WO2023092515A1 - 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法 - Google Patents

一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法 Download PDF

Info

Publication number
WO2023092515A1
WO2023092515A1 PCT/CN2021/133743 CN2021133743W WO2023092515A1 WO 2023092515 A1 WO2023092515 A1 WO 2023092515A1 CN 2021133743 W CN2021133743 W CN 2021133743W WO 2023092515 A1 WO2023092515 A1 WO 2023092515A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
inorganic
novel
cspbbr
solution
Prior art date
Application number
PCT/CN2021/133743
Other languages
English (en)
French (fr)
Inventor
潘奇
曹暮寒
伏杰
胡静静
张晓洁
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/133743 priority Critical patent/WO2023092515A1/zh
Publication of WO2023092515A1 publication Critical patent/WO2023092515A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the invention relates to the field of nano-optoelectronic materials, in particular to a method for preparing a novel all - inorganic CsPbBr3 perovskite used in LCD backlight display.
  • all-inorganic CsPbBr 3 perovskite-based luminescent materials have attracted great attention due to their excellent luminescent properties, adjustable fluorescence spectrum, high luminous efficiency, and narrow half-peak width.
  • all-inorganic CsPbBr3 perovskite materials are widely considered as ideal candidates for next-generation display materials due to their higher color gamut as a green light source.
  • due to the ionic nature of the all-inorganic CsPbBr3 perovskite it decomposes rapidly when encountering water and oxygen.
  • the surface ligands (oleylamine oleic acid) of all-inorganic CsPbBr3 perovskite can also be easily removed by photon absorption, easily aggregated due to strong van der Waals force, and lead to luminous efficiency. A sharp decline.
  • the present invention aims to provide a method for preparing a novel all-inorganic CsPbBr3 perovskite applied to LCD backlight display, in which hydrophilic molecules act on the surface of quantum dots, which can greatly improve the luminescence of quantum dots Efficiency and stability, the obtained product has excellent optical stability and hygrothermal stability.
  • a novel all-inorganic CsPbBr3 perovskite applied to LCD backlight display and its preparation method comprises the following steps, reacting after mixing cesium oleate solution and lead bromide solution to obtain all-inorganic Cs4 PbBr 6 perovskite nanocrystals; then the organic hydrophilic molecule solution is mixed with the all-inorganic Cs 4 PbBr 6 perovskite nanocrystal solution, stirred and left to stand to obtain a new all-inorganic CsPbBr 3 perovskite for LCD backlight display mine.
  • a novel all-inorganic CsPbBr 3 perovskite film its preparation method comprises the following steps, a novel all-inorganic CsPbBr 3 perovskite layer is set between two barrier films to obtain a novel all-inorganic CsPbBr 3 perovskite film; the novel The all-inorganic CsPbBr 3 perovskite is the above-mentioned new all-inorganic CsPbBr 3 perovskite used in LCD backlight display.
  • a novel all-inorganic CsPbBr 3 perovskite LCD backlight display device includes a blue light source, a green light source and a red light source, wherein the green light source is the above-mentioned novel all-inorganic CsPbBr 3 perovskite film.
  • cesium carbonate is dissolved in an organic solvent containing oleic acid and octadecene to prepare cesium oleate solution
  • lead bromide is dissolved in an organic solvent containing oleylamine, oleic acid and octadecene to prepare bromine lead solution.
  • the temperature for preparing cesium oleate solution is 70-90°C, preferably 80°C
  • the temperature for preparing lead bromide solution is 130-150°C, preferably 140°C.
  • the cesium oleate solution is mixed with the lead bromide solution for less than 2 seconds, and the reaction time is 6 to 8 seconds, such as 7 seconds; preferably, after the reaction is completed, the reaction system is cooled to room temperature using an ice-water bath, and then centrifuged washing to obtain all-inorganic Cs 4 PbBr 6 perovskite nanocrystals, and then dispersed in cyclohexane to obtain all-inorganic Cs 4 PbBr 6 perovskite nanocrystals solution.
  • the hydrophilic substance and polyethylene glycol are reacted in an alcohol solvent to obtain organic hydrophilic molecules, and then dispersed in water to obtain an organic hydrophilic molecule solution; preferably, the reaction temperature is 170-180°C , the reaction time is 3-8 hours. After the reaction, the reaction mixture is cooled to room temperature, and the reactants are centrifuged, washed and dried to obtain organic hydrophilic molecules.
  • the hydrophilic substance can be any one of organic molecules with hydrophilic groups such as hydroxyl, carboxyl, ketone and amides, preferably rhodamine b.
  • the mixing time of the organic hydrophilic molecule solution and the all-inorganic Cs 4 PbBr 6 perovskite nanocrystal solution is less than 5 seconds; the stirring time is 1 to 3 minutes, and the standing time is 10 to 15 hours; preferably At room temperature, after stirring for 2 minutes, let it stand for 12 hours, then centrifuge, and take the supernatant as a new all-inorganic CsPbBr 3 perovskite dispersion for LCD backlight display.
  • the novel all-inorganic CsPbBr 3 perovskite layer is set between the two barrier films by mixing the new all-inorganic CsPbBr 3 perovskite with glue, coating it in the middle of the two barrier films, and then curing; the glue is present
  • glue is present
  • products which can be UV-curable glue
  • barrier films are also existing products.
  • the blue light source and the red light source are existing products, for example, a blue LED light bar is used as a blue light source, and a CdSe/ZnS polymer film is used as a red light source.
  • a blue LED light bar is used as a blue light source
  • a CdSe/ZnS polymer film is used as a red light source.
  • the structure and specific preparation methods of LCD backlight display devices such as recombination and packaging are prior art.
  • the inventiveness of the present invention lies in providing a new all-inorganic CsPbBr 3 perovskite as a green light source.
  • the cesium oleate solution and the lead bromide solution are mixed and then reacted at 140-150°C.
  • novel all-inorganic CsPbBr 3 perovskite and its preparation method for LCD backlight display provided by the present invention have the following beneficial effects.
  • this highly stable organic hydrophilic molecule-coated perovskite nanocrystal is embedded in polymethyl methacrylate, and then encapsulated in a barrier film. Under the aging test (85°C temperature, 85% humidity, 45000 nits of blue light radiation and 60°C temperature, 90% humidity), after 300h and 96 days, this organic hydrophilic molecule-coated all-inorganic CsPbBr 3 Perovskite nanocrystals also maintain ultra-high stability.
  • the new all-inorganic CsPbBr3 perovskite film synthesized by the present invention can be directly applied to commercial displays as a green light source, and can directly display images after adding a blue light source and a red CdSe/ZnS film.
  • the display has a wide color gamut. Compared with commercial displays, the colors are vivid. Its value can cover 125.13% of the standard, and it can also cover 93.42% of Rec.2020.
  • the display maintains long-term stability after 24 hours of runtime.
  • the perovskite prepared by this method can show great application potential in fields such as optoelectronic devices.
  • the novel all-inorganic CsPbBr3 perovskite nanocube prepared by the method of the present invention has a luminous range of 516 nm to 520 nm, a half-peak width of 16 to 20 nanometers, and a PLQY tester whose luminous efficiency exceeds 80%.
  • the solution color is green, and this kind of material has a good application prospect in the preparation of green light devices.
  • Fig. 1 is a flow chart of the preparation method of the novel all-inorganic CsPbBr 3 perovskite nanocrystals applied to LCD backlight display in Examples 1 to 3 of the present invention.
  • Example 2 is a transmission electron microscope image, a size distribution histogram and an ultraviolet absorption spectrum image of Cs 4 PbBr 6 perovskite nanocrystals prepared in Example 1 of the present invention.
  • Fig. 5 is a transmission electron micrograph, a size distribution histogram, a fluorescence emission spectrum and an ultraviolet absorption spectrum of CsPbBr 3 perovskite nanocrystals produced by converting Cs 4 PbBr 6 perovskite nanocrystals into CsPbBr 3 perovskite nanocrystals in Comparative Example 1 of the present invention.
  • Fig. 6 is a transmission electron microscope image, a size distribution histogram, a fluorescence spectral emission graph and an ultraviolet absorption spectrum graph of CsPbBr3 perovskite nanocrystals prepared by direct one-step method of thermal injection of cesium oleate in the comparative example 1 of the present invention.
  • Fig. 7 is an X-ray diffraction pattern of organic hydrophilic molecules and CsPbBr 3 perovskite coated with organic hydrophilic molecules in Examples 1 to 3 of the present invention.
  • Figure 8 is the Fourier transform infrared absorption of organic hydrophilic molecules, organic hydrophilic molecules coated CsPbBr 3 perovskite, and water-converted CsPbBr 3 perovskite in Examples 2 to 3 of the present invention and Comparative Example 1 spectrum.
  • Fig. 9 shows the CsPbBr 3 perovskite nanocrystals converted by water in Example 3 of the present invention and Comparative Examples 1 and 2, the CsPbBr 3 nanocrystals prepared by thermal injection method and the CsPbBr 3 perovskite coated with organic hydrophilic molecules.
  • Figure 10 is a schematic diagram of the CsPbBr 3 perovskite coated with organic hydrophilic molecules prepared in Example 4 of the present invention mixed with glue and packaged with a barrier film
  • Figure 10b is a photo and fluorescence spectrum emission of the film under a UV lamp picture.
  • Fig. 12 is a structure diagram of CsPbBr 3 perovskite coated with organic hydrophilic molecules as a green light source placed in an LCD display device in the fifth implementation of the present invention and a diagram showing the result of the color gamut.
