WO2023092425A1 - 显示基板、制作方法和显示装置 - Google Patents
显示基板、制作方法和显示装置 Download PDFInfo
- Publication number
- WO2023092425A1 WO2023092425A1 PCT/CN2021/133293 CN2021133293W WO2023092425A1 WO 2023092425 A1 WO2023092425 A1 WO 2023092425A1 CN 2021133293 W CN2021133293 W CN 2021133293W WO 2023092425 A1 WO2023092425 A1 WO 2023092425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- base substrate
- voltage
- display
- orthographic projection
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 249
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 230000005855 radiation Effects 0.000 claims abstract description 50
- 238000005538 encapsulation Methods 0.000 claims abstract description 47
- 230000002093 peripheral effect Effects 0.000 claims abstract description 20
- 238000004806 packaging method and process Methods 0.000 claims description 28
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 105
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
- H10K59/1315—Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Definitions
- the present disclosure relates to the field of display technology, and in particular to a display substrate, a manufacturing method and a display device.
- the on-screen antenna solution is mainly to build an antenna on a flexible film, and then attach the flexible film to the display screen. Since the film sticking process cannot achieve precise alignment in the semiconductor process, it is easy to distort each pixel of the display screen. The unit produces obvious occlusion, which is prone to occlusion dark lines and moiré fringes. In addition, since the optical transmittance reduction effect caused by the antenna area should be passivated, it is necessary to build a similar grid pattern structure in the non-antenna functional area, so that the transmittance of the entire display screen will decrease by 5%. to 20%.
- the method of integrating the antenna on the packaging layer is directly used, although the precise alignment in the semiconductor process can be used, since the distance between the packaging layer and the cathode layer is only about 10 microns, according to the microstrip patch radiation theory, about The radiation efficiency is only 2.8%, making it almost impossible to directly use photolithography to construct the antenna.
- an embodiment of the present disclosure provides a display substrate, including a base substrate, a voltage trace disposed on the peripheral area of the base substrate, and a wire disposed on the voltage trace away from the base substrate.
- the display substrate further includes an antenna disposed on a side of the encapsulation layer away from the base substrate, and the antenna is a mesh antenna;
- a hollow part is arranged on the voltage trace
- the orthographic projection of at least part of the ends of the antenna on the base substrate is set in the orthographic projection of the hollow part on the base substrate.
- the voltage wiring includes a first voltage wiring part, a second voltage wiring part, a third voltage wiring part and a fourth voltage wiring part; the first voltage wiring part is arranged on the The first side of the display area, the second voltage wiring part is arranged on the second side of the display area, the third voltage wiring part is arranged on the third side of the display area, and the fourth voltage wiring part set on the fourth side of the display area;
- the first side and the second side are opposite sides, the third side and the fourth side are opposite sides, the first side and the third side are adjacent sides, and the second side The side is adjacent to the third side; a driver integrated circuit is arranged on the fourth side of the display area;
- the hollow part is disposed on at least one of the first voltage wiring part, the second voltage wiring part and the third voltage wiring part.
- the peripheral area includes a voltage routing area and a packaging area; the voltage routing area is set on a side of the packaging area close to the display area; the voltage routing area is set on the voltage routing area area;
- the voltage wiring is a cathode voltage wiring;
- the display substrate includes a first driving circuit area disposed on the first side of the display area, and a second driving circuit area disposed on the second side of the display area;
- the cathode voltage wiring includes a first cathode voltage wiring part, a second cathode voltage wiring part and a third cathode voltage wiring part arranged on the third side of the display area;
- the first cathode voltage routing part is arranged between the packaging area and the first driving circuit area, and the second cathode voltage routing part is arranged between the packaging area and the second driving circuit area between;
- the hollow part is disposed on at least one of the first cathode voltage wiring part, the second cathode voltage wiring part, and the third cathode voltage wiring part.
- the hollow part is a rectangular hollow part, and the first long side of the hollow part and the second long side of the hollow part extend along the extending direction of the voltage trace.
- the shortest distance between the orthographic projection of at least part of the end of the antenna on the substrate and the first long side of the hollow part is the same as that of at least part of the end of the antenna on the substrate.
- the absolute value of the difference between the orthographic projection on the base substrate and the shortest distance between the second long side of the hollow part is less than or equal to the distance difference threshold;
- the distance difference threshold is greater than or equal to 0 and less than or equal to 3um.
- the antenna has a plurality of ends, and the orthographic projections of the plurality of ends on the base substrate are within the orthographic projection of one hollow part on the base substrate, and the hollow part
- the length of the long side of is greater than or equal to ⁇ /2n, where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the antenna has N ends, and N hollow parts are arranged on the voltage trace; N is an integer greater than 1, and n is a positive integer less than or equal to N; among the N ends The orthographic projection of the n-th end portion on the base substrate is within the orthographic projection of the n-th hollow part provided on the voltage trace on the base substrate;
- the length of the long side of the hollow part is greater than or equal to ⁇ /2n; where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the antenna has a plurality of ends, and an orthographic projection of one of the plurality of ends on the base substrate is within an orthographic projection of the hollow part on the base substrate , the length of the long side of the hollow part is greater than or equal to ⁇ /2n, where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the line width of the voltage wiring part provided with the hollow part is equal everywhere.
- the hollow portion extends along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage trace part has a first protrusion protruding toward the second direction, so that the line width of the voltage trace in the hollow part is equal everywhere.
- the hollow portion extends along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage trace part has a second protrusion protruding toward the third direction, so that the line width of the voltage trace in the hollow part is equal everywhere.
- the hollow portion extends along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage trace part has a first protruding part protruding toward the second direction and a second protruding part protruding toward the third direction, so that the line widths of the voltage traces of the hollow part are equal everywhere.
- the line width of the voltage wiring part provided with the hollow part is A, and the length of the short side of the hollow part is less than or equal to A/4.
- the plurality of pixel units included in the display substrate are arranged in an array, and the display substrate further includes a plurality of rows of gate lines and a plurality of columns of data lines arranged in the display area of the base substrate; the gate lines are arranged along the extending in the first direction, the data lines extending in the second direction;
- the two closest pixel units in two adjacent rows of pixel units are arranged along the second direction, and the antenna is a U-shaped antenna or an E-shaped antenna; or,
- the two closest pixel units in two adjacent rows of pixel units are arranged along a third direction, the third direction is different from the second direction, the third direction is different from the first direction, and the antenna It is a cut corner rhombic antenna.
- the antenna is an L-shaped antenna
- the antenna includes a first end portion and a second end portion; a first hollow portion and a second hollow portion are arranged on the voltage trace;
- the orthographic projection of the first end portion on the base substrate is in the orthographic projection of the first hollow portion on the base substrate, and the orthographic projection of the second end portion on the base substrate is In the orthographic projection of the second hollow part on the base substrate;
- the first hollow portion and the second hollow portion are respectively disposed on adjacent sides of the voltage trace.
- the antenna is a rectangular antenna or a T-shaped antenna; a first hollow part is provided on the voltage trace;
- the orthographic projection of the one end of the antenna on the base substrate is in the orthographic projection of the first hollow part on the base substrate.
- the display substrate according to at least one embodiment of the present disclosure further includes a touch layer disposed on a side of the encapsulation layer away from the base substrate;
- the antenna is disposed on a side of the touch layer away from the encapsulation layer, and the display substrate further includes an insulating layer disposed between the touch layer and the antenna, and the insulating layer is placed on the substrate
- the orthographic projection on the base substrate overlays the orthographic projection of the antenna on the base substrate.
- the touch layer includes multiple rows and columns of touch units; multiple touch signal lines are arranged in the touch units;
- the line width of the touch signal lines in the touch units overlapping with the antenna among the multi-row multi-column touch units is larger than that of the multi-row multi-column touch units not overlapped with the antenna. the line width of the touch signal line in the touch unit;
- the number of breakpoints in the touch signal lines of the touch units overlapping with the antenna in the multi-row multi-column touch units is smaller than that of the multi-row multi-column touch units not intersecting with the antenna
- the number of breakpoints in touch signal lines in overlapping touch units is smaller than that of the multi-row multi-column touch units not intersecting with the antenna.
- an embodiment of the present disclosure provides a method for manufacturing a display substrate, which is used for manufacturing the above-mentioned display substrate, and the method for manufacturing the display substrate includes:
- a grid-shaped antenna is directly fabricated, and the orthographic projection of at least part of the ends of the grid-shaped antenna on the base substrate is arranged on the hollow part where the In the orthographic projection of the substrate substrate described above.
- an embodiment of the present disclosure further provides a display device, including the above-mentioned display substrate.
- FIG. 1 is a cross-sectional view of a part of a display substrate according to at least one embodiment of the present disclosure
- FIG. 2 is a schematic diagram of an antenna disposed on a voltage trace in at least one embodiment of the present disclosure
- FIG. 3 is a schematic diagram of area division of a display substrate according to at least one embodiment of the present disclosure
- Fig. 4 is a schematic structural diagram of a first cathode voltage wiring part and a first antenna in a display substrate according to at least one embodiment of the present disclosure
- FIG. 5 is a schematic structural diagram of a first cathode voltage wiring part and a first antenna in a display substrate according to at least one embodiment of the present disclosure
- Fig. 9 is a schematic diagram of a denser grid arrangement of a mesh antenna
- Fig. 10 is a schematic diagram of the sparse grid arrangement of the grid antenna
- Fig. 11 is the frequency-efficiency curve diagram of each antenna
- Fig. 12A is a structural diagram of a rhombic cut-angle antenna included in a display substrate according to at least one embodiment of the present disclosure
- Figure 12B is a schematic diagram of marking L1, L2, L3 and L4 on the basis of Figure 12A;
- Fig. 13A is a structural diagram of an L-shaped mesh antenna included in a display substrate according to at least one embodiment of the present disclosure
- Figure 13B is a schematic diagram labeled L5 and L6 on the basis of Figure 13A;
- Fig. 14 is a structural diagram of a rectangular mesh antenna included in a display substrate according to at least one embodiment of the present disclosure
- Fig. 15A is a structural diagram of a T-shaped grid antenna included in a display substrate according to at least one embodiment of the present disclosure
- Figure 15B is a schematic diagram labeled L7 and L8 on the basis of Figure 15A;
- FIG. 16 is a schematic diagram of the positional relationship between the touch layer and the antenna in the display substrate according to at least one embodiment of the present disclosure.
- the display substrate described in the embodiment of the present disclosure includes a base substrate, a voltage trace disposed on the peripheral area of the base substrate, an encapsulation layer disposed on a side of the voltage trace away from the base substrate, and , a plurality of pixel units disposed on the display area of the base substrate; the encapsulation layer disposed on the peripheral area of the base substrate and the display area of the base substrate;
- the display substrate further includes an antenna disposed on a side of the encapsulation layer away from the base substrate, and the antenna is a mesh antenna;
- a hollow part is arranged on the voltage trace
- the orthographic projection of at least part of the ends of the antenna on the base substrate is set in the orthographic projection of the hollow part on the base substrate.
- the display substrate described in the embodiment of the present disclosure includes an antenna, and the antenna is arranged on the side of the encapsulation layer away from the base substrate. Light transmittance.
- a hollow part is provided on the voltage trace, no conductive material is provided in the hollow part, and the orthographic projection of at least part of the end of the antenna on the base substrate is provided on the base substrate.
- the hollow part is in the orthographic projection of the base substrate; the voltage wiring is arranged in the peripheral area of the base substrate, and there is a clear area above and below the voltage wiring that is not blocked by the metal layer, so it is convenient to A hollow part is provided on the voltage trace to increase radiation efficiency.
- the antenna is built on the display area.
- a metal grid is also constructed in the non-antenna area, resulting in a decrease in the light transmittance of the entire display screen.
- the antenna in the display substrate according to at least one embodiment of the present disclosure does not need to make any metal grid in the non-antenna area to passivate the visual effect of inconsistent transparency.
- the embodiments of the present disclosure can improve the optical transmittance, so that the optical transmittance is greater than 95%, basically without any shielding of the light of the pixel unit.
- the pixel unit may be an OLED (Organic Light Emitting Diode) pixel unit, but not limited thereto.
- OLED Organic Light Emitting Diode
- the metal wires in the metal grid need to be processed to below 2.5 microns.
- the manufacturing is very difficult and requires more process steps , Increased manufacturing costs also reduced product yield.
