WO2023092619A1 - 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法 - Google Patents

一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法 Download PDF

Info

Publication number
WO2023092619A1
WO2023092619A1 PCT/CN2021/134742 CN2021134742W WO2023092619A1 WO 2023092619 A1 WO2023092619 A1 WO 2023092619A1 CN 2021134742 W CN2021134742 W CN 2021134742W WO 2023092619 A1 WO2023092619 A1 WO 2023092619A1
Authority
WO
WIPO (PCT)
Prior art keywords
bolt
ultra
cryogenic
dissimilar metal
parameters
Prior art date
Application number
PCT/CN2021/134742
Other languages
English (en)
French (fr)
Inventor
邵晴
李凯
王爱彬
胡浩
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2023092619A1 publication Critical patent/WO2023092619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of mechanical connectors, in particular to a method for checking the pretightening force of ultra-cryogenic dissimilar metal connecting bolts based on simplified modeling.
  • bolts are generally used to connect dissimilar metal connectors under ultra-cryogenic conditions. For reliability, it is necessary to check the pretightening force of ultra-cryogenic dissimilar metal connecting bolts.
  • the present invention provides a method for checking the pretightening force of bolts connected by ultra-cryogenic dissimilar metals based on simplified modeling, so as to ensure the reliability of bolted connections.
  • the present invention provides the following technical solutions:
  • a method for checking the pretightening force of ultra-cryogenic dissimilar metal connection bolts based on simplified modeling which includes:
  • the defined bolt structure parameters include:
  • the defined bolt structure parameters include: bolt head fastener diameter e, bolt head thickness k, nominal diameter D, bolt length lbolt and thread length lthread, gasket structure parameters include: large gasket inner diameter d1, large gasket outer diameter d2 and large gasket thickness hwasher.
  • the definition of structural parameters of dissimilar metal connected parts includes:
  • the thickness of the first layer of connected parts is 1h1
  • the thickness of the second layer of connected parts is 2h2;
  • the minimum size of the simplified plate length, plate width and grid unit can be further determined
  • the defined mechanical parameters and thermophysical parameters of the bolts and connected parts include:
  • the mechanical parameters include density rho, Young's modulus E, and Poisson's ratio nu;
  • the thermophysical parameters include the coefficient of thermal expansion alpha, and the deformation parameters calculated from the coefficient of thermal expansion are related to the mechanical parameters.
  • the simplified modeling and grid division include:
  • the mechanical boundary condition loading and thermal boundary condition loading include:
  • Mechanical boundary conditions including the preload of bolts at room temperature and the constraint conditions of dissimilar metal connectors;
  • the thermal boundary condition is the transition from room temperature to the working temperature of ultra-cryogenic conditions.
  • the mechanical boundary conditions include the preload of the bolt at room temperature and the constraint conditions of the dissimilar metal connection, including:
  • Displacement constraint method with rigid body motion suppression choose three completely separated non-collinear points, fix the first point in three directions, constrain the second point to the vector from the first point to the second point in both directions of the normal, constraining the last point to a direction perpendicular to the plane formed by the three points;
  • the defined contact pairs include:
  • a contact pair is established between the lower surface of the gasket and the first layer of the two connected parts, and the augmented Lagrangian method is used for contact simulation calculation to obtain the pretightening force value of the ultra-cryogenic bolt.
  • the acquisition of the ultra-cryogenic bolt pre-tightening force value through thermal-mechanical coupling simulation calculation and judging whether the corresponding mechanical evaluation indicators are satisfied include: :
  • Mechanics evaluation indicators include:
  • K is the tightening coefficient
  • F pc is the low temperature pretightening force
  • d is the bolt diameter
  • T is the bolt failure torque
  • F tc is the calculated low temperature tangential force
  • F pc is the low temperature pretightening force
  • F ac is the calculated low temperature
  • Axial force is positive when under tension and negative when under compression
  • F a is the allowable axial force
  • the tangential acceptance criterion is given by the slip resistance
  • the axial acceptance criterion is given by the pretightening force load when the bolt is under compression
  • the allowable axial force and pretightening force when the bolt is under tension The difference is given;
  • the invention provides a method for checking the pretightening force of ultra-cryogenic dissimilar metal connecting bolts based on simplified modeling.
  • the principle of the model and the minimum size of the grid need to be controlled; in addition, this scheme can use a simplified model with a small amount of calculation to perform thermal-mechanical coupling calculations without introducing stress concentration, and to ensure calculation convergence;
  • the method of checking the pretightening force of dissimilar metal connection bolts under cryogenic conditions is blank, and the evaluation standard based on the breaking torque and the evaluation standard of bolt tangential force and axial force are given, so that the reliability of the bolt connection can be judged sex.
  • Fig. 1 is an equivalent simulation diagram of an ultra-cryogenic dissimilar metal connection bolt preload check method based on simplified modeling disclosed in an embodiment of the present invention
  • Fig. 2 is a diagram of ultra-cryogenic preload values corresponding to applying different preloads at room temperature disclosed in the embodiment of the present invention
  • Fig. 3 is an axial force diagram of the inside and outside of the bolt under ultra-cryogenic working conditions when the pretightening force of the bolt at normal temperature reaches N, disclosed in the embodiment of the present invention
  • Fig. 4 is a flow chart of the ultra-cryogenic dissimilar metal connection bolt preload check method based on simplified modeling disclosed in the embodiment of the present invention.
  • the invention discloses a method for checking the pretightening force of bolts connected by ultra-cryogenic dissimilar metals based on simplified modeling, so as to ensure the reliability of bolt connections.
  • the present application discloses a method for checking the pretightening force of ultra-cryogenic dissimilar metal connection bolts based on simplified modeling, which includes the following steps:
  • Step S1 Define bolt structure parameters.
  • the simulation analysis of bolt pretightening force generally adopts two methods for modeling, one adopts the simplified modeling method of BEAM beam, but this method can extract few bolt force results and the calculation accuracy is low; the other adopts detailed modeling method, However, the number of grids and the amount of calculation in this method are very large, and it is difficult to apply;
  • bolts and gaskets are 304 stainless steel and TC4 titanium alloy respectively, the thickness of the parts to be connected are 20mm and 35mm respectively, the material of the bolt and the gasket is 304 stainless steel, and the model is M12), the bolt structure parameters that need to be defined include: bolt head fastener diameter e (for example 20[mm]), bolt head thickness k (such as 7.5[mm]), bolt nominal diameter D (such as 12[mm]), bolt length lbolt (such as 45[mm]), thread length lthread (such as 22[mm] ]);
  • bolt head fastener diameter e for example 20[mm]
  • bolt head thickness k such as 7.5[mm]
  • bolt nominal diameter D such as 12[mm]
  • bolt length lbolt such as 45[mm]
  • thread length lthread such as 22[mm] ]
  • the structural parameters of the gasket include: a large gasket inner diameter d1 (for example, 13 [mm]), a large gasket outer diameter d2 (for example, 37 [mm]), and a large gasket thickness hwasher (for example, 3 [mm]).
  • Step S2 Define the structural parameters of the connected parts of dissimilar metals.
  • the thickness of the connected parts of dissimilar metals in the equivalent modeling can be determined first, among which, the connected part of the first layer: plate thickness 1h1 (for example, 20 [mm]) 2.
  • the connected part of the second layer the plate thickness is 2h2 (for example, 35 [mm]).
  • the connected parts of dissimilar metals involved in this application means that the materials of the connected parts of the first layer and the connected parts of the second layer are different.
  • the minimum size of the simplified plate length, plate width and grid unit can be further determined according to the minimum size of the bolt and gasket structure.
  • the determination of the simplified plate length, plate width and the minimum size of the grid needs to meet two requirements.
  • Saint-Venant’s principle it is necessary to construct a sufficiently large simplified plate model, while simulating the stress state of an infinitely large plate;
  • the calculation requirements of the simplified model it is necessary to reduce the size of the equivalent plate model as much as possible, so as to reduce the number of grid cells, thereby reducing the calculation load.
  • the equivalent mode of the first-layer connected parts and the second-layer connected parts is the same, and it is preferable to simplify the first-layer connected parts and the second-layer connected parts to the same size and shape ,specific:
  • the metal plate length can be set to 100 [mm]
  • the plate width can be set to 100 [mm]
  • the minimum size of the grid unit is 0.3 mm.
  • Step S3 Define the mechanical parameters and thermophysical parameters of the bolts and connected parts.
  • the materials of the bolts and connected parts are defined according to the actual requirements of the project.
  • the materials of the bolts and gaskets can be 304 stainless steel, the upper connected parts are TC4 titanium alloy, and the lower connected parts are 304 stainless steel.
  • the mechanical parameters include density rho, Young's modulus E, and Poisson's ratio nu; thermal physical parameters include the coefficient of thermal expansion alpha.
  • the material parameters of 304 stainless steel and TC4 titanium alloy are as follows, and the specific parameters can be obtained by looking up the table.
  • the parameters in the table below correspond to the calculation formulas of different mechanical parameters and thermophysical parameters in the range from room temperature to ultra-cryogenic temperature.
  • Step S4 Simplify modeling and grid division.
  • a simplified model for the analysis of the bolt pretightening force is established and divided into meshes, and the minimum size of the mesh elements is controlled at 0.3mm.
  • Equivalent modeling is carried out after passing the parameters defined above.
  • the software used can be set according to actual needs, and the size of the divided grid units can also be set according to different accuracy requirements, and they are all within the scope of protection.
  • Step S5 Loading of mechanical boundary conditions.
  • the constraint conditions in this application adopt the displacement constraint method of rigid body motion suppression.
  • the z-direction displacement of the bottom surface of the second layer of connected parts is specified as 0.
  • the mechanical boundary condition in this example is to apply (0, 500, 3000N) preload (starting from 0N, calculate once every 500N until the calculation reaches 3000N) at a distance of 11.5mm from the end of the bolt at the section position, choose three completely separated non-collinear points (for 3D models), fix the first point in three directions, and constrain the second point to two directions of the vector normal from the first point to the second point , restrict the last point to the direction perpendicular to the plane formed by the three points, and specify the z-direction displacement of the bottom surface of the second layer of connected parts to be 0.
  • Step S6 Load thermal boundary conditions.
  • the thermal boundary condition is set as the transition from the room temperature of 293K to the ultra-cryogenic working temperature of 20K.
  • Step S7 Define contact pairs.
  • a contact pair is established between the lower surface of the gasket and the connected part of the first layer, and the augmented Lagrangian method is used for contact simulation calculation.
  • the grids between the upper surface of the gasket and the lower surface of the bolt head, and the mesh between the thread engagement area and the surface of the lower connector are treated as common nodes, so as to conduct the stress caused by the mismatch of thermal expansion coefficients.
  • Step S8 Obtain the pre-tightening force value of the ultra-cryogenic bolt through thermal-mechanical coupling simulation calculation and judge whether it meets the corresponding mechanical evaluation index.
  • the pre-tightening force value of ultra-cryogenic bolts can be obtained by using thermal-mechanical coupling simulation calculations, and further calculations can be used to determine whether the pre-tightening force and axial force of bolts under ultra-cryogenic conditions meet the mechanical evaluation indicators.
  • the mechanical evaluation indicators include:
  • K is the tightening coefficient
  • F pc is the low temperature pretightening force
  • d is the bolt diameter
  • T is the bolt failure torque
  • F tc is the calculated low temperature tangential force
  • F pc is the low temperature pretightening force
  • F ac is the calculated low temperature
  • Axial force is positive when under tension and negative when under compression
  • F a is the allowable axial force
  • the tangential acceptance criterion is given by the slip resistance
  • the axial acceptance criterion is given by the pretightening force load when the bolt is under compression
  • the allowable axial force and pretightening force when the bolt is under tension The difference is given;
  • this example calculates the ultra-cryogenic preload corresponding to the preload applied at room temperature (0, 500, 3000N), as shown in Figure 2. It can be seen from the table that when the bolt pretightening force at room temperature reaches N, the bolt pretightening torque under ultra-cryogenic conditions is less than the failure torque, and the bolt axial force and tangential force meet the allowable conditions, as shown in Figure 3 .
  • the ultra-cryogenics involved in this application generally operate at temperatures below -180°C, about -200°C, and can be specifically refrigerated with liquid nitrogen equipment.
  • this scheme can In the case of not introducing internal stress, a simplified model with a small amount of calculation is used for thermomechanical coupling calculation, and the calculation convergence is guaranteed; this scheme fills the gap in the checking method of the pretightening force of dissimilar metal connecting bolts under ultra-cryogenic conditions. Blank, and given the evaluation criteria based on the failure torque and the evaluation criteria of bolt tangential force and axial force, so that the reliability of the bolt connection can be judged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,包括:定义螺栓结构参数(S1);定义异种金属被连接件结构参数(S2);定义螺栓及被连接件材料力学参数及热物性参数(S3);等效模型建模及网格划分(S4);力学边界条件加载(S5),热学边界条件加载(S6);定义接触对(S7);通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标(S8)。本方案可以在不引入应力集中的情况下,采用计算量较小的简化模型进行热力耦合计算,保证计算收敛;本方案填补了超深冷工况下异种金属连接螺栓预紧力的校核方法的空白,并给出了基于破坏扭矩的评价标准和螺栓切向力、轴向力的评价标准,可以判断螺栓的连接的可靠性。

Description

一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法
本申请要求于2021年11月26日提交中国专利局、申请号为202111424536.2、发明名称为“一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机械连接件技术领域,特别涉及一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法。
背景技术
在超导磁体及低温压力容器领域中,超深冷工况下异种金属连接件一般采用螺栓进行连接,但由于材料热膨胀系数不同,导致螺栓预紧力会发生不同程度的变化,为了保证结构的可靠性,需要对超深冷异种金属连接螺栓预紧力进行校核。
目前,常温螺栓预紧力仿真分析一般采用两种方式进行建模,一种采用梁单元的简化建模方式,但该方式能够提取的螺栓力结果少,计算精度低;一种采用详细建模的方式,但该方式网格数量和计算量非常大,难以应用;超深冷状态下对连接异种金属的螺栓预紧力暂无校核方法。
因此,如何提供一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,以保证螺栓连接的可靠性,是本技术领域人员亟待解决的问题。
发明内容
有鉴于此,本发明提供一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,以保证螺栓连接的可靠性。
为实现上述目的,本发明提供如下技术方案:
一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其包括:
定义螺栓结构参数;
定义异种金属被连接件结构参数;
定义螺栓及被连接件材料力学参数及热物性参数;
简化建模及网格划分;
力学边界条件加载,热学边界条件加载;
定义接触对;
通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述定义螺栓结构参数包括:
定义的螺栓结构参数包括:螺栓头紧固器直径e、螺栓头厚度k、标称直径D、螺栓长度lbolt和螺纹长度lthread,垫片结构参数包括:大垫片内径d1、大垫片外径d2和大垫片厚度hwasher。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述定义异种金属被连接件结构参数包括:
根据实际情况中两种被连接件的厚度,第一层被连接件的厚度为1h1、第二层被连接件的厚度为2h2;
根据螺栓及垫片结构的最小尺寸可以进一步确定简化板长、板宽及网格单元的最小尺寸,
定义简化板模型的板长为length,板宽为width,网格单元的最小尺寸gridmin,则需要满足下面的建模条件:
Figure PCTCN2021134742-appb-000001
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述定义螺栓及被连接件材料力学参数及热物性参数包括:
力学参数包括密度rho、杨氏模量E、泊松比nu;热物性参数包括热膨胀系数alpha,且由热膨胀系数计算得到的变形参数关联至力学参数。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述简化建模及网格划分包括:
根据定义的螺栓结构参数、异种金属被连接件结构参数和螺栓及被连接件材料力学参数及热物性参数,建立螺栓预紧力分析的简化模型并划分网格。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述力学边界条件加载,热学边界条件加载包括:
力学边界条件,包括常温下螺栓的预紧力和异种金属连接件的约束条件;
热学边界条件为室温至超深冷工况工作温度的转变。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述力学边界条件,包括常温下螺栓的预紧力和异种金属连接件的约束条件,包括:
采用刚体运动抑制的位移约束方法:选择三个完全分离的非共线点,在三个方向上固定第一个点,将第二个点限制在从第一个点到第二个点的矢量法线的两个方向上,将最后一个点限制在垂直于由三个点形成的平面的方向上;
指定两个被连接件中第二层被连接件的底面z向位移为0。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述定义接触对包括:
在垫片下表面和两个被连接件中第一层被连接件之间建立接触对,并采用增广拉格朗日法进行接触仿真计算获取超深冷螺栓预紧力值。
优选的,上述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法中,所述通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标包括:
力学评价指标包括:
破坏扭矩:KF pcd<T;
螺栓切向力:F tc<[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
螺栓轴向力:受压螺栓F ac<F pc
受拉螺栓F ac<F a-F pc
其中:K为拧紧系数;F pc为低温预紧力;d为螺栓直径;T为螺栓破坏扭矩;F tc为计算的低温切向力;F pc为低温预紧力;F ac为计算的低温轴向力,受拉时为正,受压时为负;F a为许用轴向力;
使用螺栓连接时,切向的验收标准由滑移阻力给出,轴向的验收标准由螺栓受压时由预紧力载荷给出,当螺栓受拉时由许用轴向力与预紧力的差值给出;
其中,滑移阻力的计算公式为:
F sa=(k s×n×μ×F c)/γ,
式中,k s为几何因子,k s=1.0;n为摩擦界面数;μ为滑移系数,μ=0.3(C级表面);γ为螺栓安全因子1.1;
F c=F pc-0.8×F ac
当摩擦界面数n为1时:
F sa=[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
当摩擦界面数n为2时:
F sa=(0.546×F pc)-(0.436×F ac)。
本发明提供了一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,该方案的计算量介于详细建模和简化建模之间,并给出了等效模型建模的原则和网格需要控制的最小尺寸;此外,本方案可以在不引入应力集中的情况下,采用计算量较小的简化模型进行热力耦合计算,并且保证计算收敛;采用本方案填补了超深冷工况下异种金属连接螺栓预紧力的校核方法的空白,并给出了基于破坏扭矩的评价标准和螺栓切向力、轴向力的评价标准,从而可以判断螺栓的连接的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中公开的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法的等效模拟图;
图2为本发明实施例中公开的常温下施加不同的预紧力对应的超深冷预紧力值图;
图3为本发明实施例中公开的当常温螺栓预紧力打到N时,在超深冷工况下的螺栓的内侧和外侧的轴向力图;
图4为本发明实施例中公开的基于简化建模的超深冷异种金属连接螺栓 预紧力校核方法的流程图。
具体实施方式
本发明公开了一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,以保证螺栓连接的可靠性。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本申请公开了一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其包括以下步骤:
步骤S1:定义螺栓结构参数。
螺栓预紧力仿真分析一般采用两种方式进行建模,一种采用BEAM梁的简化建模方式,但该方式能够提取的螺栓力结果少,计算精度低;一种采用详细建模的方式,但该方式网格数量和计算量非常大,难以应用;
而本申请中采用一种通过建立接触对的方式简化螺纹特征的详细建模方式进行螺栓和垫片的建模,根据工程实际情况中采用的螺栓及垫片结构(例:两种被连接金属分别为304不锈钢和TC4钛合金,被连接件厚度分别为20mm和35mm,螺栓和垫片材料为304不锈钢,型号为M12),需要定义的螺栓结构参数包括:螺栓头紧固器直径e(例如20[mm])、螺栓头厚度k(例如7.5[mm])、螺栓标称直径D(例如12[mm])、螺栓长度lbolt(例如45[mm])、螺纹长度lthread(例如22[mm]);
垫片结构参数包括:大垫片内径d1(例如13[mm])、大垫片外径d2(例如37[mm])、大垫片厚度hwasher(例如3[mm])。
步骤S2:定义异种金属被连接件结构参数。
根据工程实际情况中螺栓连接两个被连接件的厚度,首先可以确定等效建模时异种金属被连接件的厚度,其中,第一层被连接件:板厚1h1(例如20[mm])、第二层被连接件:板厚2h2(例如35[mm]),本申请中涉及到的异种金属被连接件即为第一层被连接件和第二层被连接件的材质不同。
在此基础,根据螺栓及垫片结构的最小尺寸可以进一步确定简化板长、板宽及网格单元的最小尺寸。简化板长、板宽及网格最小尺寸的确定需要满足两方面的需求,一方面根据圣威南原理,需要构建出足够大的简化板模型,一边模拟出无限大平板的受力状态;另一方面,根据简化模型对计算量的需求,需要尽可能减小等效板模型的尺寸,以便减少网格单元数量,进而减小计算量。此处需要说明的是,第一层被连接件和第二层被连接件的等效方式相同,优选的可将第一层被连接件和第二层被连接件简化为相同的尺寸和形状,具体的:
定义简化板模型的板长为length,板宽为width,网格单元的最小尺寸gridmin,则需要满足下面的建模条件:
Figure PCTCN2021134742-appb-000002
在具体实施例中,如图1所示,可将金属的板长length均设定为100[mm],板宽width均设定为100[mm],网格单元的最小尺寸0.3mm。
步骤S3:定义螺栓及被连接件材料力学参数及热物性参数。
根据工程实际要求定义螺栓及被连接件的材料,在具体实施例中,该螺栓及垫片材料可为304不锈钢,上层被连接件为TC4钛合金,下层被连接件为304不锈钢。
为了后续进行热力耦合有限元分析,需要分别定义两种被连接件材料与超深冷温度相关的力学参数及热物性参数,具体的,力学参数包括密度rho、杨氏模量E、泊松比nu;热物性参数包括热膨胀系数alpha。
304不锈钢和TC4钛合金的材料参数如下,对于具体的参数可通过查表获取。
此外,下方表中的参数对应了从室温到超深冷温度区间内不同力学参数及热物性参数的计算公式。
Figure PCTCN2021134742-appb-000003
Figure PCTCN2021134742-appb-000004
Figure PCTCN2021134742-appb-000005
Figure PCTCN2021134742-appb-000006
步骤S4:简化建模及网格划分。
根据定义的螺栓结构参数、异种金属被连接件结构参数和螺栓及被连接件材料力学参数及热物性参数,建立螺栓预紧力分析的简化模型并划分网格,将网格单元的最小尺寸控制在0.3mm。
通过上述定义的参数后进行等效建模,对于采用的软件可根据实际需要设定,而对于划分的网格单元的尺寸也可根据不同的精度要求设定,且均在保护范围内。
步骤S5:力学边界条件加载。
施加力学边界条件,包括常温下螺栓的预紧力和异种金属连接件的约束条件。
建立螺栓预紧力施加截面,截面位置螺栓末端位置距离0.75lbolt。
为了避免过多的位移约束条件引入不符合工程实际的应力和防止位移约束不足导致的求解不收敛问题,本申请中的约束条件采用刚体运动抑制的位移约束方法。
具体的,选择三个完全分离的非共线点(对于三维模型),在三个方向上固定第一个点,将第二个点限制在从第一个点到第二个点的矢量法线的两个方向上,将最后一个点限制在垂直于由三个点形成的平面的方向上。
为了防止求解不收敛,指定第二层被连接件的底面z向位移为0。
具体地,本例中力学边界条件为在截面位置螺栓末端位置距离11.5mm施加(0,500,3000N)的预紧力(从0N开始,每隔500N,计算一次,直到计算到3000N为止),选择三个完全分离的非共线点(对于三维模型),在三个方向上固定第一个点,将第二个点限制在从第一个点到第二个点的矢量法线的两个方向上,将最后一个点限制在垂直于由三个点形成的平面的方向上,指定第二层被连接件的底面z向位移为0。
步骤S6:热学边界条件加载。
由于热膨胀系数不同的异种金属被连接件在温度变化的情况下会产生应力,而应力会影响螺栓的预紧力,特别是在超深冷工况下,热应力可能直接导致螺栓失效。
当温度为室温293K时,第一层被连接件和第二层被连接件无应力时,如果我们将温度降低到20K,则可以找到由热膨胀系数不匹配引起的应力。由于我们知道各处的最终温度,因此不需要求解传热问题,可以直接将热学边界条件设置为室温至超深冷工况工作温度的转变,这种设置方式在材料热物性参数方面,可以省略材料热容和导热系数的设置,仅需要热膨胀系数即可计算。
具体地,本例中将热学边界条件设置为室温293K至超深冷工况20K工作温度的转变。
步骤S7:定义接触对。
由于简化建模未建立螺纹牙的实际有限元模型,热膨胀系数不匹配引起的应力可能导致模型发生穿透,因此需要进一步建立接触对。
具体地,在垫片下表面和第一层被连接件之间建立接触对,采用增广拉格朗日法进行接触仿真计算。
将垫片上表面和螺栓头下表面之间、螺纹啮合区域与下层连接件表面之间网格进行共节点处理,以便传导由热膨胀系数不匹配引起的应力。
步骤S8:通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标。
根据上述设置,采用热力耦合仿真计算即可获取超深冷螺栓预紧力值,进一步可以通过计算判定超深冷工况下的螺栓预紧力和轴向力是否满足力学评价指标。
具体的,力学评价指标包括:
破坏扭矩:KF pcd<T;
螺栓切向力:F tc<[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
螺栓轴向力:受压螺栓F ac<F pc
受拉螺栓F ac<F a-F pc
其中:K为拧紧系数;F pc为低温预紧力;d为螺栓直径;T为螺栓破坏扭矩;F tc为计算的低温切向力;F pc为低温预紧力;F ac为计算的低温轴向力,受拉时为正,受压时为负;F a为许用轴向力;
使用螺栓连接时,切向的验收标准由滑移阻力给出,轴向的验收标准由螺栓受压时由预紧力载荷给出,当螺栓受拉时由许用轴向力与预紧力的差值给出;
其中,滑移阻力的计算公式为:
F sa=(k s×n×μ×F c)/γ,
式中,k s为几何因子,k s=1.0;n为摩擦界面数;μ为滑移系数,μ=0.3(C级表面);γ为螺栓安全因子1.1;
F c=F pc-0.8×F ac
当摩擦界面数n为1时:
F sa=[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
当摩擦界面数n为2时:
F sa=(0.546×F pc)-(0.436×F ac)。
具体地,本例计算常温下施加(0,500,3000N)的预紧力对应的超深冷预 紧力值如图2所示。查表可知,当常温螺栓预紧力打到N时,在超深冷工况下的螺栓预紧力扭矩小于破坏扭矩,螺栓轴向力和切向力满足许用条件,如图3所示。
本申请中涉及到的超深冷为一般在工作温度在-180℃以下,约-200℃左右,具体可用液氮设备制冷。
通过上述建模等效方法可知,本方案计算量介于详细建模和简化建模之间,并给出了等效模型建模的原则和网格需要控制的最小尺寸;此外,本方案可以在不引入内应力的情况下,采用计算量较小的简化模型进行热力耦合计算,并且保证计算收敛;采用本方案填补了超深冷工况下异种金属连接螺栓预紧力的校核方法的空白,并给出了基于破坏扭矩的评价标准和螺栓切向力、轴向力的评价标准,从而可以判断螺栓的连接的可靠性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,包括:
    定义螺栓结构参数;
    定义异种金属被连接件结构参数;
    定义螺栓及被连接件材料力学参数及热物性参数;
    简化建模及网格划分;
    力学边界条件加载,热学边界条件加载;
    定义接触对;
    通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标。
  2. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述定义螺栓结构参数包括:
    定义的螺栓结构参数包括:螺栓头紧固器直径e、螺栓头厚度k、标称直径D、螺栓长度lbolt和螺纹长度lthread,垫片结构参数包括:大垫片内径d1、大垫片外径d2和大垫片厚度hwasher。
  3. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述定义异种金属被连接件结构参数包括:
    根据实际情况中两种被连接件的厚度,第一层被连接件的厚度为1h1、第二层被连接件的厚度为2h2;
    根据螺栓及垫片结构的最小尺寸可以进一步确定简化板长、板宽及网格单元的最小尺寸,
    定义简化板模型的板长为length,板宽为width,网格单元的最小尺寸gridmin,则需要满足下面的建模条件:
    Figure PCTCN2021134742-appb-100001
  4. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧 力校核方法,其特征在于,所述定义螺栓及被连接件材料力学参数及热物性参数包括:
    力学参数包括密度rho、杨氏模量E、泊松比nu;热物性参数包括热膨胀系数alpha,且由热膨胀系数计算得到的变形参数关联至力学参数。
  5. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述简化建模及网格划分包括:
    根据定义的螺栓结构参数、异种金属被连接件结构参数和螺栓及被连接件材料力学参数及热物性参数,建立螺栓预紧力分析的简化模型并划分网格。
  6. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述力学边界条件加载,热学边界条件加载包括:
    力学边界条件,包括常温下螺栓的预紧力和异种金属连接件的约束条件;
    热学边界条件为室温至超深冷工况工作温度的转变。
  7. 根据权利要求6所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述力学边界条件,包括常温下螺栓的预紧力和异种金属连接件的约束条件,包括:
    采用刚体运动抑制的位移约束方法:选择三个完全分离的非共线点,在三个方向上固定第一个点,将第二个点限制在从第一个点到第二个点的矢量法线的两个方向上,将最后一个点限制在垂直于由三个点形成的平面的方向上;
    指定两个被连接件中第二层被连接件的底面z向位移为0。
  8. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述定义接触对包括:
    在垫片下表面和两个被连接件中第一层被连接件之间建立接触对,并采用增广拉格朗日法进行接触仿真计算获取超深冷螺栓预紧力值。
  9. 根据权利要求1所述的基于简化建模的超深冷异种金属连接螺栓预紧力校核方法,其特征在于,所述通过热力耦合仿真计算获取超深冷螺栓预紧力值及判断是否满足相应力学评价指标包括:
    力学评价指标包括:
    破坏扭矩:KF pcd<T;
    螺栓切向力:F tc<[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
    螺栓轴向力:受压螺栓F ac<F pc
    受拉螺栓F ac<F a-F pc
    其中:K为拧紧系数;F pc为低温预紧力;d为螺栓直径;T为螺栓破坏扭矩;F tc为计算的低温切向力;F pc为低温预紧力;F ac为计算的低温轴向力,受拉时为正,受压时为负;F a为许用轴向力;
    使用螺栓连接时,切向的验收标准由滑移阻力给出,轴向的验收标准由螺栓受压时由预紧力载荷给出,当螺栓受拉时由许用轴向力与预紧力的差值给出;
    其中,滑移阻力的计算公式为:
    F sa=(k s×n×μ×F c)/γ,
    式中,k s为几何因子,k s=1.0;n为摩擦界面数;μ为滑移系数,μ=0.3(C级表面);γ为螺栓安全因子1.1;
    F c=F pc-0.8×F ac
    当摩擦界面数n为1时:
    F sa=[(0.3/1.1)×F pc]-[(0.24/1.1)×F ac]=(0.273×F pc)-(0.218×F ac);
    当摩擦界面数n为2时:
    F sa=(0.546×F pc)-(0.436×F ac)。
PCT/CN2021/134742 2021-11-26 2021-12-01 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法 WO2023092619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424536.2A CN114117858A (zh) 2021-11-26 2021-11-26 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法
CN202111424536.2 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023092619A1 true WO2023092619A1 (zh) 2023-06-01

Family

ID=80370408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134742 WO2023092619A1 (zh) 2021-11-26 2021-12-01 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法

Country Status (2)

Country Link
CN (1) CN114117858A (zh)
WO (1) WO2023092619A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117131634A (zh) * 2023-09-21 2023-11-28 振声慧源(重庆)科技有限公司 螺栓连接结构动力学模型构建方法、系统、设备及介质
CN117494353A (zh) * 2024-01-02 2024-02-02 航天精工股份有限公司 基于设计校核一体化的紧固连接正向设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353907A (zh) * 2013-06-17 2013-10-16 沈阳华创风能有限公司 一种法兰连接螺栓极限强度校核的计算方法
US20170140091A1 (en) * 2015-11-16 2017-05-18 Hitachi, Ltd. Computer-implemented method for simplifying analysis of a computer-aided model
CN108460237A (zh) * 2018-04-08 2018-08-28 大连理工大学 一种考虑螺纹实际切向力状态的螺栓连接结构松动有限元仿真方法
CN108774673A (zh) * 2018-05-25 2018-11-09 台牙牙板模具(嘉兴)有限公司 一种超深冷牙模具热处理设备
CN109299532A (zh) * 2018-09-17 2019-02-01 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
CN111444654A (zh) * 2020-04-07 2020-07-24 中国汽车工程研究院股份有限公司 一种评判碰撞工况下螺栓断裂的虚拟仿真方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353907A (zh) * 2013-06-17 2013-10-16 沈阳华创风能有限公司 一种法兰连接螺栓极限强度校核的计算方法
US20170140091A1 (en) * 2015-11-16 2017-05-18 Hitachi, Ltd. Computer-implemented method for simplifying analysis of a computer-aided model
CN108460237A (zh) * 2018-04-08 2018-08-28 大连理工大学 一种考虑螺纹实际切向力状态的螺栓连接结构松动有限元仿真方法
CN108774673A (zh) * 2018-05-25 2018-11-09 台牙牙板模具(嘉兴)有限公司 一种超深冷牙模具热处理设备
CN109299532A (zh) * 2018-09-17 2019-02-01 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
CN111444654A (zh) * 2020-04-07 2020-07-24 中国汽车工程研究院股份有限公司 一种评判碰撞工况下螺栓断裂的虚拟仿真方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117131634A (zh) * 2023-09-21 2023-11-28 振声慧源(重庆)科技有限公司 螺栓连接结构动力学模型构建方法、系统、设备及介质
CN117131634B (zh) * 2023-09-21 2024-03-19 振声慧源(重庆)科技有限公司 螺栓连接结构动力学模型构建方法、系统、设备及介质
CN117494353A (zh) * 2024-01-02 2024-02-02 航天精工股份有限公司 基于设计校核一体化的紧固连接正向设计方法
CN117494353B (zh) * 2024-01-02 2024-03-26 航天精工股份有限公司 基于设计校核一体化的紧固连接正向设计方法

Also Published As

Publication number Publication date
CN114117858A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023092619A1 (zh) 一种基于简化建模的超深冷异种金属连接螺栓预紧力校核方法
Kenny et al. Load and stress distribution in screw threads
Guo et al. Reliability sensitivity analysis with random and interval variables
WO2018107730A1 (zh) 复合材料的疲劳寿命预测方法及预测系统
WO2017063540A1 (zh) 焊趾处热点应力的计算方法
CN102900377B (zh) 螺纹连接式全铝合金钻杆
CN108399306B (zh) 常高温统一的钢管混凝土构件压弯承载力计算方法
Abid Determination of safe operating conditions for gasketed flange joint under combined internal pressure and temperature: A finite element approach
CN106446361A (zh) 一种油套管螺纹接头的密封性评价方法
CN108763603B (zh) 一种汽门紧固螺栓耦合应力分析的方法
CN115609180B (zh) 基于焊接过程预测的强化参数生成方法、系统及存储介质
Wen et al. Analytical calculation of the tooth surface contact stress of spur gear pairs with misalignment errors in multiple degrees of freedom
CN113836658A (zh) 一种y型铸钢节点抗压设计承载力的计算方法
WO2020252842A1 (zh) 基于实际载荷的齿面接触斑点齿轮的设计方法
Bai et al. Failure study of honeycomb sandwich structure with embedded part under axial pullout loading
CN106295024A (zh) 一种考虑间隙及摩擦影响的复合材料螺栓连接载荷分布计算方法
Wang et al. Fatigue crack propagation analysis of orthotropic steel bridge with crack tip elastoplastic consideration
CN108052711A (zh) 一种并联组合发动机安装结构的热力耦合分析方法
CN107169162A (zh) 一种螺栓强度简化计算方法
CN116481699A (zh) 螺栓连接结构装配预紧力的匹配方法、装置及相关设备
Lan et al. Effects of gear structural parameters on unsteady-state temperature field of large transmission ratio gear and tooth root thermal stress
JPWO2018163829A1 (ja) 油井管用ねじ継手
CN110990972B (zh) 一种光热换热器换热管与管板接头抗热冲击简化评定方法
Wang et al. Effect of the secondary microcontact state induced by the all-factor thermal effect on bidirectional thermal contact performance
CN111428398A (zh) 一种C/SiC舵面热强度计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965348

Country of ref document: EP

Kind code of ref document: A1