  • the preparation method of the novel all-inorganic CsPbBr3 perovskite applied to LCD backlight display disclosed by the present invention is as follows: S1, the precursor cesium carbonate is dissolved in an organic solvent containing oleic acid and octadecene, and it is mixed uniformly , use a vacuum device to remove water vapor and oxygen in the mixed solution, and then heat and stir under the protection of an inert gas to prepare a mixed solution of cesium oleate; S2, dissolve lead bromide in a solution containing oleylamine, oleic acid and octadecene In an organic solvent, a mixed solution is prepared, and the water vapor and oxygen in the mixed solution are also removed by a vacuum device, and then heated and stirred to the corresponding reaction temperature under the protection of an inert gas; S3.
  • the cesium oleate solution S1 was quickly injected into the reactor described in S2, and immediately cooled with an ice-water bath after 7 seconds of reaction; S4, after the reaction mixture was lowered to room temperature, the reaction was centrifuged and washed to prepare an all-inorganic Cs 4 PbBr 6 Perovskite nanocrystals, and finally disperse them in cyclohexane to prepare an all-inorganic Cs 4 PbBr 6 perovskite nanocrystal solution; S5, dissolve hydrophilic substances and polyethylene glycol 400 in ethanol solution, mix Uniformly; S6, transfer the mixed solution to the stainless steel autoclave lining prepared by polytetrafluoroethylene, fill the kettle, transfer to the reaction oven, and be raised to the corresponding reaction temperature; S7, the mixed solution to be reacted is cooled to room temperature, The reactant is centrifuged, washed, dried, and finally dispersed into an a
  • the main component is polymethyl methacrylate
  • the main component is polymethyl methacrylate
  • a vacuum stirring device to fully Mix evenly
  • S12 transfer the mixed solution to the middle of the two-layer barrier film, and evenly coat it with a coating machine
  • S13 prepare for packaging, and place the new all-inorganic CsPbBr 3 perovskite barrier film after the scrape coating on the ultraviolet Curing by curing machine
  • S14 prepare for packaging, and place the new all-inorganic CsPbBr 3 perovskite barrier film after the scrape coating on the ultraviolet Curing by curing machine
  • the heating temperature in the step S1 is 80°C; the corresponding reaction temperature in the step S2 is 140°C.
  • the inert gas in the steps S1-S4 is nitrogen or argon, and nitrogen is selected in the examples and comparative examples.
  • the temperature of the cesium oleate solution when added to the step S2 in the step S3 is 150°C; the temperature dropped to room temperature in the step S4 is below 30°C.
  • cyclohexane is used for washing, and after washing twice, it is dispersed in cyclohexane.
  • the mixed solution in the steps S1-S2 is prepared in a glove box.
  • the hydrophilic substance in the step S5 can arbitrarily have any one of hydrophilic group organic molecules such as hydroxyl, carboxyl, ketone and amides, preferably rhodamine b; in the step S6, the oven is set
  • the predetermined reaction temperature is 180°C, and the reaction time is 3 to 8 hours.
  • the centrifugal speed is 8000-11000 rpm
  • the number of washings is 2 times
  • dispersed in 10 ml of aqueous solution put into a vacuum drying oven for drying, and the drying temperature is 60-80°C .
  • the concentration of the organic hydrophilic molecule solution is 0.1-2.5 mg/mL; the mass ratio of the organic hydrophilic molecule to the all-inorganic Cs 4 PbBr 6 perovskite is 0.005-0.01 : 1.
  • the rotational speed of the centrifugation is 9500-11000 rpm, and the centrifugation time is 5-10 min.
  • the glue can be any UV-cured glue, such as any one of silicone rubber, AB glue, epoxy glue or shadowless glue.
  • the mass ratio of the novel all-inorganic CsPbBr 3 perovskite nanocrystals to the glue is (0.05-0.1):6.
  • the selected barrier film can use any one of IC, PE and letterpress film etc.; in the step S13, the UV curing time of the novel all-inorganic CsPbBr3 perovskite film is 20-60s; the liquid crystal display in the step S14 can be any kind of liquid crystal display on the market.
  • the luminescent raw material is mainly a new type of all-inorganic CsPbBr 3 perovskite, and the luminescent raw material CsPbBr 3 perovskite is encapsulated in a quantum dot film and displayed as green light on an LCD.
  • the emission wavelength of the novel all-inorganic CsPbBr 3 perovskite is 516-520 nanometers, and the half-peak width is 16-20 nanometers.
  • Embodiment one as shown in Figure 1, a kind of novel all-inorganic CsPbBr that is applied to LCD
  • the preparation method of 3 perovskites is the following steps: S1, take by weighing 0.16 g cesium carbonate solid powder in glove box and put in 1 mL of oleic acid and 16 mL of octadecene in a three-necked flask to prepare a mixed solution, and connect the reactor containing the mixed solution to a vacuum device, and vacuumize at 80°C for 30 min to remove the organic solvent Water, oxygen and low-boiling substances are stirred and heated to 150°C under an inert gas atmosphere to obtain a cesium oleate solution for use; in the above system, octadecene (C 18 H 36 ) acts as a solvent Effect, use high temperature to make oleic acid and cesium carbonate fully act to prepare cesium oleate solution.
  • solvents there are many kinds of solvents to choose from. According to the difference of carbon chain length and hydroxyl content, substances containing less than 18 carbons can be selected as solvents. Since the chemical properties of octadecene are excellent in terms of solvents and surfactants, the embodiment of the present invention only provides one of the technical solutions, that is, octadecene is selected as the solvent used in the reaction process.
  • the molar ratio of cesium oleate and lead bromide is 1.35:1, forming Cs 4 PbBr 6 nanocrystals; S4, after the reaction mixture drops to room temperature, directly put the reaction crude solution into a centrifuge tube, and centrifuge at 7000 rpm for 5 Remove the supernatant for 1 min, disperse the precipitate into cyclohexane, centrifuge at 3000 rpm for 5 min to take the supernatant, and then prepare high-quality all-inorganic Cs 4 PbBr 6 perovskite nanocrystals, which are stored in the form of a dispersion. Used in Example 3 and Comparative Example 1.
  • Figure 2a it is a transmission electron microscope photograph of the Cs 4 PbBr 6 nanocrystals obtained above. It can be seen from the figure that the size distribution of the synthesized nanocrystals is uniform, and its size is about 14.44 nm. Its absorption wavelength is about 315 nm by ultraviolet absorption spectrum test.
  • Example 2 S5, dissolve 30 mg of rhodamine b and 1 mL of polyethylene glycol 400 in 15 mL of ethanol solution, and mix them uniformly; S6, transfer the mixed solution to a polytetrafluoroethylene-prepared Put it in a stainless steel high-pressure reaction kettle lining, transfer it to a reaction oven, set the reaction temperature to 180°C, and the reaction time to 8h; S7. Cool the reaction mixture to room temperature, take out the above reaction solution in a centrifuge tube, and use 11000 rpm Centrifuge for 5 minutes to remove the substrate precipitate, retain the supernatant, and centrifuge twice at the same speed and time, then put the reactants into a vacuum drying oven and dry at 50°C for 24 hours. Finally, it was dispersed into 10 mL of aqueous solution to prepare an organic hydrophilic molecule solution.
  • Figure 3a it is a picture of the organic hydrophilic molecule solution obtained above being dispersed in a cuvette, wherein the organic hydrophilic molecule is dispersed in an aqueous solution and presents an orange-red solution. nm) showed bright orange light.
  • Figure 3b shows that its emission peak wavelength is about 589 nm, the absorption peak wavelength is about 553 nm.
  • Example three S8, take out the organic hydrophilic molecule solution prepared in Example two, and dilute it with water to a concentration of 2.3 mg/mL; S9, prepare the prepared all-inorganic Cs 4 PbBr 6 perovskite solution (dispersed in cyclohexane , the concentration is 11.5 mg/mL) into the reactor, and 0.2 mL of the aqueous solution of organic hydrophilic molecules is quickly (1 second) injected into the reaction vessel containing the Cs 4 PbBr 6 perovskite solution, and the vessel is stirred in a vortex Stir well on the mixer for 2 minutes (2800 rpm), then stand at room temperature for 12 hours; S10, after the reaction is completed, centrifuge the reactant at 11000 rpm for 5 minutes, retain the supernatant, remove the substrate, and then place it on In a glass bottle, CsPbBr 3 perovskite nanocrystals coated with organic hydrophilic molecules were prepared in the form of a dispersion
  • FIG. 4a it is the transmission electron microscope photo of the CsPbBr 3 nanocrystals coated with organic hydrophilic molecules obtained above. It can be seen from the figure that the size distribution of the synthesized nanocrystals is uniform, and its size is about 12.58 nm. Its absorption wavelength is about 508 nm and 553 nm by ultraviolet absorption spectrum test, and its emission wavelength of fluorescence spectrum is 518 nm and 589 nm. The half width of the emission peak wavelength of the first peak is only 16 nm. The PLQY test instrument obtained a luminous efficiency of 82%.
  • CsPbBr 3 perovskite nanocrystals coated with organic hydrophilic molecules is determined to be orthorhombic by X-ray powder diffraction pattern analysis, as shown in Figure 7.
  • the diffraction pattern of this material corresponds well to the orthorhombic phase CsPbBr 3 Standard XRD card of perovskite (PCPDF card No. 07-7630).
  • Cs 4 PbBr 6 perovskite nanocrystals were first prepared by hot injection method, and then the aqueous solution of organic hydrophilic molecules was rapidly injected to rapidly prepare CsPbBr 3 nanocrystals coated with hydrophilic molecules.
  • the present invention also directly uses Comparative Example 1 and Comparative Example 2 as control experiments.
  • Comparative Example 1 In Comparative Example 1, Cs 4 PbBr 6 nanocrystals were also prepared first, which was basically the same as the preparation method described in Example 1, and will not be repeated here.
  • CsPbBr 3 nanocrystals prepare 5 mL of all-inorganic Cs 4 PbBr 6 perovskite solution (dispersed in cyclohexane) with a concentration of 11.5 mg/mL, take out 0.2 ml of deionized water and quickly inject it into the Cs 4
  • the container of the PbBr 6 perovskite solution the container was fully stirred on the vortex mixer for 2 min (2800 rpm), and then the reaction liquid was left to stand at room temperature for 12 h, and the aqueous solution of organic hydrophilic molecules in Example 3 was replaced
  • the others are the same, centrifuge at 11,000 rpm for 5 min to save the supernatant for use.
  • Figure 5a it is a transmission electron microscope photo of CsPbBr 3 perovskite nanocrystals obtained by converting water into Cs 4 PbBr 6 nanocrystals in Comparative Example 1. It can be seen from the figure that the size of the nanocrystals is 9.46 nm.
  • Figure 5c Refers to the fluorescence emission spectrum and absorption spectrum, the emission peak wavelength is about 515 nm, the half-maximum width is 18 nm, and the absorption peak wavelength is 509 nm.
  • Comparative example 2 In order to further prove and compare the stability of CsPbBr 3 prepared by different methods, the comparative example 2 of the present invention also used CsPbBr 3 perovskite nanocrystals directly prepared by the most conventional hot injection method (the prior art).
  • the specific implementation is as follows: weigh 0.814g of cesium carbonate in a glove box in a 100 mL three-necked flask, then add 40 mL of octadecene and 2.5 mL of oleic acid in the three-necked flask, and then add 40 mL of octadecene and 2.5 mL of oleic acid in the three-necked flask, and then add the oleic acid at 120 ° C. Vacuum down for 1 hour, then pass through an inert gas, and raise the temperature to 150°C to prepare a cesium oleate solution for use.
  • Purification process put the reactant into a centrifuge tube, then centrifuge at 7000 rpm for 5 min to remove the supernatant, then add 10 mL of cyclohexane solution, and use 3000 Centrifuge at rpm for 5 min to save the supernatant.
  • FIG. 6a it is the transmission electron micrograph of the CsPbBr 3 perovskite nanocrystal prepared by the thermal injection method in Comparative Example 2. It can be seen from the figure that the size of the nanocrystal is 8.02 nm, and Figure 5c refers to the fluorescence Emission spectrum and absorption spectrum, the emission peak wavelength is about 510 nm, the half-maximum width is 20 nm, and the absorption peak wavelength is 508 nm.
  • the present invention directly disperses the perovskite in the cyclohexane solution, then tests its stability under light, and analyzes the change of its fluorescence intensity, As shown in Figure 9a, Figure 9b directly disperses CsPbBr 3 perovskite into ethanol to detect its stability change. It can be seen from the figure that after 24 h, the CsPbBr 3 coated with organic hydrophilic molecules exhibited excellent light stability and ethanol resistance stability.
  • hydrophilic molecules are added to the diperovskite of the comparative example. Due to the nature of the ionic crystal, the perovskite is easily damaged by water, so its stability is poor.
  • Example 3 Replace the organic hydrophilic molecule solution in Example 3 with polyethylene glycol 400 or rhodamine b, and keep the rest unchanged, to obtain polyethylene glycol-modified CsPbBr 3 perovskite nanocrystals or rhodamine b-modified CsPbBr 3
  • the stability is shown in Figure 9c. Only polyethylene glycol or rhodamine b is used as ligand introduction, and the stability is not good.
  • Embodiment 4 In order to further obtain a highly stable CsPbBr 3 perovskite film and apply it to backlight LCD display, the present invention prepares a high-quality CsPbBr 3 perovskite brightness enhancing film.
  • the specific implementation method is as follows: Weigh 6g of glue (commercially available product, the main component is polymethyl methacrylate, Alpha), and then add 0.06g of CsPbBr 3 perovskite nanocrystals coated with organic hydrophilic molecules (Example Third, because the perovskite coated with organic hydrophilic molecules is a cyclohexane solution at this time, its concentration can be directly tested, and then the corresponding volume can be added), mixed and put into a stirring centrifuge device capable of vacuuming, and a total of vacuum centrifugation After stirring for 40 min, an aqueous perovskite colloid solution coated with organic hydrophilic molecules was obtained. The solution was dropped onto the barrier film on the coating machine, as shown in Figure 10a.
  • the barrier film is composed of two layers.
  • the mode of scraping is used to prepare a uniformly dispersed perovskite nanocrystalline film, and then the film is put into a UV curing machine to cure for 30s with a current intensity of 0.1mA.
  • the curing takes the mode of front and back, and the front and back are cured for 15s each.
  • the wavelength of the thin film is about 520 nm, and the half-peak width is about 18 nm.
  • a CsPbBr 3 perovskite nanocrystalline film obtained by thermal injection (comparative example 2) and a CsPbBr 3 film obtained by water conversion (comparative example 1) can be prepared in the same manner.
  • the preparation method of this comparative example is basically the same as that of the embodiment, and will not be repeated here.
  • Figure 11 uses the aging conditions of the existing technology.
  • the change of fluorescence intensity in the figure is an important factor for judging the stability.
  • the better the fluorescence intensity, the better the quality of the film as shown in Figure 11a, the stability of the film was tested at a high temperature of 85 °C and a high humidity of 85%.
  • the fluorescence intensity of the CsPbBr 3 perovskite coated with organic hydrophilic molecules remained at 84%, but the fluorescence of CsPbBr3 prepared by water conversion and thermal injection was completely quenched after 48h.
  • serial numbers 1 and 2 are products of the present invention.
  • the perovskite of the present invention as a green light source, from the test results, three kinds of emission spectrum diagrams can be obtained. Among them, finally under the condition of 200 mA, a display with a wide color gamut and vivid colors is obtained. Compared with commercial liquid crystal displays, it presents bright green and high-definition display images, and its color gamut can cover the standard 125.13%, compared with Rec.2020, it can also cover 93.42%.
  • the preparation method of the novel all-inorganic CsPbBr 3 perovskite applied to LCD backlight display has the following beneficial effects: 1.
  • the method of CsPbBr 3 perovskite is generated by phase inversion of Cs 4 PbBr 6 perovskite in contact with water, Successfully prepared all-inorganic CsPbBr 3 perovskite nanocrystals coated with organic hydrophilic molecules.
  • Inorganic CsPbBr3 perovskite nanocrystal colloidal solutions exhibit excellent light and ethanol stability.
  • this highly stable organic hydrophilic molecule-coated perovskite nanocrystal is embedded in polymethyl methacrylate, and then encapsulated in a barrier film.
  • the all-inorganic CsPbBr 3 perovskite nanocrystals still maintain With super high stability.
  • the new all-inorganic CsPbBr3 perovskite film synthesized by the present invention can be directly applied to commercial displays as a green light source, and can directly display images after adding a blue light source and a red CdSe/ZnS film.
  • the display has a wide color gamut and vivid colors. Its value can cover 125.13% of the standard, and compared with Rec.2020, it can also cover 93.42%. In addition, the display maintains long-term stability after 24 hours of runtime.
  • the perovskite prepared by this method can show great application potential in fields such as optoelectronic devices.
  • the novel all-inorganic CsPbBr3 perovskite nanocube prepared by the inventive method has a luminous range of 516 nm to 520 nm, a half-maximum width of 16 to 20 nanometers, and a luminous efficiency of 82%.
  • the color is green, and this type of material has a good application prospect in the preparation of green light devices.
  • the invention discloses a novel all-inorganic CsPbBr 3 perovskite used in LCD backlight display and a preparation method thereof.
  • the high-stability perovskite is used as a green light source to obtain an LCD backlight display.
  • a preferred example is to first prepare all-inorganic Cs 4 PbBr 6 perovskite nanocrystals, including the following steps: S1, dissolve the precursor cesium carbonate in an organic solvent containing oleic acid and octadecene, mix it uniformly, and vacuum The device removes the water vapor and oxygen in the mixed liquid, and then heats up and stirs under the protection of an inert gas to prepare a mixed solution of cesium oleate; S2, dissolve lead bromide in an organic solvent containing oleylamine, oleic acid and octadecene In the mixed solution, the water vapor and oxygen in the mixed solution are also removed with a vacuum device, and then heated and stirred to the corresponding reaction temperature under the protection of an inert gas; S3.
  • the method of the present invention adopts the method that all-inorganic Cs4PbBr6 perovskite meets water to generate CsPbBr3 perovskite, successfully prepares a kind of nanocrystal of new all-inorganic CsPbBr3 perovskite modified by organic hydrophilic molecules, and Successfully prepared a perovskite carbon quantum dot film. Through commercial aging tests, it was found that this film has ultra-high stability against water, oxygen, and blue light. The new all-inorganic CsPbBr 3 perovskite film with high stability can successfully Used in commercial green LCD backlight displays.
  • the present invention adopts a new technical idea to coat the organic hydrophilic molecules while the all-inorganic Cs 4 PbBr 6 perovskite encounters water to form an all-inorganic CsPbBr 3 perovskite, and successfully prepares an organic hydrophilic Molecularly coated CsPbBr 3 perovskite material, this perovskite material exhibits excellent light resistance and water and oxygen stability. Moreover, after being encapsulated with polymers (such as polymethyl methacrylate), this all-inorganic perovskite material can be successfully applied in LCD backlight displays due to its excellent anti-blue light and humidity and heat stability.
  • polymers such as polymethyl methacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种应用于LCD背光显示的全无机CsPbBr 3钙钛矿及其制备方法,以该高稳定性钙钛矿为绿光源得到LCD背光源显示器。首先制备全无机Cs 4PbBr 6钙钛矿纳米晶;接下来制备有机亲水性分子;再制备有机亲水性分子包覆的全无机CsPbBr 3钙钛矿纳米晶;用胶水混合后转移至两层阻隔膜的中间,用涂布机刮涂均匀、固化,得到全无机CsPbBr 3钙钛矿纳米晶薄膜;相应地,本发明还公开了一种使用全无机CsPbBr 3钙钛矿薄膜作为绿光光源的LCD背光显示器。通过商业的老化测试结果发现,本发明产品有抗水、氧、高温、蓝光稳定性,高稳定性的全无机CsPbBr 3钙钛矿薄膜能应用于商业的绿光LCD背光显示器中。

Description

一种应用于LCD背光显示的新型全无机CsPbBr3钙钛矿及其制备方法 技术领域
本发明涉及纳米光电材料领域,尤其涉及一种应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法。
背景技术
平板显示已经是现代生活中不可分割的一部分,随着显示行业的发展,为了追求更高的显示质量,如图像呈现出的真实感,显示器的低能耗。人们逐渐开始在成本、能效、分辨率、色彩等方面一直在探索和追求更好的显示材料和技术。
在种类繁多的显示材料中,基于全无机CsPbBr 3钙钛矿的发光材料由于有着优异的发光性能,其荧光光谱可调节,发光效率较高,半峰宽较窄受到了人们的极大关注。与传统的商业荧光粉材料相比,全无机CsPbBr 3钙钛矿材料作为绿光光源,具有更高的色域,因此被广泛认为是下一代显示器材料的理想选择。然而,由于全无机CsPbBr 3钙钛矿的离子性质,遇到水、氧会快速分解。除此之外,在长期的光照射下,全无机CsPbBr 3钙钛矿的表面配体(油胺油酸)也会容易被光子吸收而移除,由于强范德华力而容易聚集,导致发光效率急剧下降。因此,人们开始做了大量的工作来提高全无机CsPbBr 3钙钛矿的稳定性,譬如对全无机CsPbBr 3钙钛矿材料的表面配体进行缺陷钝化、无机物材料包覆,将全无机CsPbBr 3钙钛矿材料嵌入在聚合物中,或者封装于多孔材料(例如二氧化碳)中来提高钙钛矿的稳定性。尽管在稳定性方面已经取得了一些研究进展,然而,要真正的实现全无机CsPbBr 3钙钛矿的实际应用,仍然存在着很多问题。
技术问题
为解决上述技术问题,本发明旨在提供一种应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法,将亲水性分子作用于量子点表面,能极大地提高量子点的发光效率和稳定性,得到的产品有着优异的光学稳定性和湿热稳定性。
技术解决方案
本发明采用如下技术方案:一种应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其制备方法包括以下步骤,将油酸铯溶液与溴化铅溶液混合后反应,得到全无机Cs 4PbBr 6钙钛矿纳米晶;然后将有机亲水性分子溶液与全无机Cs 4PbBr 6钙钛矿纳米晶溶液混合,搅拌后静置,得到应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿。
一种新型全无机CsPbBr 3钙钛矿薄膜,其制备方法包括以下步骤,在两层阻隔膜之间设置新型全无机CsPbBr 3钙钛矿层,得到新型全无机CsPbBr 3钙钛矿薄膜;所述新型全无机CsPbBr 3钙钛矿为上述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿。
一种新型全无机CsPbBr 3钙钛矿LCD背光显示器件,包括蓝光光源、绿光光源以及红光光源,其中绿光光源为上述新型全无机CsPbBr 3钙钛矿薄膜。
上述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿或者新型全无机CsPbBr 3钙钛矿薄膜在制备LCD背光显示器件中的应用。
本发明中,将碳酸铯溶于含有油酸和十八烯的有机溶剂中,制备油酸铯溶液;将溴化铅溶于含有油胺、油酸和十八烯的有机溶剂中,制备溴化铅溶液。优选的,制备油酸铯溶液的温度为70~90℃,优选80℃;制备溴化铅溶液的温度为130~150℃,优选140℃。
本发明中,油酸铯溶液与溴化铅溶液混合的时间小于2秒,反应的时间为6~8秒,比如7秒;优选的,反应结束,反应体系采用冰水浴降至室温,然后离心洗涤,得到全无机Cs 4PbBr 6钙钛矿纳米晶,再分散至环己烷中,得到全无机Cs 4PbBr 6钙钛矿纳米晶溶液。
本发明中,将亲水物质和聚乙二醇在醇溶剂中反应,得到有机亲水性分子,再分散至水中,得到有机亲水性分子溶液;优选的,反应的温度为170~180℃,反应时间为3~8h,反应结束后,反应混合液冷却至室温,将反应物离心、洗涤、烘干,得到有机亲水性分子。亲水物质可以任意带有羟基、羧基、酮基以及酰胺类等亲水性基团有机分子的任意一种,优选罗丹明b。
本发明中,有机亲水性分子溶液与全无机Cs 4PbBr 6钙钛矿纳米晶溶液混合的时间小于5秒;搅拌的时间为1~3分钟,静置的时间为10~15小时;优选的,室温下,搅拌2分钟后静置12小时,然后离心处理,取上清为应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿分散液。
本发明中,在两层阻隔膜之间设置新型全无机CsPbBr 3钙钛矿层为将新型全无机CsPbBr 3钙钛矿与胶水混合后涂覆在两层阻隔膜的中间,然后固化;胶水为现有产品,可以为紫外固化胶水;阻隔膜也为现有产品。
本发明中,蓝光光源以及红光光源为现有产品,比如蓝色LED灯条作为蓝光光源,CdSe/ZnS聚合物薄膜作为红光光源。LCD背光显示器件的结构以及具体制备方法比如重组、封装为现有技术,本发明的创造性在于提供新的全无机CsPbBr 3钙钛矿,其作为绿光光源。
本发明中,有机溶剂为含有C=C的C10~C18的直链有机溶剂;醇溶剂为乙醇。
本发明中,140~150℃下,将油酸铯溶液与溴化铅溶液混合后反应。
有益效果
本发明提供的应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿及其制备方法,具有如下有益效果。
1、采用Cs 4PbBr 6钙钛矿遇水转相生成CsPbBr 3钙钛矿的方法,成功地制备出了有机亲水性分子包覆的全无机CsPbBr 3钙钛矿纳米晶,所得到纳米晶在透射电镜的表征下呈现出尺寸大小均匀的纳米立方体,除此之外,这种全无机CsPbBr 3钙钛矿纳米晶胶体溶液表现出了优异的抗光照和乙醇稳定性。
2、采用量子点薄膜封装技术,将这种高稳定性的有机亲水性分子包覆的钙钛矿纳米晶嵌入至聚甲基丙烯酸甲酯中,然后将其封装于阻隔膜中,在商业的老化测试(85℃温度、85%的湿度,45000nits的蓝光辐射和60℃温度、90%的湿度)下,分别在300h和96天之后,这种有机亲水性分子包覆的全无机CsPbBr 3钙钛矿纳米晶还保持着超高的稳定性。
3、本发明合成的新型全无机CsPbBr 3钙钛矿薄膜作为绿光光源可以直接应用到商业显示器中,在加入蓝光光源和红色CdSe/ZnS薄膜之后,可以直接显示出图像。显示色域广,与商业显示器相比,色彩鲜明,其值能覆盖标准的125.13%,与Rec.2020相比,也能覆盖其93.42%。显示器在运行时间24小时后,还保持着长久的稳定性。这种方法制备的钙钛矿可以在光电器件等领域展现出了巨大的应用潜力。
4、本发明方法所制备的新型全无机CsPbBr 3钙钛矿纳米立方体的发光范围属于516 nm~520 nm之间,半峰宽的范围在16~20纳米,PLQY测试仪器得到发光效率超过80%,溶液显色为绿色,该类材料在制备绿光器件方面有着良好的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明实施例一至三中应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿纳米晶的制备方法流程图。
图2是本发明实施例一中制备Cs 4PbBr 6钙钛矿纳米晶的透射电子显微镜图、尺寸分布柱状图及紫外吸收光谱图。
图3是本发明实施例二中有机亲水性荧光分子溶液分散在比色皿中的照片以及在紫外灯(λ=365 nm)下的照片、荧光光谱发射图和紫外吸收光谱图。
图4是本发明实施例三中有机亲水性分子包覆的CsPbBr 3钙钛矿纳米晶的透射电子显微镜图、尺寸分布柱状图、荧光光谱发射图和紫外吸收光谱图以及溶液分散在小瓶子照片和在紫外灯(λ=365 nm)下的照片。
图5是本发明对比例一中用水转化Cs 4PbBr 6钙钛矿纳米晶生成CsPbBr 3钙钛矿纳米晶的透射电子显微镜图、尺寸分布柱状图、荧光光谱发射图和紫外吸收光谱图。
图6是本发明对比例一中热注入油酸铯直接一步法制备CsPbBr 3钙钛矿纳米晶的透射电子显微镜图、尺寸分布柱状图、荧光光谱发射图和紫外吸收光谱图。
图7是本发明实施例一至三中有机亲水性分子和有机亲水性分子包覆的CsPbBr 3钙钛矿X射线衍射图。
图8是本发明实施例二至三和对比例一中有机亲水性分子、有机亲水性分子包覆的CsPbBr 3钙钛矿、水转化的CsPbBr 3钙钛矿的傅里叶变换红外吸收光谱。
图9是本发明实施例三和对比例一、二中水转化的CsPbBr 3钙钛矿纳米晶、热注入法制备的CsPbBr 3纳米晶和有机亲水性分子包覆的CsPbBr 3钙钛矿在紫外光(λ= 365 nm,420 mA)持续照射下(a)和抗乙醇(b)的稳定性的荧光强度变化图,以及c为罗丹明b修饰的CsPbBr 3钙钛矿,罗丹明b分子,聚乙二醇修饰的CsPbBr 3钙钛矿纳米晶在紫外灯(λ= 365 nm,420 mA)条件下的紫外辐射12h之后荧光强度的变化。
图10是本发明中实施例四中制备的有机亲水性分子包覆的CsPbBr 3钙钛矿与胶水混合,并用阻隔膜封装的示意图,图10b是膜在紫外灯下的照片和荧光光谱发射图。
图11是本发明实施例四中和对比例三、四中有机亲水性分子包覆的CsPbBr 3钙钛矿薄膜,水转化的CsPbBr 3钙钛矿薄膜,热注入法制备的CsPbBr 3钙钛矿薄膜商业老化测试稳定性对比图,其中图11a在85℃的温度、85%的湿度下测试300h;图11b指的是在强度为45000 nits的蓝光辐射(λ=447 nm)96天后的荧光强度变化图,图11c指的是在60℃的温度、90%的湿度和强度为3000 nits的蓝光辐射(λ=447 nm)96天后的荧光强度变化图。
图12是本发明实施五中有机亲水性分子包覆的CsPbBr 3钙钛矿作为绿光光源放置在LCD显示器件中的结构图以及显示色域结果图。
本发明的实施方式
本发明公开的应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法如以下步骤:S1、将前驱体碳酸铯溶于含有油酸和十八烯的有机溶剂中,将其混合均匀,用真空装置除去混合液中的水汽和氧,然后在惰性气体的保护下加热搅拌,制备出油酸铯的混合溶液;S2、将溴化铅溶于含有油胺、油酸和十八烯的有机溶剂中,制得混合溶液,同样用真空装置除去该混合液中的水汽和氧,随后在惰性气体的保护下升温搅拌至相应的反应温度;S3、待反应温度稳定后,将混合均匀的油酸铯溶液S1迅速注入至S2所述的反应器中,反应7s后立刻用冰水浴降温;S4、待反应混合液降至室温后,将反应离心洗涤,制备出全无机Cs 4PbBr 6钙钛矿纳米晶,最后将其分散至环己烷中,制备出全无机Cs 4PbBr 6钙钛矿纳米晶溶液;S5、将亲水物质和聚乙二醇400溶于乙醇溶液中,混合均匀;S6、将混合液转移至由聚四氟乙烯制备的不锈钢高压反应釜内衬中,装釜,转移至反应烘箱,升高到相应的反应温度;S7、待反应混合液冷却至室温,将反应物离心、洗涤、烘干,最后分散至水溶液中,制备出有机亲水性分子;S8、取出有机亲水性分子溶液,稀释至所需的浓度;S9、准备全无机Cs 4PbBr 6钙钛矿溶液(分散在环己烷中),将有机亲水性分子水溶液S8迅速注入至装有全无机Cs 4PbBr 6钙钛矿溶液的反应容器中,容器在漩涡搅拌器的上充分搅拌2 min,随后反应液在室温下静置12h;S10、待反应结束,将反应物离心一遍,取上清液,然后放置在玻璃瓶中,制备出有机亲水性分子修饰的新型全无机CsPbBr 3钙钛矿纳米晶;S11、取出现有胶水(比如主要成分为聚甲基丙烯酸甲酯),随后加入一定量的新型全无机CsPbBr 3钙钛矿纳米晶,用除真空搅拌装置将其充分混合均匀;S12、将混合后的溶液转移至两层阻隔膜的中间,用涂布机刮涂均匀;S13、准备封装,将刮涂之后的新型全无机CsPbBr 3钙钛矿阻隔膜放置于紫外固化机固化;S14、用商业蓝光光源(蓝色LED灯条)、新型全无机CsPbBr 3钙钛矿薄膜作为绿光光源,CdSe/ZnS聚合物薄膜作为红光光源对液晶显示器进行重组、封装;以上S11~S14依次进行,得到产品LCD背光显示器件。
进一步地,所述步骤S1中加热的温度为80℃;所述步骤S2中相应的反应温度为140℃。
进一步地,所述步骤S1-S4中惰性气体为氮气或氩气,实施例以及对比例中选择氮气。
进一步地,所述步骤S3中加入至所述步骤S2中时油酸铯溶液的温度为150℃;S4中降至室温的温度为30℃以下。
进一步地,所述步骤S4的离心洗涤过程中,采用环己烷进行洗涤,洗涤两遍后分散于环己烷中。
进一步地,所述步骤S1-S2中混合溶液是在手套箱中制得。
进一步地,所述步骤S5的亲水物质可以任意带有羟基、羧基、酮基以及酰胺类等亲水性基团有机分子的任意一种,优选罗丹明b;所述步骤S6中,烘箱设定的反应温度为180℃,反应时间为3~8h。
进一步地,所述步骤S7中,离心的转速为8000~11000 rpm,洗涤次数为2遍,最后分散于10 ml的水溶液中,放入真空干燥箱进行烘干,烘干温度为60~80℃。
进一步地,在所述步骤S8-S9中,有机亲水性分子溶液的浓度为0.1~2.5mg/mL;有机亲水性分子与全无机Cs 4PbBr 6钙钛矿的质量比为0.005~0.01∶1。
进一步地,在所述步骤S10中,离心的转速为9500~11000 rpm,离心时间为5~10 min。
进一步地,在所述步骤S11中,所述的胶水可以为任意紫外固化的胶水,如硅橡胶、AB胶、环氧胶或无影胶的任意一种。新型全无机CsPbBr 3钙钛矿纳米晶与胶水的质量比为(0.05~0.1)∶6。
进一步地,所述步骤S12中,所选用的阻隔膜,可以使用如IC、PE以及凸版膜等的任何一种;所述步骤S13中,新型全无机CsPbBr 3钙钛矿薄膜的紫外固化时间为20~60s;所述步骤S14中的液晶显示器可为市面上液晶显示器的任意一种。
相应地,所述发光原材料主要是新型全无机CsPbBr 3钙钛矿,所述发光原材料 CsPbBr 3钙钛矿通过量子点膜封装的方式在LCD上作为绿光发光显示。
进一步地,所述新型全无机CsPbBr 3钙钛矿的发射波长为516~520纳米,半峰宽为16~20纳米。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。LCD样机的组装时,仅仅绿光光源采用本发明的新型全无机CsPbBr 3钙钛矿(亲水分子包覆),其余都与现有显示器一样,组装过程也为现有技术;本发明具体制备操作以及测试方法都为现有方法。
实施例一:如图1所示,一种应用于LCD的新型全无机CsPbBr 3钙钛矿的制备方法,为以下步骤:S1、在手套箱中称取0.16 g碳酸铯固体粉末于装有1 mL油酸、16 mL十八烯的三颈烧瓶中,制成混合溶液,并将盛有该混合溶液的反应器连至真空装置,在80℃的条件下抽真空30 min,以除去有机溶剂中水、氧以及低沸点的物质,在惰性气体的氛围下搅拌升温至150℃,得到油酸铯溶液,以备使用;在上述体系中,十八烯(C 18H 36)起到溶剂的作用,利用高温使得油酸和碳酸铯充分作用,以制得油酸铯溶液。溶剂可以选择多种,依据碳链长度以及羟基含量的不同,可选择含有18个碳以下的物质作为溶剂。由于十八烯的化学性质在溶剂、表面活性剂方面的化学性质较为优异,本发明实施例仅提供其中一种技术方案,即选择十八烯作为反应过程中所使用的溶剂。
S2、在手套箱中称取0.0734 g溴化铅溶于含有1mL油胺(9-十八烯胺,分子式为CH 3(CH 2) 7CH=CH(CH 2) 7CH 2NH 2)、1mL油酸和10 m L十八烯的三颈烧瓶中,制得混合溶液,同样将盛有该混合溶液的反应器连至真空装置,在120℃的条件下抽真空30 min,随后在惰性气体的保护下升温搅拌至140℃;S3、将S1混合均匀的油酸铯溶液(4.4 mL)迅速(1秒)注入至S2所述的反应器中,反应7s后立刻用冰水浴降温。油酸铯和溴化铅的摩尔比为1.35∶1,形成Cs 4PbBr 6纳米晶;S4、待反应混合液降至室温后,将反应粗液直接装入离心管中,以7000 rpm离心5 min去除上清,将沉淀分散至环己烷中,以3000 rpm离心5 min取上清液,即可制备出高质量的全无机Cs 4PbBr 6钙钛矿纳米晶,以分散液形式保存,用于实施例三、对比例一。
如图2a所示,为上述得到的Cs 4PbBr 6纳米晶的透射电镜照片,从图中可以看出合成纳米晶的尺寸大小分布均匀,其尺寸约为14.44 nm。用紫外吸收光谱测试其吸收波长约为315 nm。
实施例二:S5、将30 mg的罗丹明b和1 mL的聚乙二醇400溶于15 mL的乙醇溶液中,使其混合均匀;S6、将混合液转移至由聚四氟乙烯制备的不锈钢高压反应釜内衬中,装釜,转移至反应烘箱,设置反应温度为180℃,反应时间为8h;S7、待反应混合液冷却至室温,取出上述反应液于离心管中,用11000 rpm离心5min,去除底物沉淀,保留上清液,用同样的转速和时间离心两遍之后,然后将反应物放入至真空干燥箱中,50℃烘干24h。最后分散至10 mL的水溶液中,制备出有机亲水性分子溶液。
如图3a所示,为上述得到的有机亲水性分子溶液分散在比色皿中的图,其中有机亲水性分子分散在水溶液中呈现橙红色溶液,在紫外灯(λ=365 nm)的照射下呈现出明亮的橙色光。图3b可以得知,其发射峰波长约为589 nm,吸收峰波长约为553 nm。
实施例三:S8、取出实施例二制备的有机亲水性分子溶液,用水稀释至浓度为2.3 mg/mL;S9、准备制备的全无机Cs 4PbBr 6钙钛矿溶液(分散在环己烷中,浓度为11.5 mg /mL)5 mL加入反应器,将有机亲水性分子水溶液0.2 mL迅速(1秒)注入至装有Cs 4PbBr 6钙钛矿溶液的反应容器中,容器在漩涡搅拌器的上充分搅拌2 min(2800 rpm),随后在室温下静置12h;S10、待反应结束,将反应物以11000 rpm离心5 min,保留上清液,去除底物,然后将其放置在玻璃瓶中,制备出有机亲水性分子包覆的CsPbBr 3钙钛矿纳米晶,以分散液形式存在。
如图4a所示,为上述得到的有机亲水性分子包覆的CsPbBr 3纳米晶的透射电镜照片,从图中可以看出合成纳米晶的尺寸大小分布均匀,其尺寸约为12.58 nm。用紫外吸收光谱测试其吸收波长约为508 nm,553 nm,其荧光光谱的发射波长为518 nm、589 nm。其中第一个峰的发射峰波长的半峰宽仅为16 nm。PLQY测试仪器得到发光效率达到82%。
通过X射线粉末衍射图谱分析确定有机亲水性分子包覆的CsPbBr 3钙钛矿纳米晶体结构为正交晶系,如图7所示,该材料的衍射图谱很好的对应了正交相CsPbBr 3钙钛矿的标准XRD卡片(PCPDF card No. 07-7630)。
上述实施例一至三采用的是先用热注入法制备Cs 4PbBr 6钙钛矿纳米晶,然后迅速注入有机亲水性分子水溶液快速制备出亲水性分子包覆的CsPbBr 3纳米晶。为了进一步说明制备出高稳定性的CsPbBr 3钙钛矿纳米晶,本发明也直接用对比例一和对比例二作为对照实验。
对比例一:对比例一也是先制备Cs 4PbBr 6纳米晶,其与实施例一所述的制备方法基本相同,在此不再赘述。在制备CsPbBr 3纳米晶时,准备浓度为11.5 mg /mL的全无机Cs 4PbBr 6钙钛矿溶液(分散在环己烷中)5 mL,取出0.2ml的去离子水迅速注入至装有Cs 4PbBr 6钙钛矿溶液的反应容器中,容器在漩涡搅拌器的上充分搅拌2 min(2800 rpm),随后反应液在室温下静置12h,即将实施例三的有机亲水性分子水溶液替换为水,其余一样,用11000 rpm离心5 min保留上清液,以备使用。
如图5a所示,为对比例一中水转化Cs 4PbBr 6纳米晶得到的CsPbBr 3钙钛矿纳米晶的透射电镜照片,从图中可以看出纳米晶的尺寸大小为9.46 nm,图5c指的是荧光发射光谱和吸收光谱,其发射峰波长约为515 nm,半峰宽为18 nm,吸收峰的波长为509 nm。
通过傅立叶变换红外吸收光谱测试了有机亲水性分子、水转化得到的CsPbBr 3钙钛矿纳米晶和有机亲水性分子包覆的CsPbBr 3钙钛矿纳米晶体分子的官能团,如图8所示,可以得到在2927cm -1为明显的钙钛矿分子上C-H的特别吸收峰,有机亲水性分子和有机亲水性分子包覆的CsPbBr 3钙钛矿在1091cm -1都有着明显的C-O-C吸收峰,则说明钙钛矿分子上有亲水性分子产生。在图8b,在1641cm -1的有机亲水性分子包覆的CsPbBr 3钙钛矿上出现了C=O官能团,而在水转化CsPbBr 3钙钛矿上没有,则说明有机亲水性分子包覆的CsPbBr 3钙钛矿出现了很明显的亲水性基团。
对比例二:为了进一步证明比较不同方法制备的CsPbBr 3稳定性大小,本发明的对比例二还运用了最常规的热注入法直接制备的CsPbBr 3钙钛矿纳米晶(现有技术)。具体实施方案如下:在手套箱中称取0.814g的碳酸铯于100 mL的三颈烧瓶中,然后在三颈烧瓶中加入40 mL的十八烯、2.5 mL的油酸,在120℃的条件下抽真空1h,然后通入惰性气体,将温度升至150℃制备成油酸铯溶液,以备使用。
在手套箱中称取0.069g的溴化铅,5 mL的十八烯、油酸0.5 mL的油酸和0.5 mL于25 mL的三颈烧瓶中,然后将其通入真空装置,在120℃的条件下抽真空1h,然后再通入惰性气体,待溴化铅完全溶解后,将温度升至为160℃,以备使用。取出前驱物油酸铯0.4 mL快速(1秒)注入至上述反应物的反应器中,反应5s后立刻用冰水浴降温。这个方法是现有文献的方法,是公认的常规制备这种钙钛矿纳米晶的方法,本发明与此对比。
纯化过程:将反应物装入离心管中,然后用7000 rpm离心5 min去除上清液,然后加入10 mL的环己烷溶液,用3000 rpm离心5 min保留上清液。
如图6a所示,为对比例二中热注入法制备的CsPbBr 3钙钛矿纳米晶得到的透射电镜照片,从图中可以看出纳米晶的尺寸大小为8.02 nm,图5c指的是荧光发射光谱和吸收光谱,其发射峰波长约为510 nm,半峰宽为20 nm,吸收峰的波长为508 nm。
为了对比上述不同方法制备的CsPbBr 3钙钛矿纳米晶的稳定性大小,本发明直接将钙钛矿分散于环己烷溶液中,然后在光照下测试其稳定性,分析其荧光强度的变化,如图9a所示,图9b是直接将 CsPbBr 3钙钛矿直接分散至乙醇中检测其稳定性变化。从图中可知,在24h后,有机亲水性分子包覆的CsPbBr 3都表现出了优异的光照稳定性和抗乙醇稳定性。
进一步的,亲水性分子加入到对比例二钙钛矿中,钙钛矿由于是离子晶体的本质,容易被水导致结构破坏,因此稳定性很差。
将实施例三中的有机亲水性分子溶液更换为聚乙二醇400或者罗丹明b,其余不变,得到聚乙二醇修饰的CsPbBr 3钙钛矿纳米晶或者罗丹明b修饰的CsPbBr 3钙钛矿纳米晶,稳定性见图9c,只用聚乙二醇或者罗丹明b做配体引入,稳定性不好。
实施例四:为了进一步得到高稳定性的CsPbBr 3钙钛矿薄膜,将其应用于背光LCD显示,本发明制备了高质量的CsPbBr 3钙钛矿增亮膜。具体实施方式如下:称取6g胶水(市售产品,主要成分为聚甲基丙烯酸甲酯,阿尔法),然后加入0.06g的有机亲水性分子包覆的CsPbBr 3钙钛矿纳米晶(实施例三,因为此时有机亲水性分子包覆的钙钛矿为环己烷溶液,可以直接测试其浓度,然后加入对应体积),混合后放入能抽真空的搅拌离心装置,总共抽真空离心搅拌40 min,便得到有机亲水性分子包覆的钙钛矿胶水溶液,将该溶液滴入放在涂布机上的阻隔膜上,如图10a所示,阻隔膜是由两层组成,采取刮涂的模式,制备成均匀分散的钙钛矿纳米晶膜,然后把膜放入紫外固化机中固化30s,电流强度0.1mA,固化采取正反面的模式,正反各固化15s。固化之后,便制备出有机亲水性分子包覆的钙钛矿薄膜,如图10b所示,将薄膜放入LCD样机中,在蓝光背光源(λ=452 nm)的激发下,能得到明亮的绿光。其中薄膜的波长约为520 nm,半峰宽约为18 nm。
用同样的方式可以制备热注入法得到的CsPbBr 3钙钛矿纳米晶薄膜(对比例二)和水转化得到的CsPbBr 3薄膜(对比例一)。此对比例与实施例的制备方式基本相同,在此不再赘述。
为了对比不同的CsPbBr 3薄膜的稳定性大小,图11运用现有技术的老化条件,图中的荧光强度变化是判断稳定性大小的一个重要因素,荧光强度越好,其薄膜的质量也越好,如图11a所示,在高温85℃和高湿85%的湿度环境下,测试了薄膜的稳定性,300h的老化之后,有机亲水性分子包覆的CsPbBr 3钙钛矿的荧光强度保持在84%,但是水转化和热注入制备的CsPbBr 3的荧光在48h之后就完全猝灭。另外,在45000 nits的蓝光辐射下(波长λ=447 nm),96天之后,有机亲水性分子包覆的CsPbBr 3钙钛矿的荧光强度还能保持到原来的90%以上,而水转化和热注入制备的CsPbBr 3的荧光强度则出现明显的下降,图c指的是在60℃、90%的湿度和3000 nits的蓝光辐射下(λ=447 nm),96天之后,有机亲水性分子包覆的CsPbBr 3钙钛矿的还能保持着原来的100%以上,水转化和热注入制备的CsPbBr 3的则出现了明显的降低。从以上结果可以看出,用此种方法制备的有机亲水性分子包覆的CsPbBr 3钙钛矿薄膜表现出了非常优异的稳定性。能直接运用到商业的LCD背光显示中。
本发明产品与现有产品(也是无机材料CsPbBr 3钙钛矿改性)相比,稳定性得到极大的提高,参考下表。
Figure 649376dest_path_image001
其中,序号1以及2为本发明产品。
实施例五:主要是LCD样机的组装,为常规方法,具体实施方案如下:用商业蓝光光源(蓝色LED灯条,λ=452 nm)、有机分子包覆的CsPbBr 3钙钛矿薄膜(实施例四)作为绿光光源,CdSe/ZnS聚合物薄膜作为红光光源对液晶显示器进行重组、封装,如图12所示,图a指的大规模制备有机亲水性分子包覆的CsPbBr 3钙钛矿薄膜图,图b是样机,图c是显示器件结构图,图d、图e分别指的是用有机亲水性分子包覆的CsPbBr 3钙钛矿薄膜图作为绿光光源的显示图像和市售液晶的显示图,图f是它们的白光显示发射图,图d是色域计算结果图。用本发明钙钛矿作为绿光光源,从测试结果来看,能得到三种发射光谱的图。其中,最终在200 mA的条件下,得到色域广、色彩鲜明的显示器,与商业化的液晶显示相比,呈现出了明亮的绿色和高清晰的显示图像,其色域值能覆盖标准的125.13%,与Rec.2020相比,也能覆盖其93.42%。
本发明提供的应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法,具有如下有益效果:1、采用Cs 4PbBr 6钙钛矿遇水转相生成CsPbBr 3钙钛矿的方法,成功地制备出了有机亲水性分子包覆的全无机CsPbBr 3钙钛矿纳米晶,所得到纳米晶在透射电镜的表征下呈现出尺寸大小均匀的纳米立方体,除此之外,这种全无机CsPbBr 3钙钛矿纳米晶胶体溶液表现出了优异的抗光照和乙醇稳定性。
2、采用量子点薄膜封装技术,将这种高稳定性的有机亲水性分子包覆的钙钛矿纳米晶嵌入至聚甲基丙烯酸甲酯中,然后将其封装于阻隔膜中,在商业的老化测试(高温85℃,高湿85%,45000nits的蓝光辐射和60℃温度、90%的湿度)条件下,分别老化300h和96天后,这种全无机CsPbBr 3钙钛矿纳米晶还保持着超高的稳定性。
3、本发明合成的新型全无机CsPbBr 3钙钛矿薄膜作为绿光光源可以直接应用到商业显示器中,在加入蓝光光源和红色CdSe/ZnS薄膜之后,可以直接显示出图像。显示色域广,色彩鲜明,其值能覆盖标准的125.13%,与Rec.2020相比,也能覆盖其93.42%。另外,显示器在运行时间24小时后,还保持着长久的稳定性。这种方法制备的钙钛矿可以在光电器件等领域展现出了巨大的应用潜力。
4、本发明方法所制备的新型全无机CsPbBr 3钙钛矿纳米立方体的发光范围属于516 nm~520 nm之间,半峰宽的范围在16~20纳米,发光效率能达到82%,溶液显色为绿色,该类材料在制备绿光器件方面有着良好的应用前景。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进  和润饰也视为本发明的保护范围。
由于钙钛矿表面的配体为油胺油酸,为亲油性配体,因此要对钙钛矿表面进行亲水性分子的包覆,是一个很大的挑战。本发明公开了一种应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿及其制备方法,该高稳定性钙钛矿为绿光源得到LCD背光源显示器。优选示例为,首先制备全无机Cs 4PbBr 6钙钛矿纳米晶,包括以下步骤:S1、将前驱体碳酸铯溶于含有油酸和十八烯的有机溶剂中,将其混合均匀,用真空装置除去混合液中的水汽和氧,然后在惰性气体的保护下升温搅拌,制备出油酸铯的混合溶液;S2、将溴化铅溶于含有油胺、油酸和十八烯的有机溶剂中,制得混合溶液,同样用真空装置除去该混合液中的水汽和氧,随后在惰性气体的保护下升温搅拌至相应的反应温度;S3、待反应温度稳定后,将混合均匀的油酸铯溶液S1迅速注入至S2所述的反应器中,反应7s后立刻用冰水浴降温;S4、待反应混合液降至室温后,将反应离心洗涤,最后将其分散至环己烷中,制备出全无机钙钛矿Cs 4PbBr 6纳米晶;接下来制备有机亲水性分子,包括以下步骤:S5、将罗丹明b和聚乙二醇400溶于乙醇溶液中,混合均匀;S6、将混合液转移至由聚四氟乙烯制备的不锈钢高压反应釜内衬中,装釜,转移至反应烘箱,升高到相应的反应温度;S7、待反应混合液冷却至室温,将反应物离心、洗涤、烘干,最后分散至水溶液中,制备出有机亲水性分子;接下来制备有机亲水性分子包覆的新型全无机CsPbBr 3钙钛矿纳米晶;S8、取出一定量的有机亲水性分子溶液,稀释至所需的浓度;S9、准备一定浓度的全无机Cs 4PbBr 6钙钛矿溶液(分散在环己烷中),将有机亲水性分子水溶液S8迅速注入至装有全无机钙钛矿溶液的反应容器中,容器在漩涡搅拌器的上充分搅拌2 min,随后反应液在室温下静置12h;S10、待反应结束,将反应物离心一遍,取上清液,然后放置在玻璃瓶中,制备出有机亲水性分子包覆的新型全无机CsPbBr 3钙钛矿纳米晶;接下来是新型全无机CsPbBr 3钙钛矿的薄膜制备;S11、取出一定量的胶水,随后加入新型全无机CsPbBr 3钙钛矿纳米晶,用除真空搅拌装置将其充分混合均匀;S12、将混合后的胶水溶液转移至两层阻隔膜的中间,用涂布机刮涂均匀;S13、准备封装,将刮涂之后的新型全无机钙钛矿阻隔膜放置于紫外固化机中固化;相应地,本发明还公开了一种使用新型全无机CsPbBr 3钙钛矿薄膜作为绿光光源的LCD背光显示器。显示器样机制备;S14、用商业蓝光光源(蓝色LED灯条)、新型全无机CsPbBr 3钙钛矿薄膜作为绿光光源,CdSe/ZnS聚合物薄膜作为红光光源对液晶显示器进行重组、封装。本发明方法采用全无机Cs 4PbBr 6钙钛矿遇水生成CsPbBr 3钙钛矿的方法,成功地制备出一种有机亲水性分子修饰的新型全无机CsPbBr 3钙钛矿的纳米晶,并成功制备出钙钛矿碳量子点薄膜,通过商业的老化测试结果发现,这种薄膜有着超高的抗水、氧、蓝光稳定性,高稳定性的新型全无机CsPbBr 3钙钛矿薄膜能成功应用于商业的绿光LCD背光显示器中。
现有技术很难实现有机亲水分子到全无机钙钛矿表面,因为水油相的转变很难实现,并且将水相的分子加入至钙钛矿中,会导致钙钛矿被破坏。本发明采用新的技术思路,在全无机Cs 4PbBr 6钙钛矿遇水转相生成全无机CsPbBr 3钙钛矿的同时包覆有机亲水性分子,成功地制备了一种有机亲水性分子包覆的CsPbBr 3钙钛矿材料,这种钙钛矿材料表现出了优异的抗光照和水、氧稳定性。并且,在用聚合物(比如聚甲基丙烯酸甲酯)封装之后,由于有着出色抗蓝光、湿热稳定性,这种全无机钙钛矿材料可以成功地应用于LCD背光显示器中。

Claims (10)

  1. 一种应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其特征在于,所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法包括以下步骤,将油酸铯溶液与溴化铅溶液混合后反应,得到全无机Cs 4PbBr 6钙钛矿纳米晶;然后将有机亲水性分子溶液与全无机Cs 4PbBr 6钙钛矿纳米晶溶液混合,搅拌后静置,得到应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿。
  2. 根据权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其特征在于,将碳酸铯溶于含有油酸和十八烯的有机溶剂中,制备油酸铯溶液;将溴化铅溶于含有油胺、油酸和十八烯的有机溶剂中,制备溴化铅溶液;制备油酸铯溶液的温度为70~90℃;制备溴化铅溶液的温度为130~150℃;140~150℃下,将油酸铯溶液与溴化铅溶液混合后反应。
  3. 根据权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其特征在于,油酸铯溶液与溴化铅溶液混合的时间小于2秒,反应的时间为6~8秒;反应结束,反应体系采用冰水浴降至室温,然后离心洗涤,得到全无机Cs 4PbBr 6钙钛矿纳米晶。
  4. 根据权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其特征在于,将亲水物质和聚乙二醇在醇溶剂中反应,得到有机亲水性分子,再分散至水中,得到有机亲水性分子溶液;反应的温度为170~180℃,反应时间为3~8h,反应结束后,反应混合液冷却至室温,将反应物离心、洗涤、烘干,得到有机亲水性分子;亲水物质为带有羟基、羧基、酮基或者酰胺基亲水性基团的有机分子。
  5. 根据权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿,其特征在于,有机亲水性分子溶液与全无机Cs 4PbBr 6钙钛矿纳米晶溶液混合的时间小于5秒;搅拌的时间为1~3分钟,静置的时间为10~15小时。
  6. 一种新型全无机CsPbBr 3钙钛矿薄膜,其特征在于,所述新型全无机CsPbBr 3钙钛矿薄膜的制备方法包括以下步骤,在两层阻隔膜之间设置新型全无机CsPbBr 3钙钛矿层,得到新型全无机CsPbBr 3钙钛矿薄膜;所述新型全无机CsPbBr 3钙钛矿为权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿。
  7. 一种新型全无机CsPbBr 3钙钛矿LCD背光显示器件,包括蓝光光源、绿光光源以及红光光源,其特征在于,所述绿光光源为权利要求6所述新型全无机CsPbBr 3钙钛矿薄膜。
  8. 权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿在制备LCD背光显示器件中的应用。
  9. 权利要求6所述新型全无机CsPbBr 3钙钛矿薄膜在制备LCD背光显示器件中的应用。
  10. 权利要求1所述应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿的制备方法,其特征在于,包括以下步骤,将油酸铯溶液与溴化铅溶液混合后反应,得到全无机Cs 4PbBr 6钙钛矿纳米晶;然后将有机亲水性分子溶液与全无机Cs 4PbBr 6钙钛矿纳米晶溶液混合,搅拌后静置,得到应用于LCD背光显示的新型全无机CsPbBr 3钙钛矿。
PCT/CN2021/133743 2021-11-26 2021-11-26 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法 WO2023092515A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133743 WO2023092515A1 (zh) 2021-11-26 2021-11-26 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133743 WO2023092515A1 (zh) 2021-11-26 2021-11-26 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法

Publications (1)

Publication Number Publication Date
WO2023092515A1 true WO2023092515A1 (zh) 2023-06-01

Family

ID=86538689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133743 WO2023092515A1 (zh) 2021-11-26 2021-11-26 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法

Country Status (1)

Country Link
WO (1) WO2023092515A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046314A (zh) * 2017-11-14 2018-05-18 苏州大学 一种全无机钙钛矿纳米棒的制备方法及其应用
CN109264771A (zh) * 2017-07-18 2019-01-25 苏州大学 一种全无机卤素钙钛矿纳米晶体及其制备方法
CN111233031A (zh) * 2020-01-19 2020-06-05 国家纳米科学中心 一种钙钛矿量子点及其制备方法
CN112500857A (zh) * 2020-12-16 2021-03-16 合肥工业大学 一种低温水解制备阳离子掺杂钙钛矿纳米晶的方法
CN113173596A (zh) * 2021-04-26 2021-07-27 齐鲁工业大学 一种基于三维钙钛矿纳米晶的高稳定性随机激光散射材料、激光器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264771A (zh) * 2017-07-18 2019-01-25 苏州大学 一种全无机卤素钙钛矿纳米晶体及其制备方法
CN108046314A (zh) * 2017-11-14 2018-05-18 苏州大学 一种全无机钙钛矿纳米棒的制备方法及其应用
CN111233031A (zh) * 2020-01-19 2020-06-05 国家纳米科学中心 一种钙钛矿量子点及其制备方法
CN112500857A (zh) * 2020-12-16 2021-03-16 合肥工业大学 一种低温水解制备阳离子掺杂钙钛矿纳米晶的方法
CN113173596A (zh) * 2021-04-26 2021-07-27 齐鲁工业大学 一种基于三维钙钛矿纳米晶的高稳定性随机激光散射材料、激光器件及其制备方法

Similar Documents

Publication Publication Date Title
Otto et al. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity
Han et al. High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs
Cai et al. A facile synthesis of water‐resistant CsPbBr3 perovskite quantum dots loaded poly (methyl methacrylate) composite microspheres based on in situ polymerization
Jin et al. Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes
CN114162852B (zh) 一种应用于LCD背光显示的全无机CsPbBr3钙钛矿及其制备方法
WO2007034877A1 (ja) 半導体ナノ粒子分散ガラス微粒子及びその作製方法
CN107032392A (zh) 一种全无机钙钛矿纳米片及其制备方法和应用
CN110551304A (zh) 一种铯铅卤无机钙钛矿量子点/透明高分子复合薄膜
Kong et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting
Wang et al. Perovskite nanocrystals-polymer composites with a micro/nano structured superhydrophobic surface for stable and efficient white light-emitting diodes
Wei et al. Luminescent perovskite nanocrystal-epoxy resin composite with high stability against water and air
CN108822841A (zh) 高荧光量子效率全无机钙钛矿纳米晶制备方法及钙钛矿发光器件
CN111592035B (zh) 一种尺寸可调的CsPbBr3纺锤型钙钛矿微米颗粒的制备方法
Zhu et al. Independent dispersed and highly water-oxygen environment stable FAPbBr3 QDs-polymer composite for down-conversion display films
Wei et al. One-pot synthesis of concentration and excitation dual-dependency truly full-color photoluminescence carbon dots
CN113025316A (zh) 一种高量子产率铜纳米团簇荧光纳米花及其制备方法与在led中的应用
Um et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles
Kim et al. Synthesis and optical properties of CaMoO4: Eu3+, Na+ nanophosphors and a transparent CaMoO4: Eu3+, Na+ suspension
Yu et al. Multi-color carbon dots from cis-butenedioic acid and urea and highly luminescent carbon dots@ Ca (OH) 2 hybrid phosphors with excellent thermal stability for white light-emitting diodes
Wang et al. Surface ligand engineering renders tube-like perovskite nanocrystal composites with outstanding polar organic solvent-tolerance and strong emission
CN113861972A (zh) 一种高显色性碳基白光量子点的制备方法
WO2023092515A1 (zh) 一种应用于 LCD 背光显示的新型全无机 CsPbBr3 钙钛矿及其制备方法
TWI440695B (zh) Preparation of Manganese Activated Zinc - Aluminum Spinel Green Fluorescent Nanometer Powder by Sol - Gel Technique and Its
Cao et al. One-pot synthesis of double silane-functionalized carbon dots with tunable emission and excellent coating properties for WLEDs application
Li et al. Green and high yield synthesis of CdTe@ Hydrotalcite nanocrystals with enhanced photoluminescence stability toward white light emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965248

Country of ref document: EP

Kind code of ref document: A1