- the antenna can be made of high-conductivity metal materials such as copper, aluminum, silver, etc., and the line width of the antenna can be greater than 5um. Compared with the line width of the antenna in the related art, which needs to be less than or equal to 2.0um, At least one embodiment of the present disclosure greatly reduces manufacturing difficulty.
- the orthographic projection of the antenna on the base substrate includes a first part located in the display area, and the first part is arranged on adjacent pixel units on the base substrate. During the orthographic projection, the transmittance is improved by not blocking the pixel unit.
- the voltage wiring may be a cathode voltage wiring, but not limited thereto.
- the cathode voltage wiring may be a wiring electrically connected to a cathode of an organic light emitting diode in a pixel unit.
- the antenna layer 10 is arranged on the side of the packaging layer 11 away from the voltage wiring E1, and the voltage wiring E1 overlaps with the cathode layer 12 to provide a voltage signal for the cathode layer 12 (in FIG.
- the voltage wiring may be a cathode voltage wiring
- the DC voltage signal may be a low-level signal
- the antenna layer 10 extends to the display area, and is set in the display area
- pixel units in Fig. 1, the one labeled 121 is a red pixel unit, the one labeled 122 is a green pixel unit, and the one labeled 123 is a blue pixel unit;
- the antenna layer 10 includes an antenna.
- the encapsulation layer may include two inorganic encapsulation layers, and an organic encapsulation layer disposed between the two inorganic encapsulation layers.
- each pixel unit may include a light emitting layer, an anode, and a TFT (Thin Film Transistor) array layer sequentially disposed on the side of the cathode layer 11 away from the encapsulation layer 11 .
- TFT Thin Film Transistor
- Fig. 1 is a cross-sectional view of a part of the display substrate according to at least one embodiment of the present disclosure, and in Fig. 1, only schematically shows the positional relationship among the antenna, the encapsulation layer, the cathode layer and three pixel units .
- a drive circuit may also be provided between the voltage wiring E1 and the pixel unit located in the display area, and a substrate substrate may be provided on the side of the pixel unit far away from the encapsulation layer, but This is not the limit.
- the voltage wiring includes a first voltage wiring part, a second voltage wiring part, a third voltage wiring part and a fourth voltage wiring part; the first voltage wiring part is arranged on the first side of the display area, the second voltage wiring part is arranged on the second side of the display area, the third voltage wiring part is arranged on the third side of the display area, and the first voltage wiring part is arranged on the third side of the display area.
- the four-voltage wiring part is arranged on the fourth side of the display area;
- the first side and the second side are opposite sides, the third side and the fourth side are opposite sides, the first side and the third side are adjacent sides, and the second side The side is adjacent to the third side; a driver integrated circuit is arranged on the fourth side of the display area;
- the hollow part is disposed on at least one of the first voltage wiring part, the second voltage wiring part and the third voltage wiring part.
- a driving integrated circuit and a signal line providing data voltages for the pixel units in the display area are provided on the fourth side of the display area, and the orthographic projection of the signal line on the base substrate is related to the fourth voltage
- the orthographic projections of the traces on the base substrate are at least partially overlapped, so if a hollow portion is provided on the fourth voltage trace and an antenna is correspondingly provided, the radiation of the antenna will be affected by the signal line, Therefore, at least one embodiment of the present disclosure does not provide a hollow part on the fourth voltage wiring part, and does not provide a corresponding antenna. At least one embodiment of the present disclosure arranges the hollow part on the first voltage wiring part, On at least one of the second voltage wiring part and the third voltage wiring part.
- the one labeled E1 is the voltage trace, and the one labeled A0 is the display area;
- the voltage wiring E1 includes a first voltage wiring part E11, a second voltage wiring part E12, a third voltage wiring part E13 and a fourth voltage wiring part E14;
- the first voltage wiring part E11 is arranged on the left side of the display area A0
- the second voltage wiring part E12 is arranged on the right side of the display area A0
- the third voltage wiring part E13 is arranged on the left side of the display area A0.
- the upper side of the display area A0, the fourth voltage wiring part E14 is arranged on the lower side of the display area A0;
- a first hollow part 21, a second hollow part 22 and a third hollow part 23 are provided on the first voltage wiring part E11; No conductive material is provided, no conductive material is provided in the second hollow part 22, and no conductive material is provided in the third hollow part 23;
- the display substrate described in at least one embodiment of the present disclosure includes a first antenna 31 , a second antenna 32 and a third antenna 33 ;
- the first antenna 31, the second antenna 32 and the third antenna 33 are mesh antennas
- the orthographic projection of the end of the first antenna 31 on the substrate is in the orthographic projection of the first hollow part 21 on the substrate;
- the orthographic projection of the end of the second antenna 32 on the substrate is in the orthographic projection of the second hollow part 22 on the substrate;
- the orthographic projection of the end of the third antenna 33 on the substrate is in the orthographic projection of the third hollow part 23 on the substrate.
- the one labeled P0 is a flexible circuit board.
- the hollow part may also be disposed on the second voltage wiring part E12 and/or the third voltage wiring part E13.
- the peripheral area may include a voltage routing area and a packaging area
- the voltage wiring area is set on a side of the packaging area close to the display area;
- the voltage wiring is arranged in the voltage wiring area.
- the voltage routing area may be disposed between the display area and the packaging area.
- the voltage wiring is a cathode voltage wiring
- the display substrate includes a first drive circuit area disposed on the first side of the display area, and a second drive circuit area disposed on the second side of the display area. drive circuit area;
- the cathode voltage wiring includes a first cathode voltage wiring part, a second cathode voltage wiring part and a third cathode voltage wiring part arranged on the third side of the display area;
- the first cathode voltage routing part is arranged between the packaging area and the first driving circuit area, and the second cathode voltage routing part is arranged between the packaging area and the second driving circuit area between;
- the hollow part is disposed on at least one of the first cathode voltage wiring part, the second cathode voltage wiring part, and the third cathode voltage wiring part.
- the area labeled A0 is the display area
- the area labeled A11 is the first driving circuit area
- the area labeled A12 is the second driving circuit area
- the area labeled F11 is the first packaging area
- the area labeled F12 is It is the second packaging area
- the one labeled S1 is the cathode voltage wiring
- the one labeled S2 is the peripheral cathode voltage wiring
- the one labeled S21 is the first high voltage line
- the one labeled S22 is the second high voltage line
- the first drive circuit area A11 is set on the left side of the display area A0, and the second drive circuit area A12 is set on the right side of the display area A0;
- the first driving circuit area A11 is arranged between the cathode voltage wiring S1 and the display area A0, and the second driving circuit area A12 is arranged between the cathode voltage wiring S1 and the display area A0;
- the first packaging area F11 is disposed between the peripheral cathode voltage wiring S2 and the cathode voltage wiring S1 .
- the one marked D1 is the first electrostatic protection area
- the one marked D2 is the second electrostatic protection area
- the one marked D3 is the third electrostatic protection area
- the one marked D4 is the fourth electrostatic protection area
- the one marked D5 is the second electrostatic protection area.
- Five electrostatic protection areas, the one marked D6 is the sixth electrostatic protection area, and the one marked D7 is the seventh electrostatic protection area;
- the area marked F0 is the data fan-out area
- the area marked D21 is the first clock static protection area
- the area marked D22 is the second clock static protection area
- the area marked D31 is the first initial static protection area
- the area marked D32 It is the second initial electrostatic protection area
- the area labeled L0 is the signal line area, and in the signal line area L0, there are signal lines that provide data voltages for the pixel units in the display area;
- the one labeled I1 is the first initial voltage line, and the one labeled I2 is the second initial voltage line;
- the one labeled I0 is the drive integrated circuit, and the one labeled P0 is the flexible circuit board;
- Both the cathode voltage wiring S1 and the peripheral cathode voltage wiring S2 are electrically connected to the flexible circuit board P0, and the flexible circuit board P0 is the cathode voltage wiring S1 and the peripheral cathode voltage wiring S2 Provides a corresponding low-level signal.
- a gate drive circuit and a light emission control signal generation circuit may be provided in the first drive circuit area A11 and the second drive circuit area A12, and the light emission control signal generation circuit may be provided in the gate Between the electrode drive circuit and the display area A0.
- the total width from the GOA area to the packaging area is generally 1 mm to 2 mm, and the width of the cathode voltage trace S1 is generally only 0.2 mm to 0.3 mm.
- OLED mobile phone screens generally adopt top emission and ultra-narrow bezel design; in OLED mobile phone screens, most of them are display areas, and there are driving circuit areas, cathode voltage wiring and packaging areas around the display area. .
- the anode layer can include two ITO (indium tin oxide) layers and an Ag (silver) layer arranged between the two ITO layers, if the thickness of the Ag layer included in the anode layer is appropriately thickened, the The anode layer and the source-drain metal layer connected to it are regarded as a thicker metal layer (compared to the millimeter wave). If the antenna is simply built on the display area, since the distance between the antenna and the entire thicker metal layer is only on the order of 10 microns, the electromagnetic energy will be strongly localized between the antenna and the metal layer. time, and seriously reduce the radiation efficiency.
- At least one embodiment of the present disclosure adopts the method of setting a hollow part on the voltage wiring, and there is a clear area not covered by the metal layer above and below the voltage wiring, so it is convenient to set the hollow part on the voltage wiring. Hollowed out part to increase radiation efficiency.
- the hollow part may be a rectangular hollow part, and a first long side of the hollow part and a second long side of the hollow part extend along the extending direction of the voltage trace.
- the hollow part when the hollow part is arranged on the first voltage wiring part included in the voltage wiring, the first long side of the hollow part and the second long side of the hollow part
- the extension direction of a voltage wiring part extends; when the hollow part is arranged on the second voltage wiring part included in the voltage wiring, the first long side of the hollow part and the second long side of the hollow part
- the long side extends along the extending direction of the second voltage wiring part; when the hollow part is arranged on the third voltage wiring part included in the voltage wiring, the first long side of the hollow part and the The second long side of the hollow portion extends along the extending direction of the third voltage wiring portion.
- the shortest distance between the orthographic projection of at least part of the end of the antenna on the base substrate and the first long side of the hollow part is the same as at least part of the antenna.
- the absolute value of the difference between the orthographic projection of the end portion on the base substrate and the shortest distance between the second long side of the hollow portion is less than or equal to the distance difference threshold, so that at least Orthographic projections of some end portions on the base substrate are approximately disposed in the middle of the corresponding hollowed out portions.
- the distance difference threshold is greater than or equal to 0 and less than or equal to 3um, but not limited thereto.
- the length of the hollow part needs to be greater than or equal to the effective half wavelength to ensure that the energy can pass through
- the hollow part leaks out without being cut off, which can be understood as the cutoff wavelength limit of the waveguide.
- the value range of the width of the hollow part can be very large, from 10 micrometers to hundreds of micrometers, and in at least one embodiment of the present disclosure, because the width of the first cathode voltage wiring part included in the cathode voltage wiring.
- the width of the second cathode voltage wiring part included in the cathode voltage wiring and the width of the third cathode voltage wiring part included in the cathode voltage wiring are about 200 microns, so the width of the hollow part is set to 40 microns to It is about 50 microns, so as not to greatly affect the conductivity of the cathode voltage wiring, and it is relatively easy to realize the process.
- the antenna has a plurality of end portions, and the orthographic projection of the plurality of end portions on the base substrate is equal to the orthographic projection of one hollow portion on the base substrate Inside, the length of the long side of the hollow part is greater than or equal to ⁇ /2n to ensure radiation efficiency; where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the orthographic projections of the plurality of ends included in the antenna on the base substrate may all be set In the orthographic projection of a hollow part on the base substrate.
- the antenna has N ends, and N hollow parts are arranged on the voltage trace; N is an integer greater than 1, and n is a positive integer less than or equal to N; the The orthographic projection of the nth end of the N ends on the base substrate is within the orthographic projection of the nth hollow part provided on the voltage trace on the base substrate;
- the length of the long side of the hollow part is greater than or equal to ⁇ /2n; where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the orthographic projections of the ends of the antenna on the base substrate can be respectively located in the corresponding hollows.
- the part is within the orthographic projection on the base substrate, but the length of the long side of each hollow part needs to be greater than or equal to ⁇ /2n.
- the orthographic projection of the end of the antenna on the base substrate can be arranged in the middle of the long side of the corresponding hollow part, so as to improve the radiation efficiency.
- the antenna may have a plurality of ends, and the orthographic projection of one end of the plurality of ends on the substrate is one of the hollow parts on the substrate.
