WO2023092956A1 - 一种生物质糖化发酵生产纤维素乙醇的系统及方法 - Google Patents

一种生物质糖化发酵生产纤维素乙醇的系统及方法 Download PDF

Info

Publication number
WO2023092956A1
WO2023092956A1 PCT/CN2022/092087 CN2022092087W WO2023092956A1 WO 2023092956 A1 WO2023092956 A1 WO 2023092956A1 CN 2022092087 W CN2022092087 W CN 2022092087W WO 2023092956 A1 WO2023092956 A1 WO 2023092956A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
fermentation
ethanol
materials
biomass
Prior art date
Application number
PCT/CN2022/092087
Other languages
English (en)
French (fr)
Inventor
胡昌辉
罗家星
李勉
廖承军
杨武龙
严良聪
甄妮
陈兰兰
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Priority to JP2023549920A priority Critical patent/JP2024506737A/ja
Priority to EP22897056.2A priority patent/EP4299752A1/en
Publication of WO2023092956A1 publication Critical patent/WO2023092956A1/zh
Priority to US18/348,319 priority patent/US20230348940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/40Manifolds; Distribution pieces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/12Purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention belongs to the technical field of cellulosic ethanol preparation, in particular to a system and method for producing cellulosic ethanol by saccharification and fermentation of biomass.
  • lignocellulosic waste such as straw and corncobs
  • the main components of lignocellulosic materials are cellulose, hemicellulose, lignin and a small amount of ash.
  • the cellulose component can be enzymatically saccharified by cellulase to obtain glucose, glucose can produce cellulosic ethanol through biological fermentation, which can as a clean fuel.
  • the process of producing cellulosic ethanol mainly includes biomass pretreatment, cellulase enzymatic hydrolysis and glucose fermentation.
  • the difficulty is to increase the inhibition of product glucose in the process of high solid content in the enzymatic hydrolysis system, especially in the later stage of enzymatic hydrolysis, the concentration of released monomer glucose increases, and the activity of cellulase is more inhibited , this situation will lead to a decrease in the overall enzymatic hydrolysis efficiency and a decrease in the enzymatic cellulose conversion efficiency.
  • SSF simultaneous saccharification and fermentation
  • the simultaneous saccharification and fermentation process cannot take into account the optimal conditions of enzymatic saccharification and fermentation.
  • the ethanol produced also has a certain inhibitory effect on cellulase, and the enzymatic hydrolysis and fermentation efficiency are both affected.
  • the technical problem to be solved by the present invention is to provide a system and method for producing cellulose ethanol by saccharification and fermentation of biomass, which integrates the cellulose enzymatic hydrolysis process and the ethanol fermentation process into an intermittent enzymatic hydrolysis fermentation process, so as to solve the problem of the product glucose on the fiber Solve the problem of inhibition of the activity of the enzyme protein and improve the yield of cellulosic ethanol.
  • the present invention is achieved by providing a system for producing cellulose ethanol by saccharifying and fermenting biomass, the system comprising: a reactor A for enzymatic hydrolysis of biomass raw materials, a reactor B for fermentation of biomass raw materials and
  • the collection tank used to collect the cellulosic ethanol produced after the fermentation reaction of biomass raw materials is equipped with an enzymolysis feeding pipe and a fermentation feeding pipe separately on reactor A and reactor B, and the outlet of reactor A passes through the provided
  • the fermentation pipeline is connected to the feed port of reactor B, and a diaphragm pump A is arranged on the fermentation pipe, and the discharge port of reactor B is connected to the feed port of reactor A through the set discharge pipe.
  • a diaphragm pump B and a first discharge pipe are provided, and the first discharge pipe is located behind the diaphragm pump B, and is connected to the feed port of the collection tank through the ethanol pipeline provided on the upper part of the reactor A, outside the reactor A
  • An insulation layer for heating and heat preservation of the reactor A is provided, and a coil insulation device is provided at the joint of the ethanol pipeline at the upper part of the reactor A, and the coil insulation device and the insulation layer are respectively connected to the hot water pipe successively through the provided hot water pipes.
  • the water tank is provided with a centrifugal pump on the hot water pipe.
  • the enzymolysis feed pipe is used to add enzymolysis materials such as enzymolysis biomass raw materials, acid liquid, and enzymolysis materials into the reactor A.
  • the fermentation feed pipe is used to add fermentation materials such as fermentation strains into the reactor B.
  • biomass raw materials include straw and agricultural residues, and commonly used biomass raw materials include corn stalks, corn cobs, bagasse, and the like.
  • the ethanol pipeline is used to convey the cellulosic ethanol vapor evaporated from the fermented biomass feedstock in reactor A.
  • a storage tank, a diaphragm pump C and a second discharge pipe are also arranged on the discharge pipeline, the storage tank is located behind the first discharge pipe, and is used to store the material coming out of the reactor B, and the second discharge pipe Located behind diaphragm pump C.
  • the present invention is achieved in this way, and also provides a method for producing cellulose ethanol by saccharification and fermentation of biomass, which uses the system for producing cellulose ethanol by saccharification and fermentation of biomass as described above, and the method includes the following steps:
  • Step 1 Add biomass raw materials with a content of 15% to 20% dry basis to a citric acid buffer solution with a concentration of 0.1mol/L, and then add cellulase and citric acid buffer solution with a dry basis of 4% to 6%.
  • the pH of the solution is 5.0-6.0, and the prepared biomass raw material is added to the reactor A through the enzymolysis feeding pipe;
  • Step 2 Maintain the temperature of the reactor A at the enzymolysis reaction temperature T, maintain the pH value of the material in the reactor A, and carry out the first enzymolysis reaction on the material in the reactor A under stirring, and the enzymolysis reaction takes 10h to 14h;
  • Step 3 Transport the material that has undergone enzymatic hydrolysis reaction in reactor A to reactor B through the fermentation pipeline, add fermentation strains with a mass ratio of 0.1% to 1% into reactor B through the fermentation feeding pipe, and control the fermentation temperature at Under the suitable fermentation temperature of the fermentation strain, the material in the reactor B is subjected to the first fermentation reaction under the stirring state, and the fermentation reaction takes 10h to 14h;
  • Step 4 After the first fermentation reaction, the materials in the reactor B are transported to the reactor A through the discharge pipeline, and the cellulose ethanol produced by fermentation in the materials is evaporated into cellulose ethanol vapor in the reactor A, and the fiber Vegetable ethanol vapor flows into the collection tank through the ethanol pipeline and is condensed into cellulosic ethanol;
  • Step 5 repeat step 2, step 3 and step 4, the same batch of materials are respectively in reactor A and reactor B for 4 to 6 cycles of single-cycle turnover, until it ends in reactor B, and finally passes through the first discharge Pipe discharge system.
  • the present invention is achieved in this way, and also provides another method for producing cellulose ethanol by saccharification and fermentation of biomass, which uses the system for producing cellulose ethanol by saccharification and fermentation of biomass as described above, and the method includes the following steps:
  • Step 1 the biomass raw material that content accounts for 15% ⁇ 20% on dry basis is joined in the citric acid buffer solution that concentration is 0.1mol/L, then adds the cellulase that accounts for 4% ⁇ 6% on dry basis, maintains citric acid
  • the pH of the buffer solution is 5.0-6.0, and the prepared first batch of materials is added to the reactor A through the enzymatic hydrolysis feeding tube;
  • Step II maintaining the temperature of the reactor A at the enzymolysis reaction temperature T, maintaining the pH value of the material, and performing the first enzymolysis reaction on the first batch of materials in the reactor A under the stirring state, and the enzymolysis reaction takes 10h to 14h;
  • Step III transporting the first batch of materials of the enzymolysis reaction in the reactor A to the reactor B through the fermentation pipeline, adding a fermentation strain with a mass ratio of 0.1% to 1% to the reactor B through the fermentation feed pipe, and controlling The fermentation temperature is at the suitable fermentation temperature of the fermentation strain, and the first batch of materials in the reactor B is subjected to the first fermentation reaction under the stirring state, and the fermentation reaction takes 10h to 14h;
  • step I and step II add the second batch of material to reactor A, and the second batch of material is enzymatically hydrolyzed in reactor A reaction;
  • Step IV after the first fermentation reaction, the first batch of materials in the reactor B is transported to the storage tank through the discharge pipeline for temporary storage; after the first batch of materials in the reactor B is emptied, repeat step III to The second batch of material in reactor A is transported to reactor B through fermentation pipeline for fermentation reaction;
  • Step V After the second batch of materials in reactor A is emptied, the first batch of materials temporarily stored in the storage tank is transported to reactor A through the discharge pipeline, and then step II is performed, and the fibers produced by fermentation in the first batch of materials are Vegetable ethanol is evaporated into cellulosic ethanol vapor in reactor A, and cellulosic ethanol vapor is condensed into cellulosic ethanol by flowing into the collecting tank through ethanol pipeline;
  • step IV to transport the second batch of materials in the reactor B to the storage tank through the discharge pipeline for temporary storage;
  • Step VI repeating step II to step V, the two batches of materials are respectively carried out in double-cycle turnover in reactor A and reactor B respectively and maintained for 4 to 6 cycles, until they end in reactor B in turn, and finally pass through The first discharge pipe exits the system.
  • the system and method for producing cellulosic ethanol by saccharification and fermentation of biomass according to the present invention have the following characteristics:
  • the method of the present invention can use fermentation strains to ferment glucose into cellulose ethanol after the enzymolysis product—fermentable glucose has accumulated a certain concentration, so as to solve the problem of glucose accumulation.
  • the problem of inhibition of cellulase activity can be used.
  • Integrate cellulose enzymatic hydrolysis process, fermentation process and ethanol extraction process combine the three into one, and carry out multiple cycles of enzymatic hydrolysis saccharification, fermentation and extraction of ethanol on biomass raw materials at intervals, reducing the accumulation of ethanol Inhibiting the enzymatic hydrolysis and fermentation process, improving the conversion rate of cellulosic ethanol.
  • Fig. 1 is the schematic diagram of the first structural principle of the system for producing cellulosic ethanol by biomass saccharification and fermentation of the present invention
  • Fig. 2 is a schematic diagram of the second structural principle of the system for producing cellulosic ethanol by saccharification and fermentation of biomass according to the present invention
  • Fig. 3 is the relationship diagram of glucose release concentration over time in the enzymatic hydrolysis system of added glucose and ethanol;
  • Fig. 4 is a columnar schematic diagram of the survival rate of Saccharomyces cerevisiae thermotolerance test at different temperatures
  • Fig. 5 is a bar graph showing the survival rate of Zymomonas mobilis at different temperatures in the heat resistance test.
  • FIG. 1 the first embodiment of the system for producing cellulosic ethanol by saccharification and fermentation of biomass according to the present invention.
  • the direction indicated by the arrow in the figure is the direction of travel of materials in the system, such as biomass raw materials, steam, chilled water, condensed water, bacteria, ethanol, etc.
  • the system includes: a reactor A1 for enzymatic hydrolysis of biomass raw materials, a reactor B2 for fermentation of biomass raw materials, and a collection tank 4 for collecting cellulose ethanol produced after the fermentation of biomass raw materials.
  • An enzymolysis feed pipe 11 and a fermentation feed pipe 21 are separately provided on the reactor A1 and the reactor B2, and the discharge port of the reactor A1 is connected to the feed port of the reactor B2 through the fermentation pipeline 6 provided.
  • a diaphragm pump A7 is provided on the fermentation pipeline 6, and the discharge port of the reactor B2 is communicated with the feed port of the reactor A1 through the provided discharge pipe 8.
  • a diaphragm pump B9 and a first discharge pipe 16 are arranged on the discharge pipeline 8, and the first discharge pipe 16 is located behind the diaphragm pump B9.
  • the upper part of the reactor A1 is connected to the feed port of the collection tank 4 through the ethanol pipeline 10 provided.
  • the outside of the reactor A1 is provided with an insulating layer 12 for heating and insulating the reactor A1, and the junction of the ethanol pipeline 10 on the top of the reactor A is provided with a coil insulation device 13, a coil insulation device 13 and an insulation layer 12. They are successively connected to the hot water tank 5 through the provided hot water pipes 14 , and a centrifugal pump 15 is arranged on the hot water pipes 14 .
  • the coil insulation device 13 is used to ensure that the evaporated cellulose ethanol vapor in the reactor A1 is not condensed, and is transported to the collection tank 4 .
  • the hot water in the hot water tank 5 enters the coil insulation device 13 on the top of the reactor A1 and the insulation layer 12 outside the reactor A1 through a centrifugal pump 15 to control the temperature of the reactor A1 and the coil insulation device 13 .
  • An ethanol refrigeration device 19 for condensing cellulosic ethanol vapor is provided at the junction of the ethanol pipeline 10 at the top of the collecting tank 4 .
  • the ethanol freezing device 19 is convenient for condensing and collecting the cellulosic ethanol vapor passing through the ethanol pipeline 10 by freezing water.
  • a fermentation cooling device 20 for cooling the fermentation material in the reactor B2 is arranged outside the reactor B2.
  • the same batch of biomass material is flowed in a single cycle between the reactor A1 and the reactor B2.
  • FIG. 2 the second embodiment of the system for producing cellulosic ethanol by saccharification and fermentation of biomass according to the present invention.
  • this embodiment is also provided with a storage tank 3, a diaphragm pump C17 and a second discharge pipe 18 on the discharge pipeline 8, and the storage tank 3 is positioned at the rear of the first discharge pipe 16 for storing
  • the second discharge pipe 18 is located behind the diaphragm pump C17.
  • the other structures are the same as those of the first embodiment and will not be repeated here.
  • the present invention also discloses a method for producing cellulose ethanol by saccharification and fermentation of biomass, which uses the system for producing cellulose ethanol by saccharification and fermentation of biomass as described above, and the method includes the following steps:
  • Step 1 Add biomass raw materials with a content of 15% to 20% (w/w) on a dry basis to a citric acid buffer solution with a concentration of 0.1mol/L, and then add 4% to 6% (w/w) on a dry basis
  • the pH of the citric acid buffer solution is 5.0-6.0
  • the prepared biomass raw material is fed into the reactor A1 through the enzymolysis feed pipe 11 .
  • Step 2 Maintain the temperature of reactor A1 at the enzymolysis reaction temperature T, maintain the pH value of the materials in reactor A, and carry out the first enzymolysis reaction on the materials in reactor A1 under stirring state, and the enzymolysis reaction takes 10h to 14h.
  • Step 3 Transport the material that has been enzymatically reacted in the reactor A1 to the reactor B2 through the fermentation pipeline 6, and add a fermentation strain with a mass ratio of 0.1% to 1% into the reactor B2 through the fermentation feeding pipe 21 to control the fermentation
  • the temperature is at the suitable fermentation temperature of the fermentation strain, and the material in the reactor B2 is subjected to the first fermentation reaction under stirring state, and the fermentation reaction takes 10h to 14h.
  • Step 4 After the first fermentation reaction, the material in the reactor B2 is transported to the reactor A1 through the discharge pipeline 8, and the cellulose ethanol produced by fermentation in the material is evaporated into cellulose ethanol vapor in the reactor A, The cellulosic ethanol vapor flows into the collection tank through the ethanol pipeline to be condensed into cellulosic ethanol.
  • Step 5 Repeat step 2, step 3 and step 4.
  • the same batch of materials is subjected to single-cycle turnover in reactor A1 and reactor B2 respectively for 4 to 6 cycles, and 4 to 6 enzymatic hydrolysis reactions and fermentation reactions are carried out respectively. , until it ends in the reactor B2, and finally discharges the system through the first discharge pipe 16.
  • the method is a single-cycle method in the method for producing cellulosic ethanol through saccharification and fermentation of biomass.
  • the enzymolysis reaction temperature T is the highest temperature at which the survival rate of the fermentation strain is above 80%.
  • the temperature T of the enzymatic hydrolysis reaction is determined by the following method: use a citric acid buffer solution with a concentration of 0.1mol/L to configure the test system, add 100g/L glucose, and add a fermentation strain with a mass ratio of 1%, respectively, at 40°C, 41°C, and 42°C , 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C and incubate for 12 hours, use the plate counting method to measure the number of live bacteria in the fermentation strain, and the survival rate of live bacteria after 12 hours is 80%
  • the highest temperature is the enzymolysis reaction temperature T.
  • the cellulase used in the enzymatic hydrolysis reaction is Cellic CTec 2.
  • the present invention also discloses another method for producing cellulose ethanol by saccharification and fermentation of biomass, which uses the system for producing cellulose ethanol by saccharification and fermentation of biomass as described above, and the method includes the following steps:
  • Step 1 the biomass raw material that content accounts for 15% ⁇ 20% (w/w) dry basis joins in the citric acid buffer solution that concentration is 0.1mol/L, then adds and accounts for dry basis 4% ⁇ 6% (w/w For cellulase in w), maintain the pH of the citric acid buffer solution at 5.0-6.0, and feed the prepared first batch of materials into the reactor A1 through the enzymolysis feeding pipe 11 .
  • Step II keep the temperature of the reactor A1 at the enzymolysis reaction temperature T, maintain the pH value of the material, and carry out the first enzymolysis reaction of the first batch of materials in the reactor A1 under stirring state, and the enzymolysis reaction takes 10h to 14h.
  • Step III Transport the first batch of materials that have undergone enzymolysis reaction in reactor A1 to reactor B2 through fermentation pipeline 6, and add fermentation strains with a mass ratio of 0.1% to 1% to reactor B2 through fermentation feed pipe 21 , control the fermentation temperature. Under the suitable fermentation temperature of the fermentation strain, the first batch of materials in the reactor B2 is stirred for the first fermentation reaction, and the fermentation reaction takes 10h to 14h.
  • Step I and Step II add the second batch of materials to Reactor A, and the second batch of materials are enzymatically hydrolyzed in Reactor A reaction.
  • Step IV after the first fermentation reaction, the first batch of materials in the reactor B2 is transported to the storage tank 3 through the discharge pipeline 8 for temporary storage; after the first batch of materials in the reactor B2 is emptied, repeat the steps III Transport the second batch of material from the reactor A1 to the reactor B2 through the fermentation pipeline 6 to carry out the fermentation reaction.
  • Step V after the second batch of materials in the reactor A1 is emptied, the first batch of materials temporarily stored in the storage tank 3 is transported to the reactor A1 through the discharge pipeline 8, and then step II is carried out, and the first batch of materials is fermented to produce
  • the cellulosic ethanol is evaporated into cellulosic ethanol vapor in reactor A, and the cellulosic ethanol vapor is transported to the collection tank through the ethanol pipeline to be condensed into cellulosic ethanol.
  • step IV After the first batch of materials in the storage tank 3 is emptied, repeat step IV, and transport the second batch of materials in the reactor B2 to the storage tank 3 through the discharge pipeline 8 for temporary storage.
  • Step VI repeat step II to step V, the two batches of materials are respectively carried out in double-cycle turnover in reactor A1 and reactor B2 and respectively maintained for 4 to 6 cycles, and 4 to 6 enzymatic hydrolysis reactions and The fermentation reaction continues until it finishes in the reactor B2, and the last two batches of materials are discharged from the system through the first discharge pipe 16 in sequence.
  • the method is a double cycle mode in the method for producing cellulosic ethanol by saccharification and fermentation of biomass.
  • citric acid buffer solution Use 0.1mol/L citric acid buffer solution to configure the reaction system. 15% (w/w) dry basis of corn cob waste residue system, add citric acid buffer solution, maintain pH at 5.0-6.0, add cellulase Cellic CTec 2 accounting for 4% (w/w) dry basis, and configure three groups 1L reaction system.
  • the method of the present invention is applicable to various ethanol fermentation strains.
  • two common ethanol fermentation strains Saccharomyces cerevisiae and Zymomonas mobilis are taken as examples for illustration.
  • Step (11) enzymolysis reaction temperature T has been confirmed in Example 2, directly enter step (12).
  • Step (12) configuration of materials in the reaction system: take corncob waste residue with a dry basis content of 15kg (w/w), add an aqueous solution containing a citric acid buffer system to 100kg, maintain a pH of 5.0 to 6.0, and add 0.6kg of fiber Sulfase Cellic CTec2, stir evenly, and feed the reaction system materials into the reactor A1 through the enzymolysis feeding pipe 11.
  • Step (13) setting the temperature of the reactor A1 at 45° C. and maintaining it, and performing an enzymatic hydrolysis reaction for 10 h to 14 h under stirring at 300 rpm.
  • step (14) the temperature of reactor B2 is set to 35° C. (the optimal fermentation temperature of S. Inoculate 1 kg of Saccharomyces cerevisiae powder into the reactor B2 in the fermentation feed pipe 21 of the reactor B2, and ferment and react for 10 h to 14 h under the stirring condition of 100 rpm to complete a reaction cycle.
  • step (15) and step (14) The fermented material in step (15) and step (14) is transported from reactor B2 to reactor A1, and the stirring is continued for the second enzymolysis reaction, and the evaporated cellulose ethanol produced is collected in collection tank 4 .
  • step (16) The material after the second enzymatic hydrolysis in step (16) and step (15) is transported from reactor A1 to reactor B2 again.
  • Step (17), repeat steps (14) to (16), and perform 5 cycles.
  • the material in reactor B2 is 89.5kg, wherein the content of cellulose ethanol is 3.1%, and the amount of cellulose ethanol obtained is 2.77kg, and the total amount of cellulose ethanol is 4.31kg, and the conversion rate of cellulose ethanol is calculated to be 84.5%.
  • Step (22) configuration of reaction system materials: take corncob waste residue with a dry basis content of 20kg (w/w), add an aqueous solution containing a citric acid buffer system to 100kg, maintain a pH of 5.0 to 6.0, and add 0.8kg of fiber Sulfase Cellic CTec2, stir evenly, and feed the reaction system materials into the reactor A1 through the enzymolysis feeding pipe 11.
  • step (23) the temperature of the reactor A1 is set to 45° C. and maintained, and the enzymolysis reaction is carried out under the stirring condition of 300 rpm for 10 h to 14 h.
  • Step (24) set the temperature of reactor B2 to 35°C, and the material after enzymolysis in step (23) is transported from reactor A1 to reactor B2 through diaphragm pump A7, and inoculate 1kg from the fermentation feed pipe 21 of reactor B2 Angel Saccharomyces cerevisiae powder is put into the reactor B2, and the fermentation reaction is carried out under the stirring condition of 100rpm for 10h-14h, and a reaction cycle is completed.
  • step (25) and step (24) is transported from reactor B2 to reactor A1, and the stirring is continued for the second enzymolysis reaction, and the evaporated cellulose ethanol produced is collected in collection tank 4 .
  • step (26) and step (25) The material after the second enzymatic hydrolysis in step (26) and step (25) is transported from reactor A1 to reactor B2 again.
  • Step (32) configuration of materials in the reaction system: take corncob waste residue with a dry basis content of 20kg (w/w) dry basis, add an aqueous solution containing a citric acid buffer system to 100kg, maintain a pH of 5.0 to 6.0, and add 0.8kg of cellulose Enzyme Cellic CTec 2, stir evenly, and feed the obtained material into the reactor A1 as a reaction system through the enzymolysis feeding pipe 11.
  • step (33) the temperature of the reactor A1 is set to 48° C. and maintained, and the enzymolysis reaction is carried out under the stirring condition of 300 rpm for 10 h to 14 h.
  • Step (34) setting the temperature of reactor B2 to 35°C, the material after the enzymolysis in step (33) is transported from reactor A1 to reactor B2 through diaphragm pump A7, and inoculates 1 kg from the fermentation feed pipe 21 of reactor B2
  • the activated Zymomonas mobilis bacterial liquid is put into the reactor B2, and the fermentation reaction is carried out under the stirring condition of 100rpm for 10h-14h, and a reaction cycle is completed.
  • step (35) and step (34) is transported from reactor B2 to reactor A1, and the stirring is continued for the second enzymolysis reaction, and the evaporated cellulose ethanol produced is collected in collection tank 4 .
  • step (36) and step (35) The material after the second enzymatic hydrolysis in step (36) and step (35) is transported from reactor A1 to reactor B2 again.
  • Step (42) the configuration of the first batch of reaction system materials: take the corncob waste residue with a dry basis content of 20kg (w/w) on a dry basis, add an aqueous solution containing a citric acid buffer system to 100kg, maintain a pH of 5.0-6.0, add 0.8kg cellulase Cellic CTec 2, stir evenly to obtain the first batch of reaction system materials, and feed the first batch of materials of the reaction system into the reactor A1 through the enzymolysis feeding pipe 11.
  • step (43) the temperature of the reactor A1 is set to 45° C. and maintained, and the enzymolysis reaction is carried out under the stirring condition of 300 rpm for 10 h to 14 h.
  • Step (44) the temperature of the reactor B2 is set to 35°C, the first batch of materials after the enzymolysis in the step (43) is transported from the reactor A1 to the reactor B2 through the diaphragm pump A7, and the fermentation feeding pipe of the reactor B2 21. Inoculate 1 kg of Saccharomyces cerevisiae powder into reactor B2, and ferment for 10 to 14 hours under stirring at 100 rpm, completing one reaction cycle of the first batch of materials.
  • step (42) After the first batch of materials is delivered from reactor A1 to reactor B2 through diaphragm pump A7, configure the second batch of reaction system materials according to the configuration method of step (42), and process the second batch of reaction system materials according to step (43), That is, the second batch of materials prepared in step (42) is fed into the reactor A1 through the enzymolysis feeding pipe 11, and the enzymolysis reaction is performed for 10h-14h under the stirring condition of 300rpm.
  • Step (45) the first batch of material in the reactor B2 is transported to the storage tank 3 through the diaphragm pump B9, and then the second batch of material in the reactor A1 is transported to the reactor B2, and the operation is carried out according to the step (44) , to complete a reaction cycle of the second batch of materials.
  • Step (46) the first batch of materials in the storage tank 3 are transported to the reactor A1 through the discharge pipeline 8, and the stirring reaction is continued, and the cellulose ethanol produced is evaporated and collected in the collection tank 4, while the second batch of materials is transferred from Reactor B2 is sent to storage tank 3.
  • step (47) the first batch of materials is transported from the reactor A1 to the reactor B2 again.
  • the second batch is always one container behind the first batch.
  • Example 4 and Example 5 were collected, and the ethanol conversion rate of 20% dry basis corn cob waste residue enzymolysis fermentation using the method of the present invention was counted.
  • the conversion rate of cellulose ethanol in the method of the invention is increased from 76.9% to more than 80%, and the effect is obvious.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种生物质糖化发酵生产纤维素乙醇的系统,包括用于生物质原料酶解反应的反应器A,用于生物质原料发酵反应的反应器B,用于储存从反应器B出来物料的储罐,用于收集生物质原料发酵反应生成的纤维素乙醇的收集罐(4)。反应器A分别连通反应器B、储罐(3)和收集罐(4),反应器B连通储罐(3)。一种使用该系统制备纤维素乙醇的方法,通过对生物质原料分别间隔地进行多次酶解糖化、发酵和提取乙醇的循环过程,有效降低因乙醇积累对酶解和发酵过程的抑制,提高纤维素乙醇的转化率,且通过储罐的设置,可在一个系统中同时进行两批物料的处理,大大地提高纤维素乙醇的生产效率。

Description

一种生物质糖化发酵生产纤维素乙醇的系统及方法 技术领域
本发明属于纤维素乙醇制备技术领域,特别涉及一种生物质糖化发酵生产纤维素乙醇的系统及方法。
背景技术
开发可持续、无污染的能源是技术发展趋势,农业生产中每年产生大量秸秆、玉米芯等木质纤维素废弃物。木质纤维素材料中主要成分为纤维素、半纤维素、木质素以及少量的灰分,其中纤维素组分虽然可以通过纤维素酶酶解糖化得到葡萄糖,葡萄糖通过生物发酵可生产纤维素乙醇,可以作为清洁燃料。
目前,以生物质原料生产纤维素乙醇的工艺还存在许多瓶颈之处。生产纤维素乙醇的工艺主要包括生物质的预处理、纤维素酶酶解和葡萄糖发酵。其中对于纤维素酶酶解糖化工艺,难点是提高酶解体系高固含量过程中产物葡萄糖抑制问题,特别是酶解后期,释放的单体葡萄糖浓度升高,对纤维素酶的活性抑制更强,这种情况会导致整体酶解效率降低,酶解纤维素转化效率下降。
为了克服酶水解过程中产物抑制的问题,目前应用最广的工艺是同步糖化发酵(SSF),就是将在葡萄糖被纤维素酶酶解释放的过程中即被微生物发酵为纤维素乙醇,从而缓解产物抑制。将纤维素酶酶解和葡萄糖发酵两个工艺合而为一。但是还是存在一些问题,目前常见的高效商业纤维素酶的最佳反应温度通常在45℃以上,而常见的乙醇发酵菌株,例如酿酒酵母等,菌株最佳发酵温度为35℃,在45℃时,乙醇发酵菌株不仅不能生长产乙醇,还容易凋亡。同步糖化发酵工艺不能兼顾酶解糖化和发酵的最佳条件。同时,产生的乙醇对纤维素酶也有一定抑制作用,酶解和发酵效率均受到影响。
发明内容
本发明所要解决的技术问题在于,提供一种生物质糖化发酵生产纤维素乙醇的系统及方法,将纤维素酶解工艺和乙醇发酵工艺整合成为间歇式酶解发酵工艺,以解决产物葡萄糖对纤维素酶蛋白活性抑制的问题,提高纤维素乙醇的产量。
本发明是这样实现的,提供一种生物质糖化发酵生产纤维素乙醇的系统,该系统包括:用于生物质原料酶解反应的反应器A、用于生物质原料发酵反应的反应器B以及用于收集生物质原料发酵反应后生成的纤维素乙醇的收集罐,在反应器A和反应器B上各自单独设置有酶解加料管和发酵加料管,反应器A的出料口通过设置的发酵管道连通至反应器B的进料口,在发酵管道上设置有隔膜泵A,反应器B的出料口通过设置的出料管道连通至反应器A的进 料口,在出料管道上设置有隔膜泵B和第一出料管,第一出料管位于隔膜泵B的后方,在反应器A的上部通过设置的乙醇管道连接至收集罐的进料口,在反应器A的外部设置有用于给反应器A升温和保温的保温层,位于反应器A上部的乙醇管道的连接处设置有盘管保温装置,盘管保温装置和保温层分别通过设置的热水管依次连通至热水罐,在热水管上设置有离心泵。
具体地,酶解加料管用于向反应器A内添加可酶解的生物质原料、酸液以及酶解料等酶解物料。发酵加料管用于向反应器B内添加发酵菌株等发酵物料。其中,生物质原料包括秸秆和农业剩余物,常用的生物质原料包括玉米秸秆、玉米芯、甘蔗渣等。乙醇管道用于传输从反应器A内的发酵后的生物质原料中蒸发出来的纤维素乙醇蒸汽。
进一步地,在出料管道上还设置储罐、隔膜泵C和第二出料管,储罐位于第一出料管的后方,用于储存从反应器B出来的物料,第二出料管位于隔膜泵C的后方。
本发明是这样实现的,还提供一种生物质糖化发酵生产纤维素乙醇的方法,其使用了如前所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
步骤一、将含量占15%~20%干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%的纤维素酶,柠檬酸缓冲溶液的pH为5.0~6.0,将调配好的生物质原料通过酶解加料管加入到反应器A中;
步骤二、维持反应器A的温度在酶解反应温度T,维持反应器A内物料的pH值,在搅拌状态下反应器A中物料进行第一次酶解反应,酶解反应10h~14h;
步骤三、将反应器A内已酶解反应的物料通过发酵管道输送到反应器B中,通过发酵加料管向反应器B内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B中的物料进行第一次发酵反应,发酵反应10h~14h;
步骤四、第一次发酵反应结束后将反应器B内的物料通过出料管道输送到反应器A中,物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道流入收集罐中被冷凝成纤维素乙醇;
步骤五、重复步骤二、步骤三和步骤四,同批物料分别在反应器A和反应器B中进行单循环周转4~6个循环,直至在反应器B中结束,最后通过第一出料管放料排出系统。
本发明是这样实现的,还提供另一种生物质糖化发酵生产纤维素乙醇的方法,其使用了如前所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
步骤I、将含量占15%~20%干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%的纤维素酶,维持柠檬酸缓冲溶液的pH为5.0~6.0,将调配好的第一批物料通过酶解加料管加入到反应器A中;
步骤II、维持反应器A的温度在酶解反应温度T,维持物料的pH值,在搅拌状态下反应器A中第一批物料进行第一次酶解反应,酶解反应10h~14h;
步骤III、将反应器A内已酶解反应的第一批物料通过发酵管道输送到反应器B中,通过发酵加料管向反应器B内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B中的第一批物料进行第一次发酵反应,发酵反应10h~14h;
待反应器A中的已酶解反应的第一批物料排空之后,重复步骤I和步骤II,向反应器A内添加第二批物料,且第二批物料在反应器A内进行酶解反应;
步骤IV、第一次发酵反应结束后将反应器B内的第一批物料通过出料管道输送到储罐中暂存;待反应器B内的第一批物料排空之后,重复步骤III将反应器A的第二批物料通过发酵管道输送到反应器B中进行发酵反应;
步骤V、待反应器A的第二批物料排空之后,暂存在储罐中第一批物料通过出料管道输送到反应器A中,再进行步骤II,第一批物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道流入收集罐中被冷凝成纤维素乙醇;
待储罐中第一批物料排空之后,重复步骤IV,将反应器B内的第二批物料通过出料管道输送到储罐中暂存;
步骤VI、重复步骤II至步骤V,两批物料分别在反应器A和反应器B中依次进行双循环周转中且分别维持4~6个循环,直至依次在反应器B中结束,最后依次通过第一出料管排出系统。
与现有技术相比,本发明的生物质糖化发酵生产纤维素乙醇的系统及方法具有以下特点:
1、在生物质原料进行高固酶解发酵过程中,本发明方法可以在酶解产物——可发酵葡萄糖积累一定浓度后,利用发酵菌种将葡萄糖发酵生成纤维素乙醇,解决葡萄糖的积累对纤维素酶活力抑制的问题。
2、整合纤维素酶解工艺、发酵工艺以及乙醇提取工艺,将三者合而为一,对生物质原料分别间隔地进行多次酶解糖化、发酵和提取乙醇的循环过程,降低因乙醇积累对酶解和发酵过程的抑制作用,提高纤维素乙醇的转化率。
附图说明
图1为本发明的生物质糖化发酵生产纤维素乙醇的系统第一种结构原理示意图;
图2为本发明的生物质糖化发酵生产纤维素乙醇的系统第二种结构原理示意图;
图3为外加葡萄糖和乙醇酶解体系葡萄糖释放浓度随时间变化关系图;
图4为酿酒酵母耐热性试验在不同温度下的存活率柱状示意图;
图5为运动发酵单胞菌耐热性试验在不同温度下的存活率柱状示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明生物质糖化发酵生产纤维素乙醇的系统的第一种实施例。图中的箭头所示方向为系统中物料,如生物质原料、蒸汽、冷冻水、冷凝水、菌种、乙醇等的行进方向。该系统包括:用于生物质原料酶解反应的反应器A1、用于生物质原料发酵反应的反应器B2以及用于收集生物质原料发酵反应后生成的纤维素乙醇的收集罐4。
在反应器A1和反应器B2上各自单独设置有酶解加料管11和发酵加料管21,反应器A1的出料口通过设置的发酵管道6连通至反应器B2的进料口。在发酵管道6上设置有隔膜泵A7,反应器B2的出料口通过设置的出料管道8连通至反应器A1的进料口。在出料管道8上设置有隔膜泵B9和第一出料管16,第一出料管16位于隔膜泵B9的后方。在反应器A1的上部通过设置的乙醇管道10连接至收集罐4的进料口。
在反应器A1的外部设置有用于给反应器A1升温和保温的保温层12,位于反应器A上部的乙醇管道10的连接处设置有盘管保温装置13,盘管保温装置13和保温层12分别通过设置的热水管14依次连通至热水罐5,在热水管14上设置有离心泵15。盘管保温装置13用于保证反应器A1内被蒸发的纤维素乙醇蒸汽不冷凝,输送到收集罐4。热水罐5中的热水通过离心泵15进入反应器A1上部的盘管保温装置13和反应器A1外部的保温层12,以控制反应器A1和盘管保温装置13的温度。
在所述收集罐4顶部的乙醇管道10的连接处设置有用于冷凝纤维素乙醇蒸汽的乙醇冷冻装置19。乙醇冷冻装置19便于通过冷冻水将通过乙醇管道10内的纤维素乙醇蒸汽冷凝收集。
在所述反应器B2的外部设置有用于给反应器B2内的发酵物料降温的发酵冷却装置20。
在所述反应器A1和反应器B2内分别设置搅拌装置(图中未示出)。
在该实施例中,同一批生物质物料在反应器A1与反应器B2之间进行单循环流动。
请参照图2所示,本发明生物质糖化发酵生产纤维素乙醇的系统的第二种实施例。与前实施例相比,该实施例在出料管道8上还设置储罐3、隔膜泵C17和第二出料管18,储罐3位于第一出料管16的后方,用于储存从反应器B2出来的物料,第二出料管18位于隔膜泵C17的后方。其它结构与第一种实施例相同,不再赘述。
在该实施例中,由于增设了储罐3作为周转暂存罐,在本发明的生物质糖化发酵生产纤维素乙醇的系统中可以允许两批生物质物料同时运行,两批生物质物料分别依次在反应器A1与反应器B2之间进行双循环流动。
本发明还公开一种生物质糖化发酵生产纤维素乙醇的方法,其使用了如前所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
步骤一、将含量占15%~20%(w/w)干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%(w/w)的纤维素酶,柠檬酸缓冲溶液的pH为5.0~6.0,将调配好的生物质原料通过酶解加料管11加入到反应器A1中。
步骤二、维持反应器A1的温度在酶解反应温度T,维持反应器A内物料的pH值,在搅拌状态下反应器A1中物料进行第一次酶解反应,酶解反应10h~14h。
步骤三、将反应器A1内已酶解反应的物料通过发酵管道6输送到反应器B2中,通过发酵加料管21向反应器B2内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B2中的物料进行第一次发酵反应,发酵反应10h~14h。
步骤四、第一次发酵反应结束后将反应器B2内的物料通过出料管道8输送到反应器A1中,物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道流入收集罐中被冷凝成纤维素乙醇。
步骤五、重复步骤二、步骤三和步骤四,同批物料分别在反应器A1和反应器B2中进行单循环周转4~6个循环,且分别进行4~6次的酶解反应和发酵反应,直至在反应器B2中结束,最后通过第一出料管16放料排出系统。
该方法为生物质糖化发酵生产纤维素乙醇的方法中的单循环方式。
酶解反应温度T为发酵菌种存活率在80%以上的最高温度。酶解反应温度T通过以下方法测定:利用浓度为0.1mol/L柠檬酸缓冲溶液配置试验体系,加入100g/L葡萄糖,加入质量比为1%发酵菌株,分别在40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、50℃条件下孵育12h,利用平板计数法计量发酵菌株活菌数量,选择12h后活菌存活率在80%的最高温度即为酶解反应温度T。
酶解反应使用的纤维素酶为Cellic CTec 2。
本发明还公开另一种生物质糖化发酵生产纤维素乙醇的方法,其使用了如前所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
步骤I、将含量占15%~20%(w/w)干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%(w/w)的纤维素酶,维持柠檬酸缓冲溶液的pH为5.0~6.0, 将调配好的第一批物料通过酶解加料管11加入到反应器A1中。
步骤II、维持反应器A1的温度在酶解反应温度T,维持物料的pH值,在搅拌状态下反应器A1中第一批物料进行第一次酶解反应,酶解反应10h~14h。
步骤III、将反应器A1内已酶解反应的第一批物料通过发酵管道6输送到反应器B2中,通过发酵加料管21向反应器B2内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B2中的第一批物料进行第一次发酵反应,发酵反应10h~14h。
待反应器A1中的已酶解反应的第一批物料排空之后,重复步骤I和步骤II,向反应器A内添加第二批物料,且第二批物料在反应器A内进行酶解反应。
步骤IV、第一次发酵反应结束后将反应器B2内的第一批物料通过出料管道8输送到储罐3中暂存;待反应器B2内的第一批物料排空之后,重复步骤III将反应器A1的第二批物料通过发酵管道6输送到反应器B2中进行发酵反应。
步骤V、待反应器A1的第二批物料排空之后,暂存在储罐3中第一批物料通过出料管道8输送到反应器A1中,再进行步骤II,第一批物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道输送到收集罐中被冷凝成纤维素乙醇。
待储罐3中第一批物料排空之后,重复步骤IV,将反应器B2内的第二批物料通过出料管道8输送到储罐3中暂存。
步骤VI、重复步骤II至步骤V,两批物料分别在反应器A1和反应器B2中依次进行双循环周转中且分别维持4~6个循环,且分别进行4~6次的酶解反应和发酵反应,直至依次在反应器B2中结束,最后两批物料依次通过第一出料管16排出系统。
其它步骤与前一实施例的相同,不再赘述。
该方法为生物质糖化发酵生产纤维素乙醇的方法中的双循环方式。
下面通过具体实施例来进一步说明本发明的生物质糖化发酵生产纤维素乙醇的系统及方法。
实施例1
葡萄糖和乙醇对酶解反应的抑制作用的验证实验。
利用0.1mol/L柠檬酸缓冲溶液配置反应体系。15%(w/w)干基的玉米芯废渣体系,加入柠檬酸缓冲溶液,维持pH为5.0~6.0,加入占干基4%(w/w)的纤维素酶Cellic CTec 2,配置三组1L反应体系。
组别 外加抑制物
a
b 100g/L葡萄糖
c 50g/L乙醇
在300rpm搅拌条件下,50℃酶解72h,每隔12h取样测定酶解释放的葡萄糖量。结果如图3所示。
结论:葡萄糖和乙醇对纤维素酶的酶解都有一定抑制作用。其中b组添加100g/L葡萄糖后,72h酶解释放的葡萄糖量相比不加抑制剂的对照组a组的低24%。C组添加50g/L乙醇后,72h酶解释放的葡萄糖量相比对照组a组的低8%。
实施例2
安琪酿酒酵母菌和运动发酵单胞菌的耐热性实验,以确认酶解反应温度T。
本发明的方法适用多种乙醇发酵菌株,本实施例以常见的两种乙醇发酵菌株:安琪酿酒酵母和运动发酵单胞菌为例进行说明。
用柠檬酸缓冲溶液配置100g/L葡萄糖溶液,分成两份,分别加入质量浓度为1%安琪酿酒酵母粉和质量浓度为1%运动发酵单胞菌菌液,取样。分别放置于不同温度,取40℃~50℃中每间隔1℃,分别孵育12h,利用平板计数法计量孵育前后活菌数量,统计孵育后菌株对比接种时的变化。统计结果分别如下图4和图5所示。
结论:通过测试统计,12h孵育后存活率在80%以上的最高温度作为酶解反应温度T,其中安琪酿酒酵母的酶解反应温度T为45℃,运动发酵单胞菌的酶解反应温度T为48℃。
实施例3
本发明的生物质糖化发酵生产纤维素乙醇的方法的第一个单循环实施例,包括如下步骤:
步骤(11)、酶解反应温度T已在实施例2中确认,直接进入步骤(12)。
步骤(12)、反应体系物料的配置:取干基含量15kg(w/w)干基的玉米芯废渣,加入含有柠檬酸缓冲体系的水溶液至100kg,维持pH为5.0~6.0,加入0.6kg纤维素酶Cellic CTec2,搅拌均匀,通过酶解加料管11将反应体系物料加入反应器A1中。
步骤(13)、设置反应器A1的温度为45℃,并维持,300rpm搅拌条件下酶解反应10h~14h。
步骤(14)、设置反应器B2的温度为35℃(酿酒酵母的最佳发酵温度),步骤(13)酶解后的物料从反应器A1经隔膜泵A7输送到反应器B2中,从反应器B2的发酵加料管21接种1kg安琪酿酒酵母粉至反应器B2中,100rpm搅拌条件下发酵反应10h~14h,完成一个反应循环。
步骤(15)、步骤(14)发酵后的物料从反应器B2输送到反应器A1中,继续搅拌进行第二次酶解反应,产生的纤维素乙醇蒸发被收集到收集罐4中。
步骤(16)、步骤(15)第二次酶解后的物料再次从反应器A1输送到反应器B2中。
步骤(17)、重复步骤(14)~(16),进行5个循环。
最后得到收集罐4中物料4.4kg,其中纤维素乙醇含量35%,得到纤维素乙醇量1.54kg。反应器B2中物料89.5kg,其中纤维素乙醇含量3.1%,得到纤维素乙醇量2.77kg,得到纤维素乙醇总量4.31kg,计算纤维素乙醇的转化率为84.5%。
实施例4
本发明的生物质糖化发酵生产纤维素乙醇的方法的第二个单循环实施例,包括如下步骤:
步骤(21)、同实施例3,直接进入步骤(22)。
步骤(22)、反应体系物料的配置:取干基含量20kg(w/w)干基的玉米芯废渣,加入含有柠檬酸缓冲体系的水溶液至100kg,维持pH为5.0~6.0,加入0.8kg纤维素酶Cellic CTec2,搅拌均匀,通过酶解加料管11将该反应体系物料加入反应器A1中。
步骤(23)、反应器A1温度设置为45℃,并维持,300rpm搅拌条件下酶解反应10h~14h。
步骤(24)、设置反应器B2的温度为35℃,步骤(23)酶解后的物料从反应器A1经隔膜泵A7输送到反应器B2中,从反应器B2的发酵加料管21接种1kg安琪酿酒酵母粉至反应器B2中,100rpm搅拌条件下发酵反应10h~14h,完成一个反应循环。
步骤(25)、步骤(24)发酵后的物料从反应器B2输送到反应器A1中,继续搅拌进行第二次酶解反应,产生的纤维素乙醇蒸发被收集到收集罐4中。
步骤(26)、步骤(25)第二次酶解后的物料再次从反应器A1输送到反应器B2中。
步骤(27)、重复步骤(24)~(26),进行6个循环。
最后得到收集罐4中物料4.7kg,其中纤维素乙醇含量38%,得到纤维素乙醇量1.79kg,反应器B2中物料90.5kg,其中纤维素乙醇含量4.1%,得到纤维素乙醇量3.71kg,得到纤维素乙醇总量5.50kg,计算纤维素乙醇的转化率为80.9%。
实施例5
本发明的生物质糖化发酵生产纤维素乙醇的方法的第三个单循环实施例,包括如下步骤:
步骤(31)、同实施例3,直接进入步骤(32)。
步骤(32)、反应体系物料的配置:取干基含量20kg(w/w)干基的玉米芯废渣加入含有柠檬酸缓冲体系的水溶液至100kg,维持pH为5.0~6.0,加入0.8kg纤维素酶Cellic CTec 2,搅拌均匀,通过酶解加料管11将得到的物料作为反应体系加入反应器A1中。
步骤(33)、反应器A1温度设置为48℃,并维持,300rpm搅拌条件下酶解反应10h~14h。
步骤(34)、设置反应器B2的温度为35℃,步骤(33)酶解后的物料从反应器A1经隔膜泵A7输送到反应器B2中,从反应器B2的发酵加料管21接种1kg活化的运动发酵单胞菌菌液至反应器B2中,100rpm搅拌条件下发酵反应10h~14h,完成一个反应循环。
步骤(35)、步骤(34)发酵后的物料从反应器B2输送到反应器A1中,继续搅拌进行第二次酶解反应,产生的纤维素乙醇蒸发被收集到收集罐4中。
步骤(36)、步骤(35)第二次酶解后的物料再次从反应器A1输送到反应器B2中。
步骤(37)、重复步骤(34)~(36),进行6个循环。
最后得到收集罐4中物料4.8kg,其中纤维素乙醇含量39%,得到纤维素乙醇量1.87kg,反应器B中物料93.5kg,其中纤维素乙醇含量4.13%,得到纤维素乙醇量3.86kg,得到纤维素乙醇总量5.73kg,计算纤维素乙醇的转化率为84.3%。
实施例6
本发明的生物质糖化发酵生产纤维素乙醇的方法的第一个双循环实施例,包括如下步骤:
步骤(41)、同实施例3,直接进入步骤(42)。
步骤(42)、第一批反应体系物料的配置:取干基含量20kg(w/w)干基的玉米芯废渣,加入含有柠檬酸缓冲体系的水溶液至100kg,维持pH为5.0-6.0,加入0.8kg纤维素酶Cellic CTec 2,搅拌均匀,得第一批反应体系物料,通过酶解加料管11将反应体系的第一批物料加入反应器A1中。
步骤(43)、反应器A1的温度设置为45℃,并维持,300rpm搅拌条件下酶解反应10h~14h。
步骤(44)、反应器B2的温度设置为35℃,步骤(43)酶解后的第一批物料从反应器A1经隔膜泵A7输送到反应器B2中,从反应器B2的发酵加料管21接种1kg安琪酿酒酵母粉至反应器B2中,100rpm搅拌条件下发酵反应10h~14h,完成第一批物料的一个反应循环。
在第一批物料从反应器A1经隔膜泵A7全部输送到反应器B2后,按照步骤(42)配置方法配置第二批反应体系物料,并按照步骤(43)处理第二批反应体系物料,即将步骤(42)配置得到的第二批物料通过酶解加料管11加入到反应器A1中,300rpm搅拌条件下酶解反应10h~14h。
步骤(45)、将反应器B2内的第一批物料通过隔膜泵B9输送到储罐3,然后将反应器A1中的第二批物料输送到反应器B2中,按照步骤(44)进行操作,完成第二批物料的一个反应循环。
步骤(46)、储罐3中的第一批物料通过出料管道8输送到反应器A1中,继续搅拌反 应,产生的纤维素乙醇蒸发被收集到收集罐4中,同时第二批物料从反应器B2输送到储罐3。
步骤(47)、第一批物料再次从反应器A1输送到反应器B2中。第二批物料总是落后于第一批物料一个容器。
步骤(48)、重复步骤(44)~(46),进行6个循环。
最后得到收集罐4中物料8.8kg,其中纤维素乙醇含量38.5%,得到纤维素乙醇量3.39kg,两批物料一共出料178.5kg,其中纤维素乙醇含量4.2%,得到纤维素乙醇量7.50kg,得到纤维素乙醇总量10.85kg,计算纤维素乙醇的转化率为80.1%。
实施例7
本方明方法的酶解效果与同步糖化发酵工艺的对比。
收集实施例4、实施例5的数据,统计利用本发明方法的20%干基玉米芯废渣酶解发酵的乙醇转化率。
现有的同步糖化发酵:配置取干基含量20kg(w/w)干基的玉米芯废渣,加入含有柠檬酸缓冲体系的水溶液至100kg,维持pH为5.0~6.0,加入0.8kg纤维素酶Cellic CTec 2,搅拌均匀,同时接种1kg安琪酵母粉,在35℃,300rpm搅拌条件下,反应6天,得到物料100.5kg,其中纤维素乙醇含量5.2%,计算纤维素乙醇的转化率为76.9%。
与现有的同步糖化发酵工艺相比,本发明的方法的纤维素乙醇转化率从76.9%提高到80%以上,效果明显。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种生物质糖化发酵生产纤维素乙醇的系统,其特征在于,该系统包括:用于生物质原料酶解反应的反应器A、用于生物质原料发酵反应的反应器B以及用于收集生物质原料发酵反应后生成的纤维素乙醇的收集罐,在反应器A和反应器B上各自单独设置有酶解加料管和发酵加料管,反应器A的出料口通过设置的发酵管道连通至反应器B的进料口,在发酵管道上设置有隔膜泵A,反应器B的出料口通过设置的出料管道连通至反应器A的进料口,在出料管道上设置有隔膜泵B和第一出料管,第一出料管位于隔膜泵B的后方,在反应器A的上部通过设置的乙醇管道连接至收集罐的进料口,在反应器A的外部设置有用于给反应器A升温和保温的保温层,位于反应器A上部的乙醇管道的连接处设置有盘管保温装置,盘管保温装置和保温层分别通过设置的热水管依次连通至热水罐,在热水管上设置有离心泵。
  2. 如权利要求1所述的生物质糖化发酵生产纤维素乙醇的系统,其特征在于,在出料管道上还设置储罐、隔膜泵C和第二出料管,储罐位于第一出料管的后方,用于储存从反应器B出来的物料,第二出料管位于隔膜泵C的后方。
  3. 如权利要求1或2所述的生物质糖化发酵生产纤维素乙醇的系统,其特征在于,在所述收集罐顶部的乙醇管道的连接处设置有用于冷凝纤维素乙醇蒸汽的乙醇冷冻装置。
  4. 如权利要求1或2所述的生物质糖化发酵生产纤维素乙醇的系统,其特征在于,在所述反应器B的外部设置有用于给反应器B内的发酵物料降温的发酵冷却装置。
  5. 如权利要求1或2所述的生物质糖化发酵生产纤维素乙醇的系统,其特征在于,在所述反应器A和反应器B内分别设置搅拌装置。
  6. 一种生物质糖化发酵生产纤维素乙醇的方法,其特征在于,其使用了如权利要求1至5中任意一项所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
    步骤一、将含量占15%~20%干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%的纤维素酶,柠檬酸缓冲溶液的pH为5.0~6.0,将调配好的生物质原料通过酶解加料管加入到反应器A中;
    步骤二、维持反应器A的温度在酶解反应温度T,维持反应器A内物料的pH值,在搅拌状态下反应器A中物料进行第一次酶解反应,酶解反应10h~14h;
    步骤三、将反应器A内已酶解反应的物料通过发酵管道输送到反应器B中,通过发酵加料管向反应器B内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B中的物料进行第一次发酵反应,发酵反应10h~14h;
    步骤四、第一次发酵反应结束后将反应器B内的物料通过出料管道输送到反应器A中,物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道流入收集罐中被冷凝成纤维素乙醇;
    步骤五、重复步骤二、步骤三和步骤四,同批物料分别在反应器A和反应器B中进行单循环周转4~6个循环,直至在反应器B中结束,最后通过第一出料管放料排出系统。
  7. 一种生物质糖化发酵生产纤维素乙醇的方法,其特征在于,其使用了如权利要求2至5中任意一项所述的生物质糖化发酵生产纤维素乙醇的系统,所述方法包括以下步骤:
    步骤I、将含量占15%~20%干基的生物质原料加入到浓度为0.1mol/L的柠檬酸缓冲溶液中,再加入占干基4%~6%的纤维素酶,维持柠檬酸缓冲溶液的pH为5.0~6.0,将调配好的第一批物料通过酶解加料管加入到反应器A中;
    步骤II、维持反应器A的温度在酶解反应温度T,维持物料的pH值,在搅拌状态下反应器A中第一批物料进行第一次酶解反应,酶解反应10h~14h;
    步骤III、将反应器A内已酶解反应的第一批物料通过发酵管道输送到反应器B中,通过发酵加料管向反应器B内添加质量比为0.1%~1%的发酵菌株,控制发酵温度在发酵菌株的适宜发酵温度下,在搅拌状态下反应器B中的第一批物料进行第一次发酵反应,发酵反应10h~14h;
    待反应器A中的已酶解反应的第一批物料排空之后,重复步骤I和步骤II,向反应器A内添加第二批物料,且第二批物料在反应器A内进行酶解反应;
    步骤IV、第一次发酵反应结束后将反应器B内的第一批物料通过出料管道输送到储罐中暂存;待反应器B内的第一批物料排空之后,重复步骤III将反应器A的第二批物料通过发酵管道输送到反应器B中进行发酵反应;
    步骤V、待反应器A的第二批物料排空之后,暂存在储罐中第一批物料通过出料管道输送到反应器A中,再进行步骤II,第一批物料中发酵生成的纤维素乙醇在反应器A中被蒸发成纤维素乙醇蒸汽,纤维素乙醇蒸汽通过乙醇管道输送到收集罐中被冷凝成纤维素乙醇;
    待储罐中第一批物料排空之后,重复步骤IV,将反应器B内的第二批物料通过出料管道输送到储罐中暂存;
    步骤VI、重复步骤II至步骤V,两批物料分别在反应器A和反应器B中依次进行双循环周转中且分别维持4~6个循环,直至依次在反应器B中结束,最后两批物料依次通过第一出料管排出系统。
  8. 如权利要求6或7所述的生物质糖化发酵生产纤维素乙醇的方法,其特征在于,酶解反应温度T为发酵菌种存活率在80%以上的最高温度。
  9. 如权利要求6或7所述的生物质糖化发酵生产纤维素乙醇的方法,其特征在于,酶解反应温度T通过以下方法测定:利用浓度为0.1mol/L柠檬酸缓冲溶液配置试验体系,加入100g/L葡萄糖,加入质量比为1%发酵菌株,分别在40℃、41℃、42℃、43℃、44℃、45℃、 46℃、47℃、48℃、49℃、50℃条件下孵育12h,利用平板计数法计量发酵菌株的活菌数量,选择12h后活菌存活率在80%的最高温度即为酶解反应温度T。
  10. 如权利要求6或7所述的生物质糖化发酵生产纤维素乙醇的方法,其特征在于,酶解反应使用的纤维素酶为Cellic CTec 2。
PCT/CN2022/092087 2021-11-25 2022-05-10 一种生物质糖化发酵生产纤维素乙醇的系统及方法 WO2023092956A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023549920A JP2024506737A (ja) 2021-11-25 2022-05-10 バイオマスの糖化及び発酵によるセルロース系エタノール生産システム及び方法
EP22897056.2A EP4299752A1 (en) 2021-11-25 2022-05-10 System and method for producing cellulosic ethanol by means of saccharification and fermentation of biomass
US18/348,319 US20230348940A1 (en) 2021-11-25 2023-07-06 Methods and systems for producing cellulosic ethanol by biomass saccharification and fermentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111416152.6 2021-11-25
CN202111416152.6A CN113913471B (zh) 2021-11-25 2021-11-25 一种生物质糖化发酵生产纤维素乙醇的系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/348,319 Continuation-In-Part US20230348940A1 (en) 2021-11-25 2023-07-06 Methods and systems for producing cellulosic ethanol by biomass saccharification and fermentation

Publications (1)

Publication Number Publication Date
WO2023092956A1 true WO2023092956A1 (zh) 2023-06-01

Family

ID=79248301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092087 WO2023092956A1 (zh) 2021-11-25 2022-05-10 一种生物质糖化发酵生产纤维素乙醇的系统及方法

Country Status (5)

Country Link
US (1) US20230348940A1 (zh)
EP (1) EP4299752A1 (zh)
JP (1) JP2024506737A (zh)
CN (1) CN113913471B (zh)
WO (1) WO2023092956A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913471B (zh) * 2021-11-25 2023-12-15 浙江华康药业股份有限公司 一种生物质糖化发酵生产纤维素乙醇的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321328A (en) * 1980-12-05 1982-03-23 Hoge William H Process for making ethanol and fuel product
US4376163A (en) * 1979-10-01 1983-03-08 Alfa-Laval Ab Process for producing ethanol by continuous fermentation of polysaccharide-containing raw materials
WO2010110448A1 (ja) * 2009-03-27 2010-09-30 三井造船株式会社 糖原料からのアルコール連続発酵方法及び装置
CN102459620A (zh) * 2009-04-28 2012-05-16 瑞典乙醇化工技术有限公司 发酵
CN113913471A (zh) * 2021-11-25 2022-01-11 浙江华康药业股份有限公司 一种生物质糖化发酵生产纤维素乙醇的系统及方法
CN216378252U (zh) * 2021-11-25 2022-04-26 浙江华康药业股份有限公司 一种生物质糖化发酵生产纤维素乙醇的系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899478B (zh) * 2010-07-26 2013-07-17 安徽丰原发酵技术工程研究有限公司 一种秸秆类木质纤维素高效糖化半酶解同步发酵产乙醇的方法
CN104611381B (zh) * 2013-11-05 2018-10-12 中国石油化工股份有限公司 一种木质纤维素连续酶解发酵产乙醇的方法
CN105624205A (zh) * 2014-11-08 2016-06-01 华东理工大学 一种纤维素乙醇生产中纤维素酶的循环利用方法
CN105713931B (zh) * 2014-12-05 2024-05-10 中国石油化工股份有限公司 一种木质纤维素连续酶解发酵产乙醇的方法
CN105624206A (zh) * 2016-03-30 2016-06-01 辽宁石油化工大学 一种木质纤维素高温酶解发酵产乙醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376163A (en) * 1979-10-01 1983-03-08 Alfa-Laval Ab Process for producing ethanol by continuous fermentation of polysaccharide-containing raw materials
US4321328A (en) * 1980-12-05 1982-03-23 Hoge William H Process for making ethanol and fuel product
WO2010110448A1 (ja) * 2009-03-27 2010-09-30 三井造船株式会社 糖原料からのアルコール連続発酵方法及び装置
CN102459620A (zh) * 2009-04-28 2012-05-16 瑞典乙醇化工技术有限公司 发酵
CN113913471A (zh) * 2021-11-25 2022-01-11 浙江华康药业股份有限公司 一种生物质糖化发酵生产纤维素乙醇的系统及方法
CN216378252U (zh) * 2021-11-25 2022-04-26 浙江华康药业股份有限公司 一种生物质糖化发酵生产纤维素乙醇的系统

Also Published As

Publication number Publication date
CN113913471B (zh) 2023-12-15
US20230348940A1 (en) 2023-11-02
EP4299752A1 (en) 2024-01-03
CN113913471A (zh) 2022-01-11
JP2024506737A (ja) 2024-02-14

Similar Documents

Publication Publication Date Title
CN102199630B (zh) 一种厌氧干发酵产沼气的方法及其使用的系统
CN101182551B (zh) 碱法预处理植物纤维生产燃料酒精的方法
CN104774876A (zh) 一种木质纤维素生物质综合利用的方法
Claassen et al. Biological hydrogen production from sweet sorghum by thermophilic bacteria
CN101824395B (zh) 一种以固体秸秆为碳源培养发酵种子液的方法
WO2023092956A1 (zh) 一种生物质糖化发酵生产纤维素乙醇的系统及方法
CN102191279A (zh) 一种对预处理后木质纤维素生物质进行生物脱毒的方法
CN103898167A (zh) 一种生产乙醇的方法
CN216378252U (zh) 一种生物质糖化发酵生产纤维素乙醇的系统
CN102168113B (zh) 一种用秸秆类木质纤维素原料生产乙醇的方法
CN103898166A (zh) 一种乙醇的生产方法
CN109988757B (zh) 一种表面固定化酵母半连续发酵制备乙醇的方法
CN111118071A (zh) 一种利用未脱毒纤维素原料生产木糖醇和乙醇的发酵方法
CN110257440A (zh) 用于由木素纤维素生物质的第二代乙醇生产的改进方法
CN101988077B (zh) 一种采用薯类原料制备乙醇的方法
CN105062928A (zh) 一种耐高浓度乙酸和高浓度呋喃甲醛的运动发酵单胞菌及其应用
CN102071236A (zh) 木薯渣制备还原糖和低聚糖的一种方法
CN103667362A (zh) 一种利用木质纤维素原料高温同步糖化发酵生产乙醇的新工艺
CN201567300U (zh) 一种天然纤维素原料连续酸水解装置
CN102174590B (zh) 一种玉米连续固态发酵-产物气提耦合分离的方法
CN101525636B (zh) 采用含纤维素的原料制备乙醇的方法
CN101886092B (zh) 一种以ddgs作为营养物用于纤维乙醇发酵的方法
CN110093379A (zh) 利用高粱杆制备乙醇的方法与设备
Ona et al. Production of Bioethanol from Cassava using Zymomonas mobilis: Effect of Temperature and Substrate concentration
CN106119299A (zh) 一种利用葡萄藤制备乙醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549920

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022897056

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897056

Country of ref document: EP

Effective date: 20230928