heat exchanger
- side wall
- sealing plate
- separation device
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 353
- 238000005057 refrigeration Methods 0.000 title claims abstract description 18
- 238000007789 sealing Methods 0.000 claims abstract description 102
- 230000003014 reinforcing effect Effects 0.000 claims description 24
- 238000003466 welding Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 description 70
- 239000007788 liquid Substances 0.000 description 28
- 230000009286 beneficial effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/30—Accessories for evaporators ; Constructional details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
Definitions
- the present disclosure relates to the technical field of refrigeration equipment, in particular to a separation device, a heat exchanger and a refrigeration equipment.
- the refrigeration equipment includes a gas-liquid separator, and the setting of the gas-liquid separator is unreasonable, so that the liquid entrained in the gaseous refrigerant cannot be effectively separated, and it is easy to cause liquid inhalation, which poses a safety hazard.
- the present disclosure aims to solve at least one of the technical problems existing in the prior art or related art.
- Some embodiments of the present disclosure provide a separation device for a heat exchanger, including: a separation part, the separation part is provided with a separation chamber, an inlet and a separation port, and both the inlet and the separation port are in communication with the separation chamber;
- the separation part is connected and located on one side of the separation part, and the sealing plate can be connected with the shell of the heat exchanger.
- Some embodiments of the present disclosure provide a heat exchanger, including: a housing, the housing is provided with an outlet; and a separation device according to any of the above technical solutions, the separation device is arranged in the housing, and the separation device is located at the outlet.
- Some embodiments of the present disclosure provide a refrigeration device, including: a compressor having an air inlet; and a heat exchanger according to the above technical solution, wherein an outlet of the heat exchanger is connected to an air inlet of the compressor.
- FIG. 1 shows a schematic structural diagram of a separation device in a first viewing angle of some embodiments of the present disclosure
- Fig. 2 shows a schematic structural diagram of a second viewing angle of a separation device in some embodiments of the present disclosure
- Fig. 3 shows a schematic structural diagram of a separation device in a third perspective according to some embodiments of the present disclosure
- Fig. 4 shows a schematic structural diagram of a separation device in a fourth perspective according to some embodiments of the present disclosure
- Fig. 5 is a partial enlarged view of A place of the separation device shown in Fig. 4;
- Fig. 6 shows a partial structural schematic diagram of a heat exchanger according to some embodiments of the present disclosure
- Fig. 7 shows a schematic structural view of a heat exchanger according to some embodiments of the present disclosure.
- 100 separation device 110 separation part, 114 inlet, 116 separation port, 118 top wall, 122 side wall, 124 first sub-side wall, 126 second sub-side wall, 128 first area, 130 second area, 132 flanging , 134 separation chamber, 140 sealing plate, 150 spoiler, 152 connecting hole, 160 reinforcing rib, 200 heat exchanger, 210 shell of heat exchanger, 212 outlet, 220 heat exchange tube, 230 air return port, 240 chamber .
- a separation device 100 , a heat exchanger 200 and a refrigeration device according to some embodiments of the present disclosure are described below with reference to FIGS. 1 to 7 .
- the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separating device 100 includes a separating part 110 and a sealing plate 140 .
- the sealing plate 140 is connected to the separation part 110 , and the sealing plate 140 is located on one side of the separation part 110 .
- the separation device 100 is placed in the housing 210 of the heat exchanger, the sealing plate 140 is connected with the housing 210 of the heat exchanger, and a chamber 240 is formed between the sealing plate 140 and the housing 210 of the heat exchanger, and the heat exchanger 200
- the air return port 230 communicates with the chamber 240, and the refrigerant is sucked into the chamber 240 through the air return port 230. After entering the chamber 240, the refrigerant collides with the sealing plate 140 for the first time, and the liquid in the refrigerant is separated due to the impact. come out.
- the gaseous refrigerant bypasses the sealing plate 140 and flows to the separation part 110, and then enters the separation chamber 134 through the inlet 114 of the separation part 110.
- the refrigerant flows into the separation chamber 134 and will collide with the wall of the separation chamber 134 for the second time. Then, it flows out of the separation device 100 through the separation port 116 of the separation part 110 , and is sucked into the suction port of the compressor through the outlet 212 of the heat exchanger 200 .
- This setting enables the refrigerant to flow through the separation device 100, the refrigerant and the separation device 100 collide multiple times, and the liquid in the refrigerant can be effectively separated, which can greatly reduce the liquid in the refrigerant sucked into the compressor, and reduce the impact of the liquid in the refrigerant on compression. It is beneficial to improve the cooling efficiency of refrigeration equipment, and to improve the safety and reliability of product use.
- the cross-sectional shape of the separation port 116 includes any of the following: circular, polygonal and special-shaped, special-shaped refers to irregular shapes, polygons include triangles, quadrilaterals, pentagons, etc. List them all.
- the cross-sectional shape of the inlet 114 includes any of the following: circular, polygonal, and special-shaped, and special-shaped refers to irregular shapes, and polygons include triangles, quadrilaterals, pentagons, etc., not one by one. enumerate.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- At least a part of the outer edge of the sealing plate 140 protrudes from the outer surface of the separation part 110 , and the outer edge of the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the outer edge of the sealing plate 140 can be connected to the shell of the heat exchanger Body 210. That is, the portion of the sealing plate 140 protruding from the outer surface of the separation part 110 can be connected with the casing.
- This setting ensures the effectiveness and feasibility of the assembly of the separation device 100 and the housing, while making a gap between the separation part 110 and the inner surface of the housing, that is, ensuring that the separation port 116 of the separation part 110 is in contact with the heat exchanger.
- the projection of the separation portion 110 on the sealing plate 140 is located within the edge of the sealing plate 140 .
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation part 110 includes a top wall 118 and a side wall 122 .
- the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 , the first end and the second end are arranged correspondingly, and the separation opening 116 is arranged on the side wall 122 .
- the sealing plate 140 connects the top wall 118 and the side wall 122 .
- the separation part 110 includes a top wall 118 and a side wall 122, the side wall 122 has a first end and a second end, the first end and the second end are opposite and arranged at intervals, the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 .
- the gaseous refrigerant bypasses the sealing plate 140 and flows to the separation part 110, and then enters the separation chamber 134 through the inlet 114 at the bottom of the separation part 110.
- the second impact it flows out of the separation device 100 through the separation port 116 of the side wall 122 of the separation part 110 , and is sucked into the suction port of the compressor through the outlet 212 of the heat exchanger 200 .
- This setting prolongs the flow path of the refrigerant in the separation part 110, which is beneficial to increase the frequency of collisions between the refrigerant and the wall of the separation chamber 134, thereby facilitating the effective separation of the liquid in the refrigerant, and improving the effectiveness of the gas-liquid separation of the refrigerant. and high efficiency.
- sealing plate 140 is connected to the top wall 118 and the side wall 122 , and the sealing plate 140 is connected to both the top wall 118 of the separation part 110 and the side wall 122 of the separation part 110 .
- the top wall 118 and the side wall 122 of the separation part 110 enclose a groove structure.
- the side wall 122 includes a first sub-side wall 124 and a second sub-side wall 126 .
- the first sub-sidewall 124 is connected to the first side of the top wall 118 .
- the second sub-side wall 126 is connected to the second side of the top wall 118 , and the first sub-side wall 124 and the second sub-side wall 126 are disposed correspondingly.
- separation openings 116 There are multiple separation openings 116 , some of the separation openings 116 are disposed on the first sub-side wall 124 , and the other part of the separation openings 116 are disposed on the second sub-side wall 126 .