- the length of the long side of the hollow part is greater than or equal to ⁇ /2n, where ⁇ is the wavelength corresponding to the radiation frequency of the antenna, and n is the refractive index of the encapsulation layer.
- the orthographic projection of one of the ends of the antenna on the base substrate can be arranged in a hollow part on the base substrate within the orthographic projection on , the length of the long side of the hollow part needs to be greater than or equal to ⁇ /2n.
- the line width of the voltage wiring part provided with the hollow part is A, and the length of the short side of the hollow part is less than or equal to A/4, so as to reduce the voltage supply to the voltage wiring. The influence of the transmission of the DC voltage signal.
- the one labeled S11 is the first cathode voltage wiring part included in the cathode voltage wiring S1
- the one labeled 31 is the first antenna
- the one labeled 21 is the first hollow part
- the first cathode voltage wiring The line portion S11 extends along the vertical direction;
- the first cathode voltage wiring part S11 is a U-shaped mesh antenna
- the first cathode voltage wiring part S11 includes a first end and a second end;
- the orthographic projection of the first end portion on the base substrate and the orthographic projection of the second end portion on the base substrate are within the orthographic projection of the first hollow portion 21 on the base substrate;
- the label Ls is the length of the first hollow part 21 along the vertical direction
- the label Ws is the width of the first hollow part 21 along the horizontal direction
- Ls is greater than or equal to ⁇ /2n
- ⁇ is the vacuum wavelength corresponding to the radiation frequency of the antenna
- n is the refractive index of the encapsulation layer (when the display substrate is produced, the encapsulation layer will fall into the hollow part)
- Ws is greater than or equal to 40 microns and less than equal to 50 microns;
- the label Wa is the vertical length of the first antenna 31
- the label La is the horizontal width of the first antenna 31 .
- La and Wa can be simulated and optimized according to actual radiation or receiving bands, and usually the value range of La and the value range of Wa can be flexibly adjusted;
- La may be greater than or equal to 0.5 mm and less than or equal to 2.5 mm, and Wa may be greater than or equal to 1 mm and less than or equal to 3 mm.
- the sum of La and Wa is approximately ⁇ /n eff , where n eff is the ambient refractive index, and the ambient refractive index n eff is the display substrate included in the antenna
- the integrated refractive index of the organic layer and the inorganic layer between the base substrate may include, for example: encapsulation layer, pixel unit Light-emitting medium layer, insulating layer, etc. of the light-emitting element).
- two hollow parts may be provided on the first cathode voltage wiring part S11, and the orthographic projection of the first end part of the first antenna 31 on the base substrate may be In the orthographic projection of one of the hollow parts on the base substrate, the orthographic projection of the second end of the first antenna 31 on the base substrate may be within the orthographic projection of the other hollow part on the base substrate,
- the lengths of the long sides of the two hollow parts need to be greater than or equal to ⁇ /2n to ensure radiation efficiency.
- a fourth hollow part 24 and a fifth hollow part 25 are provided on the first cathode voltage wiring part S11;
- the orthographic projection of the first end of the first antenna 31 on the substrate is within the orthographic projection of the fourth hollow part 24 on the substrate;
- the orthographic projection of the second end of the first antenna 31 on the base substrate is within the orthographic projection of the fifth hollow part 25 on the base substrate;
- the label Ls4 is the length of the fourth hollow part 24 along the vertical direction, and the label Ls5 is the length of the fifth hollow part 25 along the vertical direction;
- Both Ls4 and Ls5 are greater than or equal to ⁇ /2n.
- a hollow part with a width of 40 microns and a few millimeters in length is opened on the cathode voltage trace with a width of 0.2 mm.
- the square resistance of the cathode voltage trace will be increased, the increased square resistance will not Significant interference with low-level signals carried by the cathode voltage trace.
- the line width of the voltage trace part provided with the hollow part is equal everywhere, so as to compensate the width of the voltage trace part, and the width, shape or arrangement of the compensation area can be set according to the results of the electromagnetic simulation, in order to ensure the narrow Under the premise of frame requirements, it is optimized for the purpose of reducing the square resistance change of the voltage trace before and after slotting as much as possible.
- the hollow portion may extend along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage wiring part has a first protrusion protruding toward the second direction, so that the line width of the voltage wiring in the hollow part is equal everywhere, so as to compensate the width of the voltage wiring part.
- the first direction may be the extension direction of the voltage wiring part, for example, the first direction may be a vertical direction, the second direction may be a horizontal direction to the left, and the second direction may be a vertical direction.
- the three directions may be horizontal and rightward, but not limited thereto.
- the hollow portion extends along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage wiring part has a second protrusion protruding toward the third direction, so that the line width of the voltage wiring in the hollow part is equal everywhere, so as to compensate the width of the voltage wiring part.
- the hollow portion extends along a first direction, a second direction and a third direction are respectively perpendicular to the first direction, and the second direction is opposite to the third direction;
- the voltage trace part has a first protruding part protruding toward the second direction and a second protruding part protruding toward the third direction, so that the line width of the voltage trace in the hollow part is equal everywhere, so that The width of the voltage trace part is compensated.
- multiple hollowed-out parts are arranged on the voltage traces, and the thickness of the voltage traces can be greater than the design thickness of the traces without slotting, so as to reduce the increased slotting resistance of the voltage traces compensate.
- the voltage wiring may be a cathode voltage wiring, but not limited thereto.
- the first cathode voltage can be The width of the wiring part S11 is compensated.
- the width, shape or arrangement of the compensation area can be set according to the results of electromagnetic simulation. Under the premise of ensuring the narrow frame requirements, the difference between the cathode voltage wiring before and after slotting should be minimized. Square resistance changes and optimizes for purpose.
- the first direction may be the extension direction of the first cathode voltage wiring part S11, and the first direction may be a vertical direction,
- the second direction may be a horizontal direction to the left, and the third direction may be a horizontal direction to the right, but not limited thereto
- the width of the first cathode voltage wiring part S11 can be compensated on the left side of the first cathode voltage wiring part S11, so that the first cathode voltage wiring part S11
- the line widths are the same everywhere.
- the one marked with t11 is the first first raised portion
- the one marked with t12 is the second first raised portion
- the one marked with t13 is the third first raised portion.
- One first raised portion t11, the second first raised portion t12 and the third first raised portion t13 are raised horizontally and leftward.
- the width of the first cathode voltage wiring part S11 can be compensated on the right side of the first cathode voltage wiring part S11, so that the first cathode voltage wiring part S11
- the line widths are the same everywhere.
- the one marked with t21 is the first second raised portion
- the one marked with t22 is the second second raised portion
- the one marked with t23 is the third second raised portion
- the first One second raised portion t21 , the second second raised portion t22 and the third second raised portion t23 are all raised horizontally and rightward.
- the width of the first cathode voltage wiring part S11 can be adjusted on the left side of the first cathode voltage wiring part S11 and the right side of the first cathode voltage wiring part S11. Compensation, so that the line width of the first cathode voltage wiring portion S11 is equal everywhere.
- Fig. 8 the width of the first cathode voltage wiring part S11 can be adjusted on the left side of the first cathode voltage wiring part S11 and the right side of the first cathode voltage wiring part S11. Compensation, so that the line width of the first cathode voltage wiring portion S11 is equal everywhere.
- the one marked with t11 is the first first raised portion
- the one marked with t12 is the second first raised portion
- the one marked with t13 is the third first raised portion marked with t21
- the one marked as t22 is the second second raised portion
- the one marked t23 is the third second raised portion;
- the first first raised portion t11 , the second first protruding portion t12 and the third first protruding portion t13 protrude towards the horizontal direction to the left;
- Both the second raised portion t22 and the third second raised portion t23 are raised horizontally and rightward.
- the grid antenna in order to ensure the maximum radiation efficiency of the grid antenna in the working frequency band, the grid antenna needs to work in the second-order mode, that is, the quadrupole mode in the working frequency band.
- the resonant electric field distribution between the grid antenna 90 and the metal ground is relatively uniform, and in the frequency band where the radiation efficiency is greatly improved, It can be seen that the resonant electric field in the Z direction between the grid antenna 90 and the ground is distributed in a quadrupole mode. As shown in FIG.
- the number 91 is the hollow part provided on the cathode voltage wiring, and the number 92 is the feeder.
- the sparsest grid arrangement of the grid antenna which needs to be judged according to electromagnetic simulation results, provided that a resonant mode similar to a quadrupole can be ensured.
- the radiation efficiency of the mesh antenna when the cathode voltage wiring with the hollow part is opened can be 15 times higher than the radiation efficiency of the grid antenna when the cathode voltage wiring with the hollow part is not started. above.
- the grid antenna 90 is a U-shaped grid antenna.
- the curve S101 shows the first frequency-efficiency curve
- the one labeled S102 is the second frequency-efficiency curve
- the one labeled S103 is the third frequency-efficiency curve
- the horizontal axis represents the radiation frequency f0 in GHz
- the vertical axis represents the radiation efficiency e0 in %.
- the first frequency-efficiency curve S101 is a schematic diagram of the relationship between the radiation frequency and the radiation efficiency when a 40-micron-wide hollow is provided on the voltage trace and the antenna is a U-shaped grid antenna;
- the second frequency-efficiency curve S102 is a schematic diagram of the relationship between the radiation frequency and the radiation efficiency when a 40-micron-wide hollow is provided on the voltage trace and the antenna is a U-shaped antenna without meshing;
- the third frequency-efficiency curve S103 is a schematic diagram of the relationship between the radiation frequency and the radiation efficiency when no hollow part is provided on the voltage trace and the antenna is a U-shaped antenna;
- a 10-micron-thick encapsulation layer is provided between the antenna and the voltage wiring.
- the radiation efficiency of the antenna when there is a hollow portion on the voltage trace is far greater than that of the antenna when there is no hollow portion on the voltage trace.
- the orthographic projection of the grid antenna on the base substrate cannot block the orthographic projection of the pixel units disposed in the display area on the base substrate, so as not to affect the display.
- the plurality of pixel units included in the display substrate are arranged in an array, and the display substrate further includes a plurality of rows of gate lines and a plurality of columns of data lines arranged in the display area of the base substrate; the gate lines are arranged along the extending in the first direction, the data lines extending in the second direction;
- the two closest pixel units in two adjacent rows of pixel units are arranged along the second direction, and the antenna is a U-shaped antenna or an E-shaped antenna; or,
- the two closest pixel units in two adjacent rows of pixel units are arranged along a third direction, the third direction is different from the second direction, the third direction is different from the first direction, and the antenna It is a cut corner rhombic antenna.
- the orthographic projections of all ends of the E-type antenna on the base substrate may be within the orthographic projection of a hollow part on the base substrate, but this does not constitute a limit.
- the first direction may be the horizontal direction
- the second direction may be the vertical direction.
- the gap between adjacent pixel units included in the display substrate is the largest in the horizontal and vertical directions, that is, when the When the two closest pixel units in two adjacent rows are arranged in the vertical direction, it is suitable to construct a U-shaped antenna with metal mesh lines extending in the horizontal and vertical directions;
- the gap between adjacent pixel units included in the display substrate is the largest in the oblique direction (such as diamond-arranged pixel units), it is believed that the two pixel units closest to each other in the two rows of pixel units are arranged along the third direction. (the third direction is not the horizontal direction and the vertical direction), it is suitable to construct an antenna in the shape of a diamond cut corner.
- what is labeled as 110 is a diamond-shaped angle-cutting antenna, and the sum of the side lengths of the four sides of the rhombic-shaped angle-cutting antenna 110 is also about ⁇ /n eff , n eff is the ambient refractive index, and ⁇ is The vacuum wavelength corresponding to the radiation frequency of the antenna.
- the part marked with 91 is a hollow part, and the part marked with P1 is a pixel unit.
- the length of the long side of the hollow portion 91 needs to be greater than or equal to ⁇ /2n to ensure radiation efficiency.
- Fig. 12B on the basis of Fig. 12A, what is marked L1 is the side length of the first side of the rhombic chamfer antenna, and what is marked L2 is the side of the second side of the rhombic chamfer antenna Long, the label L3 is the side length of the third side of the rhombic chamfer antenna, the label L4 is the side length of the fourth side of the rhombic chamfer antenna, L1, L2, L3 and L4 The sum is approximately equal to ⁇ /n eff .
- the antenna is an L-shaped antenna
- the antenna includes a first end portion and a second end portion; a first hollow portion and a second hollow portion are arranged on the voltage trace;
- the orthographic projection of the first end portion on the base substrate is in the orthographic projection of the first hollow portion on the base substrate, and the orthographic projection of the second end portion on the base substrate is projected in an orthographic projection of the second hollow portion on the base substrate;
- the first hollow portion and the second hollow portion are respectively disposed on adjacent sides of the voltage trace.
- the antenna 120 may include two ends, and the orthographic projection of the first end of the antenna 120 on the substrate is equal to the projection of the first hollow part 21 on the substrate.
- the orthographic projection of the second end of the antenna 120 on the substrate is in the orthographic projection of the second hollow part 22 on the substrate, the first hollow part 21, the second hollow The parts 22 are respectively arranged on the left side and the upper side of the voltage trace E1;
- the antenna 120 is an L-shaped grid antenna, and the sum of the lengths of the two right-angled sides of the L-shaped grid antenna 120 may be approximately ⁇ /n eff , or may be approximately equal to ⁇ /(2n eff ), n eff is the ambient refractive index, and ⁇ is the vacuum wavelength corresponding to the radiation frequency of the antenna.
- the length of the long side of the first hollow part 21 needs to be greater than or equal to ⁇ /2n, and the length of the long side of the second hollow part 22 needs to be greater than or equal to ⁇ /2n, to ensure radiation efficiency.
- the label L5 is the side length of the first right-angled side of the antenna 120
- the label L6 is the side length of the second right-angled side of the antenna 120
- the sum of L5 and L6 The value can be approximately equal to ⁇ /n eff or approximately equal to ⁇ /(2n eff ).
- the antenna can be designed as L-shaped, and the L-shaped antenna can work in the fundamental mode (when the radiation frequency of the antenna is 30 GHz, the dielectric constant is 3 In the environment, the total length of the L-shaped antenna can be about 3mm), and can also work in the second-order mode (when the radiation frequency of the antenna is 30GHz, in an environment with a dielectric constant of 3, the total length of the L-shaped antenna can be about 6mm ), or higher order patterns.
- the antenna is a rectangular antenna or a T-shaped antenna; a first hollow part is provided on the voltage trace;
- the orthographic projection of the one end of the antenna on the base substrate is in the orthographic projection of the first hollow part on the base substrate.
- the method of opening a hollow part at one end of the antenna can be used.
- the radiation efficiency of an antenna with a slot at the end is slightly lower, but it is much higher than that of an antenna without a hollow part on the voltage trace. radiation efficiency.
- Antennas with single-ended slots can work on the base film, but not limited thereto.
- the antenna 130 may include two ends, and the orthographic projection of the first end of the antenna 130 on the substrate is equal to the projection of the first hollow part 21 on the substrate.
- the antenna 130 is a rectangular grid antenna, and the length of the side of the antenna 130 perpendicular to the long side of the first hollow part 21 is approximately equal to ⁇ /(2n eff ), where n eff is the ambient refractive index, ⁇ is the vacuum wavelength corresponding to the radiation frequency of the antenna.
- the side length of the antenna 130 perpendicular to the long side of the first hollow part 21 is between 2 mm and 3 mm, and the specific size needs to be determined according to The density of grid division, the grid shape and the specific position of the antenna end in the slot area are simulated and optimized according to the orthographic projection of the antenna end.
- the length of the long side of the first hollow part 21 needs to be greater than or equal to ⁇ /2n to ensure radiation efficiency.
- the grid of the antenna 130 may be a long rectangle, and in specific implementation, the grid of the antenna 130 may also be a smaller square or rectangle.
- the antenna 140 may include three ends, and the orthographic projection of the first end of the antenna 140 on the substrate is equal to the projection of the first hollow part 21 on the substrate.
- the antenna 130 is a T-shaped grid antenna.
- the length of the long side of the first hollow part 21 needs to be greater than or equal to ⁇ /2n to ensure radiation efficiency.
- the one labeled L7 is the first length
- the one labeled L8 is the second length
- the sum of L7 and L8/2 can be approximately equal to ⁇ /(2n eff ) or approximately Equal to ⁇ /(n eff ), where n eff is the refractive index of the environment, and ⁇ is the vacuum wavelength corresponding to the radiation frequency of the antenna.
- the antenna 140 can be regarded as a combination of two L-shaped antennas.
- the grid of the antenna 140 may be a long rectangle. In specific implementation, the grid of the antenna 140 may also be a smaller square or rectangle.
- the one labeled E1 is the voltage wiring.
- the shape of the antenna is not limited to the above-mentioned U-shape, E-shape, rectangle, T-shape, rhombus-shape and L-shape, and the shape of the antenna can be selected according to the actual situation, such as Comb shape.
- the display substrate according to at least one embodiment of the present disclosure may further include a touch layer disposed on a side of the encapsulation layer away from the base substrate;
- the antenna is disposed on a side of the touch layer away from the encapsulation layer, and the display substrate further includes an insulating layer disposed between the touch layer and the antenna, and the insulating layer is placed on the substrate
- the orthographic projection on the base substrate overlays the orthographic projection of the antenna on the base substrate.
- both the antenna and the touch layer are integrated in the space above the encapsulation layer, which involves the possible conflict between the wiring of the antenna and the touch layer.
- the antenna can be placed on the side of the touch layer away from the encapsulation layer.
- an insulating layer is arranged between the antenna and the touch layer. When the antenna crosses the display area, drive circuit area, and voltage traces, it will conflict with the traces connected to the peripheral touch layer. At this time, an insulating layer is provided between the antenna and the touch layer to allow the traces The wire spans over the antenna.
- the thickness of the insulating layer may be about 5 microns, but not limited thereto.
- the touch layer includes multiple rows and columns of touch units; multiple touch signal lines are arranged in the touch units;
- the line width of the touch signal lines in the touch units overlapping with the antenna among the multi-row multi-column touch units is larger than that of the multi-row multi-column touch units not overlapped with the antenna. the line width of the touch signal line in the touch unit;
- the number of breakpoints in the touch signal lines of the touch units overlapping with the antenna in the multi-row multi-column touch units is smaller than that of the multi-row multi-column touch units not intersecting with the antenna
- the number of breakpoints in touch signal lines in overlapping touch units is smaller than that of the multi-row multi-column touch units not intersecting with the antenna.
- the touch layer includes multiple rows and multiple columns of touch units
- the first antenna 31 overlaps the first touch unit T1 and the second touch unit T2, and the second antenna 32 overlaps the second touch unit T2 and the third touch unit T3;
- the number 21 is the first hollow part
- the number 22 is the second hollow part.
- the manufacturing method of the display substrate described in the embodiment of the present disclosure is used to manufacture the above-mentioned display substrate, and the manufacturing method of the display substrate includes:
- a grid-shaped antenna is directly fabricated, and the orthographic projection of at least part of the ends of the grid-shaped antenna on the base substrate is arranged on the hollow part where the In the orthographic projection of the substrate substrate described above.
- the antenna is made by film bonding process, which cannot be precisely aligned.
- the grid-shaped antenna is directly fabricated on the side of the packaging layer away from the substrate substrate, which can achieve precise alignment and flexibly fabricate a compactly arranged antenna array.
- the on-screen antenna needs to be fabricated on a flexible film first, and then the flexible film is pasted on the display screen, which increases the thickness of the display screen by more than 100 microns, which is not conducive to the thinning and flexibility of the display screen.
- the thickness of the display screen can be basically not increased, which is beneficial to the lightness and thinness of the display screen, and has no effect on functions such as folding and bending.
- a grid antenna may be fabricated using semiconductor photolithography.
- the voltage wiring includes a first voltage wiring part, a second voltage wiring part, a third voltage wiring part and a fourth voltage wiring part; the first voltage wiring part is arranged on the The first side of the display area, the second voltage wiring part is arranged on the second side of the display area, the third voltage wiring part is arranged on the third side of the display area, and the fourth voltage wiring part set on the fourth side of the display area;
- the first side and the second side are opposite sides, the third side and the fourth side are opposite sides, the first side and the third side are adjacent sides, and the second side The side is adjacent to the third side; a driver integrated circuit is arranged on the fourth side of the display area;
- the step of providing a hollow part in the voltage wiring includes: setting the hollow part on at least one of the first voltage wiring part, the second voltage wiring part and the third voltage wiring part. Hollow out.
- the manufacturing method of the display substrate described in the example also includes:
- the display device described in the embodiment of the present disclosure includes the above-mentioned display substrate.
- the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本公开提供一种显示基板、制作方法和显示装置。显示基板包括衬底基板、设置于衬底基板的周边区域的电压走线、设置于电压走线远离衬底基板的一侧的封装层,以及,设置于衬底基板的显示区域的多个像素单元;封装层设置于所述衬底基板的显示区域的部分区域,以及,衬底基板的周边区域;显示基板还包括设置于封装层远离衬底基板的一侧的天线,天线为网格状天线;电压走线上设置有镂空部;天线的至少部分端部在衬底基板上的正投影设置于镂空部在衬底基板的正投影中;天线在衬底基板上的正投影包括位于显示区域的第一部分,第一部分设置于相邻的像素单元在衬底基板的正投影之间。本公开能够提升光透过率和辐射效率。
Description
本公开涉及显示技术领域,尤其涉及一种显示基板、制作方法和显示装置。
在相关技术中,屏上天线方案主要是在柔性薄膜上构筑天线,再把柔性薄膜贴合到显示屏上,贴膜工艺由于不能实现半导体工艺中的精准对位,而容易对显示屏的各个像素单元产生明显的遮挡,容易产生遮挡暗纹和摩尔条纹。此外,由于要把天线区造成的光学透过率下降效应给钝化,这就要在非天线功能区也要构筑类似网格图形结构,这样就使得整个显示屏的透过率会下降5%到20%。另一方面,如果直接采用在封装层上集成天线的方法,虽然可以采用半导体工艺中的精准对位,但是由于封装层距离阴极层只有10微米左右的距离,根据微带贴片辐射理论,约只有2.8%的辐射效率,使得直接利用光刻构筑天线基本不可能。
发明内容
在一个方面中,本公开实施例提供了一种显示基板,包括衬底基板、设置于所述衬底基板的周边区域的电压走线、设置于所述电压走线远离所述衬底基板的一侧的封装层,以及,设置于所述衬底基板的显示区域的多个像素单元;所述封装层设置于所述衬底基板的周边区域和所述衬底基板的显示区域;
所述显示基板还包括设置于所述封装层远离所述衬底基板的一侧的天线,所述天线为网格状天线;
所述电压走线上设置有镂空部;
所述天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
可选的,所述电压走线包括第一电压走线部、第二电压走线部、第三电 压走线部和第四电压走线部;所述第一电压走线部设置于所述显示区域第一侧,所述第二电压走线部设置于所述显示区域第二侧,所述第三电压走线部设置于所述显示区域第三侧,所述第四电压走线部设置于所述显示区域第四侧;
所述第一侧和所述第二侧为相对侧,所述第三侧和所述第四侧为相对侧,所述第一侧与所述第三侧为相邻侧,所述第二侧与所述第三侧为相邻侧;在所述显示区域第四侧设置有驱动集成电路;
所述镂空部设置于所述第一电压走线部、所述第二电压走线部、所述第三电压走线部中至少之一上。
可选的,所述周边区域包括电压走线区域和封装区;所述电压走线区域设置于所述封装区靠近所述显示区域的一侧;所述电压走线设置于所述电压走线区域;
所述电压走线为阴极电压走线;所述显示基板包括设置于所述显示区域第一侧的第一驱动电路区域,以及,设置于所述显示区域第二侧的第二驱动电路区域;
所述阴极电压走线包括第一阴极电压走线部、第二阴极电压走线部和设置于所述显示区域第三侧的第三阴极电压走线部;
所述第一阴极电压走线部设置于所述封装区与所述第一驱动电路区域之间,所述第二阴极电压走线部设置于所述封装区与所述第二驱动电路区域之间;
所述镂空部设置于所述第一阴极电压走线部、所述第二阴极电压走线部、所述第三阴极电压走线部中至少之一上。
可选的,所述镂空部为矩形镂空部,所述镂空部的第一长边和所述镂空部的第二长边沿所述电压走线的延伸方向延伸。
可选的,所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第一长边之间的最短距离,与所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第二长边之间的最短距离之间的差值的绝对值小于或等于距离差值阈值;
所述距离差值阈值大于等于0而小于等于3um。
可选的,所述天线具有多个端部,所述多个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板的正投影内,所述镂空部的长边的长度大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
可选的,所述天线具有N个端部,所述电压走线上设置有N个镂空部;N为大于1的整数,n为小于或等于N的正整数;所述N个端部中的第n个端部在所述衬底基板上的正投影在所述电压走线上设置的第n个镂空部在所述衬底基板上的正投影内;
所述镂空部的长边的长度大于或等于λ/2n;其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
可选的,所述天线具有多个端部,所述多个端部中的一个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板的正投影内,所述镂空部的长边的长度大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
可选的,设置有镂空部的电压走线部的线宽处处相等。
可选的,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第二方向凸起的第一凸起部,以使得所述镂空部的电压走线的线宽处处相等。
可选的,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等。
可选的,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第二方向凸起的第一凸起部和朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等。
可选的,设置有镂空部的电压走线部的线宽为A,所述镂空部的短边的长度小于或等于A/4。
可选的,所述显示基板包括的多个像素单元阵列排布,所述显示基板还包括设置于所述衬底基板的显示区域的多行栅线和多列数据线;所述栅线沿第一方向延伸,所述数据线沿第二方向延伸;
相邻两行像素单元中距离最近的两个像素单元沿第二方向排布,所述天线为U形天线或E形天线;或者,
相邻两行像素单元中距离最近的两个像素单元沿第三方向排布,所述第三方向与所述第二方向不同,所述第三方向与所述第一方向不同,所述天线为切角菱形天线。
可选的,所述天线为L形天线;
所述天线包括第一端部和第二端部;所述电压走线上设置有第一镂空部和第二镂空部;
所述第一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板的正投影中,所述第二端部在所述衬底基板上的正投影在所述第二镂空部在所述衬底基板的正投影中;
所述第一镂空部、所述第二镂空部分别设置于所述电压走线的相邻的侧边。
可选的,所述天线为矩形天线或T形天线;所述电压走线上设置有第一镂空部;
所述天线的一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板的正投影中。
可选的,本公开至少一实施例所述的显示基板还包括设置于所述封装层远离所述衬底基板的一侧的触控层;
所述天线设置于所述触控层远离所述封装层的一侧,所述显示基板还包括设置于所述触控层与所述天线之间的绝缘层,所述绝缘层在所述衬底基板上的正投影覆盖所述天线在所述衬底基板上的正投影。
可选的,所述触控层包括多行多列触控单元;在所述触控单元中设置有多条触控信号线;
所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线的线宽大于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触 控信号线的线宽;
所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线中的断点个数小于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触控信号线中的断点个数。
在第二个方面中,本公开实施例提供一种显示基板的制作方法,用于制作上述的显示基板,所述显示基板的制作方法包括:
在衬底基板的显示区域制作多个像素单元,在衬底基板的周边区域制作电压走线,并在所述电压走线中设置镂空部;
在所述电压走线远离所述衬底基板的一侧制作封装层;
在所述封装层远离衬底基板的一侧直接制作网格状天线,并使得所述网格状天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
在第三个方面中,本公开实施例还提供了一种显示装置,包括上述的显示基板。
图1是本公开至少一实施例所述的显示基板的一部分的截面图;
图2是在本公开至少一实施例中,在电压走线上设置天线的示意图;
图3是本公开至少一实施例所述的显示基板的区域划分示意图;
图4是在本公开至少一实施例所述的显示基板中的第一阴极电压走线部与第一天线的结构示意图;
图5是本公开至少一实施例所述的显示基板中的第一阴极电压走线部与第一天线的结构示意图;
如图6、图7和图8是当在第一阴极电压走线部上设置有第六镂空部、第七镂空部和第八镂空部时,可以对第一阴极电压走线部的宽度进行补偿的示意图;
图9是网格状天线的栅格排布较密的示意图;
图10是网格状天线的栅格排布较稀疏的示意图;
图11是各天线的频率-效率曲线图;
图12A是本公开至少一实施例所述的显示基板包括的菱形切角状天线的结构图;
图12B是在图12A的基础上标示L1、L2、L3和L4的示意图;
图13A是本公开至少一实施例所述的显示基板包括的L形网格状天线的结构图;
图13B是在图13A的基础上标示L5和L6的示意图;
图14是本公开至少一实施例所述的显示基板包括的矩形网格状天线的结构图;
图15A是本公开至少一实施例所述的显示基板包括的T形网格状天线的结构图;
图15B是在图15A的基础上标示L7和L8的示意图;
图16是本公开至少一实施例所述的显示基板中的触控层与天线的位置关系示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例所述的显示基板包括衬底基板、设置于所述衬底基板的周边区域的电压走线、设置于所述电压走线远离所述衬底基板的一侧的封装层,以及,设置于所述衬底基板的显示区域的多个像素单元;所述封装层设置于所述衬底基板的周边区域和所述衬底基板的显示区域;
所述显示基板还包括设置于所述封装层远离所述衬底基板的一侧的天线,所述天线为网格状天线;
所述电压走线上设置有镂空部;
所述天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
本公开实施例所述的显示基板包括天线,所述天线设置于所述封装层远 离所述衬底基板的一侧,所述天线呈网格状,以不遮挡像素单元,不影响显示,提升光透过率。并且,本公开实施例在所述电压走线上设置镂空部,所述镂空部中不设置有导电材料并所述天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中;所述电压走线设置于所述衬底基板的周边区域,在所述电压走线上下方存在一个未被金属层遮挡的净空区域,因此便于在所述电压走线上设置镂空部,以增加辐射效率。
在相关技术中,天线构筑于显示区域之上,为了保证非天线区域天线区的光学透明性一致,原本非天线区去也要构筑金属栅格,造成整个显示屏光透过率下降。本公开至少一实施例所述的显示基板中的天线不需要在非天线区制作任何金属栅格来钝化透明度不一致的视觉效果。本公开实施例可以提升光学透过率,使得光学透过率大于95%,基本对像素单元的光线无任何遮挡。
在本公开至少一实施例中,所述像素单元可以为OLED(有机发光二极管)像素单元,但不以此为限。
在相关的天线中,为了尽可能避免遮挡条纹和摩尔条纹,需要将金属栅格中的金属线加工到2.5微米以下,对于现有玻璃基工艺来说,制造难度很大,需要更多工艺步骤,增加了制造成本也降低了产品良品率。在本公开至少一实施例中,所述天线可以采用铜,铝,银等高导电率金属材料,天线的线宽可以大于5um,相比于相关技术中天线的线宽需要小于等于2.0um,本公开至少一实施例极大降低了制造难度。
在本公开至少一实施例中,所述天线在所述衬底基板上的正投影包括位于所述显示区域的第一部分,所述第一部分设置于相邻的像素单元在所述衬底基板的正投影之间,以不遮挡像素单元,提升透过率。
可选的,所述电压走线可以为阴极电压走线,但不以此为限。
在本公开至少一实施例中,所述阴极电压走线可以为与像素单元中的有机发光二极管的阴极电连接的走线。
如图1所示,天线层10设置于所述封装层11远离电压走线E1的一侧,所述电压走线E1与阴极层12搭接,以为所述阴极层12提供电压信号(在图1所示的至少一实施例中,所述电压走线可以为阴极电压走线,所述直流电 压信号可以为低电平信号),并所述天线层10延伸至显示区域,在显示区域设置有像素单元;在图1中,标号为121的为红色像素单元,标号为122的为绿色像素单元,标号为123的为蓝色像素单元;
所述天线层10包括天线。
在图1所示的至少一实施例中,所述封装层可以包括两个无机封装层,以及,设置于所述两个无机封装层之间的有机封装层。
在图1所示的至少一实施例中,各像素单元可以包括依次设置于所述阴极层11远离所述封装层11的一侧的发光层、阳极和TFT(薄膜晶体管)阵列层。
图1是本公开至少一实施例所述的显示基板的一部分的截面图,并在图1中,仅示意性的示出了天线、封装层、阴极层和三个像素单元之间的位置关系。在实际操作时,在所述电压走线E1与位于显示区域中的像素单元之间还可以设置有驱动电路,在所述像素单元远离所述封装层的一侧还设置有衬底基板,但不以此为限。
在本公开至少一实施例中,所述电压走线包括第一电压走线部、第二电压走线部、第三电压走线部和第四电压走线部;所述第一电压走线部设置于所述显示区域第一侧,所述第二电压走线部设置于所述显示区域第二侧,所述第三电压走线部设置于所述显示区域第三侧,所述第四电压走线部设置于所述显示区域第四侧;
所述第一侧和所述第二侧为相对侧,所述第三侧和所述第四侧为相对侧,所述第一侧与所述第三侧为相邻侧,所述第二侧与所述第三侧为相邻侧;在所述显示区域第四侧设置有驱动集成电路;
所述镂空部设置于所述第一电压走线部、所述第二电压走线部、所述第三电压走线部中至少之一上。
在具体实施时,在显示区域第四侧设置有驱动集成电路和为显示区域中的像素单元提供数据电压的信号线,该信号线在所述衬底基板上的正投影与所述第四电压走线部在所述衬底基板上的正投影至少部分重叠,因此如果在所述第四电压走线部上设置镂空部,并相应设置天线,天线的辐射会受到所述信号线的影响,因此本公开至少一实施例不在所述第四电压走线部上设置 镂空部,并不设置相应的天线,本公开至少一实施例将所述镂空部设置于所述第一电压走线部、所述第二电压走线部、所述第三电压走线部中至少之一上。
如图2所示,标号为E1的为电压走线,标号为A0的为显示区域;
所述电压走线E1包括第一电压走线部E11、第二电压走线部E12、第三电压走线部E13和第四电压走线部E14;
所述第一电压走线部E11设置于所述显示区域A0左侧,所述第二电压走线部E12设置于所述显示区域A0右侧,所述第三电压走线部E13设置于所述显示区域A0上侧,所述第四电压走线部E14设置于所述显示区域A0下侧;
在图2所示的至少一实施例中,在所述第一电压走线部E11设置有第一镂空部21、第二镂空部22和第三镂空部23;所述第一镂空部21中不设置有导电材料,所述第二镂空部22中不设置有导电材料,所述第三镂空部23中不设置有导电材料;
本公开至少一实施例所述的显示基板包括第一天线31、第二天线32和第三天线33;
所述第一天线31、所述第二天线32和所述第三天线33为网格状天线;
所述第一天线31的端部在衬底基板上的正投影在所述第一镂空部21在所述衬底基板的正投影中;
所述第二天线32的端部在衬底基板上的正投影在所述第二镂空部22在所述衬底基板的正投影中;
所述第三天线33的端部在衬底基板上的正投影在所述第三镂空部23在所述衬底基板的正投影中。
在图2所示的至少一实施例中,标号为P0的为柔性电路板。
在本公开至少一实施例中,所述镂空部也可以设置于第二电压走线部E12和/或第三电压走线部E13上。
在具体实施时,所述周边区域可以包括电压走线区域和封装区;
所述电压走线区域设置于所述封装区靠近所述显示区域的一侧;
所述电压走线设置于所述电压走线区域。
在本公开至少一实施例中,所述电压走线区域可以设置于显示区域与封装区之间。
可选的,所述电压走线为阴极电压走线;所述显示基板包括设置于所述显示区域第一侧的第一驱动电路区域,以及,设置于所述显示区域第二侧的第二驱动电路区域;
所述阴极电压走线包括第一阴极电压走线部、第二阴极电压走线部和设置于所述显示区域第三侧的第三阴极电压走线部;
所述第一阴极电压走线部设置于所述封装区与所述第一驱动电路区域之间,所述第二阴极电压走线部设置于所述封装区与所述第二驱动电路区域之间;
所述镂空部设置于所述第一阴极电压走线部、所述第二阴极电压走线部、所述第三阴极电压走线部中至少之一上。
如图3所示,标号为A0的为显示区域,标号为A11的为第一驱动电路区域,标号为A12的为第二驱动电路区域,标号为F11的为第一封装区,标号为F12的为第二封装区;标号为S1的为阴极电压走线,标号为S2的为外围阴极电压走线;标号为S21的为第一高电压线,标号为S22的为第二高电压线;
第一驱动电路区域A11设置于显示区域A0左侧,第二驱动电路区域A12设置于显示区域A0右侧;
所述第一驱动电路区域A11设置于所述阴极电压走线S1与显示区域A0之间,所述第二驱动电路区域A12设置于所述阴极电压走线S1与显示区域A0之间;
所述第一封装区F11设置于所述外围阴极电压走线S2与所述阴极电压走线S1之间。
在图3中,标号为C1的为第一成盒测试区,标号为C2的为第二成盒测试区,标号为C3的为第三成盒测试区;
标号为D1的为第一静电防护区域,标号为D2的为第二静电防护区域,标号为D3的为第三静电防护区域,标号为D4的为第四静电防护区域,标号为D5的为第五静电防护区域,标号为D6的为第六静电防护区域,标号为 D7的为第七静电防护区域;
标号为F0的为数据扇出区域,标号为D21的为第一时钟静电防护区,标号为D22的为第二时钟静电防护区,标号为D31的为第一起始静电防护区,标号为D32的为第二起始静电防护区;标号为L0的为信号线区域,在信号线区域L0内,设置有为显示区域中的像素单元提供数据电压的信号线;
标号为I1的为第一初始电压线,标号为I2的为第二初始电压线;
标号为I0的为驱动集成电路,标号为P0的为柔性电路板;
所述阴极电压走线S1和所述外围阴极电压走线S2都与所述柔性电路板P0电连接,所述柔性电路板P0为所述阴极电压走线S1和所述外围阴极电压走线S2提供相应的低电平信号。
在图3中,在所述第一驱动电路区域A11和所述第二驱动电路区域A12可以设置有栅极驱动电路和发光控制信号生成电路,所述发光控制信号生成电路可以设置于所述栅极驱动电路与显示区域A0之间。
在本公开至少一实施例中,为了保证窄边框,GOA区域到封装区的总宽度一般为1毫米到2毫米时间,而所述阴极电压走线S1的宽度一般仅为0.2毫米到0.3毫米。
在相关技术中,OLED手机屏幕一般采用顶发射和超窄边框设计;在OLED手机屏幕中,绝大部分为显示区域,在显示区域外环绕的还有驱动电路区域、阴极电压走线以及封装区。在OLED手机屏幕的封装层下包含众多金属层,首先是阴极层,其次是阳极层,接着是源漏金属层、栅金属层等。所述阳极层可以包括两个ITO(氧化铟锡)层以及设置于所述两个ITO层之间的Ag(银)层,如果适当加厚阳极层包括的Ag层的厚度,可以将所述阳极层和与之相连的源漏金属层看成是整层厚度较厚的金属层(相对于毫米波)。如果天线单纯构筑在所述显示区域上,由于天线距离所述整层厚度较厚的金属层之间的距离只有10微米量级的距离,电磁能量会被强烈局域在天线与该金属层之间,而严重降低辐射效率。如果想要增加辐射效率,就需要在该金属层上开一系列镂空部,但是像素单元中的晶体管的电路走线非常复杂,直接在该金属层中设置镂空部的设计不具有实际意义。基于此,本公开至少一实施例采用在电压走线上设置镂空部的方式,在所述电压走线上下方存在一 个未被金属层遮挡的净空区域,因此便于在所述电压走线上设置镂空部,以增加辐射效率。
在本公开至少一实施例中,所述镂空部可以为矩形镂空部,所述镂空部的第一长边和所述镂空部的第二长边沿所述电压走线的延伸方向延伸。
在具体实施时,当所述镂空部设置于所述电压走线包括的第一电压走线部上时,所述镂空部的第一长边和所述镂空部的第二长边沿所述第一电压走线部的延伸方向延伸;当所述镂空部设置于所述电压走线包括的第二电压走线部上时,所述镂空部的第一长边和所述镂空部的第二长边沿所述第二电压走线部的延伸方向延伸;当所述镂空部设置于所述电压走线包括的第三电压走线部上时,所述镂空部的第一长边和所述镂空部的第二长边沿所述第三电压走线部的延伸方向延伸。
在本公开至少一实施例中,所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第一长边之间的最短距离,与所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第二长边之间的最短距离之间的差值的绝对值小于或等于距离差值阈值,以使得所述天线的至少部分端部在衬底基板上的正投影近似设置于相应的镂空部的正中间。
可选的,所述距离差值阈值大于等于0而小于等于3um,但不以此为限。
在具体实施时,为了提升天线的辐射效率,需要在电压走线上开设长度大于或等于λ/2n的镂空部,所述镂空部的长度需要大于或等于有效半波长,以保证能量能够透过镂空部漏出,而不会被截止,可以理解为波导的截止波长限制。所述镂空部的宽度的取值范围可以很大,从10微米至百微米数量级都可以,而在本公开至少一实施例中,由于阴极电压走线包括的第一阴极电压走线部的宽度、阴极电压走线包括的第二阴极电压走线部的宽度和阴极电压走线包括的第三阴极电压走线部的宽度在200微米左右,因此将所述镂空部的宽度设为40微米至50微米左右,以不会太剧烈影响所述阴极电压走线的导电能力,并且在工艺实现上也相对容易。
在本公开至少一实施例中,所述天线具有多个端部,所述多个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板上的正投影内,所述镂空部的长边的长度大于或等于λ/2n,以保证辐射效率;其中,λ为所述 天线的辐射频率对应的波长,n为所述封装层的折射率。
例如,当所述天线为U形网格状天线、E形网格状天线或梳齿形网格状天线时,所述天线包括的多个端部在衬底基板上的正投影可以都设置于一个镂空部在衬底基板上的正投影内。
在本公开至少一实施例中,所述天线具有N个端部,所述电压走线上设置有N个镂空部;N为大于1的整数,n为小于或等于N的正整数;所述N个端部中的第n个端部在所述衬底基板上的正投影在所述电压走线上设置的第n个镂空部在所述衬底基板上的正投影内;
所述镂空部的长边的长度大于或等于λ/2n;其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
例如,当所述天线为U形网格状天线、E形网格状天线或L形网格状天线时,所述天线包括的端部在衬底基板上的正投影可以分别位于相应的镂空部在衬底基板上的正投影内,但是各镂空部的长边的长度都需要大于或等于λ/2n。
在实际操作时,可以将所述天线的端部在衬底基板上的正投影设置于相应的镂空部的长边的中部,以提升辐射效率。
在本公开至少一实施例中,所述天线可以具有多个端部,所述多个端部中的一个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板上的正投影内,所述镂空部的长边的长度大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
例如,当所述天线为矩形网格状天线或T形网格状天线时,可以将所述天线的其中一个端部在衬底基板上的正投影设置于一镂空部在所述衬底基板上的正投影之内,该镂空部的长边的长度需要大于或等于λ/2n。
在本公开至少一实施例中,设置有镂空部的电压走线部的线宽为A,所述镂空部的短边的长度小于或等于A/4,以减小对所述电压走线提供的直流电压信号的传输的影响。
如图4所示,标号为S11的为阴极电压走线S1包括的第一阴极电压走线部,标号为31的为第一天线,标号为21的为第一镂空部;第一阴极电压走线部S11沿竖直方向延伸;
所述第一阴极电压走线部S11为U形网格状天线;
所述第一阴极电压走线部S11包括第一端部和第二端部;
所述第一端部在衬底基板上的正投影和所述第二端部在衬底基板上的正投影在所述第一镂空部21在衬底基板上的正投影之内;
在图4中,标号为Ls的为所述第一镂空部21沿竖直方向的长度,标号为Ws的为所述第一镂空部21沿水平方向的宽度;Ls大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的真空波长,n为所述封装层(在制作显示基板时,封装层会落入所述镂空部中)的折射率;Ws大于等于40微米而小于等于50微米;
标号为Wa的为所述第一天线31的沿竖直方向的长度,标号为La的为所述第一天线31的沿水平方向的宽度。
在图4所示的至少一实施例中,La与Wa可以根据实际辐射或接收波段做仿真优化,通常La的取值范围和Wa的取值范围可以灵活调控;
对于27GHz辐射频率和介电常数为3左右的封装层,La可以大于等于0.5mm而小于等于2.5mm,Wa大于等于1mm而小于等于3mm。
在本公开至少一实施例中,La与Wa的和值约为λ/n
eff,其中,n
eff为环境折射率,所述环境折射率n
eff为所述显示基板包括的设置于所述天线与所述衬底基板之间的有机层和无机层的综合折射率(所述设置于所述天线与所述衬底基板之间的有机层和无机层例如可以包括:封装层、像素单元中的发光元件的发光介质层、绝缘层等)。
在本公开至少一实施例中,在所述第一阴极电压走线部S11上,可以设置有两个镂空部,所述第一天线31的第一端部在衬底基板上的正投影可以在其中一个镂空部在衬底基板上的正投影内,所述第一天线31的第二端部在衬底基板上的正投影可以在另一镂空部在衬底基板上的正投影内,所述两个镂空部的长边的长度需大于或等于λ/2n,以保证辐射效率。
图5所示的至少一实施例与图4所示的至少一实施例的区别在于:在所述第一阴极电压走线部S11上设置有第四镂空部24和第五镂空部25;
所述第一天线31的第一端部在衬底基板上的正投影,在所述第四镂空部24在所述衬底基板上的正投影内;
所述第一天线31的第二端部在衬底基板上的正投影,在所述第五镂空部25在所述衬底基板上的正投影内;
标号为Ls4的为所述第四镂空部24沿竖直方向的长度,标号为Ls5的为第五镂空部25沿竖直方向的长度;
Ls4和Ls5都大于或等于λ/2n。
需要强调的是,一般在宽度为0.2毫米的阴极电压走线上开一条40微米宽几个毫米长的镂空部,虽然会增加阴极电压走线的方阻,但是所增加的方阻量不会对所述阴极电压走线传输的低电平信号造成明显的干扰。但是,如果要制作多个天线,需要在阴极电压走线上的多处开设镂空部,阴极电压走线的方阻的增加量会比较大,可以对阴极电压走线的宽度或厚度进行补偿。
可选的,设置有镂空部的电压走线部的线宽处处相等,以对电压走线部的宽度进行补偿,补偿区域的宽度、形状或排布可以根据电磁仿真的结果设置,在保证窄边框要求的前提下,尽量减小电压走线开槽前与开槽后的方阻变化与为目的进行优化。
在本公开至少一实施例中,所述镂空部可以沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第二方向凸起的第一凸起部,以使得所述镂空部的电压走线的线宽处处相等,以对所述电压走线部的宽度进行补偿。
在具体实施时,所述第一方向可以为所述电压走线部的延伸方向,例如,所述第一方向可以为竖直方向,所述第二方向可以为水平朝左方向,所述第三方向可以为水平朝右方向,但不以此为限。
在本公开至少一实施例中,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等,以对所述电压走线部的宽度进行补偿。
在本公开至少一实施例中,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;
所述电压走线部具有朝第二方向凸起的第一凸起部和朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等,以对所述电压 走线部的宽度进行补偿。
在具体实施时,所述电压走线上设置有多个镂空部,所述电压走线的厚度可以大于未开槽时的走线设计厚度,以对电压走线所增加的开槽电阻进行削减补偿。
可选的,所述电压走线可以为阴极电压走线,但不以此为限。
如图6、图7和图8所示,当在第一阴极电压走线部S11上设置有第六镂空部26、第七镂空部27和第八镂空部28时,可以对第一阴极电压走线部S11的宽度进行补偿,补偿区域的宽度、形状或排布可以根据电磁仿真的结果设置,在保证窄边框要求的前提下,尽量减小阴极电压走线开槽前与开槽后的方阻变化与为目的进行优化。
在图6、图7、图8所示的至少一实施例中,所述第一方向可以为所述第一阴极电压走线部S11的延伸方向,所述第一方向可以为竖直方向,所述第二方向可以为水平朝左方向,所述第三方向可以为水平朝右方向,但不以此为限
如图6所示,可以在所述第一阴极电压走线部S11的左侧,对所述第一阴极电压走线部S11的宽度进行补偿,以使得所述第一阴极电压走线部S11的线宽处处相等。在图6中,标号为t11的为第一个第一凸起部,标号为t12的为第二个第一凸起部,标号为t13的为第三个第一凸起部,所述第一个第一凸起部t11、所述第二个第一凸起部t12和所述第三个第一凸起部t13朝向水平朝左方向凸起。
如图7所示,可以在所述第一阴极电压走线部S11的右侧,对所述第一阴极电压走线部S11的宽度进行补偿,以使得所述第一阴极电压走线部S11的线宽处处相等。在图7中,标号为t21的为第一个第二凸起部,标号为t22的为第二个第二凸起部,标号为t23的为第三个第二凸起部;所述第一个第二凸起部t21、所述第二个第二凸起部t22和所述第三个第二凸起部t23都朝向水平朝右方向凸起。
如图8所示,可以在所述第一阴极电压走线部S11的左侧和所述第一阴极电压走线部S11的右侧,对所述第一阴极电压走线部S11的宽度进行补偿,以使得所述第一阴极电压走线部S11的线宽处处相等。在图8中,标号为t11 的为第一个第一凸起部,标号为t12的为第二个第一凸起部,标号为t13的为第三个第一凸起部,标号为t21的为第一个第二凸起部,标号为t22的为第二个第二凸起部,标号为t23的为第三个第二凸起部;所述第一个第一凸起部t11、所述第二个第一凸起部t12和所述第三个第一凸起部t13朝向水平朝左方向凸起;所述第一个第二凸起部t21、所述第二个第二凸起部t22和所述第三个第二凸起部t23都朝向水平朝右方向凸起。
在具体实施时,为了保证网格状天线在工作频段具有最大的辐射效率,网格状天线需要在工作频段工作在二阶模式,也即四极子模式。如图9所示,当所述网格状天线90的栅格排布较密时,所述网格状天线90与金属地之间的谐振电场分布较为均匀,在辐射效率大幅提升的频段,可以看出网格状天线90与地之间的Z方向谐振电场呈四极子模式分布。如图10所示,当所述网格状天线90的栅格排布较为稀疏时,所述网格状天线90与金属地之间的电场分布并不均匀,主要是沿着金属线分布,但是总体效果上仍一种四极子这种高阶模式的分布。所述网格状天线90的栅格最密集的排布方式,是每个栅格内设置有一个像素单元。
在图9和图10中,标号为91的为设置于阴极电压走线上的镂空部,标号为92的为馈线。
在本公开至少一实施例中,所述网格状天线的栅格最稀疏的排布方式没有具体限制,需要根据电磁仿真结果进行判断,前提是要能保证近似四极子的谐振模式。这种二阶模式,在开设有镂空部的阴极电压走线时的网格状天线的辐射效率可以比未开始有镂空部的阴极电压走线时的网格状天线的辐射效率高出15倍以上。
在图9和图10所示的至少一实施例中,所述网格状天线90为U形网格状天线。
如图11所示,曲线S101所示的为第一频率-效率曲线,标号为S102的为第二频率-效率曲线,标号为S103的为第三频率-效率曲线;
在图11中,横轴为辐射频率f0,单位为GHz,纵轴为辐射效率e0,单位为%。
在图11中,第一频率-效率曲线S101是在电压走线上开设有40微米宽 的镂空部,并天线为U形网格状天线时的辐射频率与辐射效率之间的关系示意图;
第二频率-效率曲线S102是在电压走线上开设有40微米宽的镂空部,并天线为没有网格化的U形天线时的辐射频率与辐射效率之间的关系示意图;
第三频率-效率曲线S103是电压走线上未设置镂空部时,并天线为U形天线时的辐射频率与辐射效率之间的关系示意图;
所述天线与电压走线之间设置有10微米厚的封装层。
如图11所示,在电压走线上开设有镂空部时的天线的辐射效率远远大于在电压走线上未开设有镂空部时的天线的辐射效率。
在本公开至少一实施例中,网格状天线在所述衬底基板上的正投影不能遮挡设置于显示区域的像素单元在衬底基板上的正投影,以不影响显示。
可选的,所述显示基板包括的多个像素单元阵列排布,所述显示基板还包括设置于所述衬底基板的显示区域的多行栅线和多列数据线;所述栅线沿第一方向延伸,所述数据线沿第二方向延伸;
相邻两行像素单元中距离最近的两个像素单元沿第二方向排布,所述天线为U形天线或E形天线;或者,
相邻两行像素单元中距离最近的两个像素单元沿第三方向排布,所述第三方向与所述第二方向不同,所述第三方向与所述第一方向不同,所述天线为切角菱形天线。
当所述天线为E型天线时,所述E型天线的所有端部在衬底基板上的正投影可以都在一镂空部在所述衬底基板上的正投影内,但不以此为限。
在具体实施时,第一方向可以为水平方向,第二方向可以为竖直方向,当显示基板包括的相邻的像素单元之间的空隙在水平和竖直方向上最大时,也即当相邻两行像素单元中距离最近的两个像素单元沿竖直方向排布时,适宜构筑金属网线沿水平和竖直方向延伸的U形天线;
当所述显示基板包括的相邻的像素单元之间的空隙在倾斜方向最大(如钻石排列的像素单元)时,也即相信两行像素单元中距离最近的两个像素单元沿第三方向排布(所述第三方向并非水平方向和竖直方向)时,则适宜构筑菱形切角形状的天线。
如图12A所示,标号为110的为菱形切角状天线,所述菱形切角状天线110的四条边的边长之和也约为λ/n
eff,n
eff为环境折射率,λ为对应于天线的辐射频率的真空波长。标号为91的为镂空部,标号为P1的为像素单元。
如图12A所示,所述镂空部91的长边的长度需要大于或等于λ/2n,以保证辐射效率。
在图12B中,在图12A的基础上,标号为L1的为所述菱形切角状天线的第一边的边长,标号为L2的为所述菱形切角状天线的第二边的边长,标号为L3的为所述菱形切角状天线的第三边的边长,标号为L4的为所述菱形切角状天线的第四边的边长,L1、L2、L3和L4的和值约等于λ/n
eff。
可选的,所述天线为L形天线;
所述天线包括第一端部和第二端部;所述电压走线上设置有第一镂空部和第二镂空部;
所述第一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板上的正投影中,所述第二端部在所述衬底基板上的正投影在所述第二镂空部在所述衬底基板上的正投影中;
所述第一镂空部、所述第二镂空部分别设置于所述电压走线的相邻的侧边。
在图13A所示的至少一实施例中,天线120可以包括两个端部,天线120的第一端部在所述衬底基板上的正投影在第一镂空部21在衬底基板上的正投影中,天线120的第二端部在所述衬底基板上的正投影在第二镂空部22在衬底基板上的正投影中,所述第一镂空部21、所述第二镂空部22分别设置于电压走线E1的左侧边、上侧边;
所述天线120为L形网格状天线,L形网格状天线120的两条直角边的边长之和可以约为λ/n
eff,也可以约等于λ/(2n
eff),n
eff为环境折射率,λ为对应于天线的辐射频率的真空波长。
在图13A的至少一实施例中,所述第一镂空部21的长边的长度需要大于或等于λ/2n,所述第二镂空部22的长边的长度需要大于或等于λ/2n,以保证辐射效率。
如图13B所示,在图13A的基础上,标号为L5的为天线120的第一直 角边的边长,标号为L6的为天线120的第二直角边的边长,L5与L6的和值可以约等于λ/n
eff,也可以约等于λ/(2n
eff)。
在具体实施时,如果将天线布局在电压走线拐角处,所述天线可以被设计为L形,L形天线可以工作于基模(当天线的辐射频率为30GHz,在介电常数为3的环境中,L形天线的总长度可以约为3mm),也可以工作于二阶模式(当天线的辐射频率为30GHz,在介电常数为3的环境中,L形天线总长度可以约为6mm),或更高阶的模式。
可选的,所述天线为矩形天线或T形天线;所述电压走线上设置有第一镂空部;
所述天线的一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板的正投影中。
在本公开至少一实施例中,可以采用在天线单端开设镂空部的方式,一般端开槽的天线的辐射效率稍低一些,但是越远高于不在电压走线上开设镂空部的天线的辐射效率。单端开槽的天线可以工作于基膜,但不以此为限。
在图14所示的至少一实施例中,天线130可以包括两个端部,天线130的第一端部在所述衬底基板上的正投影在第一镂空部21在衬底基板上的正投影中;所述天线130为矩形网格状天线,天线130的垂直于所述第一镂空部21的长边的边长约等于λ/(2n
eff),n
eff为环境折射率,λ为对应于天线的辐射频率的真空波长。当天线的辐射频率在30GHz频段,在介电常数为3的环境中,天线130的垂直于所述第一镂空部21的长边的边长的大小在2mm-3mm之间,具体尺寸需要根据网格划分的密度,网格形状以及根据天线端部的正投影在开槽区内的具体位置进行仿真优化设计。
在图14所示的至少一实施例中,所述第一镂空部21的长边的长度需要大于或等于λ/2n,以保证辐射效率。
在图14所示的至少一实施例中,所述天线130的网格可以为长矩形,在具体实施时,所述天线130的网格也可以为较小的正方形或矩形。
在图15A所示的至少一实施例中,天线140可以包括三个端部,天线140的第一端部在所述衬底基板上的正投影在第一镂空部21在衬底基板上的正投影中;所述天线130为T形网格状天线。
在图15A所示的至少一实施例中,所述第一镂空部21的长边的长度需要大于或等于λ/2n,以保证辐射效率。
如图15B所示,在图15A的基础上,标号为L7的为第一长度,标号为L8的为第二长度,L7与L8/2的和值可以约等于λ/(2n
eff)或约等于λ/(n
eff),n
eff为环境折射率,λ为对应于天线的辐射频率的真空波长。
在图15A、图15B所示的至少一实施例中,所述天线140可以被看成是两个L形天线的组合。
在图15A、图15B所示的至少一实施例中,所述天线140的网格可以为长矩形,在具体实施时,所述天线140的网格也可以为较小的正方形或矩形。
在图14、图15A和图15B中,标号为E1的为电压走线。
在本公开至少一实施例中,所述天线的形状不限于以上提到的U形、E形、矩形、T形、菱形切角状和L形,天线的形状可以根据实际情况选定,比如梳齿形。
本公开至少一实施例所述的显示基板还可以包括设置于所述封装层远离所述衬底基板的一侧的触控层;
所述天线设置于所述触控层远离所述封装层的一侧,所述显示基板还包括设置于所述触控层与所述天线之间的绝缘层,所述绝缘层在所述衬底基板上的正投影覆盖所述天线在所述衬底基板上的正投影。
在具体实施时,天线和触控层都集成于封装层以上的空间,这里就涉及到天线与触控层走线可能相互冲突的问题,天线可以设置于触控层远离封装层的一侧,并天线与触控层之间设置有绝缘层。当所述天线跨越显示区域、驱动电路区域和电压走线时,会与外围连接触控层的走线相冲突,此时在天线与触控层之间设置绝缘层,让外围排布的走线从天线上方跨越过去。
可选的,所述绝缘层的厚度可以为5微米左右,但不以此为限。
可选的,所述触控层包括多行多列触控单元;在所述触控单元中设置有多条触控信号线;
所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线的线宽大于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触控信号线的线宽;
所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线中的断点个数小于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触控信号线中的断点个数。
在具体实施时,需要对与天线交叠的触控单元进行补偿,也即使得与所述天线交叠的触控单元中的触控信号线的线宽增大,,以减少传导电阻,并可以合理减少与所述天线交叠的触控单元中的触控信号线中的断点个数。
如图16所示,所述触控层包括多行多列触控单元;
第一天线31与第一触控单元T1和第二触控单元T2交叠,第二天线32与第二触控单元T2和第三触控单元T3交叠;
这里需要适当增加第一触控单元T1中的金属线宽,第二触控单元T2中的金属线宽,以及,第三触控单元T3中的金属线宽,以减少传导电阻,同时可以合理减少第一触控单元T1、第二触控单元T2和第三触控单元T3中的金属断线的点数。
在图16中,标号为21的为第一镂空部,标号为22的为第二镂空部。
本公开实施例所述的显示基板的制作方法,用于制作上述的显示基板,所述显示基板的制作方法包括:
在衬底基板的显示区域制作多个像素单元,在衬底基板的周边区域制作电压走线,并在所述电压走线中设置镂空部;
在所述电压走线远离所述衬底基板的一侧制作封装层;
在所述封装层远离衬底基板的一侧直接制作网格状天线,并使得所述网格状天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
在相关技术中,天线是由薄膜贴合工艺制作,不能精准对位。而在本公开实施例所述的显示基板的制作方法中,在封装层远离衬底基板的一侧直接制作网格状天线,可以实现精准对位,灵活的制作紧凑排布的天线阵列。
在相关技术中,屏上天线需要先制作在柔性薄膜上,再把柔性薄膜贴合在显示屏上,使得显示屏增加了百微米以上的厚度,不利于显示屏轻薄化和柔性化。采用本公开至少一实施例所述的显示基板和制作方法,可以基本不增加显示屏的厚度,有利于显示屏的轻薄,对折叠弯曲等功能没有影响。
在本公开至少一实施例中,可以采用半导体光刻工作制作网格状天线。
可选的,所述电压走线包括第一电压走线部、第二电压走线部、第三电压走线部和第四电压走线部;所述第一电压走线部设置于所述显示区域第一侧,所述第二电压走线部设置于所述显示区域第二侧,所述第三电压走线部设置于所述显示区域第三侧,所述第四电压走线部设置于所述显示区域第四侧;
所述第一侧和所述第二侧为相对侧,所述第三侧和所述第四侧为相对侧,所述第一侧与所述第三侧为相邻侧,所述第二侧与所述第三侧为相邻侧;在所述显示区域第四侧设置有驱动集成电路;
所述在所述电压走线中设置镂空部步骤包括:在所述第一电压走线部、所述第二电压走线部、所述第三电压走线部中至少之一上设置所述镂空部。
在所述电压走线远离所述衬底基板的一侧制作封装层步骤,与所述在所述封装层远离衬底基板的一侧直接制作网格状天线步骤之间,本公开至少一实施例所述的显示基板的制作方法还包括:
在所述封装层远离所述衬底基板的一侧制作触控层;
在所述触控层远离所述封装层的一侧制作绝缘层,使得所述绝缘层在所述衬底基板上的正投影覆盖所述网格状天线在所述衬底基板上的正投影。
本公开实施例所述的显示装置包括上述的显示基板。
本公开实施例所提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (20)
- 一种显示基板,包括衬底基板、设置于所述衬底基板的周边区域的电压走线、设置于所述电压走线远离所述衬底基板的一侧的封装层,以及,设置于所述衬底基板的显示区域的多个像素单元;所述封装层设置于所述衬底基板的周边区域和所述衬底基板的显示区域;所述显示基板还包括设置于所述封装层远离所述衬底基板的一侧的天线,所述天线为网格状天线;所述电压走线上设置有镂空部;所述天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
- 如权利要求1所述的显示基板,其中,所述电压走线包括第一电压走线部、第二电压走线部、第三电压走线部和第四电压走线部;所述第一电压走线部设置于所述显示区域第一侧,所述第二电压走线部设置于所述显示区域第二侧,所述第三电压走线部设置于所述显示区域第三侧,所述第四电压走线部设置于所述显示区域第四侧;所述第一侧和所述第二侧为相对侧,所述第三侧和所述第四侧为相对侧,所述第一侧与所述第三侧为相邻侧,所述第二侧与所述第三侧为相邻侧;在所述显示区域第四侧设置有驱动集成电路;所述镂空部设置于所述第一电压走线部、所述第二电压走线部、所述第三电压走线部中至少之一上。
- 如权利要求2所述的显示基板,其中,所述周边区域包括电压走线区域和封装区;所述电压走线区域设置于所述封装区靠近所述显示区域的一侧;所述电压走线设置于所述电压走线区域;所述电压走线为阴极电压走线;所述显示基板包括设置于所述显示区域第一侧的第一驱动电路区域,以及,设置于所述显示区域第二侧的第二驱动电路区域;所述阴极电压走线包括第一阴极电压走线部、第二阴极电压走线部和设置于所述显示区域第三侧的第三阴极电压走线部;所述第一阴极电压走线部设置于所述封装区与所述第一驱动电路区域之间,所述第二阴极电压走线部设置于所述封装区与所述第二驱动电路区域之间;所述镂空部设置于所述第一阴极电压走线部、所述第二阴极电压走线部、所述第三阴极电压走线部中至少之一上。
- 如权利要求1至3中任一权利要求所述的显示基板,其中,所述镂空部为矩形镂空部,所述镂空部的第一长边和所述镂空部的第二长边沿所述电压走线的延伸方向延伸。
- 如权利要求4所述的显示基板,其中,所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第一长边之间的最短距离,与所述天线的至少部分端部在所述衬底基板上的正投影与所述镂空部的第二长边之间的最短距离之间的差值的绝对值小于或等于距离差值阈值;所述距离差值阈值大于等于0而小于等于3um。
- 如权利要求4所述的显示基板,其中,所述天线具有多个端部,所述多个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板的正投影内,所述镂空部的长边的长度大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
- 如权利要求4所述的显示基板,其中,所述天线具有N个端部,所述电压走线上设置有N个镂空部;N为大于1的整数,n为小于或等于N的正整数;所述N个端部中的第n个端部在所述衬底基板上的正投影在所述电压走线上设置的第n个镂空部在所述衬底基板上的正投影内;所述镂空部的长边的长度大于或等于λ/2n;其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
- 如权利要求4所述的显示基板,其中,所述天线具有多个端部,所述多个端部中的一个端部在所述衬底基板上的正投影在一个所述镂空部在所述衬底基板的正投影内,所述镂空部的长边的长度大于或等于λ/2n,其中,λ为所述天线的辐射频率对应的波长,n为所述封装层的折射率。
- 如权利要求4所述的显示基板,其中,设置有镂空部的电压走线部的线宽处处相等。
- 如权利要求9所述的显示基板,其中,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;所述电压走线部具有朝第二方向凸起的第一凸起部,以使得所述镂空部的电压走线的线宽处处相等。
- 如权利要求9所述的显示基板,其中,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;所述电压走线部具有朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等。
- 如权利要求9所述的显示基板,其中,所述镂空部沿第一方向延伸,第二方向和第三方向分别与所述第一方向垂直,所述第二方向与所述第三方向相反;所述电压走线部具有朝第二方向凸起的第一凸起部和朝第三方向凸起的第二凸起部,以使得所述镂空部的电压走线的线宽处处相等。
- 如权利要求9所述的显示基板,其中,设置有镂空部的电压走线部的线宽为A,所述镂空部的短边的长度小于或等于A/4。
- 如权利要求1至3中任一权利要求所述的显示基板,其中,所述显示基板包括的多个像素单元阵列排布,所述显示基板还包括设置于所述衬底基板的显示区域的多行栅线和多列数据线;所述栅线沿第一方向延伸,所述数据线沿第二方向延伸;相邻两行像素单元中距离最近的两个像素单元沿第二方向排布,所述天线为U形天线或E形天线;或者,相邻两行像素单元中距离最近的两个像素单元沿第三方向排布,所述第三方向与所述第二方向不同,所述第三方向与所述第一方向不同,所述天线为切角菱形天线。
- 如权利要求1至3中任一权利要求所述的显示基板,其中,所述天线为L形天线;所述天线包括第一端部和第二端部;所述电压走线上设置有第一镂空部 和第二镂空部;所述第一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板的正投影中,所述第二端部在所述衬底基板上的正投影在所述第二镂空部在所述衬底基板的正投影中;所述第一镂空部、所述第二镂空部分别设置于所述电压走线的相邻的侧边。
- 如权利要求1至3中任一权利要求所述的显示基板,其中,所述天线为矩形天线或T形天线;所述电压走线上设置有第一镂空部;所述天线的一端部在所述衬底基板上的正投影在所述第一镂空部在所述衬底基板的正投影中。
- 如权利要求1至3中任一权利要求所述的显示基板,其中,还包括设置于所述封装层远离所述衬底基板的一侧的触控层;所述天线设置于所述触控层远离所述封装层的一侧,所述显示基板还包括设置于所述触控层与所述天线之间的绝缘层,所述绝缘层在所述衬底基板上的正投影覆盖所述天线在所述衬底基板上的正投影。
- 如权利要求17所述的显示基板,其中,所述触控层包括多行多列触控单元;在所述触控单元中设置有多条触控信号线;所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线的线宽大于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触控信号线的线宽;所述多行多列触控单元中的与所述天线交叠的触控单元中的触控信号线中的断点个数小于所述多行多列触控单元中的未与所述天线交叠的触控单元中的触控信号线中的断点个数。
- 一种显示基板的制作方法,用于制作如权利要求1至18中任一权利要求所述的显示基板,所述显示基板的制作方法包括:在衬底基板的显示区域制作多个像素单元,在衬底基板的周边区域制作电压走线,并在所述电压走线中设置镂空部;在所述电压走线远离所述衬底基板的一侧制作封装层;在所述封装层远离衬底基板的一侧直接制作网格状天线,并使得所述网 格状天线的至少部分端部在所述衬底基板上的正投影设置于所述镂空部在所述衬底基板的正投影中。
- 一种显示装置,包括如权利要求1至18中任一权利要求所述的显示基板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/133293 WO2023092425A1 (zh) | 2021-11-25 | 2021-11-25 | 显示基板、制作方法和显示装置 |
US17/923,660 US20240155900A1 (en) | 2021-11-25 | 2021-11-25 | Display substrate, manufacturing method and display device |
CN202180003581.2A CN116635815A (zh) | 2021-11-25 | 2021-11-25 | 显示基板、制作方法和显示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/133293 WO2023092425A1 (zh) | 2021-11-25 | 2021-11-25 | 显示基板、制作方法和显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023092425A1 true WO2023092425A1 (zh) | 2023-06-01 |
Family
ID=86538557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/133293 WO2023092425A1 (zh) | 2021-11-25 | 2021-11-25 | 显示基板、制作方法和显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240155900A1 (zh) |
CN (1) | CN116635815A (zh) |
WO (1) | WO2023092425A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111638813A (zh) * | 2020-06-03 | 2020-09-08 | 京东方科技集团股份有限公司 | 一种显示装置及其制造方法 |
CN212322235U (zh) * | 2020-07-14 | 2021-01-08 | 维沃移动通信有限公司 | 一种触控显示模组及电子设备 |
CN112259585A (zh) * | 2020-10-20 | 2021-01-22 | 京东方科技集团股份有限公司 | 显示面板及显示设备 |
CN113410614A (zh) * | 2020-03-16 | 2021-09-17 | 东友精细化工有限公司 | 天线装置和显示装置 |
-
2021
- 2021-11-25 CN CN202180003581.2A patent/CN116635815A/zh active Pending
- 2021-11-25 US US17/923,660 patent/US20240155900A1/en active Pending
- 2021-11-25 WO PCT/CN2021/133293 patent/WO2023092425A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113410614A (zh) * | 2020-03-16 | 2021-09-17 | 东友精细化工有限公司 | 天线装置和显示装置 |
CN111638813A (zh) * | 2020-06-03 | 2020-09-08 | 京东方科技集团股份有限公司 | 一种显示装置及其制造方法 |
CN212322235U (zh) * | 2020-07-14 | 2021-01-08 | 维沃移动通信有限公司 | 一种触控显示模组及电子设备 |
CN112259585A (zh) * | 2020-10-20 | 2021-01-22 | 京东方科技集团股份有限公司 | 显示面板及显示设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116635815A (zh) | 2023-08-22 |
US20240155900A1 (en) | 2024-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106775066B (zh) | 触摸屏及其制作方法、触控显示装置 | |
CN106409845B (zh) | 开关元件及其制备方法、阵列基板以及显示装置 | |
WO2021208643A1 (zh) | 显示面板及显示装置 | |
CN109545838B (zh) | 一种显示面板及显示装置 | |
US20210286468A1 (en) | Touch Panel and Manufacturing Method Therefor, and Touch Display Device | |
CN103943660A (zh) | 一种显示装置 | |
TW201537731A (zh) | 畫素結構及顯示面板 | |
US20190163306A1 (en) | Touch panel and touch display device and method for fabricating the same, touch display device (as amended) | |
CN108509081B (zh) | 一种触控显示面板、其制作方法及显示装置 | |
WO2022062879A9 (zh) | 触控基板及显示面板 | |
US20230252930A1 (en) | Display panel and manufacturing method thereof | |
CN216956916U (zh) | 触控基板、显示面板及电子设备 | |
WO2023173462A1 (zh) | 显示面板 | |
US20150116605A1 (en) | Display panel | |
WO2015180302A1 (zh) | 阵列基板及其制备方法、显示装置 | |
WO2023272503A1 (zh) | 薄膜晶体管及其制备方法、显示基板、显示装置 | |
CN212569352U (zh) | 显示面板及显示装置 | |
WO2023092425A1 (zh) | 显示基板、制作方法和显示装置 | |
TWI691949B (zh) | 顯示面板 | |
CN108646479A (zh) | 显示面板和显示装置 | |
CN112673307B (zh) | 触控基板及其制作方法、显示面板 | |
CN113985634A (zh) | 显示面板及显示装置 | |
CN108287622B (zh) | 触控显示装置及其制造方法 | |
WO2023142063A1 (zh) | 天线、显示基板和显示装置 | |
TWI547006B (zh) | 共面波導結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202180003581.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17923660 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |