WO2017063540A1 - 焊趾处热点应力的计算方法 - Google Patents

焊趾处热点应力的计算方法 Download PDF

Info

Publication number
WO2017063540A1
WO2017063540A1 PCT/CN2016/101726 CN2016101726W WO2017063540A1 WO 2017063540 A1 WO2017063540 A1 WO 2017063540A1 CN 2016101726 W CN2016101726 W CN 2016101726W WO 2017063540 A1 WO2017063540 A1 WO 2017063540A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
strain gauge
hot spot
weld toe
linear
Prior art date
Application number
PCT/CN2016/101726
Other languages
English (en)
French (fr)
Inventor
贾晓华
赵杰
蔡洪浩
Original Assignee
阿特拉斯科普柯(南京)建筑矿山设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿特拉斯科普柯(南京)建筑矿山设备有限公司 filed Critical 阿特拉斯科普柯(南京)建筑矿山设备有限公司
Publication of WO2017063540A1 publication Critical patent/WO2017063540A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to the field of computing, and in particular to a method of calculating hot spot stress at the weld toe.
  • the inherent fatigue strength of welded joints tends to be low. This is due to the fact that the special manufacturing process of welding involves too many additional factors that are detrimental to the fatigue properties of the structure: discontinuous structures such as attachments, reinforcements and weld geometry. These geometric discontinuities lead to discontinuities in structural stiffness. Eventually, it is easy to cause a high degree of stress concentration at the welded joint. The severity of the stress concentration determines the fatigue strength of the welded structure. In fact, in the high stress concentration region, due to the high nonlinearity of the stress gradient, it is difficult to intercept a unified mechanically meaningful stress value to evaluate the fatigue life of the structure.
  • nominal stress method is the most widely studied and widely used traditional method in fatigue analysis of welded structures.
  • the nominal stress method is obviously simpler.
  • the nominal stress method also has serious limitations: 1) The fatigue damage of the welded structure is caused by the stress concentration at the welded joint, while the nominal stress method ignores the stress concentration of the welded joint.
  • the International Welding Association has introduced a hot spot stress method.
  • the stress concentration of the welded joint considered by the hot spot stress method is an extrapolation method based on geometry.
  • the hot spot stress method cannot solve the problem that the joint corresponds to the S-N curve and the stress and the grid are sensitive.
  • some scholars proposed a method for calculating the hot spot stress based on nodal force in finite element. On the one hand, this method does not need to consider the influence of sensitive factors such as unit type and grid size on the hot spot stress.
  • due to the more accurate consideration of the stress concentration of the welded joint it also breaks through the limitation of the welded joint and the SN curve. .
  • the present invention provides a method for calculating hot spot stress at the weld toe to solve the problems in the prior art.
  • the present invention provides a method for calculating a hot spot stress at a weld toe, comprising the following steps: S10, a finite element model pre-processing, comprising the following steps: S11, establishing a geometric model of the virtual strain gauge at the weld toe; S12, meshing the geometric model of the virtual strain gauge; S13, dividing the geometric model of the virtual strain gauge into a strain gauge periphery and a strain gauge core block, and equally dividing the corresponding surface of the strain gauge core block Generating, for N sub-planes, a line feature on the side of each of the sub-surfaces, the N sub-surfaces jointly generating (N+1) the line features; S14, defining materials for the virtual strain gauges, Unit attribute, applied load and boundary condition; S2, calculating according to the finite element model; S3, extracting linear force and linear moment of each node; S4, extracting the linear force sum of each of the nodes according to S3 The linear moment calculates a finite element model pre-
  • N is greater than or equal to 8.
  • the mesh created for the virtual strain gauge is a 3D mesh.
  • the linear force and the linear moment in the thickness direction of the selected node in the virtual strain gauge are extracted, wherein:
  • f is the linear force of the node for an adjacent sub-surface
  • m is the corresponding linear moment
  • t is the plate thickness
  • the true stress of each of the nodes is superimposed to derive a hot spot stress for each of the nodes:
  • Fi is the hot spot stress of each node
  • l represents the length of the unit along the direction of the weld.
  • n linear forces/torques are generalized to form a matrix equation:
  • Fn in the matrix equation is replaced by Mn, and fn is replaced by mn to obtain a correlation matrix of the linear moments.
  • the calculation method of the hot spot stress at the weld toe according to the invention is based on the finite element 3D model to calculate the hot spot stress at the weld toe.
  • the calculation method has the advantages of simple steps, high efficiency, high calculation precision, greatly reducing human and material resources, and improving The efficiency of the post-design verification of the welded structure and the design quality of the welded structure.
  • FIG. 1 is a schematic view showing a position of a weld toe in a method for calculating a hot spot stress at a weld toe according to the present invention
  • FIG. 2 is a flow chart showing the steps of a method for calculating a hot spot stress at a weld toe according to the present invention
  • FIG. 3 is a schematic diagram of virtual strain gauge mesh division in a method for calculating hot spot stress at a weld toe according to the present invention
  • FIG. 4 is a schematic view of a virtual strain gauge in a method for calculating a hot spot stress at a weld toe according to the present invention
  • FIG. 5 is a schematic view of a virtual strain gauge in a method for calculating hot spot stress at a weld toe according to the present invention
  • FIG. 6 is a schematic view of a virtual strain gauge 3D in a method for calculating a hot spot stress at a weld toe according to the present invention
  • FIG. 7 is a partial schematic view of a virtual strain gauge in a method for calculating hot spot stress at a weld toe according to the present invention.
  • FIG. 9 is a schematic diagram of linear force and linear moment in a method for calculating hot spot stress at a weld toe according to the present invention.
  • the embodiment relates to a method for calculating the hot spot stress at the weld toe, wherein, as shown in FIG. 1 , the weld toe refers to the intersection of the weld bead 1 and the I-beam steel beam 2 of the base material in FIG. 1 . In the region, when the calculation is performed, the virtual strain gauge region 3 is selected in the intersection region. As shown in FIG. 2, the calculation method of the hot spot stress on the weld toe includes the following steps:
  • the geometric model of the virtual strain gauge is divided into a strain gauge outer periphery 4 and a strain gauge core block 5, and the corresponding faces of the strain gauge core block 5 are equally divided into N sub-surfaces.
  • the N sub-surfaces jointly generating (N+1) the line features, preferably, N is greater than or equal to 8, in particular, N is set to 9, the geometric model of the virtual strain gauge has a circumference of 72 mm and a width of 40 mm, and the strain gauge core block 5 has a section length of 40 mm and a width of 8 mm, and the strain gauge core block 5 is equally divided with the plane of the weld toe, and the molecular surface is The number is 10 and a total of 11 split lines are generated.
  • f is the linear force of the node for an adjacent sub-surface
  • m is the corresponding linear moment
  • t is the plate thickness
  • Fi is the hot spot stress of each node, and l represents the length of the unit along the weld direction;
  • F represents the complete linear force of the node, that is, considering the linear force of the two sub-surfaces connected by the node, for example, F1 is obtained by combining f1 and f2;
  • the linear force f1 and the linear force f2 are inaccurate, and only f3 can reflect the linear force and linear moment at node 3, and further, for the sake of conservatism, generally f5
  • the accuracy of the linear force is sufficient. Therefore, the virtual strain gauges established in S1 must have 9 or more line features, and only the linear force and linear moment between f5 and f(n-4) can be used to calculate the hot spot stress at the weld toe. .

Abstract

一种焊趾处热点应力的计算方法,其包括以下步骤:S10,有限元模型前处理;S2,根据有限元模型进行计算;S3,提取每个节点的线性力和线性力矩;S4,根据S3中提取每个节点的线性力和线性力矩,计算出焊趾处的拉应力、弯曲应力和真实应力;S5,将真实应力叠加得到焊趾处每个节点的热点应力。其中,S10中将建立的虚拟应变片的几何模型分为应变片外围和应变片核心块,将应变片核心块相应的面均分为N个子面,在每个子面的侧边生成1个线特征,N个子面共生成(N+1)个线特征。上述计算方法步骤简单,效率较高,并且计算精度高,极大地降低了人力物力,提高了焊接结构的后期设计验证的效率和焊接结构的设计质量。

Description

焊趾处热点应力的计算方法 技术领域
本发明涉及计算领域,特别地涉及焊趾处热点应力的计算方法。
背景技术
焊接结构中,焊接接头的固有疲劳强度往往较低。这是由于,焊接特殊的制造工艺包含了太多的对结构疲劳性能不利的附加因素:连接附件、加强件以及焊缝几何等不连续结构。这些几何结构上的不连续性导致了结构刚度的不连续性。最终,很容易导致在焊接接头处产生高度的应力集中。而应力集中的严重程度,决定了焊接结构的疲劳强度。而实际上,在高应力集中区域,由于应力梯度的高度非线性,很难截取一个统一的具有力学意义的应力值来考核的结构的疲劳寿命。
针对这种问题,国内外学者提出了两种基于S-N曲线的焊接结构的应力截取方法:名义应力法和基于国际焊接协会的热点应力法。名义应力法是焊接结构疲劳分析中研究最广、应用最广的传统方法。应用这种方法时,不需要特别考虑焊接接头自身的应力集中。但是,不同的焊接接头需要通过不同的S-N曲线来区分。从应力截取的角度看,名义应力法显然比较简单。但是,名义应力法也存在严重的局限性:1)焊接结构的疲劳破坏是焊接接头处的应力集中而导致,而名义应力法忽略了焊接接头的应力集中。比如,相同的焊接接头,如果对焊缝进行后处理以降低应力集中,其疲劳寿命肯定是不一样的。2)由于焊接接头的多样性,焊接接头与S-N曲线的一一对应是很难做到的。3)焊接结构处的名义应力是高度网格敏感的,应力值会有较大的离散。
基于如上的考虑,国际焊接协会推出了热点应力法。热点应力法考虑的焊接接头的应力集中,它是一种基于几何结构的外推法。但是,热点应力法也不能解决接头与S-N曲线对应及应力与网格敏感的问题。后来,有学者提出了在有限元中基于节点力的热点应力计算方法。这种方法一方面不需要考虑单元类型、网格尺寸等敏感因素对热点应力的影响,另一方面,由于较准确的考虑了焊接接头的应力集中,也突破了焊接接头与S-N曲线对应的限制。 但是此法在实施前需要将焊接结构3D几何模型转化成板壳2D几何模型,对于复杂钢结构很难准确的用2D板壳模型来表达3D实体模型,且花费时间、人力成本巨大,工程应用中存在一定的局限性。
发明内容
本发明提供了一种焊趾处热点应力的计算方法,以解决现有技术中的问题。
为实现上述目的,本发明提供了一种焊趾处热点应力的计算方法,包括以下步骤:S10,有限元模型前处理,包括以下步骤:S11,在焊趾处建立虚拟应变片的几何模型;S12,对所述虚拟应变片的几何模型进行网格划分;S13,将所述虚拟应变片的几何模型分为应变片外围和应变片核心块,将所述应变片核心块相应的面均分为N个子面,在每个所述子面的侧边生成1个线特征,所述N个子面共生成(N+1)个所述线特征;S14,为所述虚拟应变片定义材料、单元属性、施加载荷和边界条件;S2,根据所述有限元模型进行计算;S3,提取每个节点的线性力和线性力矩;S4,根据S3中提取每个所述节点的所述线性力和所述线性力矩,计算出所述焊趾处的拉应力、弯曲应力和真实应力;S5,将所述真实应力叠加得到所述焊趾处每个所述节点的热点应力。
优选地,N大于或者等于8。
优选地,为所述虚拟应变片建立的网格为3D网格。
优选地,当步骤S2完成后,在所述有限元模型的计算结果文件中,提取所述虚拟应变片中选取的节点在板厚方向的所述线性力与所述线性力矩,其中:
真实应力由计算公式
Figure PCTCN2016101726-appb-000001
确定,其中:
f为节点对于相邻一个子面的线性力,m为相应的线性力矩,t是板厚。
优选地,将每个所述节点的所述真实应力叠加得出每个所述节点的热点应力:
Figure PCTCN2016101726-appb-000002
Figure PCTCN2016101726-appb-000003
其中,Fi是每个节点的热点应力,l代表单元沿焊缝方向的长度。
优选地,根据每个所述节点的所述真实应力和所述热点应力,推广至n个线性力/力矩,形成矩阵方程:
Figure PCTCN2016101726-appb-000004
优选地,将所述矩阵方程中的Fn替换成Mn,fn替换成mn即得到所述线性力矩的相关矩阵。
本发明涉及的焊趾处热点应力的计算方法基于有限元3D模型来计算焊趾处的热点应力,这种计算方法步骤简单,效率较高,并且计算精度高,极大地降低了人力物力,提高了焊接结构的后期设计验证的效率和焊接结构的设计质量。
附图说明
图1是本发明涉及的一种焊趾处热点应力的计算方法中的焊趾位置的示意图;
图2是本发明涉及的一种焊趾处热点应力的计算方法的步骤流程图;
图3是本发明涉及的一种焊趾处热点应力的计算方法中的虚拟应变片网格划分示意图;
图4是本发明涉及的一种焊趾处热点应力的计算方法中的虚拟应变片示意图;
图5是本发明涉及的一种焊趾处热点应力的计算方法中的虚拟应变片示意图;
图6是本发明涉及的一种焊趾处热点应力的计算方法中的虚拟应变片3D示意图;
图7是本发明涉及的一种焊趾处热点应力的计算方法中的虚拟应变片局部示意图;
图8是本发明涉及的一种焊趾处热点应力的计算方法中线性力和线性力 矩示意图;
图9是本发明涉及的一种焊趾处热点应力的计算方法中线性力和线性力矩示意图。
具体实施方式
为了更好地说明本发明的意图,下面结合附图对本发明内容做进一步说明。
本实施例涉及一种焊趾处热点应力的计算方法,其中,如图1所示,焊趾处是指焊接时,焊缝1与图1中母材的工字钢梁2两个实体相交的区域,在进行计算时,在相交区域选取虚拟应变片区域3,如图2所示,在对焊趾处进行热点应力的计算方法包括以下步骤:
S10,有限元模型前处理,包括以下步骤:
S11,利用有限元分析软件或3D软件在焊趾处建立虚拟应变片的几何模型;
S12,如图3和图6所示,对所述虚拟应变片的几何模型进行网格划分,具体地,将几何模型划分为3D网格;
S13,如图4和图5所示,将所述虚拟应变片的几何模型分为应变片外围4和应变片核心块5,将所述应变片核心块5相应的面均分为N个子面,在每个所述子面的侧边生成1个线特征,所述N个子面共生成(N+1)个所述线特征,优选地,N大于或者等于8,具体地,N设置成9,该虚拟应变片的几何模型的外围长72mm,宽40mm,应变片核心块5截面区域长40mm,宽8mm,将应变片核心块5与焊趾最接近的平面均分,所分子面的数量为10个,共产生11条分割线。
S14,为所述虚拟应变片定义材料、单元属性、施加载荷和边界条件。
S2,根据所述有限元模型进行计算。
S3,提取每个节点的线性力和线性力矩,具体地,当有限元模型计算完成后,在有限元模型的计算结果文件中,提取虚拟应变片中选取的节点在板厚方向的线性力与线性力矩,其中板厚方向为图7中箭头t所指方向,t表示板厚。
S4,根据S3中提取每个所述节点的所述线性力和所述线性力矩,计算出所述焊趾处的真实应力。
真实应力由计算公式
Figure PCTCN2016101726-appb-000005
确定,其中:
f为节点对于相邻一个子面的线性力,m为相应的线性力矩,t是板厚;
如图7所示,其中,f是对单个子面的线性力/线性力矩平衡进行计算得到,将每个节点的真实应力叠加得出每个节点的热点应力:
Figure PCTCN2016101726-appb-000006
Figure PCTCN2016101726-appb-000007
其中,Fi是每个节点的热点应力,l代表单元沿焊缝方向的长度;
可以得到:
Figure PCTCN2016101726-appb-000008
Figure PCTCN2016101726-appb-000009
F代表节点的完整线性力,即考虑了节点相连两个子面的线性力,例如,F1是f1和f2综合得到的;
那么,推广至n个线性力/力矩,形成矩阵方程,可以有:
这里,将Fn
Figure PCTCN2016101726-appb-000010
替换成Mn,fn替换成mn即可以得到线性力矩的相关矩阵,因此,在S4中所提取的线性力/线性力矩带入S1中建立的虚拟应变片模型中,将可以计算出每个节点的拉应力和弯曲应力。
S5,拉应力和弯曲应力叠加,实际上,其中S3中所得到的是非环形的焊缝焊趾处的线性力和线性力矩,此为线性力和线性力矩的一般公式,但是通过上述公式直接代入到S1所建立的虚拟应变片计算模型中,最后所得到的热点应力值并不是全部有意义的。
这里,要求将应变片核心块相应的面均分为N个子面,同时生成(N+1)个线特征,其中N大于或者等于8是基于在S1、S3和S4中,虚拟应变片中 除第一个与最后一个线特征外,其余所有的线特征都是相邻两个子面共有,而虚拟应变片中的第一个与最后一个线特征与虚拟应变片外的3D实体几何存在着力的传递,即,虚拟应变片提取的第一个子面与最后一个子面的线性力只是S4处中计算得到的线性力的一部分,也就是说第一个与最后一个线性力是不准确的,如图8所示,
Figure PCTCN2016101726-appb-000011
Figure PCTCN2016101726-appb-000012
Figure PCTCN2016101726-appb-000013
Figure PCTCN2016101726-appb-000014
Figure PCTCN2016101726-appb-000015
如上公式,结合图8,如果节点1的节点有问题,那么线性力f1和线性力f2不准确,只有f3比较能够反映节点3处的线性力和线性力矩,进一步,为了保守起见,一般f5的线性力的精确性已经足够。于是,S1中建立的虚拟应变片,必须要有9个及以上的线特征,并且,只有f5到f(n-4)之间的线性力和线性力矩才能用来计算焊趾处的热点应力。
本发明的实施例仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。

Claims (7)

  1. 一种焊趾处热点应力的计算方法,其包括以下步骤:
    S10,有限元模型前处理,包括以下步骤:
    S11,在焊趾处建立虚拟应变片的几何模型;
    S12,对所述虚拟应变片的几何模型进行网格划分;
    S13,将所述虚拟应变片的几何模型分为应变片外围和应变片核心块,将所述应变片核心块相应的面均分为N个子面,在每个所述子面的侧边生成1个线特征,所述N个子面共生成(N+1)个所述线特征;
    S14,为所述虚拟应变片定义材料、单元属性、施加载荷和边界条件;
    S2,根据所述有限元模型进行计算;
    S3,提取每个节点的线性力和线性力矩;
    S4,根据S3中提取每个所述节点的所述线性力和所述线性力矩,计算出所述焊趾处的拉应力、弯曲应力和真实应力;
    S5,将所述真实应力叠加得到所述焊趾处每个所述节点的热点应力。
  2. 根据权利要求1所述的焊趾处热点应力的计算方法,其特征在于,N大于或者等于8。
  3. 根据权利要求1-2中任一项所述的焊趾处热点应力的计算方法,其特征在于,为所述虚拟应变片建立的网格为3D网格。
  4. 根据权利要求3所述的焊趾处热点应力的计算方法,其特征在于,当步骤S2完成后,在所述有限元模型的计算结果文件中,提取所述虚拟应变片中选取的节点在板厚方向的所述线性力与所述线性力矩,其中:
    真实应力由计算公式
    Figure PCTCN2016101726-appb-100001
    确定,其中:
    f为节点对于相邻一个子面的线性力,m为相应的线性力矩,t是板厚。
  5. 根据权利要求4所述的焊趾处热点应力的计算方法,其特征在于,将每个所述节点的所述真实应力叠加得出每个所述节点的热点应力:
    Figure PCTCN2016101726-appb-100002
    其中,Fi是每个节点的热点应力,l代表单元沿焊缝方向的长度。
  6. 根据权利要求5所述的焊趾处热点应力的计算方法,其特征在于,根据每个所述节点的所述真实应力和所述热点应力,推广至n个线性力/力矩, 形成矩阵方程:
    Figure PCTCN2016101726-appb-100003
  7. 根据权利要求6所述的焊趾处热点应力的计算方法,其特征在于,将所述矩阵方程中的Fn替换成Mn,fn替换成mn即得到所述线性力矩的相关矩阵。
PCT/CN2016/101726 2015-10-12 2016-10-11 焊趾处热点应力的计算方法 WO2017063540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510659052.4A CN105260536B (zh) 2015-10-12 2015-10-12 焊趾处热点应力的计算方法
CN201510659052.4 2015-10-12

Publications (1)

Publication Number Publication Date
WO2017063540A1 true WO2017063540A1 (zh) 2017-04-20

Family

ID=55100225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101726 WO2017063540A1 (zh) 2015-10-12 2016-10-11 焊趾处热点应力的计算方法

Country Status (2)

Country Link
CN (1) CN105260536B (zh)
WO (1) WO2017063540A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110298084A (zh) * 2019-06-11 2019-10-01 南京毕慕智能建筑科技有限公司 一种焊接钢结构三维简化节点结构应力法
CN110767322A (zh) * 2019-09-29 2020-02-07 上海交通大学 一种基于响应面模型的海洋浮式平台热点应力推算方法
CN111985121A (zh) * 2020-07-01 2020-11-24 深圳数设科技有限公司 机理模型和杆板结构样机模型转化的方法和装置
CN112699446A (zh) * 2021-01-08 2021-04-23 北京工业大学 一种钢筒门洞焊缝极限强度的校核方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105260536B (zh) * 2015-10-12 2019-03-08 安百拓(南京)建筑矿山设备有限公司 焊趾处热点应力的计算方法
CN105740551B (zh) * 2016-02-02 2018-06-29 湖南大学 一种焊缝疲劳寿命预测方法
CN105953954B (zh) * 2016-04-29 2018-09-04 河海大学 一种组合钢桥面板界面母材焊趾疲劳热点应力测试方法
EP3892517A4 (en) * 2018-12-05 2022-08-31 Nippon Steel Corporation STRESS EVALUATION METHOD FOR RAIL VEHICLE BOGIE FRAME RAW WELDING PART

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149091A (ja) * 2001-11-08 2003-05-21 Hitachi Constr Mach Co Ltd 疲労寿命評価システム
CN103246772A (zh) * 2013-05-11 2013-08-14 天津大学 一种基于abaqus的超声喷丸矫正焊接变形的有限元模拟方法
CN103559361A (zh) * 2013-11-13 2014-02-05 齐齐哈尔轨道交通装备有限责任公司 一种构件强度的优化方法及其应力分析方法
CN103838975A (zh) * 2014-03-18 2014-06-04 唐山轨道客车有限责任公司 车体焊缝疲劳寿命计算方法及装置
CN104281726A (zh) * 2014-05-27 2015-01-14 北京宇航系统工程研究所 一种复杂圆筒结构平面展开有限元建模方法
CN104951619A (zh) * 2015-07-08 2015-09-30 大连交通大学 虚拟贴片法计算焊接结构结构应力的方法
CN105260536A (zh) * 2015-10-12 2016-01-20 阿特拉斯科普柯(南京)建筑矿山设备有限公司 焊趾处热点应力的计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120259593A1 (en) * 2011-04-07 2012-10-11 El-Zein Mohamad S Method for the prediction of fatigue life for welded structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149091A (ja) * 2001-11-08 2003-05-21 Hitachi Constr Mach Co Ltd 疲労寿命評価システム
CN103246772A (zh) * 2013-05-11 2013-08-14 天津大学 一种基于abaqus的超声喷丸矫正焊接变形的有限元模拟方法
CN103559361A (zh) * 2013-11-13 2014-02-05 齐齐哈尔轨道交通装备有限责任公司 一种构件强度的优化方法及其应力分析方法
CN103838975A (zh) * 2014-03-18 2014-06-04 唐山轨道客车有限责任公司 车体焊缝疲劳寿命计算方法及装置
CN104281726A (zh) * 2014-05-27 2015-01-14 北京宇航系统工程研究所 一种复杂圆筒结构平面展开有限元建模方法
CN104951619A (zh) * 2015-07-08 2015-09-30 大连交通大学 虚拟贴片法计算焊接结构结构应力的方法
CN105260536A (zh) * 2015-10-12 2016-01-20 阿特拉斯科普柯(南京)建筑矿山设备有限公司 焊趾处热点应力的计算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110298084A (zh) * 2019-06-11 2019-10-01 南京毕慕智能建筑科技有限公司 一种焊接钢结构三维简化节点结构应力法
CN110767322A (zh) * 2019-09-29 2020-02-07 上海交通大学 一种基于响应面模型的海洋浮式平台热点应力推算方法
CN110767322B (zh) * 2019-09-29 2022-07-19 上海交通大学 一种基于响应面模型的海洋浮式平台热点应力推算方法
CN111985121A (zh) * 2020-07-01 2020-11-24 深圳数设科技有限公司 机理模型和杆板结构样机模型转化的方法和装置
CN111985121B (zh) * 2020-07-01 2023-12-19 上海数设科技有限公司 机理模型和杆板结构样机模型转化的方法和装置
CN112699446A (zh) * 2021-01-08 2021-04-23 北京工业大学 一种钢筒门洞焊缝极限强度的校核方法

Also Published As

Publication number Publication date
CN105260536A (zh) 2016-01-20
CN105260536B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2017063540A1 (zh) 焊趾处热点应力的计算方法
KR102531231B1 (ko) 용접된 구조물을 위한 통합된 피로 수명 평가 방법
Meneghetti et al. Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+ II) loading
CN103752651A (zh) 焊接整体壁板激光冲击校形方法
Schijve et al. Fatigue of structures and secondary bending in structural elements
JP2009036669A (ja) 溶接残留応力解析方法および溶接残留応力解析システム
CN109871615B (zh) 基于有限元疲劳分析的自动扶梯桁架残余寿命计算方法
CN105740551A (zh) 一种焊缝疲劳寿命预测方法
JP2011101900A (ja) 変形推定方法、プログラムおよび記録媒体
CN106339541A (zh) 大型风力发电机组中塔筒门框的焊缝疲劳强度分析方法
CN111665132A (zh) 一种开口角隅疲劳裂纹扩展测量方法
WO2018014454A1 (zh) 一种多点吊装计算方法
JP7054199B2 (ja) 残留応力分布の測定方法、算出方法及びプログラム
Callens et al. Fatigue design of welded bicycle frames using a multiaxial criterion
JP5099637B2 (ja) き裂進展解析方法
JP2006000879A (ja) 変形推定方法、プログラムおよび記録媒体
Cheng et al. Hot spot stress and fatigue behavior of bird-beak SHS X-joints subjected to brace in-plane bending
CN109507040B (zh) 一种蜂窝夹层结构面板压缩应力评估方法
US9791356B2 (en) Joint analyzing method, product designing method, and joint analyzing system
JP2022069988A (ja) 応力拡大係数の算出方法及び疲労強度の評価方法
Meneghetti et al. The Peak Stress Method applied to fatigue assessments of steel tubular welded joints subject to mode-I loading
CN112464401A (zh) 一种金属材料焊点的精准建模方法
CN107103126B (zh) 一种铆接结构干涉量快速预测方法
Cerit et al. Fracture mechanics-based design and reliability assessment of fillet welded cylindrical joints under tension and torsion loading
Turlier et al. FEA shell element model for enhanced structural stress analysis of seam welds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854918

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16854918

Country of ref document: EP

Kind code of ref document: A1