- the side wall 122 includes a first sub-side wall 124 and a second sub-side wall 126, the first sub-side wall 124 and the second sub-side wall 126 are correspondingly arranged, and the first sub-side wall 124 and the second sub-side wall 126 are both It is connected with the top wall 118 , that is, the first sub-side wall 124 and the second sub-side wall 126 are located on opposite sides of the top wall 118 .
- the number of the separation openings 116 is multiple, and the separation openings 116 are divided, a part of the separation openings 116 is disposed on the first sub-side wall 124 , and another part of the separation openings 116 is disposed on the second sub-side wall 126 .
- This setting increases the total area of the separation port 116, increases the distribution angle of the separation port 116, can ensure the suction volume of the compressor, and provides an effective and reliable structural support for ensuring the working efficiency of the product.
- the top wall 118 of the separation part 110 is not provided with the separation port 116, therefore, after the refrigerant enters the separation chamber 134, the refrigerant can collide with the top wall 118 of the separation chamber 134 for a second time, and then flow to the separation port located on the side wall 122. 116 for the third collision, this setting can increase the frequency of collision between the refrigerant and the wall of the separation chamber 134, which is beneficial to improve the effectiveness of gas-liquid separation.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and is located on one side of the separation part 110.
- the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation portion 110 includes a top wall 118 and a side wall 122 .
- the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 , the first end and the second end are arranged correspondingly, and the separation opening 116 is arranged on the side wall 122 .
- the sealing plate 140 connects the top wall 118 and the side wall 122 .
- top wall 118 of the separation part 110 is closer to the outlet 212 of the heat exchanger 200 than the inlet 114 .
- the top wall 118 of the separation part 110 is closer to the outlet 212 of the heat exchanger 200 than the inlet 114, that is, the separation part 110
- the top wall 118 is located between the inlet 114 and the outlet 212 of the heat exchanger 200 .
- This arrangement defines the positional relationship between the inlet 114 of the separator 110 , the top wall 118 and the outlet 212 of the heat exchanger 200 , so that the refrigerant bypassing the sealing plate 140 flows into the separator through the inlet 114 to provide effective and reliable structural support.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation portion 110 includes a top wall 118 and a side wall 122 .
- the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 , the first end and the second end are arranged correspondingly, and the separation opening 116 is arranged on the side wall 122 .
- the sealing plate 140 connects the top wall 118 and the side wall 122 .
- the sidewall 122 of the separation part 110 includes a first region 128 and a second region 130 .
- the first area 128 is closer to the outlet 212 of the heat exchanger 200 than the second area 130 , and the separation port 116 is located in the second area 130 .
- the sidewall 122 of the separation part 110 includes a first area 128 and a second area 130 , the first area 128 is close to the outlet 212 of the heat exchanger 200 , and the second area 130 is away from the outlet 212 of the heat exchanger 200 .
- the separation opening 116 is disposed in the second area 130 by rationally setting the matching structure of the first area 128 , the second area 130 and the separation opening 116 . This setting can extend the flow path of the refrigerant in the separation chamber 134, increase the frequency of collisions between the refrigerant and the wall of the separation chamber 134, and improve the separation effect.
- the first region 128 is provided with a separation port 116, then most of the refrigerant in the separation chamber 134 will be directly sucked away by the compressor through the separation port 116 of the first region 128, thus greatly reducing the gap between the refrigerant and the separation chamber 134. In this way, the effect of separating the liquid is poor, and it is easy to cause the suction to carry liquid.
- the first region 128 is located between the two second regions 130 .
- the number of the second regions 130 is two, by rationally setting the positional relationship between the two second regions 130 and the first region 128, so that the first region 128 is located between the two second regions 130, this setting ensures that the refrigerant While fully colliding with the cavity wall of the separation cavity 134, it is beneficial to increase the total area of the separation port 116, thereby ensuring the suction capacity of the compressor.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation portion 110 includes a top wall 118 and a side wall 122 .
- the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 , the first end and the second end are arranged correspondingly, and the separation opening 116 is arranged on the side wall 122 .
- the sealing plate 140 connects the top wall 118 and the side wall 122 .
- the minimum distance from the junction of the top wall 118 and the side wall 122 to the shell 210 of the heat exchanger is denoted as the first distance L1
- the distance from the inlet 114 to the top wall 118 is denoted as The second distance L2; the first distance L1 is greater than or equal to the second distance L2.
- the matching structure of the top wall 118, the side wall 122, the inlet 114 of the flow separation part 110 and the shell 210 of the heat exchanger so that the junction of the top wall 118 and the side wall 122 is connected to the shell of the heat exchanger
- the minimum distance of 210 is the first distance L1
- the distance from the entrance 114 to the top wall 118 is the second distance L2
- the first distance L1 is greater than or equal to the second distance L2.
- This arrangement takes into account the volume of the separation chamber 134 and the volume of the area between the outlet 212 of the heat exchanger 200 and the top wall 118 of the separation part 110 , so as to ensure the suction capacity of the compressor.
- the space for accommodating the separation device 100 in the heat exchanger 200 is certain, if the first distance is smaller than the second distance, the space between the top wall 118 of the separation part 110 and the outlet 212 of the heat exchanger 200 will be squeezed. space. That is, if the second distance is increased, the first distance will be reduced, which will reduce the suction capacity of the compressor and affect the working efficiency of the refrigeration equipment.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation portion 110 includes a top wall 118 and a side wall 122 .
- the first end of the side wall 122 is connected to the top wall 118 , the second end of the side wall 122 encloses the entrance 114 , the first end and the second end are arranged correspondingly, and the separation opening 116 is arranged on the side wall 122 .
- the sealing plate 140 connects the top wall 118 and the side wall 122 .
- a flange 132 is formed at the entrance 114 of the separation part 110 , and the flange 132 can be connected to the shell 210 of the heat exchanger.
- a flange 132 is formed at the inlet 114 of the separation part 110, and the flange 132 is connected with the shell 210 of the heat exchanger, that is to say, when the sealing plate 140 is connected with the shell 210 of the heat exchanger, the separation part 110 is connected to the shell 210 of the heat exchanger.
- This setting increases the contact area and contact angle between the separation device 100 and the shell of the heat exchanger 200, which is conducive to improving the strength of the assembly structure of the separation device 100 and the shell of the heat exchanger 200, and can effectively prevent the separation device 100 from shifting or even A drop happens.
- the flange 132 is connected to the side wall 122 of the separation part 110 .
- the flange 132 is integrally formed with the side wall 122 of the separation part 110, and this structural arrangement simplifies the assembly process of the flange 132 and the side wall 122 of the separation part 110.
- the forming process of the side wall 122 is beneficial to improve the processing efficiency of the product.
- the flange 132 is integrally formed with the side wall 122 of the separation part 110 to ensure the accuracy of the size of the product.
- the flange 132 and the side wall 122 of the separation part 110 are integrally stamped and formed.
- the flange 132 is perpendicular to the sidewall 122 of the separation part 110 .
- the separation device 100 further includes a spoiler 150 .
- the spoiler 150 is located on one side of the separation part 110 , the first part of the spoiler 150 is arranged corresponding to the inlet 114 , and the second part of the spoiler 150 is connected with the flange 132 .
- the separation device 100 also includes a spoiler 150, and the spoiler 150 is connected with the flange 132 of the separation part 110, that is, the spoiler 150 is assembled with the separation part 110, and the separation part 110 has a support and a fixed spoiler.
- the role of the plate 150 is not limited to, but not limited to, the spoiler 150, the spoiler 150, the spoiler 150 is connected with the flange 132 of the separation part 110, that is, the spoiler 150 is assembled with the separation part 110, and the separation part 110 has a support and a fixed spoiler. The role of the plate 150.
- the first part of the spoiler 150 is arranged corresponding to the inlet 114, that is, the first part of the spoiler 150 can cover a part of the inlet 114, and the arrangement of the spoiler 150 can change the flow path of the refrigerant and prolong the flow of the refrigerant through the separation.
- the path of the device 100 provides effective and reliable structural support for increasing the frequency of contact between the refrigerant and the wall of the separation chamber 134 .
- the first sub-side wall 124 is connected to one spoiler 150
- the second sub-side wall 126 is connected to the other spoiler 150 .
- the width of the first part of the spoiler 150 is denoted as d1
- the distance from the top wall 118 of the separation part 110 to the outer edge of the sealing plate 140 is d1.
- the maximum distance is recorded as d2; among them, d1 and d2 satisfy:
- the width of the first part of the spoiler 150 is d1
- the maximum distance from the top wall 118 of the separation part 110 to the outer edge of the sealing plate 140 is d2
- the spoiler 150 and the mouth wall of the inlet 114 are staggered by a certain distance.
- the distance is limited, specifically, d1 is less than or equal to This setting can not only ensure the spoiler effect of the spoiler 150, but also not affect the suction volume of the compressor.
- d1 is equal to one-fourth of d2
- d1 is equal to one-fifth of d2
- d1 is equal to one-sixth of d2, etc., which will not be listed here.
- the spoiler 150 is provided with at least one connection hole 152 , and the connection hole 152 is used for welding connection with the flange 132 .
- the spoiler 150 is provided with a connection hole 152, or the spoiler 150 is provided with a plurality of connection holes 152.
- the spoiler 150 is provided with a plurality of connection holes 152, the plurality of connection holes 152 are arranged at intervals.
- connection hole 152 of the spoiler 150 and the flange 132 are welded together by spot welding.
- connection hole 152 is set corresponding to the flange 132, the wall of the connection hole 152 and the flange 132 enclose a groove structure, and the solder is filled in the groove structure to stabilize the spoiler 150 and the flange 132 assembled together.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- the separation device 100 further includes reinforcing ribs 160 .
- the reinforcing rib 160 is disposed on the separating portion 110 , and the reinforcing rib 160 is located at the entrance 114 .
- the separating device 100 includes a reinforcing rib 160, the reinforcing rib 160 is connected to the separating part 110, and the reinforcing rib 160 is located at the entrance 114, and the reinforcing rib 160 has the structural strength of the reinforcing separating part 110 In this way, when the heat exchanger 200 is working, the separation part 110 will not be deformed under the impact of the refrigerant, and the positional relationship between the inlet 114 and the separation port 116 can be ensured, providing an effective and reliable structure for the compressor to effectively suck the refrigerant support.
- a first end of the reinforcing rib 160 is connected to the first sub-side wall 124
- a second end of the reinforcing rib 160 is connected to the second sub-side wall 126 . That is, the arrangement of the reinforcing rib 160 can ensure the distance between the first sub-side wall 124 and the second sub-side wall 126 , thereby ensuring the flow cross-sectional area of the inlet 114 .
- the number of reinforcing ribs 160 is multiple, and the multiple reinforcing ribs 160 are arranged at intervals.
- the number of reinforcing ribs 160 is multiple, and a plurality of reinforcing ribs 160 are arranged at intervals.
- This setting increases the contact area and contact angle between the reinforcing ribs 160 and the separation part 110, which is conducive to improving the assembly structure of the reinforcing ribs 160 and the separating part 110.
- the strength is beneficial to improve the overall structural strength of the separation device 100 .
- the reinforcing rib 160 and the separation part 110 are connected together by welding.
- some embodiments of the present disclosure provide a separation device 100 for a heat exchanger 200 , and the separation device 100 includes a separation part 110 and a sealing plate 140 .
- the separation part 110 is provided with a separation chamber 134 , an inlet 114 and a separation port 116 , and both the inlet 114 and the separation port 116 communicate with the separation chamber 134 .
- the sealing plate 140 is connected to the separation part 110 and located on one side of the separation part 110 , and the sealing plate 140 can be connected to the shell 210 of the heat exchanger.
- FIG. 2 , FIG. 3 and FIG. 7 there are two sealing plates 140 , and the separation part 110 is located between the two sealing plates 140 .
- the number of the sealing plates 140 is two, one of the two sealing plates 140 is located on the first side of the separation part 110, and the other of the two sealing plates 140 is located on the first side of the separation part 110.
- Two sides, the first side of the separation part 110 is corresponding to the second side of the separation part 110 .
- This setting increases the contact area and contact angle between the separation device 100 and the shell 210 of the heat exchanger, which is beneficial to improve the assembly structural strength of the separation device 100 and the shell 210 of the heat exchanger.
- the sealing plate 140 is fan-shaped.
- the shapes of the two sealing plates 140 are the same, and the dimensions of the two sealing plates 140 are the same. This setting simplifies the processing procedure of the flow separation device 100, which is beneficial to improve the processing efficiency of the product, and further helps to reduce the production cost of the product.
- the shape of the edge of the sealing plate 140 is the same as or similar to that of the shell 210 of the heat exchanger, so as to ensure the effective connection between the sealing plate 140 and the shell 210 of the heat exchanger.
- some embodiments of the present disclosure propose a heat exchanger 200, including: a shell, the shell is provided with an outlet 212; and a separation device 100 as in any of the above embodiments, the separation device 100 is located in the housing, and the separation device 100 is located at the outlet 212 .
- the heat exchanger 200 includes a shell and a separation device 100 .
- the separation device 100 is disposed in the casing, and the separation device 100 is located at the outlet 212 of the heat exchanger 200 .
- the separating device 100 includes a separating part 110 and a sealing plate 140 .
- the sealing plate 140 is connected to the separation part 110 , and the sealing plate 140 is located on one side of the separation part 110 .
- the separation device 100 is placed in the housing 210 of the heat exchanger, the sealing plate 140 is connected with the housing 210 of the heat exchanger, and a chamber 240 is formed between the sealing plate 140 and the housing 210 of the heat exchanger, and the heat exchanger 200
- the air return port 230 communicates with the chamber 240, and the refrigerant is sucked into the chamber 240 through the air return port 230. After entering the chamber 240, the refrigerant collides with the sealing plate 140 for the first time, and the liquid in the refrigerant is separated due to the impact. come out.
- the gaseous refrigerant bypasses the sealing plate 140 and flows to the separation part 110, and then enters the separation chamber 134 through the inlet 114 of the separation part 110.
- the refrigerant flows into the separation chamber 134 and will collide with the wall of the separation chamber 134 for the second time. Then, it flows out of the separation device 100 through the separation port 116 of the separation part 110 , and is sucked into the suction port of the compressor through the outlet 212 of the heat exchanger 200 .
- This setting enables the refrigerant to flow through the separation device 100, the refrigerant and the separation device 100 collide multiple times, and the liquid in the refrigerant can be effectively separated, which can greatly reduce the liquid in the refrigerant sucked into the compressor, and reduce the impact of the liquid in the refrigerant on compression. It is beneficial to improve the cooling efficiency of refrigeration equipment, and to improve the safety and reliability of product use.
- some embodiments of the present disclosure propose a refrigeration device, including: a compressor, the compressor has a suction port; and a heat exchanger 200 as in the above embodiment, the heat exchanger 200
- the outlet 212 is connected to the suction port of the compressor.
- the refrigeration equipment includes a compressor and a heat exchanger 200, the heat exchanger 200 has an outlet 212, the compressor has a suction port, and the outlet 212 of the heat exchanger 200 is connected to the suction port of the compressor.
- the separating device 100 includes a separating part 110 and a sealing plate 140 .
- the sealing plate 140 is connected to the separation part 110 , and the sealing plate 140 is located on one side of the separation part 110 .
- the separation device 100 is placed in the housing 210 of the heat exchanger, the sealing plate 140 is connected with the housing 210 of the heat exchanger, and a chamber 240 is formed between the sealing plate 140 and the housing 210 of the heat exchanger, and the heat exchanger 200
- the air return port 230 communicates with the chamber 240, and the refrigerant is sucked into the chamber 240 through the air return port 230. After entering the chamber 240, the refrigerant collides with the sealing plate 140 for the first time, and the liquid in the refrigerant is separated due to the impact. come out.
- the gaseous refrigerant bypasses the sealing plate 140 and flows to the separation part 110, and then enters the separation chamber 134 through the inlet 114 of the separation part 110.
- the refrigerant flows into the separation chamber 134 and will collide with the wall of the separation chamber 134 for the second time. Then, it flows out of the separation device 100 through the separation port 116 of the separation part 110 , and is sucked into the suction port of the compressor through the outlet 212 of the heat exchanger 200 .
- This setting enables the refrigerant to flow through the separation device 100, the refrigerant and the separation device 100 collide multiple times, and the liquid in the refrigerant can be effectively separated, which can greatly reduce the liquid in the refrigerant sucked into the compressor, and reduce the impact of the liquid in the refrigerant on compression. It is beneficial to improve the cooling efficiency of refrigeration equipment, and to improve the safety and reliability of product use.
- the number of separation ports 116 of the separation device 100 is denoted as n
- the cross-sectional area of the separation port 116 is denoted as s1
- the cross-sectional area of the suction port of the compressor is denoted as s2
- n, s1 and s2 satisfy: 2 ⁇ s2 ⁇ n ⁇ s1 ⁇ 3 ⁇ s2.
- the number of separation ports 116 of the separation device 100 is denoted as n
- the cross-sectional area of the separation port 116 is denoted as s1
- the cross-sectional area of the suction port of the compressor is denoted as s2.
- s2 ⁇ r 2 , where r is the radius of the suction port of the compressor.
- the separating device 100 includes a separating part 110 , a sealing plate 140 , a reinforcing rib 160 and a spoiler 150 .
- the sealing plates 140 are fan-shaped.
- Two sealing plates 140 are located on two sides of the separation part 110 .
- the outer edge of the sealing plate 140 is welded to the shell 210 of the heat exchanger.
- a chamber 240 is formed between the sealing plate 140 and the shell 210 of the heat exchanger.
- the separation part 110 is a "ji"-shaped structure.
- This setting enables the compressor to effectively increase the number of impacts of the gaseous refrigerant during suction, improve the separation efficiency, and reduce the risk of suction liquid.
- the top wall 118 of the separation part 110 does not have any features such as holes, and the first sub-side wall 124 and the second sub-side wall 126 of the separation part 110 are arranged correspondingly.
- There are multiple separation openings 116 some of the separation openings 116 are disposed on the first sub-side wall 124 , and the other part of the separation openings 116 are disposed on the second sub-side wall 126 .
- the first sub-side wall 124 and the second sub-side wall 126 both include a first area 128 and a second area 130 , and the first area 128 is closer to the heat exchanger than the second area 130
- the outlet 212 of 200 and the separation port 116 are located in the second area 130 .
- the number of separation ports 116 is denoted as n
- the cross-sectional area of the separation port 116 is denoted as s1
- the cross-sectional area of the suction port of the compressor is denoted as s2
- the minimum distance from the junction of the top wall 118 and the side wall 122 to the shell 210 of the heat exchanger is denoted as the first distance L1
- the distance from the inlet 114 to the top wall 118 is denoted as the second distance L2
- the first distance L1 is greater than or equal to the second distance L2.
- the reinforcing rib 160 is in the shape of a rectangular strip, and there are 3 pieces in total (multiple pieces can be set according to different situations), which play a supporting role for the separation part 110 .
- the spoiler 150 is in the shape of a rectangular strip.
- the spoiler 150 is provided with equidistant circular connecting holes 152 .
- the connecting holes 152 are used for welding and fastening with the flange 132 of the separation part 110 .
- the number of spoilers 150 is two.
- the first part of the spoiler 150 is arranged corresponding to the inlet 114 , and the second part of the spoiler 150 is connected to the flange 132 .
- This setting can change the flow path of the gaseous refrigerant.
- the gaseous refrigerant is sucked by the compressor, and after the refrigerant is separated from the sealing plate 140 for the first time, the flow direction of the refrigerant changes for the first time. Due to the pressure difference, the refrigerant will flow towards the separator of the separation part 110 and collide with the top wall 118 of the separation part 110 to undergo a second separation. After the second impact separation is completed, the third impact separation occurs with the first sub-side wall 124 and the second sub-side wall 126 of the separation part 110 , and the gaseous refrigerant obtained after the final separation hardly contains liquid.
- the heat exchanger 200 further includes a heat exchange tube 220 located inside the shell 210 of the heat exchanger.
- the separation device 100 is placed in the housing 210 of the heat exchanger, the sealing plate 140 is connected with the housing 210 of the heat exchanger, and a chamber 240 is formed between the sealing plate 140 and the housing 210 of the heat exchanger, and the heat exchanger 200
- the air return port 230 communicates with the chamber 240, and the refrigerant is sucked into the chamber 240 through the air return port 230.
- the refrigerant collides with the sealing plate 140 for the first time, and the liquid in the refrigerant is separated due to the impact. come out.
- the gaseous refrigerant bypasses the sealing plate 140 and flows to the separation part 110, and then enters the separation chamber 134 through the inlet 114 of the separation part 110.
- the refrigerant flows into the separation chamber 134 and will collide with the wall of the separation chamber 134 for the second time. Then, it flows out of the separation device 100 through the separation port 116 of the separation part 110 , and is sucked into the suction port of the compressor through the outlet 212 of the heat exchanger 200 .
- This setting enables the refrigerant to flow through the separation device 100, the refrigerant and the separation device 100 collide multiple times, and the liquid in the refrigerant can be effectively separated, which can greatly reduce the liquid in the refrigerant sucked into the compressor, and reduce the impact of the liquid in the refrigerant on compression. It is beneficial to improve the cooling efficiency of refrigeration equipment, and to improve the safety and reliability of product use.
- connection refers to two or more, unless otherwise clearly defined.
- installation means for example, “connection” can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.
- connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compressor (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
一种分离装置、换热器和制冷设备,其中,分离装置,用于换热器,包括:分离部,分离部设置有分离腔、入口和分离口,入口和分离口均与分离腔连通;封板,与分离部连接,且位于分离部的一侧,封板能够连接换热器的壳体。
Description
本申请要求于2021年11月26日提交中国国家知识产权局、申请号为“202111423305.X”、发明名称为“分离装置、换热器和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及制冷设备技术领域,尤其涉及一种分离装置、一种换热器和一种制冷设备。
相关技术中,制冷设备包括气液分离器,气液分离器设置不合理,无法有效分离出气态制冷剂中夹带的液体,易造成吸气带液,存在安全隐患。
发明内容
本公开旨在至少解决现有技术或相关技术中存在的技术问题之一。
本公开的一些实施方式提出了一种分离装置,用于换热器,包括:分离部,分离部设置有分离腔、入口和分离口,入口和分离口均与分离腔连通;封板,与分离部连接,且位于分离部的一侧,封板能够连接换热器的壳体。
本公开的一些实施方式提出了一种换热器,包括:壳体,壳体设置有出口;及如上述任一技术方案的分离装置,分离装置设于壳体内,且分离装置位于出口处。
本公开的一些实施方式提出了一种制冷设备,包括:压缩机,压缩机具有吸气口;及如上述技术方案的换热器,换热器的出口连接压缩机的吸气口。
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描 述中将变得明显和容易理解,其中:
图1示出了本公开的一些实施例的分离装置的第一视角的结构示意图;
图2示出了本公开的一些实施例的分离装置的第二视角的结构示意图;
图3示出了本公开的一些实施例的分离装置的第三视角的结构示意图;
图4示出了本公开的一些实施例的分离装置的第四视角的结构示意图;
图5为图4所示分离装置的A处局部放大图;
图6示出了本公开的一些实施例的换热器的部分结构示意图;
图7示出了本公开的一些实施例的换热器的结构示意图。
其中,图1至图7中的附图标记与部件名称之间的对应关系为:
100分离装置,110分离部,114入口,116分离口,118顶壁,122侧壁,124第一子侧壁,126第二子侧壁,128第一区域,130第二区域,132翻边,134分离腔,140封板,150扰流板,152连接孔,160加强筋,200换热器,210换热器的壳体,212出口,220换热管,230回气口,240腔室。
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7描述根据本公开一些实施例的分离装置100、换热器200和制冷设备。
如图1、图2、图3和图4所示,本公开的一些实施例中提出了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
详细地,分离装置100包括分离部110和封板140。封板140与分离部110连接,且封板140位于分离部110的一侧。分离装置100置于换热器的壳体210内,封板140与换热器的壳体210连接,封板140与换热器的壳体210之间形成腔室240,换热器200的回气口230与该腔室240连通,冷媒通过回气口230被抽吸进入腔室240内,冷媒进入腔室240内后与封板140发生第一次撞击,冷媒中的液体由于撞击而被分离出来。
第一次撞击后,气态冷媒绕过封板140流向分离部110,而后通过分离部110的入口114进入分离腔134,冷媒流入分离腔134会与分离腔134的腔壁发生第二次撞击,而后由分离部110的分离口116流出分离装置100,并通过换热器200的出口212吸入压缩机的吸气口。
该设置使得冷媒流经分离装置100时,冷媒与分离装置100经过多次撞击,能够有效分离出冷媒中的液体,能够大大减小吸入压缩机的冷媒中的液体,降低冷媒中的液体对压缩机的损害,有利于提升制冷设备的制冷效率,及有利于提升产品使用的安全性及可靠性。
具体地,分离口116的过流截面形状包括以下任一种:圆形、多边形及异形,异形指的是形状不规则的形状,多边形包括三角形、四边形、五边形等等,在此不一一列举。
具体地,入口114的过流截面形状包括以下任一种:圆形、多边形及异形,异形指的是形状不规则的形状,多边形包括三角形、四边形、五边形等等,在此不一一列举。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
进一步地,如图3和图7所示,封板140的外边缘的至少一部分凸伸出分离部110的外表面,封板140的外边缘能够连接换热器的壳体210。
详细地,通过合理设置封板140和分离部110的配合结构,使得封板 140的外边缘的至少一部分凸伸出分离部110的外表面,封板140的外边缘能够连接换热器的壳体210。也即,封板140凸伸出分离部110的外表面的部分能够与壳体连接。该设置在保证分离装置100与壳体装配的有效性及可行性的同时,使得分离部110与壳体的内表面之间具有间隙,也即,保证分离部110的分离口116与换热器200的出口212之间具有容置冷媒的空间,为压缩机有效吸入冷媒提供了结构支撑。
沿分离部110背离封板140的一侧至封板140的方向,分离部110在封板140上的投影位于封板140的边缘之内。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
进一步地,图2、图3、图4、图5和图6所示,分离部110包括顶壁118和侧壁122。
侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114,第一端与第二端对应设置,分离口116设于侧壁122。
其中,封板140连接顶壁118和侧壁122。
详细地,分离部110包括顶壁118和侧壁122,侧壁122具有第一端和第二端,第一端和第二端相对且间隔布置,侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114。
也即,第一次撞击后,气态冷媒绕过封板140流向分离部110,而后通过分离部110底部的入口114进入分离腔134,冷媒流入分离腔134会与分离腔134的腔壁发生第二次撞击,而后由分离部110侧壁122的分离口116流出分离装置100,并通过换热器200的出口212吸入压缩机的吸气口。
该设置延长了冷媒在分离部110内的流动路径,有利于增加冷媒与分离腔134的腔壁的碰撞频次,进而有利于有效分离出冷媒中的液体,提升 了冷媒的气液分离的有效性及高效性。
可以理解的是,封板140连接顶壁118和侧壁122,封板140既与分离部110的顶壁118连接,又与分离部110的侧壁122连接。
具体地,分离部110的顶壁118和侧壁122合围出凹槽结构。
进一步地,如图3所示,侧壁122包括第一子侧壁124和第二子侧壁126。
第一子侧壁124连接于顶壁118的第一侧。
第二子侧壁126连接于顶壁118的第二侧,第一子侧壁124和第二子侧壁126对应设置。
分离口116的数量为多个,多个分离口116中的一部分分离口116设于第一子侧壁124,另一部分分离口116设于第二子侧壁126。
其中,侧壁122包括第一子侧壁124和第二子侧壁126,第一子侧壁124和第二子侧壁126对应设置,第一子侧壁124和第二子侧壁126均与顶壁118连接,也即,第一子侧壁124和第二子侧壁126位于顶壁118的相对两侧。
分离口116的数量为多个,对多个分离口116进行划分,一部分分离口116设于第一子侧壁124,另一部分分离口116设于第二子侧壁126。这样,冷媒可由第一子侧壁124和第二子侧壁126同时流出分离部110。该设置增大了分离口116的总面积,增大了分离口116的分布角度,可保证压缩机的吸气量,为保证产品的工作效率提供了有效且可靠的结构支撑。
具体地,分离部110的顶壁118未设置有分离口116,故而,冷媒进入分离腔134后,冷媒能够与分离腔134的顶壁118第二次撞击,而后流向位于侧壁122的分离口116以发生第三次撞击,该设置能够增多冷媒与分离腔134的腔壁的碰撞频次,有利于提升气液分离的有效性。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能 够连接换热器的壳体210。
分离部110包括顶壁118和侧壁122。
侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114,第一端与第二端对应设置,分离口116设于侧壁122。
其中,封板140连接顶壁118和侧壁122。
进一步地,分离部110的顶壁118相较于入口114更靠近换热器200的出口212。
详细地,通过合理设置分离部110与换热器200的出口212的位置关系,使得分离部110的顶壁118相较于入口114更靠近换热器200的出口212,也即,分离部110的顶壁118位于入口114和换热器200的出口212之间。该设置限定了分离部110的入口114、顶壁118和换热器200的出口212的位置关系,使得绕过封板140的冷媒通过入口114流入分离器提供了有效且可靠的结构支撑。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
分离部110包括顶壁118和侧壁122。
侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114,第一端与第二端对应设置,分离口116设于侧壁122。
其中,封板140连接顶壁118和侧壁122。
进一步地,如图2和图3所示,分离部110的侧壁122包括第一区域128和第二区域130。
第一区域128相较于第二区域130更靠近换热器200的出口212,分离口116设于第二区域130。
详细地,分离部110的侧壁122包括第一区域128和第二区域130,第一区域128靠近换热器200的出口212,第二区域130远离换热器200 的出口212。通过合理设置第一区域128、第二区域130和分离口116的配合结构,使得分离口116设于第二区域130。该设置能够延长冷媒在分离腔134内的流动路径,增加冷媒与分离腔134的腔壁的碰撞频次,提升分离效果。
若第一区域128设置有分离口116,则,分离腔134内的大部分冷媒会通过第一区域128的分离口116被压缩机直接吸走,这样,会大大降低冷媒与分离腔134的腔壁的碰撞频次,这样,分离液体的效果较差,易造成吸气带液。
进一步地,如图2和图3所示,第二区域130的数量为两个,第一区域128位于两个第二区域130之间。
其中,第二区域130的数量为两个,通过合理设置两个第二区域130和第一区域128的位置关系,使得第一区域128位于两个第二区域130之间,该设置在保证冷媒与分离腔134的腔壁的充分碰撞的同时,有利于增大分离口116的总面积,进而有利于保证压缩机的吸气量。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
分离部110包括顶壁118和侧壁122。
侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114,第一端与第二端对应设置,分离口116设于侧壁122。
其中,封板140连接顶壁118和侧壁122。
进一步地,如图4和图6所示,顶壁118和侧壁122的连接处至换热器的壳体210的最小距离记作第一距离L1,入口114至顶壁118的距离记作第二距离L2;第一距离L1大于等于第二距离L2。
详细地,进一步限定流分离部110的顶壁118、侧壁122、入口114和换热器的壳体210的配合结构,使得顶壁118和侧壁122的连接处至换热 器的壳体210的最小距离为第一距离L1,入口114至顶壁118的距离为第二距离L2,并使第一距离L1大于等于第二距离L2。该设置兼顾了分离腔134的容积,及换热器200的出口212至分离部110的顶壁118之间的区域的容积,可保证压缩机的吸气量。
由于换热器200内用于容置分离装置100的空间是一定的,若第一距离小于第二距离,则会挤压分离部110的顶壁118与换热器200的出口212之间的空间。也即,若增大第二距离,则会导致第一距离减小,那么,会减小压缩机的吸气量,影响制冷设备的工作效率。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
分离部110包括顶壁118和侧壁122。
侧壁122的第一端连接顶壁118,侧壁122的第二端合围出入口114,第一端与第二端对应设置,分离口116设于侧壁122。
其中,封板140连接顶壁118和侧壁122。
进一步地,如图1、图3、图4和图5所示,分离部110的入口114处形成有翻边132,翻边132能够连接换热器的壳体210。
详细地,分离部110的入口114处形成有翻边132,翻边132与换热器的壳体210连接,也就是说,封板140与换热器的壳体210连接的同时,分离部110与换热器的壳体210连接。该设置增大了分离装置100与换热器200壳体的接触面积和接触角度,有利于提升分离装置100与换热器200壳体的装配结构强度,可以有效避免分离装置100移位甚至是掉落的情况发生。
具体地,翻边132与分离部110的侧壁122连接。
更具体地,翻边132与分离部110的侧壁122一体形成,该结构设置由于省去了翻边132与分离部110的侧壁122的装配工序,故而简化了翻 边132与分离部110的侧壁122的成型工序,有利于提升产品的加工效率。另外,翻边132与分离部110的侧壁122一体形成可保证产品的尺寸的精度。其中,翻边132与分离部110的侧壁122一体冲压成型。
其中,翻边132垂直于分离部110的侧壁122。
进一步地,如图1、图4和图5所示,分离装置100还包括扰流板150。
扰流板150位于分离部110的一侧,扰流板150的第一部分与入口114对应设置,扰流板150的第二部分与翻边132连接。
其中,分离装置100还包括扰流板150,扰流板150与分离部110的翻边132连接,也即,扰流板150与分离部110装配在一起,分离部110具有支撑和固定扰流板150的作用。
另外,扰流板150的第一部分与入口114对应设置,也即,扰流板150的第一部分能够遮挡入口114的一部分,扰流板150地设置能够改变冷媒的流动路径,延长冷媒流经分离装置100的路径,为提升冷媒与分离腔134的腔壁的接触频次提供了有效且可靠的结构支撑。
具体地,扰流板150的数量为两个,第一子侧壁124与一个扰流板150连接,第二子侧壁126与另一个扰流板150连接。
其中,沿翻边132至入口114的方向,扰流板150的第一部分的宽度为d1,分离部110的顶壁118至封板140的外边缘的最大距离为d2,也即,扰流板150与入口114的口壁错开一定距离。并对该距离进行了限定,具体地,d1小于等于
该设置既可保证扰流板150的扰流效果,又不会对压缩机的吸气量造成影响。
具体的,d1等于d2的四分之一、d1等于d2的五分之一、d1等于d2的六分之一等等,在此不一一列举。
进一步地,如图1所示,扰流板150设置有至少一个连接孔152,连接孔152用于与翻边132焊接连接。
其中,通过合理设置扰流板150的结构,使得扰流板150设置有一个 连接孔152,或者扰流板150设置有多个连接孔152。当扰流板150设置有多个连接孔152时,多个连接孔152间隔布置。
采用点焊的方式将扰流板150的连接孔152与翻边132焊接在一起。具体地,连接孔152与翻边132对应设置,连接孔152的孔壁与翻边132合围出凹槽结构,焊料填充于凹槽结构内,以将扰流板150和翻边132稳固且牢靠地装配在一起。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
进一步地,如图1所示,分离装置100还包括加强筋160。
加强筋160设于分离部110,且加强筋160位于入口114处。
详细地,通过合理设置分离装置100的结构,使得分离装置100包括加强筋160,加强筋160与分离部110连接,且加强筋160位于入口114处,加强筋160具有增强分离部110的结构强度的作用,这样,换热器200工作时,在冷媒的冲击下分离部110不会发生形变,可保证入口114、分离口116的位置关系,为压缩机有效吸入冷媒提供了有效且可靠的结构支撑。
具体地,加强筋160的第一端连接第一子侧壁124,加强筋160的第二端连接第二子侧壁126。也即,加强筋160地设置能够保证第一子侧壁124和第二子侧壁126之间的间距,进而可保证入口114的过流截面面积。
进一步地,加强筋160的数量为多个,多个加强筋160间隔布置。
其中,加强筋160的数量为多个,多个加强筋160间隔布置,该设置增多了加强筋160与分离部110的接触面积和接触角度,有利于提升加强筋160与分离部110的装配结构强度,有利于提升分离装置100的整体结构强度。
具体地,加强筋160与分离部110通过焊接的方式连接在一起。
如图1、图2、图3和图4所示,本公开的一些实施例提供了一种分离装置100,用于换热器200,分离装置100包括分离部110和封板140。
分离部110设置有分离腔134、入口114和分离口116,入口114和分离口116均与分离腔134连通。
封板140与分离部110连接,且位于分离部110的一侧,封板140能够连接换热器的壳体210。
进一步地,如图2、图3和图7所示,封板140的数量为两个,分离部110位于两个封板140之间。
详细地,封板140的数量为两个,两个封板140中的一个封板140位于分离部110的第一侧,两个封板140中的另一个封板140位于分离部110的第二侧,分离部110的第一侧与分离部110的第二侧对应设置。该设置增大了分离装置100与换热器的壳体210的接触面积和接触角度,有利于提升分离装置100与换热器的壳体210的装配结构强度。
具体地,封板140的形状为扇形。
在本实施例中,两个封板140的形状相同,且两个封板140的尺寸相同。该设置简化流分离装置100的加工工序,有利于提升产品的加工效率,进而有利于降低产品的生产成本。
其中,封板140的边缘的形状与换热器的壳体210的形状相同或相近,以保证封板140与换热器的壳体210的有效连接。
如图6和图7所示,本公开的一些实施例提出了一种换热器200,包括:壳体,壳体设置有出口212;及如上述任一实施例的分离装置100,分离装置100设于壳体内,且分离装置100位于出口212处。
详细地,换热器200包括壳体和分离装置100。分离装置100设于壳体内,且分离装置100位于换热器200的出口212处。
分离装置100包括分离部110和封板140。封板140与分离部110连接,且封板140位于分离部110的一侧。分离装置100置于换热器的壳体210内,封板140与换热器的壳体210连接,封板140与换热器的壳体210之间形成腔室240,换热器200的回气口230与该腔室240连通,冷媒通过回气口230被抽吸进入腔室240内,冷媒进入腔室240内后与封板140 发生第一次撞击,冷媒中的液体由于撞击而被分离出来。
第一次撞击后,气态冷媒绕过封板140流向分离部110,而后通过分离部110的入口114进入分离腔134,冷媒流入分离腔134会与分离腔134的腔壁发生第二次撞击,而后由分离部110的分离口116流出分离装置100,并通过换热器200的出口212吸入压缩机的吸气口。
该设置使得冷媒流经分离装置100时,冷媒与分离装置100经过多次撞击,能够有效分离出冷媒中的液体,能够大大减小吸入压缩机的冷媒中的液体,降低冷媒中的液体对压缩机的损害,有利于提升制冷设备的制冷效率,及有利于提升产品使用的安全性及可靠性。
如图6和图7所示,本公开的一些实施例提出了一种制冷设备,包括:压缩机,压缩机具有吸气口;及如上述实施例的换热器200,换热器200的出口212连接压缩机的吸气口。
详细地,制冷设备包括压缩机和换热器200,换热器200具有出口212,压缩机具有吸气口,换热器200的出口212连接压缩机的吸气口。
分离装置100包括分离部110和封板140。封板140与分离部110连接,且封板140位于分离部110的一侧。分离装置100置于换热器的壳体210内,封板140与换热器的壳体210连接,封板140与换热器的壳体210之间形成腔室240,换热器200的回气口230与该腔室240连通,冷媒通过回气口230被抽吸进入腔室240内,冷媒进入腔室240内后与封板140发生第一次撞击,冷媒中的液体由于撞击而被分离出来。
第一次撞击后,气态冷媒绕过封板140流向分离部110,而后通过分离部110的入口114进入分离腔134,冷媒流入分离腔134会与分离腔134的腔壁发生第二次撞击,而后由分离部110的分离口116流出分离装置100,并通过换热器200的出口212吸入压缩机的吸气口。
该设置使得冷媒流经分离装置100时,冷媒与分离装置100经过多次撞击,能够有效分离出冷媒中的液体,能够大大减小吸入压缩机的冷媒中的液体,降低冷媒中的液体对压缩机的损害,有利于提升制冷设备的制冷效率,及有利于提升产品使用的安全性及可靠性。
进一步地,分离装置100的分离口116的数量记作n,分离口116的 过流截面面积记作s1,压缩机的吸气口的过流截面面积记作s2;n、s1和s2满足:2×s2≤n×s1≤3×s2。
其中,分离装置100的分离口116的数量记作n,分离口116的过流截面面积记作s1,压缩机的吸气口的过流截面面积记作s2。通过合理设置n、s1和s2的关系,使得n、s1和s2满足:2×s2≤n×s1≤3×s2,在保证气液分离的有效性及可行性的同时,能够保证压缩机的吸气量,进而可保证制冷设备的工作效率。
具体地,s2=π×r
2,其中,r为压缩机的吸气口的半径。
如图1至图4所示,分离装置100包括分离部110、封板140、加强筋160和扰流板150。封板140的形状均为扇形。
两个封板140位于分离部110的两侧。封板140的外边缘与换热器的壳体210焊接连接。
如图4所示,封板140与换热器的壳体210之间形成腔室240。分离部110为“几”字形结构。
该设置使得压缩机吸气时能有效增加气态冷媒的撞击次数,提高分离效率,从而降低吸气带液的风险。
如图3所示,分离部110的顶壁118无任何孔等特征,分离部110的第一子侧壁124和第二子侧壁126对应设置。分离口116的数量为多个,多个分离口116中的一部分分离口116设于第一子侧壁124,多个分离口116中的另一部分分离口116设于第二子侧壁126。
如图2和图3所示,第一子侧壁124和第二子侧壁126均包括第一区域128和第二区域130,第一区域128相较于第二区域130更靠近换热器200的出口212,分离口116设于第二区域130。
分离口116的数量记作n,分离口116的过流截面面积记作s1,压缩机的吸气口的过流截面面积记作s2,s1和s2满足:2×s2≤n×s1≤3×s2,s2=π×r
2,其中,r为压缩机的吸气口的半径。
如图4和图6所示,顶壁118和侧壁122的连接处至换热器的壳体210的最小距离记作第一距离L1,入口114至顶壁118的距离记作第二距离L2;第一距离L1大于等于第二距离L2。以保证压缩机总的吸气体积流量。
加强筋160为长方形条状,共设置3块(根据不同的情况可设置多块),对分离部110起到支撑作用。
扰流板150为长方形条状,扰流板150开有等距离圆形的连接孔152,连接孔152用于与分离部110的翻边132焊接紧固。扰流板150的数量为两个。
如图5所示,扰流板150的第一部分与入口114对应设置,扰流板150的第二部分与翻边132连接。该设置能够改变气态冷媒的流动路径。
制冷设备工作时,气态冷媒被压缩机吸入,冷媒先与封板140发生第一次撞击分离后,冷媒的流向发生第一次改变。由于压差原因,冷媒会朝着分离部110的分离器内流动,与分离部110的顶壁118撞击发生第二次分离。第二次撞击分离完成后紧接着与分离部110的第一子侧壁124和第二子侧壁126发生第三次撞击分离,最终分离后得到的气态制冷剂中几乎不含液态。
具体地,换热器200还包括换热管220,换热管220位于换热器的壳体210的内部。
分离装置100置于换热器的壳体210内,封板140与换热器的壳体210连接,封板140与换热器的壳体210之间形成腔室240,换热器200的回气口230与该腔室240连通,冷媒通过回气口230被抽吸进入腔室240内,冷媒进入腔室240内后与封板140发生第一次撞击,冷媒中的液体由于撞击而被分离出来。
第一次撞击后,气态冷媒绕过封板140流向分离部110,而后通过分离部110的入口114进入分离腔134,冷媒流入分离腔134会与分离腔134的腔壁发生第二次撞击,而后由分离部110的分离口116流出分离装置100,并通过换热器200的出口212吸入压缩机的吸气口。
该设置使得冷媒流经分离装置100时,冷媒与分离装置100经过多次撞击,能够有效分离出冷媒中的液体,能够大大减小吸入压缩机的冷媒中的液体,降低冷媒中的液体对压缩机的损害,有利于提升制冷设备的制冷效率,及有利于提升产品使用的安全性及可靠性。
在本公开中,术语“多个”则指两个或两个以上,除非另有明确的限 定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (18)
- 一种分离装置,用于换热器,包括:分离部,所述分离部设置有分离腔、入口和分离口,所述入口和所述分离口均与所述分离腔连通;封板,与所述分离部连接,且位于所述分离部的一侧,所述封板能够连接所述换热器的壳体。
- 根据权利要求1所述的分离装置,所述封板的外边缘的至少一部分凸伸出分离部的外表面,所述封板的外边缘能够连接所述换热器的壳体。
- 根据权利要求1所述的分离装置,所述分离部包括:顶壁;侧壁,所述侧壁的第一端连接所述顶壁,所述侧壁的第二端合围出所述入口,所述第一端与所述第二端对应设置,所述分离口设于所述侧壁;其中,所述封板连接所述顶壁和所述侧壁。
- 根据权利要求3所述的分离装置,所述侧壁包括:第一子侧壁,连接于所述顶壁的第一侧;第二子侧壁,连接于所述顶壁的第二侧,所述第一子侧壁和所述第二子侧壁对应设置;所述分离口的数量为多个,多个所述分离口中的一部分所述分离口设于所述第一子侧壁,另一部分所述分离口设于所述第二子侧壁。
- 根据权利要求3所述的分离装置,所述分离部的顶壁相较于所述入口更靠近所述换热器的出口。
- 根据权利要求3所述的分离装置,所述侧壁包括第一区域和第二区域,所述第一区域相较于所述第二区域更靠近所述换热器的出口,所述分离口设于所述第二区域。
- 根据权利要求6所述的分离装置,所述第二区域的数量为两个,所述第一区域位于两个所述第二区域之间。
- 根据权利要求3所述的分离装置,所述顶壁和所述侧壁的连接处至所述换热器的壳体的最小距离记作第一距离,所述入口至所述顶壁的距离 记作第二距离;所述第一距离大于等于所述第二距离。
- 根据权利要求3所述的分离装置,所述分离部的入口处形成有翻边,所述翻边能够连接所述换热器的壳体。
- 根据权利要求9所述的分离装置,还包括:扰流板,位于所述分离部的一侧,所述扰流板的第一部分与所述入口对应设置,所述扰流板的第二部分与所述翻边连接。
- 根据权利要求10所述的分离装置,所述扰流板设置有至少一个连接孔,所述连接孔用于与所述翻边焊接连接。
- 根据权利要求1所述的分离装置,还包括:加强筋,设于所述分离部,且位于所述入口处。
- 根据权利要求13所述的分离装置,所述加强筋的数量为多个,多个所述加强筋间隔布置。
- 根据权利要求1所述的分离装置,所述封板的数量为两个,所述分离部位于两个所述封板之间。
- 一种换热器,其中,包括:壳体,所述壳体设置有出口;及如权利要求1至15中任一项所述的分离装置,所述分离装置设于所述壳体内,且所述分离装置位于所述出口处。
- 一种制冷设备,其中,包括:压缩机,所述压缩机具有吸气口;及如权利要求16所述的换热器,所述换热器的出口连接所述压缩机的吸气口。
- 根据权利要求17所述的制冷设备,所述分离装置的分离口的数量记作n,所述分离口的过流截面面积记作s1,所述压缩机的吸气口的过流 截面面积记作s2;所述n、所述s1和所述s2满足:2×s2≤n×s1≤3×s2。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111423305.XA CN116182438A (zh) | 2021-11-26 | 2021-11-26 | 分离装置、换热器和制冷设备 |
CN202111423305.X | 2021-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023092991A1 true WO2023092991A1 (zh) | 2023-06-01 |
Family
ID=86444803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097773 WO2023092991A1 (zh) | 2021-11-26 | 2022-06-09 | 分离装置、换热器和制冷设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116182438A (zh) |
WO (1) | WO2023092991A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561987A (en) * | 1995-05-25 | 1996-10-08 | American Standard Inc. | Falling film evaporator with vapor-liquid separator |
CN102914094A (zh) * | 2012-09-27 | 2013-02-06 | 浙江盾安机电科技有限公司 | 换热器及包含其的空调器 |
CN103477164A (zh) * | 2011-02-09 | 2013-12-25 | 瓦特鲁斯公司 | 用于分离液滴的装置 |
CN103925747A (zh) * | 2013-01-16 | 2014-07-16 | 珠海格力电器股份有限公司 | 满液式蒸发器及具有该蒸发器的水冷式空调机组 |
CN206771814U (zh) * | 2017-05-19 | 2017-12-19 | 珠海格力电器股份有限公司 | 蒸发器及具有其的空调器 |
EP3537066A1 (en) * | 2016-11-02 | 2019-09-11 | Gree Electric Appliances, Inc. of Zhuhai | Vapour-liquid filter mesh, heat exchanger and air conditioner |
WO2021061889A1 (en) * | 2019-09-27 | 2021-04-01 | Carrier Corporation | Liquid blocking device and evaporator thereof |
-
2021
- 2021-11-26 CN CN202111423305.XA patent/CN116182438A/zh active Pending
-
2022
- 2022-06-09 WO PCT/CN2022/097773 patent/WO2023092991A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561987A (en) * | 1995-05-25 | 1996-10-08 | American Standard Inc. | Falling film evaporator with vapor-liquid separator |
CN103477164A (zh) * | 2011-02-09 | 2013-12-25 | 瓦特鲁斯公司 | 用于分离液滴的装置 |
CN102914094A (zh) * | 2012-09-27 | 2013-02-06 | 浙江盾安机电科技有限公司 | 换热器及包含其的空调器 |
CN103925747A (zh) * | 2013-01-16 | 2014-07-16 | 珠海格力电器股份有限公司 | 满液式蒸发器及具有该蒸发器的水冷式空调机组 |
EP3537066A1 (en) * | 2016-11-02 | 2019-09-11 | Gree Electric Appliances, Inc. of Zhuhai | Vapour-liquid filter mesh, heat exchanger and air conditioner |
CN206771814U (zh) * | 2017-05-19 | 2017-12-19 | 珠海格力电器股份有限公司 | 蒸发器及具有其的空调器 |
WO2021061889A1 (en) * | 2019-09-27 | 2021-04-01 | Carrier Corporation | Liquid blocking device and evaporator thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116182438A (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11624565B2 (en) | Header box and heat exchanger | |
WO2013125533A1 (ja) | 蓄冷熱交換器 | |
US11959671B2 (en) | Refrigerant distributor and evaporator comprising the refrigerant distributor | |
WO2019056951A1 (zh) | 微通道换热器的扁管以及微通道换热器 | |
JP5722528B2 (ja) | 熱交換器用プレート | |
WO2017097133A1 (zh) | 一种换热器 | |
WO2023092991A1 (zh) | 分离装置、换热器和制冷设备 | |
US7121331B2 (en) | Heat exchanger | |
CN116086219B (zh) | 一种带分配孔结构的板式换热器 | |
JPH0674678A (ja) | 積層型熱交換器およびその製造方法 | |
CN110530190B (zh) | 集管箱及换热器 | |
EP3757485A1 (en) | Gas-liquid separator and heat exchange system | |
CN111981876A (zh) | 一种板式换热器 | |
CN215413279U (zh) | 换热器组件、电控盒、空调外机及空调器 | |
CN215809515U (zh) | 油分离器、换热器及空调 | |
CN210741194U (zh) | 一种板式换热器 | |
KR930000657B1 (ko) | 적층형 열교환기 | |
JP2015096781A (ja) | 油分離器 | |
CN113532166A (zh) | 换热芯体及换热器 | |
CN220041970U (zh) | 化成负压杯及化成设备 | |
CN118149627B (zh) | 换热装置、逆变器冷却系统及变流器冷却系统 | |
CN112212545A (zh) | 均液器、布液器、降膜换热器及空调机组 | |
CN105135789B (zh) | 冰箱 | |
CN215637598U (zh) | 一种空调器 | |
CN220322135U (zh) | 板式换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22897089 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |