WO2023092418A1 - 信息反馈方法、装置、设备及存储介质 - Google Patents

信息反馈方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023092418A1
WO2023092418A1 PCT/CN2021/133272 CN2021133272W WO2023092418A1 WO 2023092418 A1 WO2023092418 A1 WO 2023092418A1 CN 2021133272 W CN2021133272 W CN 2021133272W WO 2023092418 A1 WO2023092418 A1 WO 2023092418A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
carrier
carriers
sidelink
terminal device
Prior art date
Application number
PCT/CN2021/133272
Other languages
English (en)
French (fr)
Inventor
赵振山
张博源
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/133272 priority Critical patent/WO2023092418A1/zh
Priority to CN202180100934.0A priority patent/CN117730548A/zh
Publication of WO2023092418A1 publication Critical patent/WO2023092418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an information feedback method, device, device, and storage medium.
  • the Internet of Vehicles system is formed based on a sidelink (Sidelink, SL) transmission technology from device to device (D2D). transmission delay.
  • SL sidelink
  • D2D device to device
  • new air interface vehicle-to-vehicle supports sidelink channel state information (channel state information, CSI) feedback (or called CSI reporting).
  • CSI-RS CSI reference signal
  • the transmitting end terminal sends the CSI reference signal (CSI-RS) of the side link, and the receiving end terminal measures and obtains CSI according to the received CSI-RS, and feeds it back to the transmitting end
  • the terminal is used to assist the terminal at the sending end to adjust the transmission parameters.
  • the transmitting terminal may transmit data on multiple carriers.
  • the transmitting terminal transmits data through multiple carriers When sending SL CSI-RS to the receiving end, how the receiving end terminal feeds back the obtained CSI of multiple carriers to the sending end terminal is an urgent problem to be solved.
  • Embodiments of the present application provide an information feedback method, device, device, and storage medium, which are used to provide an implementation scheme for a receiving terminal terminal to feed back or report sidelink measurement results of multiple carriers in a sidelink multi-carrier system.
  • the present application provides an information feedback method, which is applied to a first terminal device, and the method includes:
  • the present application provides an information feedback device, which is applied to a first terminal device, and the device includes:
  • a receiving module configured to receive sidelink reference signals on M carriers, where M is an integer greater than or equal to 2;
  • a processing module configured to acquire sidelink measurement results of the M carriers according to the sidelink reference signal
  • a determining module configured to determine Q target carriers, where Q is a positive integer
  • a sending module configured to feed back the sidelink measurement results of the M carriers on the Q target carriers.
  • an embodiment of the present application provides a terminal device, including: a processor, a memory, a transceiver, and a system bus;
  • the memory is used to store computer-executable instructions
  • the processor is configured to obtain computer instructions from the memory, and execute the computer instructions to implement the method described in the first aspect above.
  • the above-mentioned processor may be a chip.
  • the embodiments of the present application may provide a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed by a processor, they are used to implement the method described in the first aspect. method.
  • an embodiment of the present application provides a computer program, which is used to execute the method as described in the first aspect when the computer program is executed by a processor.
  • an embodiment of the present application provides a computer program product, including a computer program, and when the computer program is executed by a processor, it is used to implement the method as described in the first aspect.
  • the embodiment of the present application provides a chip, including: a processing module and a communication interface, where the processing module can execute the method described in the first aspect.
  • the chip further includes a storage module (such as a memory), the storage module is used to store instructions, and the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the first aspect the method described.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the first aspect the method described.
  • the eighth aspect of the present application provides a communication system, including: a first terminal device and a second terminal device;
  • the first terminal device is the information feedback device described in the second aspect above;
  • the communication system may further include: a network device, where the network device is configured to provide services for the first terminal device and/or the second terminal device.
  • the first terminal device when the first terminal device receives the sidelink reference signal on multiple carriers, after obtaining the sidelink measurement results of multiple carriers according to the sidelink reference signal , one or more target carriers for feeding back the sidelink measurement results of the multiple carriers may be determined, and feedback or reporting may be performed on the one or more target carriers.
  • This technical solution provides an implementation scheme for the receiving end terminal to feed back or report the sidelink measurement results of multi-carriers in the sidelink multi-carrier system, which can improve the utilization rate of system resources, reduce the impact of half-duplex, or improve the sidelink measurement results Feedback success rate.
  • Figure 1 is a schematic diagram of the architecture of V2X communication
  • Fig. 2 is a system architecture diagram of lateral communication within network coverage
  • Fig. 3 is a system architecture diagram of side communication with partial network coverage
  • Fig. 4 is a kind of system architecture diagram of the lateral communication outside the network coverage
  • FIG. 5 is a schematic diagram of a unicast transmission mode between terminals
  • FIG. 6 is a schematic diagram of a multicast transmission mode between terminals
  • FIG. 7 is a schematic diagram of a broadcast transmission mode between terminals
  • FIG. 8 is a schematic flowchart of Embodiment 1 of the information feedback method provided by the present application.
  • FIG. 9 is a schematic flowchart of Embodiment 2 of the information feedback method provided by the present application.
  • FIG. 10 is a schematic diagram of receiving SL CSI on M carriers and feeding back M CSIs on one carrier;
  • FIG. 11 is a schematic diagram of receiving SL CSI on M carriers and feeding back M CSIs on M carriers respectively;
  • FIG. 12 is a schematic diagram of the first structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a second structure of information corresponding to each carrier in the MAC CE in an embodiment of the present application
  • FIG. 14 is a schematic diagram of a third structure of information corresponding to each carrier in the MAC CE in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a fourth structure of information corresponding to each carrier in the MAC CE in an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a fifth structure of information corresponding to each carrier in the MAC CE in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a sixth structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • FIG. 18 is a schematic flowchart of Embodiment 3 of the information feedback method provided by the present application.
  • FIG. 19 is a schematic structural diagram of an embodiment of an information feedback device provided by the present application.
  • FIG. 20 is a schematic structural diagram of an embodiment of a terminal device provided by the present application.
  • Fig. 21 is a schematic structural diagram of an embodiment of a communication system provided by the present application.
  • the Internet of Vehicles system is a sidelink transmission technology based on D2D. It mainly studies the scenarios of vehicle-to-vehicle communication. The method of receiving or sending through the base station is different. The IoV system adopts the method of terminal-to-terminal direct communication, which has higher spectral efficiency and lower transmission delay.
  • the Internet of Vehicles terminal realizes the interaction of intelligent information between vehicles and X (vehicles, people, traffic roadside infrastructure and networks) through vehicle-to-everything (V2X) technology.
  • the interaction modes of V2X communication include: between vehicles and vehicles (vehicle to vehicle, V2V), between vehicles and roadside infrastructure (vehicle to infrastructure, V2I), between vehicles and pedestrians (vehicle to pedestrian, V2P), between vehicles Communication with the network (vehicle to network, V2N).
  • the roadside infrastructure may be a roadside unit (roadside unit, RSU).
  • FIG. 1 is a schematic diagram of the architecture of V2X communication.
  • V2X communication includes V2V communication, V2P communication, V2I communication and V2N communication.
  • V2X services are transmitted through sidelinks or Uu ports.
  • V2X realizes typical application scenarios such as information services, traffic safety, and traffic efficiency by means of all-round connections and efficient information interaction with people, vehicles, roads, and cloud platforms.
  • the Internet of Vehicles terminal can obtain various information services through V2I and V2N communication, including traffic light information, vehicle information in nearby areas, vehicle navigation, emergency rescue, infotainment services, etc.
  • V2V and V2P communication Through V2V and V2P communication, the speed, location, driving situation and pedestrian activities of surrounding vehicles can be obtained in real time, and the collision warning function can be realized through intelligent algorithms to avoid traffic accidents.
  • functions such as vehicle speed guidance can be realized to improve traffic efficiency.
  • V2X in the NR system is called NR-V2X.
  • NR-V2X new wireless (new radio, NR) communication system
  • it is necessary to support automatic driving. Therefore, higher requirements are put forward for data interaction between vehicle terminals, such as higher throughput, lower delay, higher reliability, larger coverage, more flexible resource allocation, and more.
  • sidelink communication In the NR-V2X system, communication through sidelinks is called sidelink communication.
  • sidewalk communication is different under different network coverage environments.
  • side communication according to the network coverage of the communicating terminal device, it can be divided into side communication within network coverage, side communication with partial network coverage, and side communication outside network coverage.
  • FIG. 2 is a system architecture diagram of lateral communication within network coverage.
  • all terminals performing sidewalk communication for example, the first terminal device and the second terminal device in Figure 2 are covered by the same network device (base station) Therefore, these terminals can all receive the configuration instruction of the network device, and perform sidelink communication based on the same sidelink configuration information.
  • FIG. 3 is a system architecture diagram of sidelink communication covered by a partial network.
  • FIG. 3 in the case of side communication with partial network coverage, only some terminals performing side communication are located within the coverage of network equipment (base stations), and these terminals can receive configuration signaling from network equipment, and According to the configuration command to carry out side communication.
  • base stations network equipment
  • terminals located outside the network coverage cannot receive configuration signaling from the base station.
  • terminals outside the network coverage will The information carried in the physical sidelink broadcast channel (physical sidelink broadcast channel, PSBCH) received by the terminal in the terminal determines the sidelink configuration information, and then performs sidelink communication based on the sidelink configuration information.
  • PSBCH physical sidelink broadcast channel
  • the first terminal device is located within the coverage of the network device, and the second terminal device is located outside the coverage of the network. Therefore, the first terminal device can communicate with The second terminal device performs sidelink communication, and the second terminal device will determine the sidelink configuration information according to the pre-configuration information and the information carried in the PSBCH received from the first terminal device, and then based on the sidelink configuration information and the first The end device performs sidewalk communication.
  • FIG. 4 is a system architecture diagram of lateral communication outside network coverage.
  • all terminals (the first terminal device and the second terminal device) performing side communication are located outside the network coverage, and at this time, all terminals (the first terminal device and the second terminal device) Both terminal devices) determine the sidelink configuration information according to the pre-configuration information, and then perform sidelink communication based on the sidelink configuration information.
  • the first terminal device and the second terminal device are terminal devices capable of V2X communication, and are used to perform V2X communication.
  • the first terminal device and the second terminal device The V2X communication is performed through the wireless communication interface, and the first terminal device and the network device, or the second terminal device and the network device communicate through the wireless communication interface.
  • the wireless communication interface between the first terminal device and the second terminal device is referred to as the first air interface
  • the first air interface is, for example, sidelink
  • the wireless communication interface between devices is called a second air interface
  • the second air interface is, for example, a Uu interface.
  • the Internet of Vehicles system adopts a terminal-to-terminal direct communication method.
  • two transmission modes are defined in 3GPP: the first mode and the second mode.
  • the first mode the transmission resource of the terminal device is allocated by the network device (base station), and the terminal device sends data on the sidelink according to the resources allocated by the network device; the network device can allocate resources for a single transmission to the terminal device , and resources for semi-static transmission may also be allocated to the terminal device, which will not be repeated here.
  • the network device allocates transmission resources for sidelink transmission to each terminal device.
  • the second mode the terminal device selects a resource from the resource pool for data transmission.
  • the first terminal device and the second terminal device can independently select transmission resources from the resource pool configured by the network for sidelink transmission; in the system shown in Figure 3 above, the first terminal device The second terminal device can select transmission resources in the resource pool by listening, or select transmission resources in the resource pool by random selection; in the system shown in Figure 4 above, outside the network coverage, the first The first terminal device and the second terminal device transmit in the second mode.
  • transmission resources can be independently selected from a preconfigured resource pool for sidelink transmission, wherein the resource pool is obtained through preconfiguration.
  • the manner in which the first terminal device and the second terminal device select transmission resources it may be determined according to actual conditions, and will not be repeated here.
  • LTE-V2X supports the broadcast transmission mode
  • NR-V2X can support the broadcast transmission mode, and can also support the unicast and multicast transmission modes.
  • FIG. 5 is a schematic diagram of a unicast transmission manner between terminals.
  • each sending terminal corresponds to only one receiving terminal.
  • unicast transmission is performed between the first terminal device and the second terminal device.
  • FIG. 6 is a schematic diagram of a multicast transmission manner between terminals.
  • each sending terminal may correspond to all terminals in a communication group or all terminals within a certain transmission distance.
  • the first terminal device, the second terminal device, the third terminal device, and the fourth terminal device form a communication group.
  • other terminal devices (second terminal device, third terminal device, and fourth terminal device) in the communication group are all receiving terminal devices.
  • FIG. 7 is a schematic diagram of a broadcast transmission manner between terminals.
  • the receiving terminal corresponding to each transmitting terminal may be any terminal around the transmitting terminal.
  • the first terminal device is the sending terminal
  • other terminals around the first terminal device can be used as the receiving terminal.
  • NR-V2X supports side channel state information (channel state information, CSI) feedback (or CSI reporting), and the sending terminal sends a reference signal of side channel state information (SL CSI-RS), the receiving terminal performs channel measurement according to the CSI-RS sent by the transmitting terminal, obtains CSI, and feeds back (or reports) the CSI to the transmitting terminal to assist the transmitting terminal in adjusting transmission parameters, for example , adjust the modulation and coding scheme (modulation and coding scheme, MCS), etc.
  • CSI channel state information
  • MCS modulation and coding scheme
  • the sending terminal will only send SL CSI-RS when the following three conditions are met:
  • the sending terminal sends the corresponding physical sidelink shared channel (PSSCH):
  • the SL CSI-RS can be sent at the same time only when the transmitting terminal transmits the PSSCH, and the transmitting terminal cannot only transmit the SL CSI-RS;
  • the high-level signaling activates the sideline CSI reporting:
  • the parameter sl-CSI-Acquisition-r16 is included in the radio resource control (radio resource control, RRC) configuration parameter. Only when this parameter is configured as enable, the sending terminal supports the transmission of SL CSI-RS;
  • RRC radio resource control
  • the information field "CSI request" is included in the second-order SCI (for example, SCI format 2-A or SCI format 2-B).
  • the sending terminal will send the SL CSI -RS.
  • the NR-V2X R16 version supports CSI feedback from the receiving terminal to the transmitting terminal in the unicast scenario. Since it does not introduce complex multi-antenna technology, it currently only supports channel quality indicator (CQI)/rank indicator , RI) feedback, does not support precoding matrix indicator (precoding matrix indicator, PMI) feedback.
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • the receiving terminal when feeding back the CQI/RI, the receiving terminal requires the CQI (4-bit information) and RI (1-bit information) to be bound together and fed back to the transmitting terminal.
  • the sidelink physical feedback channel physical sidelink feedback channel, PSFCH
  • PSFCH physical sidelink feedback channel
  • HARQ hybrid automatic repeat request
  • CQI/RI information feedback can only be passed through the traffic channel (PSSCH ) and carried in the control element (Control Element, CE) of the medium access layer (Medium Access Control, MAC).
  • the CQI fed back by the terminal at the receiving end is a wideband CQI, that is, the CQI corresponding to the bandwidth occupied by the PSSCH, and each codeword (codeword) corresponds to a wideband CQI feedback.
  • the transmitting terminal indicates the delay boundary to the receiving terminal through the radio resource control (PC5-RRC) signaling between the direct communication interface.
  • the PC5-RRC instruction sent by the transmitting terminal to the receiving terminal carries The parameter sl-LatencyBoundCSI-Report, so that the receiving terminal can determine the latency boundary according to the parameter sl-LatencyBoundCSI-Report.
  • the receiving terminal detects SL CSI, it needs to set The CSI is fed back to the sending terminal.
  • multi-carrier transmission can be supported on the sidelink.
  • a multi-carrier transmission scheme is introduced, and the data of the terminal device can be transmitted on one or more carriers. Therefore, there is a problem of selecting a transmission carrier.
  • a commonly used method is to select the carrier with the lowest CBR for data transmission according to the channel busy ratio (CBR) of each carrier.
  • CBR channel busy ratio
  • the CBR reflects the channel occupancy in the past period of time (for example, 100ms). The lower the CBR, the lower the system resource occupancy rate and the more available resources; the higher the CBR, the higher the system resource occupancy rate. , the more congested, the more prone to transmission conflict and interference.
  • the terminal at the sending end may transmit information on multiple carriers. For example, when the sending end meets the conditions for sending SL CSI-RS, if The transmitting terminal sends the SL CSI-RS to the receiving terminal through multiple carriers, that is, the receiving terminal receives the SL CSI-RS on multiple carriers, and obtains the CSI of the above multiple carriers. At this time, the receiving How the end terminal feeds back the obtained CSI of multiple carriers to the sending end terminal is an urgent problem to be solved.
  • the technical conception process of this application is as follows: the inventor of this application found that the receiving terminal can feed back or report CSI on multiple carriers or multiple PSSCH channels respectively, so that although the purpose of multiple CSI reporting can be achieved , but this method may have the problems of resource waste, low transmission efficiency, and low transmission success rate. If the CSI of multiple carriers is fed back on one carrier and fed back on one PSSCH, it can not only save feedback resources and improve System resource utilization, and can reduce the impact of half-duplex. In addition, the receiving terminal can also feed back or report CSI on multiple carriers, and each carrier feeds back or reports multiple CSIs, which can improve the success rate of CSI feedback.
  • the embodiment of this application provides an information feedback method.
  • the first terminal device receives the sidelink reference signal on M carriers, M is an integer greater than or equal to 2, it can firstly use the sidelink reference signal according to the sidelink
  • the row reference signal acquires the sidelink measurement results of M carriers, and then determines Q target carriers, where Q is a positive integer, and finally feeds back the sidelink measurement results of M carriers on the Q target carriers.
  • the sidelink measurement results of M carriers are fed back on Q carriers, which can improve system resource utilization, reduce the impact of half-duplex, or increase the success rate of sidelink measurement result feedback.
  • the information feedback method provided by the embodiment of the present application can be used in the Internet of Vehicles system, can also be used in any D2D system or sideways transmission system, and can also be applied to the third generation mobile communication (the 3rd generation mobile communication, 3G), long term evolution (long term evolution, LTE) system, fourth generation mobile communication (the 4th generation mobile communication, 4G) system, advanced long term evolution system (advanced long term evolution, LTE-A), third Cellular systems related to the 3rd generation partnership project (3GPP), the 5th generation mobile communication (5G) system, and subsequent evolved communication systems.
  • 3G 3rd generation mobile communication
  • LTE long term evolution
  • 4th generation mobile communication 4th generation mobile communication
  • LTE-A advanced long term evolution system
  • 3GPP 3rd generation partnership project
  • 5G 5th generation mobile communication
  • 5G 5th generation mobile communication
  • the network equipment involved in the embodiment of the present application may be an ordinary base station (such as NodeB or eNB or gNB), a new radio controller (new radio controller, NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay (relay), distributed unit (distributed unit), reception point (transmission reception point, TRP), transmission point (transmission point, TP) or any other equipment, but the implementation of this application Examples are not limited to this.
  • a new radio controller new radio controller, NR controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay (relay), distributed unit (distributed unit)
  • reception point transmission reception point, TRP
  • transmission point transmission point
  • TP transmission point
  • the terminal equipment involved in the embodiments of this application is a terminal equipment capable of side communication, and is a equipment that provides voice and/or data connectivity to users, for example, has Handheld devices with wireless connectivity, vehicle-mounted devices, roadside units, etc.
  • Common terminal devices include: mobile phones, tablet computers, laptop computers, PDAs, mobile internet devices (mobile internet device, MID), wearable devices, such as smart watches, smart bracelets, pedometers, etc.
  • FIG. 8 is a schematic flowchart of Embodiment 1 of the information feedback method provided by the present application.
  • This method can be applied to any communication device in the Internet of Vehicles system.
  • the information feedback method is applied to the first terminal device for explanation, and the first terminal device passes through the side link Communicate with other end devices.
  • the information feedback method may include the following steps:
  • sidelink communication can be performed between terminal devices on multiple carriers.
  • the multi-carrier sidelink communication between the first terminal device and the second terminal device is used for explanation.
  • the second terminal device is a terminal device that sends the sidelink reference signal
  • the first terminal device is a terminal device that receives the sidelink reference signal.
  • the first terminal device and the second terminal device are only used to distinguish the sender and receiver of the sidelink reference signal, and do not represent the order and sequence relationship.
  • the sidelink communication system supports sidelink measurement result feedback (or called sidelink measurement result reporting), that is, the second terminal device can send sidelink information to the first terminal device on multiple carriers under certain conditions. Reference signal.
  • the first terminal device may receive sidelink reference signals on multiple carriers.
  • the second terminal device can respectively send sidelink reference signals to the first terminal device on more than or equal to M carriers, and the first terminal device receives sidelink reference signals on M carriers. line reference signal.
  • M is an integer greater than or equal to 2.
  • the first terminal device and the second terminal device are only used to distinguish the sender and receiver of the data information on the sending side, and they do not represent the sequence and sequence relationship.
  • the side reference signal is any one of the following information:
  • Sidelink channel state information reference signal (Sidelink channel state information reference signal, SL CSI-RS), physical sidelink shared channel demodulation reference signal (physical sidelink shared channel demodulation reference signal, PSSCH DMRS), physical sidelink control channel demodulation Reference signal (physical sidelink control channel demodulation reference signal, PSCCH DMRS).
  • SL CSI-RS is used to indicate sidelink CSI measurement and CSI feedback
  • PSSCH DMRS and PSCCH DMRS are used to indicate sidelink reference signal received power (Sidelink Reference Signal Received Power, S-RSRP) measurement and feedback.
  • S-RSRP Sidelink Reference Signal Received Power
  • the sidelink reference signals on the M carriers may or may not be sent simultaneously, which is not limited in this application.
  • the second terminal device sends a sidelink reference signal on each of the M carriers.
  • the second terminal device transmits at least one side reference signal on each of the M carriers, and the at least one side reference signal includes at least one of the following, for example: SL CSI-RS, PSSCH -DMRS, PSCCH-DMRS.
  • the SL CSI-RS is used for the first terminal equipment to measure CSI
  • the PSSCH-DMRS and PSCCH-DMRS are used for the first terminal equipment to measure the sidelink RSRP.
  • the first terminal device may perform measurements on the M carriers based on the sidelink reference signals, so as to obtain sidelink measurement results of the M carriers.
  • the sidelink measurement results of the M carriers include at least one of the following information:
  • Channel quality indicator channel quality indicator, CQI
  • rank indicator rank indicator
  • precoding matrix indicator precoding matrix indicator, PMI
  • S-RSRP S-RSRP
  • the first terminal device when the sidelink reference signal is the SL CSI-RS, the first terminal device performs measurements on the M carriers respectively based on the SL CSI-RS, so as to obtain CSI on the M carriers.
  • the CSI may include, but is not limited to, one or more of the following: CQI, RI, and PMI.
  • the first terminal device when the sidelink reference signal is PSSCH DMRS or PSCCH DMRS, the first terminal device performs measurements on M carriers respectively based on the PSSCH DMRS or PSCCH DMRS, so as to obtain S-RSRP on M carriers.
  • the first terminal device before the first terminal device feeds back or reports the obtained sidelink measurement results of the M carriers, it first needs to determine the Q carriers occupied by the sidelink measurement results feedback or reporting of the M carriers.
  • the first terminal device may feedback or report the sidelink measurement results of M carriers on one of the multiple carriers supported by the sidelink communication system. At this time, the first terminal device needs to determine a target carrier.
  • the first terminal device may also perform sidelink measurement results feedback or reporting of M carriers on at least two of the multiple carriers supported by the sidelink communication system. At this time, the first terminal device needs to determine Out at least two target carriers.
  • the Q target carriers are the Q carriers in the maximum number of carriers N supported by the sidelink communication system where the first terminal device is located, which may be the above-mentioned receiving sidelink reference signal
  • the Q carriers in the M carriers may not all be the Q carriers in the M carriers, or they may not be the Q carriers in the M carriers. The relationship is defined, which can be determined according to the actual situation, and will not be described in detail here.
  • the first terminal device determines the Q target carriers.
  • the following uses an example where the sidelink reference signal is SL CSI-RS and the sidelink measurement result is CSI. It should be understood that the following embodiments are also applicable to the case where the sidelink reference signal is PSSCH DRMS or PSCCH DMRS, and the sidelink measurement result is S-RSRP.
  • S803 that is, determining Q target carriers can be implemented in the following manner:
  • the first information includes at least one of the following information:
  • A1 The carrier where the sidelink reference signal is located or the carrier that receives the sidelink reference signal;
  • the first terminal device may determine Q target carriers according to the carrier where the SL CSI-RS is located or the carrier that receives the SL CSI-RS.
  • the first terminal device can only select one carrier or Q carriers among the M carriers for CSI feedback or reporting, and cannot Feedback or report CSI on the carrier receiving SL CSI-RS.
  • the first terminal device may determine the Q target carriers according to the priority corresponding to the PSSCH channel sent together with the SL CSI-RS.
  • the second terminal device sends the SL CSI-RS and the PSSCH together to the first terminal device, and correspondingly, the first terminal device will receive the SL CSI-RS on M carriers.
  • the first terminal device may According to the priority of the PSSCH associated with the SL CSI-RS on the M carriers, the carrier for feeding back or reporting the CSI is selected.
  • the first terminal device may select Q carriers corresponding to the highest priority of the PSSCH, or select Q carriers corresponding to the lowest priority of the PSSCH. For example, when the number of target carriers is 1, the first terminal device may select the carrier corresponding to the highest priority of the PSSCH, or select the carrier corresponding to the lowest priority of the PSSCH.
  • the priority of the PSSCH is determined according to priority indication information in sidelink control information (SCI) for scheduling the PSSCH.
  • the first terminal device may measure the CBR of each carrier, obtain the CRB measurement result of each carrier, and then perform carrier selection according to the CBR measurement result of each carrier, for example, select Q carriers with the lowest CBR as target carriers for feeding back CSI .
  • the CBR measurement result may be the CBR measurement result corresponding to any resource pool in the carrier, or the CBR measurement result may be the lowest CBR measurement result among the CBR measurement results corresponding to all resource pools in the carrier.
  • the first terminal device detects SL CSI-RS on M carriers, and then selects Q carriers corresponding to the lowest or highest carrier index among the M carriers as carriers for feeding back or reporting CSI.
  • A5. The indication information of the second terminal device or the indication information of the first terminal device
  • the second terminal device sends indication information to the first terminal device, which is used to instruct the first terminal device to feed back or report the CSI.
  • Carrier information correspondingly, the first terminal device may determine Q target carriers for feedback or reporting CSI according to the indication information of the second terminal device; or, the first terminal device sends indication information to the second terminal device to indicate the first The terminal device feeds back or reports carrier information used by the CSI.
  • indication information is carried in the SCI associated with the SL CSI-RS, which is used to indicate the carrier information used by the first terminal for CSI feedback.
  • carrier index information is carried in the SCI, and the first terminal device determines a corresponding carrier according to the carrier index information, and feeds back CSI on the carrier.
  • the indication information of the second terminal device or the indication information of the first terminal device may be carried in SCI, MAC CE or PC5-RRC signaling, which is not limited in this embodiment of the present application.
  • the first terminal device may determine according to the carrier information corresponding to the logical channel associated with the sidewalk measurement result Output Q target carriers for feedback or reporting of sidelink measurement results.
  • Table 1 is a correspondence table between the sideline CSI report information carried by the MAC CE and the logical channel. As shown in Table 1, the logical channel identification value corresponding to the sideline CSI report is 62. Further, according to the correspondence between the logical channel and the carrier, the carrier information corresponding to the logical channel carrying the sideline CSI report can be determined. Select Q target carriers for CSI feedback or reporting from the carriers corresponding to the logic channel associated with the CSI.
  • the sidelink measurement result is carried in MAC CE or PSSCH, wherein, MAC CE is also carried by PSSCH, and the logical channel associated with the sidelink data (for example, service data) carried by the PSSCH channel itself has a corresponding Therefore, according to the carrier information corresponding to the logical channel associated with the sidelink data carried by the PSSCH channel carrying the sidelink measurement results of the M carriers, the Q target carriers for reporting or feedback of the sidelink measurement results can also be determined.
  • A8 Information on the carrier selected by the first terminal device for transmitting the PSSCH;
  • the first terminal device has selected the carrier on which the PSSCH will be sent. At this time, when the first terminal device needs to feed back or report the sidelink measurement result, it can directly carry the sidelink measurement result in the PSSCH to be sent. Feedback or reporting of sidelink measurement results is performed on the selected Q carriers for transmitting the PSSCH.
  • the value of Q when determining Q target carriers, the value of Q may be determined according to the second information.
  • the second information includes at least one of the following information:
  • the first terminal device may determine the number of carriers used to feed back the sidelink measurement result based on priority information corresponding to the PSSCH sent together with the sidelink reference signal.
  • the first terminal device when the first terminal device receives or detects M SL CSI-RSs on M carriers, it may acquire M pieces of priority information of PSSCHs associated with the M SL CSI-RSs, and then according to the M The highest priority (or lowest priority) among the pieces of priority information and the first correspondence relationship determine the number of carriers used to carry the CSI feedback information.
  • the first correspondence represents a correspondence between priorities and the number of carriers.
  • the first correspondence is pre-configured or configured by the network.
  • Table 2 is an example of the correspondence between priority information and the number of carriers carrying CSI feedback.
  • the number of carriers corresponding to priority 1 and priority 2 is 4, the number of carriers corresponding to priority 3 and priority 4 is 3, and the number of carriers corresponding to priority 5 and priority 6 is 2.
  • the number of carriers corresponding to priority 7 and priority 8 is 1.
  • Table 2 An example of the corresponding relationship between priority information and the number of carriers carrying CSI feedback information
  • the CSI to be fed back by the first terminal device corresponds to priority 1, and the number of carriers carrying CSI feedback information is determined to be four according to the correspondence between the priority 1 and the number of carriers Q.
  • the second terminal device sends indication information to the first terminal device (receiver terminal) for Instruct the first terminal device to carry the number of carriers carrying CSI feedback information.
  • the first terminal device may determine the number of carriers that feed back or report CSI according to the indication information of the second terminal device, that is, the size of Q;
  • the second terminal device sends indication information, which is used to indicate the number of carriers used by the first terminal device to feed back or report the CSI, that is, the size of Q.
  • the SCI or MAC CE sent by the second terminal device to the first terminal device includes indication information, which is used to indicate the number of carriers carrying the CSI feedback information.
  • the SCI or MAC CE sent by the first terminal device to the second terminal device includes indication information, which is used to indicate the number of carriers carrying the CSI feedback information.
  • the first terminal device and the second terminal device are under network coverage or partial network coverage
  • the first terminal device or the second terminal device may obtain configuration information sent by the network device from the network device, and determine the number of carriers carrying the CSI feedback information, that is, the size of the above-mentioned Q, based on the indication information included in the configuration information.
  • the configuration information may be sidelink bandwidth part (bandwidth part, BWP) configuration information, and the indication information in the BWP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • BWP bandwidth part
  • the configuration information may be resource pool (Resource Pool, RP) configuration information, and the indication information in the RP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • resource pool Resource Pool, RP
  • the indication information in the RP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • the first terminal device may select transmission resources from the resource pool according to pre-configured information, and determine the number of carriers used to carry the CSI feedback information .
  • the pre-configuration information may be sidelink bandwidth part (bandwidth part, BWP) configuration information, and the indication information in the BWP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • BWP bandwidth part
  • the pre-configuration information may be resource pool (Resource Pool, RP) configuration information, and the indication information in the RP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • resource pool Resource Pool, RP
  • the indication information in the RP configuration information is used to indicate the number of carriers carrying CSI feedback.
  • the first terminal device may also determine the number of carriers used to carry the sidelink measurement result based on the number of carriers for receiving the sidelink reference signal. For example, when the first terminal device receives SL CSI-RS on M carriers, it can feed back CSI on these M carriers. That is, the first terminal device may determine the value of the number Q of carriers used for feedback or carrying CSI according to the value of M.
  • the first terminal device when the first terminal device receives the sidelink reference signals on the M carriers and obtains the sidelink measurement results on the M carriers, it can Feedback or report the sidelink measurement results of the M carriers.
  • the sidelink multi-carrier system where the first terminal device and the second terminal device are located supports N carriers, and the first terminal device receives the SL CSI- RS, measure based on the SL CSI-RS, obtain the CSI of M carriers, and then select Q target carriers among the N carriers and feed back or report M carriers on each of the Q target carriers CSI.
  • the first terminal device feeds back the CSI of M carriers on the Q target carriers, which can be interpreted as feeding back the CSI of M carriers in each of the Q target carriers. Run the measurement results.
  • the MAC CE on each of the Q target carriers includes CSI corresponding to the M carriers.
  • the CSI of M carriers can be fed back on the same carrier; as another example, the CSI of M carriers is carried in the same PSSCH or MAC CE.
  • the first terminal device may not detect the SL CSI-RS on the M carriers at the same time, that is, the SL CSI-RS on the M carriers may not be sent at the same time.
  • the embodiment of this application does not limit it.
  • the first terminal device receives sidelink reference signals on M carriers
  • M is an integer greater than or equal to 2
  • Q target carriers are determined again, where Q is a positive integer
  • the sidelink measurement results of M carriers are fed back on the Q target carriers.
  • the sidelink measurement results of M carriers are fed back on Q carriers, which can improve system resource utilization, reduce the impact of half-duplex, or increase the success rate of CSI feedback.
  • FIG. 9 is a schematic flowchart of Embodiment 2 of the information feedback method provided by the present application.
  • the information feedback method may also include the following steps:
  • this S901 may be located before the above S804, that is, before feeding back the sidewalk measurement results of M carriers on the determined Q target carriers, first determine the first time interval for feedback of the sidewalk measurement results, and then determine Feedback within the first time interval.
  • S901 may be implemented through the following steps:
  • the second time interval is determined according to the delay boundary information fed back from the sidelink measurement result of the m-th carrier among the M carriers.
  • the first terminal device detects the sidelink reference signals on the M carriers, in order to be able to feed back or report the sidelink measurement results of the M carriers to the second terminal device in time, therefore, on the side of determining the M carriers
  • the m-th carrier in the M carriers is used for explanation, and m is less than or equal to A positive integer of M.
  • the first terminal device determines the second time interval of the m-th carrier among the M carriers, specifically:
  • the first terminal device first obtains the delay boundary information fed back by the sidewalk measurement results of the m-th carrier, and then according to the delay boundary information fed back by the sidewalk measurement results of the m-th carrier and the sidelink reference on the m-th carrier
  • the time slot information where the signal is located determines the second time interval of the mth carrier.
  • the first terminal device can detect the SL CSI-RS time slot information on the carrier according to the delay boundary information and , determining a second time interval corresponding to the mth carrier feeding back the CSI on the carrier.
  • the delay boundary information may be determined according to the parameter sl-LatencyBoundCSI-Report in the PC5-RRC signaling.
  • the parameter sl-LatencyBoundCSI-Report is used to indicate the time slot or The delay boundary at which the time slot where the signaling indicating the CSI report is received is started, and this parameter is expressed as the number of time slots.
  • the first terminal device detects the SL CSI-RS on the mth carrier in time slot n, and the delay boundary determined according to the parameter sl-LatencyBoundCSI-Report in the PC5-RRC signaling is 20 time slots, then the first A terminal device needs to feed back the CSI on the m-th carrier before time slot n+20.
  • the processing time of the first terminal device may include but is not limited to include: time for detecting SCI, time for measuring and obtaining CSI according to SL CSI-RS, preparation time for PSSCH carrying CSI feedback information, etc.
  • the first time interval is determined according to the M second time intervals of the M carriers.
  • the first time interval is determined according to overlapping parts of M second time intervals of M carriers.
  • the overlapping portion of the M second time intervals of the M carriers is greater than or equal to the first threshold.
  • the first threshold value is determined according to at least one of the following information:
  • the first terminal device since the first terminal device needs to feed back or report the sidelink measurement results of M carriers on each of the Q carriers, it is first necessary to determine the overlapping of the M second time intervals of the M carriers part, and ensure that the overlapping part of the M second time intervals of the M carriers is greater than or equal to the first threshold. That is, only when the time interval overlap of the corresponding feedback CSI on the M carriers is greater than or equal to the first threshold value, the CSI on the M carriers can be fed back on one carrier. Further, the M The CSI of the carrier is carried in the same PSSCH or MAC CE.
  • indication information is included in the resource pool configuration information or the sidelink BWP configuration information, and the indication information is used to indicate the first threshold value, that is, when the sidelink measurement results of M carriers are sent on the same carrier, M The minimum value of the overlapping portion of the second time interval.
  • the instruction information sent by the second terminal device to the first terminal device or the instruction sent by the first terminal device to the second terminal device may all be used to indicate the first threshold value, that is, the minimum value of the overlapping part of the M second time intervals when the sidelink measurement results of the M carriers are sent on the same carrier.
  • the first terminal device may also determine the first threshold according to priority information or other information.
  • the first terminal device when the first terminal device receives or detects M SL CSI-RSs on M carriers, it may acquire M pieces of priority information of PSSCHs associated with the M SL CSI-RSs, and then according to the M The highest priority (or lowest priority) in the pieces of priority information and the second corresponding relationship determine the first threshold value.
  • the second correspondence represents the correspondence between the priority and the first threshold.
  • the second correspondence is pre-configured or configured by the network.
  • the CSI to be fed back by the first terminal device corresponds to the first priority
  • the first threshold value is determined according to the first priority
  • the S901 (determine the first time interval) may be implemented through the following steps:
  • the second terminal device when sending the sidelink reference signal, the second terminal device will simultaneously send indication information for instructing the first terminal device to perform sidelink feedback, that is, the sidelink reference signal and the indication information instructing the first terminal device to perform sidelink feedback are located in the same time slot, therefore, the time slot where the M sidelink reference signals are located is also the time slot where the indication information that instructs the first terminal device to perform sidelink feedback is located.
  • the second terminal device sends the SL CSI-RS, it instructs the receiving end to perform sidelink feedback in the "CSI request" information field in the SCI sent simultaneously with the SL CSI-RS, that is, the SL CSI-RS and the instruction receive
  • the indication information "CSI request" for sidelink feedback by the terminal is located in the same time slot.
  • the first terminal device may directly determine the first time interval according to the delay boundary information fed back by the sidelink measurement results on the M carriers, that is, end in the time interval corresponding to the M feedback CSIs on the M carriers
  • the CSI is fed back before the end position corresponding to the time interval with the earliest position.
  • the second terminal device when the second terminal device sends the SL CSI-RS, it will also instruct the first terminal device to perform sidelink feedback through instruction information, so the first terminal device can use
  • the earliest time slot position in the time slot where the signaling information instructing the first terminal device to perform sidelink feedback is located determines the first time interval.
  • the latest slot position in the slot determines the first time interval.
  • the first terminal device may also be used to instruct the first terminal device to perform the sidelink measurement according to the time delay boundary information fed back by the sidelink measurement results on the M carriers and the time slots where the sidelink reference signals on the M carriers are located.
  • the first time interval is determined by the time slot where the signaling information fed back is located. That is, according to the time slots where the sidelink reference signals on the M carriers are located or the time slots where the signaling information for instructing the first terminal device to perform sidelink feedback is located, and the time when the sidelink measurement results are fed back on the M carriers
  • the extended boundary information respectively determines M second time intervals on the M carriers, and determines the first time interval according to the time slot with the latest start position and the time slot with the earliest end position among the M second time intervals.
  • the maximum value of the start positions is t k2 to determine the start position of the first time interval
  • the minimum value of the M end positions is t k1 to determine the end position of the first time interval.
  • the first terminal device may determine, according to the determined first time interval, the time to feed back the sidewalk measurement results of the M carriers, and the feedback of the M sidelink measurement results
  • the moment of is a moment belonging to the first time interval. That is, the first terminal device may determine a transmission resource within the first time interval during which the M sidelink measurement results are fed back, and use the transmission resource to feed back the CSI of the M carriers.
  • the first terminal device autonomously selects a sidelink transmission resource within the first time interval, and uses the sidelink transmission resource to feed back the CSI of the M carriers.
  • the first terminal device obtains the sidelink transmission resource allocated by the network device, and uses the sidelink transmission resource to feed back the CSI of the M carriers. It should be understood that the sidelink transmission resources allocated by the network are transmission resources located in the first time interval.
  • the first terminal device sends indication information to the network, where the indication information is used to indicate the first time interval, so that the network device can allocate sidelink transmission resources for the first terminal device within the first time interval .
  • sidelink measurement results of M carriers are fed back on each of the Q target carriers, for example, M pieces of CSI are fed back on each target carrier.
  • the M pieces of CSI are carried in the same PSSCH or MAC CE.
  • Example 1 When the first terminal device receives SL CSI-RS on M carriers and acquires M CSIs, it feeds back M CSIs on one carrier.
  • FIG. 10 is a schematic diagram of receiving SL CSI on M carriers and feeding back M CSIs on one carrier.
  • the sidelink multi-carrier system supports 4 sidelink carriers
  • the first terminal device and the second terminal device use the 4 sidelink carriers for sidelink transmission
  • the second terminal device Carrier 0 and carrier 1 send SL CSI-RS to the first terminal device.
  • the second terminal device sends SL CSI-RS to the first terminal device on carrier 3.
  • the first terminal device transmits SL CSI-RS based on carrier 0 and carrier 1. and the SL CSI-RS on carrier 3 to calculate the corresponding CSI respectively.
  • the first terminal device determines the second time interval of CSI feedback on each carrier according to the time slot where the SL CSI-RS received by each carrier is located and the delay boundary, as shown in the dashed box in Figure 10 As shown in FIG. 10 , the end position of the second time interval of CSI feedback on carrier 0 and carrier 1 is time slot c, and the end position of the second time interval of CSI feedback on carrier 3 is time slot d.
  • the first time interval determined according to the three second time intervals on the three carriers includes a time slot between time slot b and time slot c.
  • the CSI on the three carriers can be carried in the same MAC CE or PSSCH, and in one carrier Feedback on .
  • the first terminal device determines the carrier to feed back the CSI
  • carrier 1 and carrier 3 carrier selection can be performed among the 3 carriers .
  • carrier 0 can be selected to feed back or report CSI on three carriers, and the first terminal device needs to feed back three CSIs before the time corresponding to time slot c CSI of three carriers, as shown in FIG. 10 , the first terminal device may perform CSI feedback or report of three carriers in time slot k.
  • the first terminal device when the first terminal device receives SL CSI-RS on M carriers, it feeds back or reports the CSI of M carriers on one carrier, and feeds back on one PSSCH.
  • This method can not only save feedback resources, Improve system resource utilization and reduce the impact of half-duplex.
  • Example 2 When the first terminal device receives SL CSI-RS on M carriers and obtains M CSIs, it feeds back CSIs on the M carriers, and feeds back M CSIs on each carrier.
  • FIG. 11 is a schematic diagram of receiving SL CSI on M carriers and feeding back M CSIs on M carriers respectively.
  • the difference between Figure 11 and the above Figure 10 is that in Figure 10, the first terminal device feeds back or reports the sidelink measurement results of 3 carriers on 1 carrier, while in Figure 11, the first terminal device uses 3 carriers On each carrier in , the sidelink measurement results of 3 carriers are fed back.
  • the second time intervals for CSI feedback on Carrier 0, Carrier 1, and Carrier 3 are respectively shown in the dashed boxes in Figure 11, and the second time intervals for CSI feedback on Carrier 0 and Carrier 1
  • the end position of CSI is time slot c
  • the end position of the second time interval for feeding back CSI on carrier 3 is time slot d; at this time, the first terminal device can use the three carriers to feed back CSI, and on each carrier Feedback the CSI corresponding to the 3 carriers.
  • the first time interval determined according to the three second time intervals on the three carriers includes a time slot between time slot b and time slot c.
  • the first terminal device needs to perform resource selection in the first time interval.
  • the transmission resource of time slot k1 is selected on carrier 0, and the transmission resource of time slot k2 is selected on carrier 1.
  • the transmission resource of time slot k3 is selected on carrier 3; and the PSSCH sent on each carrier includes the CSI on the 3 carriers.
  • the time slot k1, the time slot k2, and the time slot k3 selected by the first terminal device may be the same time slot or different time slots, which is not limited in this embodiment of the present application.
  • the first terminal device when the first terminal device receives SL CSI-RS on M carriers, it feeds back CSI on M carriers, and feeds back M CSIs in each carrier, which improves the success rate of feeding back CSI.
  • the first terminal device receiving the SL CSI-RS refers to receiving the PSSCH with the SL CSI-RS, or receiving the SCI indicating that the SL CSI-RS is sent, or receiving The SCI including indication information indicating CSI feedback, where the first terminal device feeds back CSI refers to feeding back or reporting a PSSCH with CSI feedback.
  • S901 may be implemented through the following steps:
  • the third time interval is determined as the above-mentioned first time interval.
  • the delay boundary information fed back by the sidelink measurement results of the q th target carrier can be determined, and then according to the side Determine the third time interval of the qth target carrier based on the time delay boundary information fed back by the line measurement result and the time slot information where the sideline measurement result of the qth target carrier is located.
  • the qth target carrier is any one of the determined Q target carriers.
  • the third time interval may be determined as the above-mentioned first time interval.
  • the above S804 (feeding back the sidewalk measurement results of M carriers on the Q target carriers) may specifically be: within the first time interval, feeding back the sidelink measurement results of M carriers on the qth target carrier .
  • the above-mentioned M carriers can be fed back or reported on the qth target carrier sideways measurement results.
  • the first terminal device when the first terminal device receives M sidelink reference signals on M carriers and obtains the sidelink measurement results of M carriers, it may first determine the sidelink reference signals for M carriers. The first time interval of the measurement result feedback, and in the first time interval, the sidelink measurement results of the M carriers are fed back on the Q target carriers. This technical solution is determined based on the time delay boundary information fed back by each carrier in the sidelink measurement result, and can accurately improve the success rate of the feedback.
  • the delay boundary information fed back by corresponding sidelink measurement results on each carrier is the same.
  • the second terminal device sends indication information to the first terminal device, the indication information is used to indicate the delay boundary information of the feedback of the sidewalk measurement results, the time domain
  • the boundary information is applicable to all sidelink carriers, or to all carriers used for sidelink communication between the second terminal device and the first terminal device.
  • the above-mentioned embodiments introduce how to determine Q target carriers for feeding back or reporting sidelink measurement results, and on each target carrier that feeds back CSI, it is necessary to feed back sidetrack measurements of M carriers result.
  • the sidelink measurement results of the above M carriers are carried on the same MAC CE, or, the sidelink measurement results of the M carriers are carried in the same PSSCH. The following describes how to carry the sidelink measurement results of M carriers in the MAC CE through specific embodiments.
  • the problem to be solved is how to let the second terminal device (transmitter terminal) know the first terminal device (receiver terminal) The sidewalk measurement results of which carriers are included in the fed back sidetrack measurement results.
  • CSI is taken as an example for description, and the information feedback method provided in the present application may be applicable to the first terminal device (receiving terminal) feeding back other information to the second terminal device (transmitting terminal).
  • information such as feedback of S-RSRP measurement results, etc.
  • the CSI included in the MAC CE in the embodiment is replaced with S-RSRP information.
  • S-RSRP is obtained according to PSCCH DMRS or PSSCH DMRS measurement.
  • the first terminal device may not detect the SL CSI-RS in all M carriers, but only detects the SL CSI-RS on a part of the carriers. At this time, the first terminal device can only feed back the detected For the CSI on this part of the carriers, it is necessary for the second terminal device to know which carriers the CSI fed back by the first terminal device corresponds to.
  • the sidelink measurement results of the above M carriers are carried in the same MAC CE for explanation.
  • the MAC CE also includes carrier index information corresponding to the M carriers.
  • the MAC CE when the first terminal device feeds back or reports the sidelink measurement results of M carriers, in one possible design, the MAC CE includes the sidelink measurement results of M carriers; in another In one possible design, the MAC CE includes the sidelink measurement results of the M carriers and the carrier index information corresponding to the M carriers.
  • the first terminal device may include M sidelink measurement results and carrier indexes corresponding to each sidelink measurement result in the MAC CE.
  • the second terminal device transmits sidelink reference signals on M carriers
  • the terminal equipment can determine the carrier information corresponding to each sidelink measurement result.
  • the first terminal device includes the CSI to be fed back or to be reported and the carrier index corresponding to each CSI in the MAC CE.
  • the second terminal device acquires
  • the MAC CE can be used to determine the carrier information corresponding to each CSI.
  • the following uses the SL CSI-RS as the side-going reference signal and the CSI as an example for the side-going measurement result. It is assumed that CSI includes CQI and RI, wherein CQI includes 4 bits and RI includes 1 bit. Optionally, if the sidelink multi-carrier system supports 8 carriers, the carrier index information corresponds to 3 bits.
  • FIG. 12 is a schematic diagram of the first structure of the information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the first terminal device receives the SL CSI-RS on 3 carriers, it needs to feed back 3 CSIs. These 3 carriers are, for example, carrier 0, carrier 2, and carrier 3.
  • the MAC carrying the CSI feedback information As shown in Figure 12 for CE, the carrier index information, RI information and CQI information of each carrier occupy one byte respectively, for example, the carrier 0 index information, RI#0 and CQI#0 are located in byte 1.
  • RI#k represents RI information corresponding to carrier k
  • CQI#k represents CQI index information corresponding to carrier k, where k is any one of 0, 2, and 3.
  • the order of the information corresponding to each carrier shown in FIG. in the case of information, the order of the information fields corresponding to each carrier (including carrier index, CQI, and RI information) in the MAC CE can be arbitrary.
  • information corresponding to carrier 2 including carrier index information and CSI
  • information corresponding to carrier 0 and carrier 3 may be released.
  • the MAC CE includes M information fields, and each information field includes carrier index information and sidelink measurement results corresponding to one of the above M carriers.
  • the MAC CE may include M information fields, and correspondingly, each information field includes the above M carriers Carrier index information and sidelink measurement results corresponding to a carrier.
  • a differential index method when indicating the sidelink measurement results of M carriers in the MAC CE, a differential index method can be used.
  • the above-mentioned sidewalk measurement result includes the measurement result corresponding to the first measurement quantity
  • the MAC CE includes the first index information and M-1 differential index information.
  • the first index information is index information determined according to the measurement result corresponding to the first measurement quantity of the first carrier; the differential index information is differential index information determined according to the measurement result of the first carrier.
  • the first carrier is a carrier having a measurement result corresponding to the highest first measurement quantity. It can be understood that the first carrier may also be a carrier having a measurement result corresponding to the lowest first measurement quantity, which is not limited in this embodiment of the present application.
  • the carrier index information and sidelink measurement results corresponding to the first carrier are located before the carrier index information and sidelink measurement results corresponding to other carriers.
  • Manner 1 The difference index information is determined according to the difference between the measurement results of other carriers except the first carrier among the M carriers and the measurement results of the first carrier.
  • the side-going measurement result is CSI
  • the first measurement quantity is CQI information.
  • the first terminal device can determine the maximum (or minimum) CQI value among the M pieces of CQI information to be fed back (note, here is The maximum CQI value, not the maximum CQI index value), and use it as the reference CQI, and then determine the M-1 CQI differences between the other M-1 CQI values and the reference CQI, and further determine the M-1 The M-1 differential CQI indexes corresponding to each CQI difference, and the CQI index corresponding to the reference CQI.
  • the MAC CE includes the CQI index corresponding to the reference CQI and the M-1 differential CQI indexes.
  • the carrier corresponding to the reference CQI is the first carrier, and the index information corresponding to the reference CQI is the first index information.
  • the MAC CE refer to the carrier index information corresponding to the CQI and the starting position of the CSI in the MAC CE, and the subsequent M-1 information fields carry the carrier index information and CSI corresponding to other M-1 carriers.
  • the CSI corresponding to the reference CQI includes first index information
  • the CSI of the other M-1 carriers includes differential index information.
  • the MAC CE refer to the carrier index information corresponding to the CQI and the CSI located in the last information field of the M information fields in the MAC CE, and the remaining M-1 information fields carry the information corresponding to the other M-1 carriers.
  • Carrier index information and CSI where the CSI corresponding to the reference CQI includes first index information, and the CSI of other M-1 carriers includes differential index information.
  • the CSI includes CQI and RI, wherein the CQI includes 4 bits, the differential CQI includes 3 bits, and the RI includes 1 bit.
  • the carrier index information corresponds to 3 bits.
  • FIG. 13 is a schematic diagram of a second structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the first terminal device when the first terminal device receives the SL CSI-RS on three carriers such as carrier 0, carrier 2 and carrier 3, it needs to feed back 3 CSIs, wherein the CQI value on carrier 2 is the largest, therefore, it can The difference between the CQI on carrier 0 and carrier 3 relative to the CQI on carrier 2 is calculated respectively, and the differential CQI index corresponding to the difference is determined.
  • the information corresponding to carrier 2 (including carrier index information, CSI) is located at the start position of the MAC CE, and correspondingly, the information corresponding to carrier 0 and carrier 3 (carrier index Information, CSI, where CSI includes differential CQI index) is located in the following information field.
  • RI#k represents RI information corresponding to carrier k
  • CQI#k represents CQI index information corresponding to carrier k
  • Diff_CQI#k represents differential CQI index information corresponding to carrier k
  • R represents reserved information bits.
  • the differential index information is determined according to the difference between the indices corresponding to the measurement results of other carriers except the first carrier among the M carriers and the index corresponding to the first index information.
  • the side-going measurement result is CSI
  • the first measurement quantity is CQI information.
  • the first terminal device can determine the largest (or smallest) CQI index among the M pieces of CQI information to be fed back (note that here is The maximum CQI index value, not the maximum CQI value), and its corresponding CQI as the reference CQI, and then determine the M-1 CQI index differences between the other M-1 CQI index values and the index value of the reference CQI , further determining the differential CQI index corresponding to the M-1 CQI index difference values, correspondingly, including the CQI index corresponding to the reference CQI and the M-1 differential CQI index in the MAC CE.
  • the MAC CE refer to the carrier index information corresponding to the CQI and the starting position of the CSI in the MAC CE, and the subsequent M-1 information fields carry the carrier index information and CSI corresponding to other M-1 carriers , wherein the CSI corresponding to the reference CQI includes first index information, and the CSI of the other M-1 carriers includes differential index information.
  • the MAC CE refer to the carrier index information corresponding to the CQI and the CSI located in the last information field of the M information fields in the MAC CE, and the remaining M-1 information fields carry the information corresponding to the other M-1 carriers.
  • Carrier index information and CSI where the CSI corresponding to the reference CQI includes first index information, and the CSI of other M-1 carriers includes differential index information.
  • CSI includes CQI and RI, where CQI includes 4 bits, differential CQI includes 2 bits, and RI includes 1 bit.
  • the carrier index information corresponds to 3 bits.
  • FIG. 14 is a schematic diagram of a third structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the first terminal device detects SL CSI-RS on 3 carriers (the 3 carriers are, for example, carrier 0, carrier 2, and carrier 3), it needs to feed back 3 CSIs, for example, the SL on carrier 2
  • the CQI index value is the largest.
  • the difference between the CQI indexes of carrier 0 and carrier 3 relative to the CQI index of carrier 2 can be calculated respectively, and the differential CQI index corresponding to the difference can be determined.
  • the information corresponding to carrier 2 (carrier index information, CSI) is located at the start position of the MAC CE, and the information corresponding to carrier 0 and carrier 3 (carrier index information, CSI, Wherein, CSI (including differential CQI index) is located in the following information field.
  • RI#k represents RI information corresponding to carrier k
  • CQI#k represents CQI index information corresponding to carrier k
  • Diff_CQI#k represents differential CQI index corresponding to carrier k
  • R represents reserved information bits.
  • the CQI with the largest CQI value (or the smallest CQI value) among the M CSIs is used as the reference CQI, and the difference between the other M-1 CQIs relative to the reference CQI is calculated to obtain Differential CQI;
  • the CQI with the largest CQI index value (or the smallest CQI index value) among the M CSIs is used as the reference CQI, and the difference between the other M-1 CQIs relative to the reference CQI is calculated to obtain Differential CQI.
  • the CQI corresponding to the first carrier may also be used as the reference CQI, and the difference between the CQIs of the other M-1 carriers relative to the reference CQI is calculated to obtain the differential CQI.
  • the CQI#0 corresponding to carrier 0 is used as the reference CQI to calculate the difference between the CQI of carrier 2 and carrier 3 relative to the CQI of carrier 0.
  • the carrier The information of 0 (including carrier index information and CSI) is located at the beginning of the information field included in the MAC CE, and the information of carrier 2 and carrier 3 (including carrier index information and CSI) is located after the information of carrier 0.
  • the MAC CE includes N information fields, and the N information fields are used to carry the sidelink measurement results of N carriers, where N is the first terminal device and the second The maximum number of carriers for terminal equipment to perform sidelink communication, or N is the maximum number of carriers supported by the sidelink system, and N is an integer greater than or equal to M.
  • the maximum number of carriers for sidelink communication between the first terminal device and the second terminal device is determined through PC5-RRC interaction or according to preconfiguration information or network information.
  • the sidelink measurement results of N carriers are sequentially arranged in the MAC CE according to the carrier index sequence.
  • the first correspondence is predefined, or determined according to pre-configuration information, or determined according to network configuration information.
  • the first correspondence may be a one-to-one correspondence in forward order, or a one-to-one correspondence in reverse order, which will not be repeated here.
  • the information field corresponding to the second carrier in the MAC CE is filled with a special symbol, and the special symbol is used to indicate that the information field does not carry the sidelink measurement result .
  • the special symbols are padding bits.
  • the MAC CE when the sidelink multi-carrier system supports N carriers, the MAC CE includes N information fields, corresponding to the CSI of the N carriers, each information field includes the CSI corresponding to the carrier, and each carrier corresponds to The CSI of the MAC CE is discharged sequentially in the MAC CE, that is, the first information field corresponds to the CSI of carrier 0, the second information field corresponds to the CSI of carrier 1, and so on; or vice versa, the first information field corresponds to the CSI of carrier N, The second information field corresponds to the CSI of carrier N-1, and so on. If there is no CSI feedback on a certain carrier, the information field is filled with placeholders or special symbols for marking.
  • FIG. 15 is a schematic diagram of a fourth structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the CSI includes CQI information and RI information, where the CQI information includes 4 bits, and the RI information includes 1 bit.
  • the MAC CE includes a total of 8 information fields, and each information field includes RI and CQI information.
  • each information field includes RI and CQI information.
  • the first terminal device detects SL CSI-RS on carrier 0, carrier 2, and carrier 3
  • the corresponding RI/CQI information is included in the information fields corresponding to the 3 carriers in the MAC CE, and the remaining 5
  • the information fields corresponding to the carriers are filled with placeholders.
  • RI#k represents RI information corresponding to carrier k
  • CQI#k represents CQI information corresponding to carrier k
  • N/A represents a placeholder.
  • the sidewalk measurement result includes the measurement result corresponding to the first measurement quantity, and correspondingly: the MAC CE includes the first index information and N-1 differential index information;
  • the first index information is the index information determined according to the measurement result corresponding to the first measurement quantity of the first carrier;
  • the differential index information is the differential index information determined according to the measurement result of the first carrier;
  • the first carrier has the highest ( or the lowest) carrier of the measurement result corresponding to the first measurement quantity.
  • the MAC CE also includes carrier index information of the first carrier.
  • the first terminal device may also carry the sidelink measurement information of M carriers into the MAC CE with N information fields for feedback or reporting.
  • the MAC CE may include carrier index information of the first carrier at this time.
  • the carrier index information and the sidelink measurement results corresponding to the first carrier are located before the sidelink measurement results corresponding to other carriers.
  • the sidelink measurement results of other N-1 carriers except the first carrier among the N carriers are sequentially arranged after the carrier index information and the sidelink measurement results corresponding to the first carrier according to the carrier index order.
  • the sidelink measurement results of the other N-1 carriers are corresponding to the first carrier according to the carrier index order.
  • the carrier index information and the sidelink measurement results are sequentially discharged. Such a discharge method can enable the second terminal device to determine the other N-1 carriers after determining the sidelink measurement results of the first carrier. Lateral measurement results.
  • the information field corresponding to the third carrier in the MAC CE is filled with a special symbol, and the special symbol is used to indicate that the information field does not carry The sidelink measurement result; or, the differential index information corresponding to the third carrier is an invalid index or a reserved index.
  • the sidewalk measurement result is CSI and the first measurement quantity is CQI information for explanation.
  • the first terminal device may determine the first index information included in the MAC CE and the N-1 Differential index information.
  • the CSI in the corresponding information field is marked with placeholders or special symbols, and the length of the information field is the same as the length of the information field corresponding to the differential CQI.
  • the differential index information is determined according to the difference between the measurement results of other carriers except the first carrier among the M carriers and the measurement results of the first carrier.
  • FIG. 16 is a schematic diagram of a fifth structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the CSI includes CQI information and RI information, where the CQI information includes 4 bits, and the RI information includes 1 bit, and the differential CQI can be determined in mode 1, and the differential CQI includes 3 bits; It is described that the row multi-carrier system supports 8 carriers, and correspondingly, the carrier index information corresponds to 3 bits.
  • the first terminal device detects SL CSI-RS on 3 carriers (these 3 carriers are, for example, carrier 0, carrier 2, and carrier 3), at this time, it is necessary to feed back the CSI corresponding to the 3 carriers , where the CQI value on carrier 2 is the largest, so it is used as the reference CQI, and the difference between the CQI of carrier 0 and carrier 3 relative to the reference CQI is calculated, and the differential CQI index corresponding to the difference is determined.
  • 3 carriers are, for example, carrier 0, carrier 2, and carrier 3
  • the information corresponding to the carrier 2 is located at the beginning of the MAC CE, including the carrier index information of the carrier 2 and the corresponding CSI, and the CSI corresponding to the remaining carriers will be sequentially discharged, because There is no CSI on carrier 1, carrier 4, carrier 5, carrier 6, and carrier 7, so their corresponding information fields are filled with special symbols, such as placeholders or filling bits, so the first terminal device feeds back CSI on the MAC CE
  • the structure is shown in Figure 16.
  • RI#k represents the RI information corresponding to carrier k
  • CQI#k represents the CQI information corresponding to carrier k
  • Diff_CQI#k represents the differential CQI information corresponding to carrier k
  • N/A represents a placeholder
  • R represents a reserved information bit .
  • the difference index information is determined according to the difference between the index corresponding to the measurement results of other carriers except the first carrier among the M carriers and the index corresponding to the first index information of.
  • FIG. 17 is a schematic diagram of a sixth structure of information corresponding to each carrier in the MAC CE in the embodiment of the present application.
  • the CSI includes CQI information and RI information, where the CQI information includes 4 bits, and the RI information includes 1 bit.
  • the differential CQI may be determined in manner 2, and the differential CQI includes 2 bits.
  • the sidelink multi-carrier system supports 8 carriers, and correspondingly, the carrier index information corresponds to 3 bits.
  • the first terminal device when the first terminal device detects SL CSI-RS on 3 carriers (the 3 carriers are, for example, carrier 0, carrier 2, and carrier 3), it needs to feed back the CSI corresponding to the 3 carriers, wherein, The CQI index value on carrier 2 is the largest, therefore, the CQI on carrier 2 is used as the reference CQI, and the difference between the CQI index of carrier 0 and carrier 3 relative to the CQI index of the reference CQI is calculated, and each difference is determined Corresponding differential CQI index.
  • the 3 carriers are, for example, carrier 0, carrier 2, and carrier 3
  • the information corresponding to carrier 2 is located at the starting position of MAC CE.
  • the information corresponding to carrier 2 includes the carrier index information of carrier 2 and the corresponding CSI (RI information and CQI information), and the CSI information corresponding to other carriers followed by sequential discharge.
  • RI#k represents the RI information corresponding to carrier k
  • CQI#k represents the CQI information corresponding to carrier k
  • Diff_CQI#k represents the differential CQI information corresponding to carrier k
  • N/A represents a placeholder
  • R represents a reserved information bit .
  • the first measurement quantity includes a sidelink reference signal received power S-RSRP or a channel quality indicator CQI.
  • the sidelink reference signal is SL CSI-RS
  • the sidelink measurement result is CSI
  • the first measurement quantity may be CQI
  • the sidelink reference signal is PSCCH DMRS or PSSCH DMRS
  • the first measurement quantity may be It is S-RSRP.
  • a specific expression form of the first measurement quantity may be determined according to an actual scene, and details are not described here.
  • CSI includes RI and CQI as an example for illustration, and CSI may also include PMI information and/or HARQ-ACK information, which is not limited in this application; in addition, in the above-mentioned embodiments, RI occupies 1 bit, CQI occupies 4 bits, and differential CQI occupies 2 bits or 3 bits as an example for illustration. This application does not limit the number of bits occupied by each piece of information, which can be determined according to actual scenarios.
  • the order of information corresponding to each carrier in the MAC CE is not limited, for example, it may be the order of carrier index information, RI information, and CQI information, or the order of RI information, CQI information, and carrier index information. order of information.
  • FIG. 18 is a schematic flowchart of Embodiment 3 of the information feedback method provided in the present application.
  • the information feedback method may include the following steps:
  • the first terminal device when the second terminal device sends a sidelink reference signal to the first terminal device, the first terminal device may perform detection on the channel to receive the sidelink reference signal sent by the second terminal device. reference signal.
  • the first terminal device detects and receives sidelink reference signals on K carriers. It can be understood that the second terminal device should have sent sidelink reference signals on carriers greater than or equal to K.
  • the second terminal device acquires the sidelink measurement results on each of the K carriers according to the received sidelink reference signal, and correspondingly, can acquire the sidelink measurement results of the K carriers.
  • the first terminal device may randomly select M carriers from the K carriers.
  • the first terminal may select M carriers from the K carriers based on the CBR measurement result. For example, M carriers with the lowest CBR measurement results are selected.
  • the first terminal may select M carriers from the K carriers based on priorities. For example, the carrier where the M PSSCHs with the highest priorities corresponding to the PSSCHs sent simultaneously with the sidelink reference signal are selected.
  • the first terminal device selects M carriers that meet the conditions from the K carriers, and feeds back the sidewalk measurement results corresponding to the M carriers to the second terminal device.
  • the first terminal device may also determine the value of M according to third information; where the third information includes at least one of the following information:
  • the first terminal device may determine the value of M based on priority information corresponding to the PSSCH sent together with the sidelink reference signal.
  • the first terminal device may obtain K priority information of the PSSCH associated with the K SL CSI-RS, and then according to the K The priority information determines the number M of carriers for the sidelink measurement results to be fed back.
  • the second terminal device may send indication information to the first terminal device, which is used to indicate the carrier number M of the sidelink measurement result to be fed back by the first terminal device, for example, the second terminal device sends the first terminal device
  • the SCI or MAC CE includes indication information, which is used to indicate the number M of carriers of the sidelink measurement results to be fed back.
  • the first terminal device sends indication information to the second terminal device, which is used to instruct the first terminal device to feed back or report the number of CSI carriers M, for example, the SCI or MAC CE sent by the first terminal device to the second terminal device includes The indication information is used to indicate the number M of carriers of the feedback sidelink measurement result.
  • the second terminal device when the first terminal device establishes a PC5 connection with the second terminal device, the second terminal device sends an indication to the first terminal device through PC5-RRC signaling, which is used to indicate the sidelink measurement result to be fed back by the first terminal device or, the first terminal device sends an indication to the second terminal device through PC5-RRC signaling, which is used to indicate the number M of carriers of the sidelink measurement result to be fed back by the first terminal device.
  • the first terminal device may obtain configuration information sent by the network device from the network device, and determine the number M of carriers of the sidelink measurement result to be fed back based on the indication information included in the configuration information.
  • the configuration information may be sidelink BWP configuration information, and the indication information in the sidelink BWP configuration information is used to indicate the number M of carriers of the sidelink measurement results to be fed back.
  • the configuration information may be resource pool RP configuration information, and the indication information in the RP configuration information is used to indicate the number M of carriers of the sidelink measurement results to be fed back.
  • the first terminal device may select transmission resources from the resource pool according to the pre-configuration information, and determine the number M of carriers of the sidelink measurement result to be fed back.
  • the pre-configuration information may be sidelink BWP configuration information, and the indication information in the sidelink BWP configuration information is used to indicate the number M of carriers of the sidelink measurement results to be fed back.
  • the pre-configuration information may be resource pool RP configuration information, and the indication information in the RP configuration information is used to indicate the number M of carriers of the sidelink measurement results to be fed back.
  • the specific manner in which the first terminal device selects M carriers from the K carriers may be as follows:
  • M carriers are selected from the K carriers according to the descending order of the priority information.
  • the priority information is determined according to the priorities of the PSSCHs transmitted simultaneously with the sidelink reference signals of K carriers.
  • the first terminal device first determines the number M of carriers of the sidewalk measurement results to be fed back according to the third information, and then selects the M carriers with the highest priority from the K carriers, and assigns them to Feedback of the lateral measurement results.
  • the specific manner of selecting M carriers from the K carriers may be as follows:
  • the second threshold value is determined according to at least one of the following information:
  • the first terminal device when the first terminal device detects and obtains the sidelink measurement results of the K carriers on the K carriers, for each of the K carriers, the first terminal device can determine the corresponding fourth time interval.
  • the first terminal device may first obtain the delay boundary information fed back by the sidelink measurement result of the k-th carrier, and then according to the sidelink measurement result of the k-th carrier
  • the fourth time interval of the k-th carrier is determined by the fed-back delay boundary information and the time-slot information of the sidelink reference signal on the k-th carrier.
  • the first terminal device may first determine the overlapping part of the K fourth time intervals according to the K fourth time intervals corresponding to the K carriers, and then determine the overlapping part based on the relationship between the overlapping part and the second threshold value.
  • M carriers are selected, for example, the overlapping portion of the M fourth time intervals corresponding to the M carriers is greater than or equal to the second threshold.
  • the first terminal device may first acquire the sidelink measurement results of K carriers, then determine M carriers satisfying the conditions among the K carriers, and feed back the measurement results.
  • indication information is included in the resource pool or side BWP configuration information, where the indication information is used to indicate the second threshold.
  • the instruction information sent by the second terminal device to the first terminal device or the instruction sent by the first terminal device to the second terminal device Information where the indication information is used to indicate the second threshold.
  • the first terminal device may also determine the first threshold according to priority information or other information, which may be determined according to an actual scenario, and details are not described here.
  • the specific implementation of the first terminal device determining the fourth time interval corresponding to the k-th carrier may be as follows:
  • the fourth time interval is used to indicate the time interval for feeding back the sidelink measurement result on the k th carrier.
  • the first terminal device may determine the delay margin of the sidelink measurement result feedback of the k-th carrier among the K carriers according to the parameter sl-LatencyBoundCSI-Report in the PC5-RRC signaling
  • the kth carrier is any one of the K carriers, and then according to the delay boundary information fed back from the sidelink measurement results of the kth carrier and the time slot information where the sidelink reference signal on the kth carrier is located , to determine the fourth time interval of the k-th carrier.
  • the first terminal device can receive the sidelink reference signal on K carriers, and obtain the sidelink measurement results of K carriers according to the sidelink reference signal, and finally select M carriers from the K carriers .
  • the first terminal device may select the sidelink measurement results of M carriers that are fed back or reported, which can provide conditions for the second terminal device to adjust transmission parameters.
  • FIG. 19 is a schematic structural diagram of an embodiment of an information feedback device provided by the present application.
  • the apparatus may be integrated in the first terminal device, or may be the first terminal device.
  • the device may include:
  • the receiving module 1901 is configured to receive sidelink reference signals on M carriers, where M is an integer greater than or equal to 2;
  • a receiving module 1902 configured to acquire sidelink measurement results of the M carriers according to the sidelink reference signal
  • a determining module 1903 configured to determine Q target carriers, where Q is a positive integer
  • the sending module 1904 is configured to feed back the sidelink measurement results of the M carriers on the Q target carriers.
  • the determining module 1903 is specifically configured to determine Q target carriers according to the first information
  • the first information includes at least one of the following information:
  • the indication information of the second terminal device or the indication information of the first terminal device is not limited
  • the second terminal device is a terminal device that sends the sidelink reference signal.
  • the determining module 1903 is specifically configured to determine the value of Q according to the second information
  • the second information includes at least one of the following information:
  • the indication information of the second terminal device or the indication information of the first terminal device is not limited
  • the sending module 1904 is specifically configured to feed back sidelink measurement results of the M carriers on each of the Q target carriers.
  • the determining module 1903 is also configured to determine the first time interval
  • the sending module 1904 is specifically configured to feed back the sidelink measurement results of the M carriers on the Q target carriers within the first time interval.
  • the determining module 1903 is specifically configured to:
  • the feedback delay boundary information is determined.
  • the determining module 1903 is specifically configured to:
  • an overlapping portion of the M second time intervals of the M carriers is greater than or equal to a first threshold.
  • the first threshold value is determined according to at least one of the following information:
  • the indication information of the second terminal device or the indication information of the first terminal device is not limited
  • the determining module 1903 is specifically configured to determine the first time interval according to at least one of the following information:
  • the determining module 1903 is specifically configured to:
  • the sidelink measurement results of the M carriers are carried in the control unit MAC CE of the same medium access control layer.
  • the MAC CE further includes carrier index information corresponding to the M carriers.
  • the MAC CE includes M information fields, and each information field includes carrier index information and sidelink measurement results corresponding to one of the M carriers.
  • the sidewalk measurement result includes a measurement result corresponding to the first measurement quantity, and correspondingly, the MAC CE includes first index information and M-1 differential index information;
  • the first index information is the index information determined according to the measurement result corresponding to the first measurement quantity of the first carrier;
  • the differential index information is the differential index information determined according to the measurement result of the first carrier;
  • the The first carrier is the carrier having the highest measurement result corresponding to the first measurement quantity.
  • the differential index information is differential index information determined according to the measurement result of the first carrier, including:
  • the differential index information is determined according to the difference between the measurement results of other carriers except the first carrier among the M carriers and the measurement results of the first carrier.
  • the differential index information is differential index information determined according to the measurement result of the first carrier, including:
  • the differential index information is determined according to a difference between an index corresponding to a measurement result of a carrier other than the first carrier among the M carriers and an index corresponding to the first index information.
  • the carrier index information and sidelink measurement results corresponding to the first carrier are located before the carrier index information and sidelink measurement results corresponding to other carriers.
  • the MAC CE includes N information fields, and the N information fields are used to carry sidelink measurement results of N carriers, where N is the The maximum number of carriers for sidelink communication between the first terminal device and the second terminal device, where N is an integer greater than or equal to M.
  • the sidelink measurement results of the N carriers are sequentially arranged in the MAC CE according to the carrier index sequence.
  • the first correspondence is predefined, or determined according to pre-configuration information, or according to network configuration information definite.
  • the information field corresponding to the second carrier in the MAC CE is filled with special symbols, and the special symbols are used to indicate the information Domain does not host sideline measurements.
  • the sidewalk measurement result includes a measurement result corresponding to the first measurement quantity, and correspondingly: the MAC CE includes first index information and N-1 differential index information;
  • the first index information is the index information determined according to the measurement result corresponding to the first measurement quantity of the first carrier;
  • the differential index information is the differential index information determined according to the measurement result of the first carrier;
  • the The first carrier is the carrier having the highest measurement result corresponding to the first measurement quantity.
  • the differential index information is differential index information determined according to the measurement result of the first carrier, including:
  • the differential index information is determined according to the difference between the measurement results of other carriers except the first carrier among the M carriers and the measurement results of the first carrier.
  • the differential index information is differential index information determined according to the measurement result of the first carrier, including:
  • the differential index information is determined according to a difference between an index corresponding to a measurement result of a carrier other than the first carrier among the M carriers and an index corresponding to the first index information.
  • the MAC CE further includes carrier index information of the first carrier.
  • the carrier index information and sidelink measurement results corresponding to the first carrier are located before sidelink measurement results corresponding to other carriers.
  • the sidelink measurement results of other N-1 carriers except the first carrier among the N carriers are after the carrier index information and the sidelink measurement results corresponding to the first carrier in the order of carrier indexes sequential discharge.
  • the information field corresponding to the third carrier in the MAC CE is filled with special symbols, and the special symbols are used to indicate that the information field does not carry A sidelink measurement result; or, the differential index information corresponding to the third carrier is an invalid index or a reserved index.
  • the first measurement quantity includes sidelink reference signal received power S-RSRP or channel quality indicator CQI.
  • the receiving module 1901 is also configured to receive sidelink reference signals on K carriers;
  • the receiving module 1902 is further configured to obtain sidelink measurement results of the K carriers according to the sidelink reference signal;
  • the determining module 1903 is further configured to select the M carriers from the K carriers; where K is an integer greater than or equal to M.
  • the determining module 1903 is further configured to determine the value of M according to the third information
  • the third information includes at least one of the following information:
  • the indication information of the second terminal device or the indication information of the first terminal device is not limited
  • the determining module 1903 is specifically configured to select the M carriers from the K carriers according to the descending order of priority information.
  • the priority information is determined according to the priorities of PSSCHs sent simultaneously with the sidelink reference signals of the K carriers.
  • the determining module 1903 is further configured to:
  • the fourth time interval corresponding to the kth carrier; wherein, the fourth time interval is used to indicate that in the kth The time interval for feedback of sidewalk measurement results on the carrier.
  • the determining module 1903 is specifically configured to select M carriers according to the overlapping parts of the K fourth time intervals corresponding to the K carriers, and the overlapping parts of the fourth time intervals corresponding to the M carriers are greater than or equal to the second threshold.
  • the second threshold value is determined according to at least one of the following information:
  • the indication information of the second terminal device or the indication information of the first terminal device is not limited
  • the side reference signal is any one of the following information:
  • Sidelink channel state information reference signal SL CSI-RS physical sidelink shared channel demodulation reference signal PSSCH DMRS, physical sidelink control channel demodulation reference signal PSCCH DMRS.
  • the lateral measurement result includes at least one of the following information:
  • Channel quality indicator CQI Channel quality indicator CQI, rank indicator RI, precoding matrix indicator PMI or sidelink reference signal received power S-RSRP.
  • the device provided in this embodiment is used to implement the technical solution on the first terminal device side in the foregoing embodiments, and its implementation principle and technical effect are similar.
  • the first terminal device receives sidelink reference signals on multiple carriers
  • the side-going reference signal obtains the side-going measurement results of multiple carriers
  • one or more target carriers for feeding back the side-going measurement results of the multiple carriers may be determined, and the Feedback or escalation.
  • This technical solution provides an implementation scheme for the receiving end terminal to feed back or report the sidelink measurement results of multi-carriers in the sidelink multi-carrier system, which can improve the utilization rate of system resources, reduce the impact of half-duplex, or improve the sidelink measurement results Feedback success rate.
  • the device mentioned in the embodiment of the present application may be a chip, and the chip may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-chip.
  • each module of the above device is only a division of logical functions, and may be fully or partially integrated into one physical entity or physically separated during actual implementation.
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the processing module can be a separate processing element, or it can be integrated in a chip of the above-mentioned device.
  • it can also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device can Call and execute the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD)), etc.
  • FIG. 20 is a schematic structural diagram of an embodiment of a terminal device provided by the present application.
  • the terminal device may be any terminal device in the lateral communication system, for example, the terminal device is the first terminal device in the foregoing embodiment.
  • the terminal device may include: a processor 2001 , a memory 2002 , a transceiver 2003 and a system bus 2004 .
  • the memory 2002 and the transceiver 2003 are connected to the processor 2001 through the system bus 2004 and complete mutual communication.
  • the processor 2001 is configured to obtain computer instructions from the memory 2002, and implement the technical solutions of the first terminal device in the above method embodiments when executing the computer instructions.
  • the memory 2002 is used to store computer instructions, which may be a separate device independent of the processor 2001, or may be integrated in the processor 2001, which is not limited here.
  • the transceiver 2003 is used for communicating with other devices. Specifically, it can obtain side-going reference signals sent by other devices, and feed back or report the obtained side-going measurement results. It can be understood that the transceiver 2003 may be called a communication interface.
  • the system bus 2004 may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the system bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used to realize the communication between the database access device and other devices (such as client, read-write library and read-only library).
  • the memory may include a random access memory (random access memory, RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • processor can be general-purpose processor, comprises central processing unit CPU, network processor (network processor, NP) etc.; It can also be digital signal processor DSP, application specific integrated circuit ASIC, field programmable gate array FPGA or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • Fig. 21 is a schematic structural diagram of an embodiment of a communication system provided by the present application. As shown in FIG. 21 , the communication system includes a first terminal device 2101 and a second terminal device 2102 .
  • the first terminal device 2101 may be the information feedback apparatus in the above embodiment, and the second terminal device 2102 may communicate with the first terminal device 2101 .
  • the communication system may be called an Internet of Vehicles system or a D2D system.
  • the communication system of this application may further include: a network device 2103 .
  • the network device 2103 may provide services for the first terminal device 2101 and/or the second terminal device 2102 .
  • An embodiment of the present application also provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed by a processor, they are used to implement the first terminal device in the foregoing method embodiments.
  • An embodiment of the present application further provides a computer program, which is used to execute the technical solution of the first terminal device in the foregoing method embodiments when the computer program is executed by a processor.
  • An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the technical solution of the first terminal device in the foregoing method embodiments is implemented.
  • the embodiment of the present application also provides a chip, including: a processing module and a communication interface, where the processing module can execute the technical solution of the first terminal device in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, and the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module perform the aforementioned method.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module perform the aforementioned method.
  • the chip may include a memory, a processor, codes and data are stored in the memory, the memory is coupled to the processor, and the processor runs the code in the memory so that the chip is used to execute the first terminal device in the above method embodiment technical solutions.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formula, the character “/” indicates that the contextual objects are a “division” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息反馈方法、装置、设备及存储介质,第一终端设备在多个载波上接收侧行参考信号时,在根据该侧行参考信号获取多个载波的侧行测量结果后,可以确定出用于反馈该多个载波的侧行测量结果的一个或多个目标载波,并在这一个或多个目标载波上进行反馈或上报。该技术方案提供一种在侧行多载波系统中接收端终端反馈或上报多载波的侧行测量结果的实现方案,可以提高系统资源利用率,降低半双工的影响,或者提高侧行测量结果反馈的成功率。

Description

信息反馈方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息反馈方法、装置、设备及存储介质。
背景技术
随着网络技术及智能终端技术的发展,车联网受到越来越广泛的关注。车联网系统是基于终端到终端(device to device,D2D)的一种侧行链路(Sidelink,SL)传输技术形成的,采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。
现有技术中,在通信可靠性要求较高的场景中,例如,新空口车联网(NR-V2X)支持侧行信道状态信息(channel state information,CSI)反馈(或称为CSI上报)。具体的,在单播传输方式中,发送端终端发送侧行链路的CSI参考信号(CSI-RS),接收端终端根据接收到的CSI-RS进行测量获取CSI,并将其反馈给发送端终端,以辅助发送端终端调整传输参数。
然而,为了提高侧行传输系统的吞吐量,车联网系统中引入了侧行多载波传输,这时,发送端终端可能会在多个载波上传输数据,例如,在发送端终端通过多个载波向接收端发送SL CSI-RS时,接收端终端如何将获取到多个载波的CSI反馈给发送端终端是亟需解决的问题。
发明内容
本申请实施例提供一种信息反馈方法、装置、设备及存储介质,用于提供一种在侧行多载波系统中接收端终端反馈或上报多载波的侧行测量结果的实现方案。
第一方面,本申请提供一种信息反馈方法,应用于第一终端设备,所述方法包括:
在M个载波上接收侧行参考信号,M为大于等于2的整数;
根据所述侧行参考信号获取所述M个载波的侧行测量结果;
确定Q个目标载波,其中,Q是正整数;
在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
第二方面,本申请提供一种信息反馈装置,应用于第一终端设备,所述装置包括:
接收模块,用于在M个载波上接收侧行参考信号,M为大于等于2的整数;
处理模块,用于根据所述侧行参考信号获取所述M个载波的侧行测量结果;
确定模块,用于确定Q个目标载波,其中,Q是正整数;
发送模块,用于在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
第三方面,本申请实施例提供一种终端设备,包括:处理器、存储器、收发器和系统总线;
所述存储器用于存储计算机执行指令;
所述处理器用于从所述存储器中获取计算机指令,并执行所述计算机指令以实现上述第一方面所述的方法。
可选地,上述处理器可以为芯片。
第四方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被处理器执行时用于实现第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序,当该计算机程序被处理器执行时,用于执行如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时用于实现如第一方面所述的方法。
第七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面所述的方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面所述的方法。
本申请第八方面提供一种通信系统,包括:第一终端设备和第二终端设备;
所述第一终端设备为上述第二方面所述的信息反馈装置;
可选的,该通信系统还可以包括:网络设备,所述网络设备用于为所述第一终端设备和/或第二终端设备提供服务。
本申请实施例提供的信息反馈方法、装置、设备及存储介质,第一终端设备在多个载波上接收侧行参考信号时,在根据该侧行参考信号获取多个载波的侧行测量结果后,可以确定出用于反馈该多个载波的侧行测量结果的一个或多个目标载波,并在这一个或多个目标载波上进行反馈或上报。该技术方案提供一种在侧行多载波系统中接收端终端反馈或上报多载波的侧行测量结果的实现方案,可以提高系统资源利用率,降低半双工的影响,或者提高侧行测量结果反馈的成功率。
附图说明
图1为V2X通信的架构示意图;
图2为网络覆盖内的侧行通信的系统架构图;
图3为部分网络覆盖的侧行通信的系统架构图;
图4为网络覆盖外的侧行通信的一种系统架构图;
图5为终端之间进行单播传输方式的示意图;
图6为终端之间进行组播传输方式的示意图;
图7为终端之间进行广播传输方式的示意图;
图8为本申请提供的信息反馈方法实施例一的流程示意图;
图9为本申请提供的信息反馈方法实施例二的流程示意图;
图10为在M个载波上接收SL CSI且在1个载波上反馈M个CSI的示意图;
图11为在M个载波上接收SL CSI且在M个载波上分别反馈M个CSI的示意图;
图12为本申请的实施例中各个载波对应的信息在MAC CE中的第一种结构示意图;
图13为本申请的实施例中各个载波对应的信息在MAC CE中的第二种结构示意图;
图14为本申请的实施例中各个载波对应的信息在MAC CE中的第三种结构示意图;
图15为本申请的实施例中各个载波对应的信息在MAC CE中的第四种结构示意图;
图16为本申请的实施例中各个载波对应的信息在MAC CE中的第五种结构示意图;
图17为本申请的实施例中各个载波对应的信息在MAC CE中的第六种结构示意图;
图18为本申请提供的信息反馈方法实施例三的流程示意图;
图19为本申请提供的信息反馈装置实施例的结构示意图;
图20为本申请提供的终端设备实施例的结构示意图;
图21为本申请提供的一种通信系统实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述之外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着网络技术及智能车辆技术的发展,车联网越来越受到广泛关注。车联网系统是基于D2D的一种侧行链路传输技术,主要针对车车通信的场景进行研究,主要面向相对高速移动的车车、车人通信的业务,其与传统的LTE系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。
目前,在车联网系统中,车联网终端通过车用无线通信技术(vehicle-to-everything,V2X)实现车与X(车、人、交通路侧基础设施和网络)智能信息的交互。V2X通信的交互模式包括:车辆与车辆(vehicle to vehicle,V2V)之间、车辆与路边基础设施(vehicle to infrastructure,V2I)之间、车辆与行人(vehicle to pedestrian,V2P)之间、车辆与网络(vehicle to network,V2N)之间的通信。示例性的,路边基础设施可以是路边单元(road side unit,RSU)。
图1为V2X通信的架构示意图。如图1所示,V2X通信包括V2V通信、V2P通信、V2I通信和V2N通信,V2X通信过程中,V2X业务通过侧行链路(sidelink)或者Uu口进行传输。
在实际应用中,V2X借助与人、车、路、云平台之间的全方位连接和高效信息交互,实现信息服务、交通安全、交通效率等典型应用场景。车联网终端通过V2I和V2N通信可以获取各种信息服务,包括交通信号灯信息,附近区域车辆信息,车辆导航,紧急救援,信息娱乐服务等。通过V2V和V2P通信可以实时获取周围车辆的车速、位置、行车情况及行人活动等信息,并通过智能算法实现碰撞预警功能,避免交通事故。通过V2I通信可以实现车速引导等功能,提高交通效率。
随着技术的不断发展,目前引入新无线(new radio,NR)通信系统,NR系统中V2X称之为NR-V2X。在NR-V2X系统中,需要支持自动驾驶,因此,对车载终端之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X系统中,通过侧行链路进行通信称之为侧行通信。可选的,不同网络覆盖环境下的侧行通信不同。具体的,在侧行通信中,根据进行通信的终端设备所处的网络覆盖情况,可以分为网络覆盖内的侧行通信,部分网络覆盖的侧行通信,及网络覆盖外的侧行通信。
作为一种示例,图2为网络覆盖内的侧行通信的系统架构图。如图2所示,在网络覆盖内的侧行通信中,所有进行侧行通信的终端(例如,图2中的第一终端设备和第二终端设备)均处于同一网络设备(基站)的覆盖范围内,因而,这些终端均可以接收该网络设备的配置指令,并基于相同的侧行配置信息进行侧行通信。
作为另一种示例,图3为部分网络覆盖的侧行通信的系统架构图。如图3所示,在部分网络覆盖的侧行通信情况下,只有进行侧行通信的部分终端位于网络设备(基站)的覆盖范围内,这部分终端能够接收到网络设备的配置信令,而且根据该配置指令进行侧行通信。
可以理解的是,在该示例中,位于网络覆盖范围外的终端无法接收基站的配置信令,这时,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及从位于网络覆盖范围内的终端接收到的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置信息,进而再基于该侧行配置信息进行侧行通信。
例如,在图3所示的系统中,第一终端设备位于网络设备的覆盖范围内,第二终端设备位于网络覆盖范围外,因而,第一终端设备可以基于从网络设备接收到的配置指令与第二终端设备进行侧行通信,而第二终端设备将根据预配置信息和从第一终端设备接收到的PSBCH中携带的信息确定侧行配置信息,进而再基于该侧行配置信息与第一终端设备进行侧行通信。
作为再一种示例,图4为网络覆盖外的侧行通信的一种系统架构图。如图4示,在网络覆盖外侧行通信中,所有进行侧行通信的终端(第一终端设备和第二终端设备)均位于网络覆盖范围外,这时,所有终端(第一终端设备和第二终端设备)均根据预配置信息确定侧行配置信息,进而再基于该侧行配置信息进行侧行通信。
可选的,在上述图2至图4所示的系统中,第一终端设备和第二终端设备是具备V2X通信能力的终端设备,用于执行V2X通信,第一终端设备与第二终端设备之间通过无线通信接口进行V2X通信,第一终端设备与网络设备,或者,第二终端设备与网络设备之间通过无线通信接口进行通信。为清楚起见,将第一终端设备和第二终端设备之间的无线通信接口称之为第一空口,该第一空口例如为sidelink,第一终端设备和网络设备之间或第二终端设备与网络设备之间的无线通信接口称之为第二空口,该第二空口例如为Uu口。
可选的,车联网系统采用终端到终端直接通信的方式。具体的,3GPP中定义了两种传输模式:第一模式和第二模式。
第一模式:终端设备的传输资源是由网络设备(基站)分配的,终端设备根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源,此处不再赘述。在上述图2所示的系统中,第一终端设备和第二终端设备均位于网络覆盖范围内,网络设备为每个终端设备分配侧行传输使用的传输资源。
第二模式:终端设备在资源池中选取一个资源进行数据的传输。在上述图2所示的系统中,第一终端设备和第二终端设备可以在网络配置的资源池中自主选取传输资源进行侧行传输;在上述图3所示的系统中,第一终端设备与第二终端设备可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源;在上述图4所示的系统中,在网络覆盖范围外,第一终端设备和第二终端设备采用第二模式进行传输,这时,可以在预配置的资源池中自主选取传输资源进行侧行传输,其中,资源池是通过预配置的方式获取的。关于第一终端设备与第二终端设备选取传输资源的方式,其可以根据实际情况确定,此处不再赘述。
可选的,LTE-V2X支持广播传输方式,NR-V2X既可以支持广播传输方式,也可以支持单播和组播的传输方式。
示例性的,图5为终端之间进行单播传输方式的示意图。对于单播传输方式,每个发送端终端只对应一个接收端终端。如图5中,第一终端设备和第二终端设备之间进行单播传输。
可选的,图6为终端之间进行组播传输方式的示意图。对于组播传输方式,每个发送端终端可以对应一个通信组内的所有终端或者在一定传输距离内的所有终端。如图6所示,第一终端设备、第二终端设备、第三终端设备、第四终端设备构成了一个通信组。其中,第一终端设备作为发送端终端发送数据时,该通信组内的其他终端设备(第二终端设备、第三终端设备、第四终端设备)都是接收端终端。
可选的,图7为终端之间进行广播传输方式的示意图。对于广播传输方式,每个发送端终端对应的接收端终端可以是发送端终端周围的任意一个终端。如图7所示,若第一终端设备是发送端终端,则第一终端设备周围的其他终端(第二终端设备、第三终端设备、第四终端设备、第五终端设备、第六终端设备)都可以作为接收端终端。
现阶段,为了更好的支持单播通信,NR-V2X中支持侧行信道状态信息(channel state information,CSI)反馈(或称为CSI上报),发送端终端发送侧行信道状态信息的参考信号(SL CSI-RS),接收端终端根据发送端终端发送的CSI-RS进行信道测量,获取CSI,并且将该CSI反馈(或上报)给发送端终端,以辅助发送端终端调整传输参数,例如,调整调制与编码策略(modulation and coding scheme,MCS)等。
在实际应用中,发送端终端只有在满足以下3个条件时才会发送SL CSI-RS:
1、发送端终端发送对应的物理侧行链路共享信道(physical sidelink shared channel,PSSCH):
即,只有当发送端终端发送PSSCH时,才能同时发送SL CSI-RS,发送端终端不能只发送SL CSI-RS;
2、高层信令激活了侧行CSI上报:
在无线资源控制(radio resource control,RRC)配置参数中包括参数sl-CSI-Acquisition-r16,只有当该参数被配置为enable时,发送端终端才支持SL CSI-RS的发送;
3、在高层信令激活侧行CSI上报的情况下,发送端终端发送的第二阶SCI中的相应比特触发了侧行CSI上报;
具体的,在第二阶SCI中(例如,SCI格式2-A或SCI格式2-B)中包括信息域“CSI request”,当该信息域指示CSI上报时,发送端终端才会发送SL CSI-RS。
此外,NR-V2X R16版本在单播场景支持接收端终端向发送端终端反馈CSI,由于没有引入复杂的多天线技术,目前仅支持信道质量指示(channel quality indicator,CQI)/秩指示(rank indicator,RI)反馈,不支持预编码矩阵指示(precoding matrix indicator,PMI)的反馈。
同时,接收端终端在反馈CQI/RI时,要求CQI(4比特信息)与RI(1比特信息)绑定在一起同时反馈给发送端终端。在R16中,由于侧行物理反馈信道(physical sidelink feedback channel,PSFCH)仅用于混合自动重传请求(hybrid automatic repeat request,HARQ)信息反馈,因此,CQI/RI信息反馈只有通过业务信道(PSSCH)发送,并在媒体接入层(Medium Access Control,MAC)的控制单元(Control Element,CE)中承载。
接收端终端反馈的CQI为宽带CQI,即PSSCH占据的带宽对应的CQI,每个码字(codeword)对应一个宽带CQI反馈。另外,发送端终端向接收端终端通过直连通信接口之间的无线资源控制(PC5-RRC)信令指示时延边界,具体的,发送端终端向接收端终端发送的PC5-RRC指令中携带参数sl-LatencyBoundCSI-Report,从而接收端终端可以根据该参数sl-LatencyBoundCSI-Report确定时延边界,相应的,当接收端终端检测到SL CSI时,需要在该时延边界对应的时间区间内将该CSI反馈给发送端终端。
进一步的,为了提高侧行传输系统的吞吐量,在侧行链路上可以支持多载波传输。在Rel-15车联网系统中,引入了多载波传输方案,终端设备的数据可以在一个或者多个载波上进行传输,因此,存在传输载波选取的问题。目前一种常用的方式就是根据各个载波的信道占用率(channel busy ratio,CBR),终端设备选取CBR最低的载波进行数据传输。
可理解,CBR反映的是过去一段时间区间(例如,100ms)内的信道占用情况,CBR越低,表示系统资源占用率越低,可用资源越多;CBR越高,表示系统资源占用率越高,越拥塞,容易发生传输冲突和干扰。
由上述分析可知,在车联网系统中,当引入多载波传输方案时,发送端终端可能会在多个载波上进行信息传输,例如,在发送端在满足发送SL CSI-RS的条件时,若发送端终端通过多个载波分别向接收端终端发送了SL CSI-RS,即接收端终端在多个载波上均接收到了SL CSI-RS,且获取到了上述多个载波的CSI,此时,接收端终端如何将获取到多个载波的CSI反馈给发送端终端是亟需解决的问题。
针对上述问题,本申请的技术构思过程如下:本申请的发明人发现,接收端终端可以在多个载波上或多个PSSCH信道上分别反馈或上报CSI,这样虽然可以实现多个CSI上报的目的,但这种方式可能 存在资源浪费、传输效率低、传输成功率低的问题,而如果将多个载波的CSI在一个载波上反馈,并且在一个PSSCH上反馈,这样不仅可以节省反馈资源,提高系统资源利用率,并且可以降低半双工的影响。此外,接收端终端还可以在多个载波上反馈或上报CSI,并且每个载波中都反馈或上报多个CSI,这样可以提高CSI反馈的成功率。
基于上述技术构思过程,本申请的实施例提供了一种信息反馈方法,当第一终端设备在M个载波上接收侧行参考信号时,M为大于等于2的整数,其可以首先根据该侧行参考信号获取M个载波的侧行测量结果,再确定出Q个目标载波,其中,Q是正整数,最后在Q个目标载波上,反馈M个载波的侧行测量结果。该技术方案中,M个载波的侧行测量结果在Q个载波上进行反馈,可以提高系统资源利用率,降低半双工的影响,或者提高侧行测量结果反馈的成功率。
可以理解的是,本申请实施例提供的信息反馈方法可用于车联网系统中,也可以用于任意的D2D系统或侧行传输系统中,还可以应用于第三代移动通信(the 3rd generation mobile communication,3G)、长期演进(long term evolution,LTE)系统,第四代移动通信(the 4th generation mobile communication,4G)系统、先进的长期演进系统(advanced long term evolution,LTE-A)、第三代合作伙伴计划(the 3rd generation partnership project,3GPP)相关的蜂窝系统、第五代移动通信(the 5th generation mobile communication,5G)系统以及后续演进的通信系统。本申请实施例不对其进行限定。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备,但本申请实施例不限于此。
本申请实施例中涉及的终端设备,如第一终端设备或第二终端设备,是具备侧行通信能力的终端设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、路边单元等。常见的终端设备包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图8为本申请提供的信息反馈方法实施例一的流程示意图。该方法可以应用于车联网系统中的任意一个通信设备,例如,在本申请的实施例中,以该信息反馈方法应用于第一终端设备进行解释说明,该第一终端设备通过侧行链路与其他终端设备进行通信。
如图8所示,该信息反馈方法可以包括如下步骤:
S801、在M个载波上接收侧行参考信号,M为大于等于2的整数。
在本实施例中,终端设备之间可以在多载波上进行侧行通信。示例性的,本申请实施例中以第一终端设备和第二终端设备之间的多载波侧行通信进行解释说明。其中,第二终端设备是发送侧行参考信号的终端设备,第一终端设备是接收侧行参考信号的终端设备。
值得说明的是,在本申请的实施例中,第一终端设备和第二终端设备仅是为了区分发送侧行参考信号的发送方和接收方,其并不表示顺序和先后关系。
可选的,侧行通信系统中支持侧行测量结果反馈(或称为侧行测量结果上报),即,第二终端设备在一定条件下可以在多个载波上向第一终端设备发送侧行参考信号,相应的,第一终端设备可以在多个载波上接收到侧行参考信号。可选的,在本申请实施例中,假设第二终端设备可以在大于或等于M个载波上分别向第一终端设备发送侧行参考信号,而第一终端设备在M个载波上接收到侧行参考信号。
可理解,本申请实施例主要用于解决多载波传输时信息反馈的问题,因而,在本申请的实施例中,M为大于或等于2的整数。
值得说明的是,在本申请的实施例中,第一终端设备和第二终端设备仅是为了区分发送侧行数据信息的发送方和接收方,其并不表示顺序和先后关系。
可选的,在本申请的实施例中,侧行参考信号为下述信息中的任意一种:
侧行信道状态信息参考信号(Sidelink channel state information reference signal,SL CSI-RS)、物理侧行共享信道解调参考信号(physical sidelink shared channel demodulation reference signal,PSSCH DMRS)、物理侧行控制信道解调参考信号(physical sidelink control channel demodulation reference signal,PSCCH DMRS)。
其中,SL CSI-RS用于指示侧行CSI的测量及CSI反馈,PSSCH DMRS和PSCCH DMRS用于指示侧行参考信号接收功率(Sidelink Reference Signal Received Power,S-RSRP)的测量及反馈。
可选的,在本申请的实施例中,所述M个载波上的侧行参考信号可以是同时发送的,也可以不是同时发送的,本申请不做限定。
可选的,第二终端设备在所述M个载波中的每个载波上都发送侧行参考信号。
可选的,第二终端设备在所述M个载波中的每个载波上发送至少一个侧行参考信号,该至少一个侧行参考信号例如包括以下中的至少一种:SL CSI-RS,PSSCH-DMRS,PSCCH-DMRS。其中,SL CSI-RS用于第一终端设备测量CSI,PSSCH-DMRS和PSCCH-DMRS用于第一终端设备测量侧行RSRP。
S802、根据上述侧行参考信号获取M个载波的侧行测量结果。
可选的,第一终端设备在M个载波上接收到侧行参考信号后,便可以基于该侧行参考信号在M个载波上进行测量,从而得到M个载波的侧行测量结果。
可选的,M个载波的侧行测量结果包括以下信息中的至少一种:
信道质量指示(channel quality indicator,CQI)、秩指示(rank indicator,RI)、预编码矩阵指示(precoding matrix indicator,PMI)或S-RSRP。
示例性的,在侧行参考信号为SL CSI-RS时,第一终端设备便基于该SL CSI-RS在M个载波上分别进行测量,从而可以得到M个载波上的CSI。可选的,该CSI可以包括但不局限于包括如下内容中的一种或多种:CQI、RI、PMI。
示例性的,在侧行参考信号为PSSCH DMRS或PSCCH DMRS时,第一终端设备便基于该PSSCH DMRS或PSCCH DMRS在M个载波上分别进行测量,从而可以得到M个载波上的S-RSRP。
S803、确定Q个目标载波,其中,Q是正整数;
可选的,第一终端设备将获取到的M个载波的侧行测量结果反馈或上报之前,首先需要确定出用于M个载波的侧行测量结果反馈或上报所占用的Q个载波。
作为一种示例,第一终端设备可以在侧行通信系统支持的多个载波中的一个载波上进行M个载波的侧行测量结果反馈或上报,此时,第一终端设备需要确定出1个目标载波。
作为另一种示例,第一终端设备还可以在侧行通信系统支持的多个载波中的至少两个载波上进行M个载波的侧行测量结果反馈或上报,此时第一终端设备需要确定出至少两个目标载波。
可以理解的是,在本申请的实施例中,Q个目标载波是第一终端设备所在的侧行通信系统支持的最大载波数量N中的Q个载波,其可以是上述接收侧行参考信号的M个载波中的Q个载波,也可以不全是M个载波内的Q个载波,还可以不是M个载波内的Q个载波,本申请实施例并不对Q个目标载波与M个载波的具体关系进行限定,其可以根据实际情况确定,此处不作赘述。
可理解,在本申请的实施例中,第一终端设备确定Q个目标载波的方式有多种,下述以侧行参考信号为SL CSI-RS,侧行测量结果为CSI进行举例说明。应理解,下面的实施例同样适应于侧行参考信号为PSSCH DRMS或PSCCH DMRS,侧行测量结果为S-RSRP的情况。
在本申请的一种可能设计中,S803即确定Q个目标载波可以通过如下方式实现:
根据第一信息,确定Q个目标载波;
其中,第一信息包括如下信息的至少一种:
A1、侧行参考信号所在的载波或接收到该侧行参考信号的载波;
示例性的,第一终端设备可以根据SL CSI-RS所在的载波或接收到SL CSI-RS的载波确定出Q个目标载波。
例如,如果第一终端设备在M个载波上接收到SL CSI-RS,则第一终端设备只能在该M个载波中选取一个载波或Q个载波进行CSI的反馈或上报,而不能在没有接收到SL CSI-RS的载波上反馈或上报CSI。
A2、侧行参考信号所关联的PSSCH对应的优先级信息;
可选的,第一终端设备可以根据与SL CSI-RS一起发送的PSSCH信道对应的优先级来确定Q个目标载波。
具体的,第二终端设备将SL CSI-RS和PSSCH一起发送给第一终端设备,相应的,第一终端设备会在M个载波上接收到SL CSI-RS,这时,第一终端设备可以根据该M个载波上的SL CSI-RS所关联的PSSCH的优先级选取反馈或上报CSI的载波。
例如,第一终端设备可以选取对应于PSSCH最高优先级的Q个载波,或选取对应于PSSCH最低优先级的Q个载波。例如,当目标载波的数量为1时,第一终端设备可以选取对应于PSSCH最高优先级的载波,或选取对应于PSSCH最低优先级的载波。其中,PSSCH的优先级是根据调度该PSSCH的侧行控制信息(sidelink control information,SCI)中的优先级指示信息确定的。
A3、信道占用率;
示例性的,第一终端设备可以测量各个载波的CBR,得到各个载波的CRB测量结果,进而根据各个载波的CBR测量结果进行载波选取,例如,选取CBR最低的Q个载波作为反馈CSI的目标载波。
可选的,该CBR测量结果可以是载波中的任意一个资源池对应的CBR测量结果,或者,该CBR 测量结果可以是载波中的所有资源池对应的CBR测量结果中的最低CBR测量结果。
A4、载波索引信息;
例如,第一终端设备在M个载波上检测到SL CSI-RS,则选取该M个载波中对应最低或最高载波索引的Q个载波作为反馈或上报CSI的载波。
A5、第二终端设备的指示信息或第一终端设备的指示信息;
可选的,在第二终端设备和第一终端设备进行侧行RRC连接建立的过程中,第二终端设备向第一终端设备发送指示信息,用于指示第一终端设备反馈或上报CSI所用的载波信息,相应的,第一终端设备可以根据第二终端设备的指示信息确定反馈或上报CSI的Q个目标载波;或者,第一终端设备向第二终端设备发送指示信息,用于指示第一终端设备反馈或上报CSI所用的载波信息。
可选的,第二终端设备向第一终端设备发送SL CSI-RS时,在该SL CSI-RS相关联的SCI中携带指示信息,用于指示第一终端进行CSI反馈时所用的载波信息。例如,在SCI中携带载波索引信息,第一终端设备根据该载波索引信息确定相应的载波,并且在该载波上反馈CSI。
可选的,第二终端设备的指示信息或第一终端设备的指示信息可以承载在SCI、MAC CE或PC5-RRC信令中,本申请实施例并不对其进行限定。
A6、侧行测量结果所关联的逻辑信道对应的载波信息;
示例性的,由于侧行测量结果与逻辑信道相关联,且逻辑信道与载波信息有对应关系或映射关系,因而,第一终端设备可以根据侧行测量结果所关联的逻辑信道对应的载波信息确定出用于侧行测量结果反馈或上报的Q个目标载波。
可选的,表1为MAC CE携带的侧行CSI上报信息和逻辑信道的对应关系表。如表1所示,侧行CSI上报对应的逻辑信道标识值为62,进一步的,根据逻辑信道与载波的对应关系,可以确定承载侧行CSI上报的逻辑信道所对应的载波信息,从而,可以在该CSI关联的逻辑信道所对应的载波中选取CSI反馈或上报的Q个目标载波。
表1 MAC CE携带的侧行CSI上报信息和逻辑信道对应关系表
Figure PCTCN2021133272-appb-000001
A7、承载M个载波的侧行测量结果的PSSCH信道所关联的逻辑信道对应的载波信息;
可选的,由于侧行测量结果承载在MAC CE或PSSCH中,其中,MAC CE也是通过PSSCH承载的,而且,PSSCH信道本身承载的侧行数据(例如,业务数据)所关联的逻辑信道有对应的载波,因而,根据承载M个载波的侧行测量结果的PSSCH信道承载的侧行数据所关联的逻辑信道对应的载波信息也可确定用于侧行测量结果上报或反馈的Q个目标载波。
A8、第一终端设备已选取的用于传输PSSCH的载波信息;
例如,第一终端设备已经选取了将要发送PSSCH的载波,此时,第一终端设备需要反馈或上报侧行测量结果时,可以直接将侧行测量结果承载在待发送的PSSCH中,并且在已经选取的用于传输PSSCH的Q个载波上进行侧行测量结果反馈或上报。
进一步的,在本申请的实施例中,在确定Q个目标载波时,可以根据第二信息确定Q的值。
其中,第二信息包括如下信息中的至少一种:
B1、优先级信息;
可选的,第一终端设备可以基于与侧行参考信号一起发送的PSSCH对应的优先级信息来确定用于反馈侧行测量结果的载波数量。
示例性的,当第一终端设备在M个载波上接收或检测到M个SL CSI-RS时,其可以获取该M个 SL CSI-RS关联的PSSCH的M个优先级信息,进而根据该M个优先级信息中的最高优先级(或最低优先级)与第一对应关系确定用于承载CSI反馈信息的载波数量。其中,该第一对应关系表示优先级与载波数量的对应关系。可选的,该第一对应关系是预配置或网络配置的。
例如,表2为优先级信息与承载CSI反馈的载波数量之间的对应关系示例。示例性的,如表2所示,优先级1和优先级2对应的载波数量为4,优先级3和优先级4对应的载波数量为3,优先级5和优先级6对应的载波数量为2,优先级7和优先级8对应的载波数量为1。
表2优先级信息与承载CSI反馈信息的载波数量的对应关系示例
优先级取值 1 2 3 4 5 6 7 8
载波数量Q 4 4 3 3 2 2 1 1
示例性的,第一终端设备待反馈的CSI对应于优先级1,根据该优先级1与载波数量Q的对应关系确定承载CSI反馈信息的载波数量为4。
B2、第二终端设备的指示信息或第一终端设备的指示信息;
作为一种示例,在第二终端设备和第一终端设备进行侧行RRC连接建立的过程中,第二终端设备(发送端终端)向第一终端设备(接收端终端)发送指示信息,用于指示第一终端设备承载CSI反馈信息的载波数量,相应的,第一终端设备可以根据第二终端设备的指示信息确定反馈或上报CSI的载波数量,即Q的大小;或者,第一终端设备向第二终端设备发送指示信息,用于指示第一终端设备反馈或上报CSI所用的载波数量,即Q的大小。
作为另一种示例,第二终端设备向第一终端设备发送的SCI或MAC CE中包括指示信息,用于指示承载CSI反馈信息的载波数量。
作为再一种示例,第一终端设备向第二终端设备发送的SCI或MAC CE中包括指示信息,用于指示承载CSI反馈信息的载波数量。
B3、网络设备发送的配置信息;
可选的,在第一终端设备和第二终端设备处于网络覆盖或网络部分覆盖的场景中,当网络设备向第一终端设备或第二终端设备发送配置信息时,相应的,第一终端设备或第二终端设备可以从网络设备获取到该网络设备发送的配置信息,并且基于该配置信息中包括的指示信息确定出承载CSI反馈信息的载波数量,即上述Q的大小。
可选的,该配置信息可以是侧行带宽部分(bandwidth part,BWP)配置信息,该BWP配置信息中的指示信息用于指示承载CSI反馈的载波数量。
可选的,该配置信息可以是资源池(Resource Pool,RP)配置信息,该RP配置信息中的指示信息用于指示承载CSI反馈的载波数量。
B4、预配置信息;
可选的,当第一终端设备和第二终端设备均位于网络覆盖范围外时,第一终端设备可以根据预配置信息从资源池中选取传输资源,确定出用于承载CSI反馈信息的载波数量。
可选的,该预配置信息可以是侧行带宽部分(bandwidth part,BWP)配置信息,该BWP配置信息中的指示信息用于指示承载CSI反馈的载波数量。
可选的,该预配置信息可以是资源池(Resource Pool,RP)配置信息,该RP配置信息中的指示信息用于指示承载CSI反馈的载波数量。
B5、M的取值。
示例性的,第一终端设备还可以基于接收侧行参考信号的载波数量确定出用于承载侧行测量结果的载波数量。例如,当第一终端设备在M个载波上接收到SL CSI-RS时,便可以在这M个载波上反馈CSI。也即,第一终端设备可以根据M的取值确定用于反馈或承载CSI的载波数量Q的取值。
可理解,上述确定Q值的方式仅是示例性说明,本申请并不对其进行限定。
S804、在上述Q个目标载波上,反馈M个载波的侧行测量结果。
在本申请的实施例中,第一终端设备在M个载波上接收到的侧行参考信号,并获取到该M个载波上的侧行测量结果时,便可以在选定的Q个目标载波上反馈或上报M个载波的侧行测量结果。
示例性的,第一终端设备和第二终端设备所在的侧行多载波系统支持N个载波,第一终端设备在N个载波中的M个载波上接收到第二终端设备发送的SL CSI-RS,基于该SL CSI-RS进行测量,获取到M个载波的CSI,进而在N个载波中选取Q个目标载波并且在该Q个目标载波中的每个载波上均反馈或上报M个载波的CSI。
可理解,在Q=1时,第一终端设备在选取的一个载波上反馈或上报M个载波的CSI;在Q=M时,第一终端设备在M个载波上分别反馈或上报M个CSI,且每个载波上均反馈或上报M个载波的CSI;此外,Q还可以是除1或M之外的其他任意数值,本实施例不对其进行限定。
可选的,在侧行多载波系统中,第一终端设备在Q个目标载波上反馈M个载波的CSI,可以解释为在Q个目标载波中的每个目标载波中反馈M个载波的侧行测量结果。具体的,Q个目标载波中的每个目标载波上的MAC CE均包括M个载波对应的CSI。
由上分析可知,作为一种示例,M个载波的CSI可以在同一载波上进行反馈;作为另一种示例,M个载波的CSI承载在同一PSSCH或MAC CE中。
可选的,第一终端设备可以不是同时在M个载波上检测到SL CSI-RS,即该M个载波上的SL CSI-RS可以不是同时发送的。本申请实施例不对其进行限定。
本申请实施例提供的信息反馈方法,第一终端设备在M个载波上接收侧行参考信号时,M为大于等于2的整数,其首先根据该侧行参考信号获取M个载波的侧行测量结果,再确定出Q个目标载波,其中,Q是正整数,最后在Q个目标载波上,反馈M个载波的侧行测量结果。该技术方案中,M个载波的侧行测量结果在Q个载波上进行反馈,可以提高系统资源利用率,降低半双工的影响,或者提高CSI反馈的成功率。
示例性的,在上述实施例的基础上,图9为本申请提供的信息反馈方法实施例二的流程示意图。如图9所示,该信息反馈方法还可以包括如下步骤:
S901、确定第一时间区间。
可选的,该S901可以位于上述S804之前,即在确定的Q个目标载波上,反馈M个载波的侧行测量结果之前,首先确定出侧行测量结果反馈的第一时间区间,进而在确定的第一时间区间内进行反馈。
示例性的,在本申请的一种可能设计中,该S901可以通过如下步骤实现:
C1、确定M个载波中第m个载波的第二时间区间,m为小于或等于M的正整数。
其中,第二时间区间是根据M个载波中第m个载波的侧行测量结果反馈的时延边界信息确定的。
具体的,由于第一终端设备在M个载波上检测到侧行参考信号,为了能够及时将M个载波的侧行测量结果反馈或上报给第二终端设备,因而,在确定M个载波的侧行测量结果反馈的第一时间区间时,首先确定出M个载波中每个载波的第二时间区间,示例性的,以M个载波中的第m个载波进行解释说明,m为小于或等于M的正整数。
可选的,第一终端设备确定M个载波中第m个载波的第二时间区间,具体为:
第一终端设备首先获取第m个载波的侧行测量结果反馈的时延边界信息,再根据第m个载波的侧行测量结果反馈的时延边界信息以及在第m个载波上的侧行参考信号所在的时隙信息,确定第m个载波的第二时间区间。
例如,对于M个载波中的第m个载波(m=1,2,……,M),第一终端设备可以根据时延边界信息以及在该载波上检测到SL CSI-RS的时隙信息,确定在第m个载波反馈该载波上的CSI所对应的第二时间区间。
其中,该时延边界信息可以是根据PC5-RRC信令中的参数sl-LatencyBoundCSI-Report确定的,具体的,参数sl-LatencyBoundCSI-Report用于指示从接收到SL CSI-RS所在的时隙或接收到指示CSI上报的信令所在的时隙开始的时延边界,该参数表示为时隙个数。
例如,第一终端设备在时隙n在第m个载波上检测到SL CSI-RS,根据PC5-RRC信令中的参数sl-LatencyBoundCSI-Report确定的时延边界为20个时隙,则第一终端设备需要在时隙n+20之前将该第m个载波上的CSI反馈回去。
进一步的,如果该第一终端设备的处理时间为T1,则反馈第m个载波上的CSI的时间区间是[n+T1,n+20]。其中,第一终端设备的处理时间可以包括但不局限与包括:检测SCI的时间、根据SL CSI-RS进行测量获取CSI的时间、承载CSI反馈信息的PSSCH的准备时间等。
C2、根据M个载波的M个第二时间区间的重叠部分,确定第一时间区间。
可选的,根据M个载波的M个第二时间区间,确定第一时间区间。示例性的,根据M个载波的M个第二时间区间的重叠部分,确定第一时间区间。
可选的,M个载波的M个第二时间区间的重叠部分大于或等于第一门限值。其中,第一门限值根据如下信息中的至少一种确定:
第二终端设备的指示信息或第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
可选的,由于第一终端设备需要在Q个载波中的每个载波上反馈或上报M个载波的侧行测量结果,因而,首先需要确定出M个载波的M个第二时间区间的重叠部分,并且保证该M个载波的M个第二时间区间的重叠部分大于或等于第一门限值。即,只有当该M个载波上各自对应的反馈CSI的时间区间重叠部分大于或等于第一门限值时,该M个载波上的CSI才能在一个载波上进行反馈,进一步的, 该M个载波的CSI承载在同一PSSCH或MAC CE中。
可选的,在资源池配置信息或侧行BWP配置信息中包括指示信息,该指示信息用于指示第一门限值,即M个载波的侧行测量结果在同一个载波上发送时M个第二时间区间的重叠部分的最小值。
可选的,在第二终端设备和第一终端设备进行侧行RRC连接建立的过程中,第二终端设备向第一终端设备发送的指示信息或第一终端设备向第二终端设备发送的指示信息,均可以用于指示第一门限值,即M个载波的侧行测量结果在同一个载波上发送时M个第二时间区间的重叠部分的最小值。
可选的,第一终端设备还可以根据优先级信息或其他的信息确定第一门限值。
示例性的,当第一终端设备在M个载波上接收或检测到M个SL CSI-RS时,其可以获取该M个SL CSI-RS关联的PSSCH的M个优先级信息,进而根据该M个优先级信息中的最高优先级(或最低优先级)与第二对应关系确定第一门限值。其中,该第二对应关系表示优先级与第一门限值的对应关系。可选的,该第二对应关系是预配置或网络配置的。
示例性的,第一终端设备待反馈的CSI对应于第一优先级,根据该第一优先级确定第一门限值。
在本申请的另一种可能设计中,该S901(确定第一时间区间)可以通过如下步骤实现:
根据如下信息中的至少一种确定第一时间区间:
侧行测量结果反馈的时延边界信息;
M个侧行参考信号所在的时隙中最早的时隙位置;
M个侧行参考信号所在的时隙中最晚的时隙位置。
应理解,第二终端设备在发送侧行参考信号时会同时发送指示信息用于指示第一终端设备进行侧行反馈,即,侧行参考信号和指示第一终端设备进行侧行反馈的指示信息位于相同时隙,因此,所述M个侧行参考信号所在的时隙也是指示第一终端设备进行侧行反馈的指示信息所在的时隙。例如,第二终端设备在发送SL CSI-RS时,在与该SL CSI-RS同时发送的SCI中的“CSI request”信息域中指示接收端进行侧行反馈,即SL CSI-RS和指示接收端进行侧行反馈的指示信息“CSI request”位于相同时隙。
可选的,第一终端设备可以根据M个载波上的侧行测量结果反馈的时延边界信息直接确定第一时间区间,即在该M个载波上对应的M个反馈CSI的时间区间中结束位置最早的时间区间所对应的结束位置之前反馈CSI。例如,该M个载波上反馈CSI的时间区间的结束位置分别对应于时隙t m,m=1,2,……,M,该M个结束位置中的最小值为t k,则第一终端设备需要在t k对应的时域位置之前反馈CSI。
可选的,由于在侧行多载波系统中,第二终端设备在发送SL CSI-RS时,同时会通过指令信息指示第一终端设备进行侧行反馈,因而,第一终端设备可以根据用于指示第一终端设备进行侧行反馈的信令信息所在的时隙中最早的时隙位置确定第一时间区间,还可以根据用于指示第一终端设备进行侧行反馈的信令信息所在的时隙中最晚的时隙位置确定第一时间区间。例如,指示第一终端设备进行侧行反馈的信令信息所在的时隙分别对应于时隙t m,m=1,2,……,M,且M个时隙中最早的时隙在t x,x=1,2,……,M,最晚的时隙在t y,y=1,2,……,M,因而,第一终端设备可以基于时隙t x与时隙t y中的至少一个确定第一时间区间。
可选的,第一终端设备还可以根据M个载波上的侧行测量结果反馈的时延边界信息和M个载波上的侧行参考信号所在的时隙或用于指示第一终端设备进行侧行反馈的信令信息所在的时隙确定第一时间区间。即,根据M个载波上的侧行参考信号所在的时隙或用于指示第一终端设备进行侧行反馈的信令信息所在的时隙,和M个载波上的侧行测量结果反馈的时延边界信息分别确定M个载波上的M个第二时间区间,根据该M个第二时间区间中起始位置最晚的时隙以及结束位置最早的时隙确定第一时间区间。例如,该M个载波上的第二时间区间的结束位置分别对应于时隙t m,m=1,2,……,M,该M个结束位置中的最小值为t k1,该M个载波上的第二时间区间的起始位置最晚的时隙为t y,y=1,2,……,M,该M个起始位置中的最大值为t k2,则可以根据M个起始位置中的最大值为t k2确定第一时间区间的起始位置,并根据M个结束位置中的最小值为t k1确定第一时间区间的结束位置。
相应的,上述S804具体可以为:
S902、在第一时间区间内,在Q个目标载波上,反馈M个载波的侧行测量结果。
可选的,第一终端设备在Q个目标载波中的每个目标载波上,可以根据确定的第一时间区间确定反馈M个载波的侧行测量结果的时刻,该反馈M个侧行测量结果的时刻是属于该第一时间区间内的时刻。即,第一终端设备可以在该反馈M个侧行测量结果的第一时间区间内确定传输资源,并且利用该传输资源反馈M个载波的CSI。
可选的,第一终端设备在第一时间区间内自主选取侧行传输资源,并且利用该侧行传输资源反馈M个载波的CSI。
可选的,第一终端设备获取网络设备分配的侧行传输资源,并且利用该侧行传输资源反馈M个载波的CSI。应理解,网络分配的侧行传输资源是位于第一时间区间内的传输资源。可选的,第一终端设 备向网络发送指示信息,该指示信息用于指示所述第一时间区间,从而,网络设备可以为第一终端设备在所述第一时间区间内分配侧行传输资源。
具体的,在该Q个目标载波中的每个目标载波上都反馈M个载波的侧行测量结果,例如,每个目标载波上都反馈M个CSI。可选的,该M个CSI承载在相同的PSSCH或MAC CE中。
可选的,下面通过两个具体的示例对第一终端设备在Q个目标载波上反馈M个侧行测量结果的方案进行说明。
示例一:第一终端设备在M个载波上接收到SL CSI-RS,并获取到M个CSI时,在1个载波上反馈M个CSI。
示例性的,图10为在M个载波上接收SL CSI且在1个载波上反馈M个CSI的示意图。如图10所示,假设侧行多载波系统支持4个侧行载波,第一终端设备和第二终端设备利用该4个侧行载波进行侧行传输,在时隙a,第二终端设备在载波0和载波1向第一终端设备发送SL CSI-RS,在时隙b,第二终端设备在载波3上向第一终端设备发送SL CSI-RS,第一终端设备根据载波0、载波1和载波3上的SL CSI-RS分别计算相应的CSI。
在这三个载波上,第一终端设备根据每个载波接收到的SL CSI-RS所在的时隙以及时延边界确定每个载波上CSI反馈的第二时间区间,如图10中的虚线框所示,如图10所示,在载波0和载波1上CSI反馈的第二时间区间的结束位置为时隙c,在载波3上CSI反馈的第二时间区间的结束位置为时隙d。根据该三个载波上的三个第二时间区间确定的第一时间区间包括时隙b和时隙c之间的时隙。
参见图10所示,假设三个载波上的第二时间区间的重叠区域大于第一门限值,因而,这三个载波上的CSI可以承载在相同的MAC CE或PSSCH中,并且在一个载波上进行反馈。
可选的,第一终端设备在确定反馈CSI的载波时,由于第一终端设备在载波0、载波1和载波3都接收到SL CSI-RS,因此,可以在该3个载波中进行载波选取。进一步的,假设在载波0上测量的CBR结果最低,此时,可以选取载波0用于反馈或上报3个载波上的CSI,而且,第一终端设备需要在时隙c对应的时刻之前反馈3个载波的CSI,如图10所示,第一终端设备可以在时隙k进行3个载波的CSI反馈或上报。
在本示例中,第一终端设备在M个载波上接收SL CSI-RS时,将M个载波的CSI在一个载波上反馈或上报,且在一个PSSCH上反馈,该方法不仅可以节省反馈资源,提高系统资源利用率,并且可以降低半双工的影响。
示例二:第一终端设备在M个载波上接收到SL CSI-RS,并获取到M个CSI时,在该M个载波上反馈CSI,且每个载波上都反馈M个CSI。
图11为在M个载波上接收SL CSI且在M个载波上分别反馈M个CSI的示意图。图11与上述图10的区别在于,在图10中,第一终端设备在1个载波上反馈或上报3个载波的侧行测量结果,而在图11中,第一终端设备在3个载波中的每个载波上均反馈3个载波的侧行测量结果。
如图11所示,载波0、载波1以及载波3上进行CSI反馈的第二时间区间分别如图11中的虚线框所示,且,在载波0和载波1上反馈CSI的第二时间区间的结束位置为时隙c,在载波3上反馈CSI的第二时间区间的结束位置为时隙d;此时,第一终端设备可以利用该三个载波反馈CSI,并且在每个载波上都反馈3个载波对应的CSI。根据该三个载波上的三个第二时间区间确定的第一时间区间包括时隙b和时隙c之间的时隙。
可选的,第一终端设备需要在第一时间区间内进行资源选取,如图11所示,在载波0上选取了时隙k1的传输资源,在载波1上选取了时隙k2的传输资源,在载波3上选取了时隙k3的传输资源;并且在每个载波上发送的PSSCH中都包括该3个载波上的CSI。可选的,第一终端设备选取的时隙k1、时隙k2和时隙k3可以是相同的时隙或不同的时隙,本申请实施例不做限定。
在本示例中,第一终端设备在M个载波上接收SL CSI-RS时,在M个载波上均反馈CSI,并且每个载波中都反馈M个CSI,提高了反馈CSI的成功率。
可理解,在上述图10和图11中,第一终端设备接收到SL CSI-RS是指接收到带有SL CSI-RS的PSSCH,或接收到指示SL CSI-RS发送的SCI,或接收到包括指示CSI反馈的指示信息的SCI,第一终端设备反馈CSI是指反馈或上报带有CSI反馈的PSSCH。
在本申请的再一种可能设计中,该S901可以通过如下步骤实现:
根据Q个目标载波中第q个目标载波的侧行测量结果反馈的时延边界信息,确定第q个目标载波的第三时间区间,q为小于或等于Q的正整数;
将第三时间区间确定为上述第一时间区间。
可选的,在本申请的实施例中,对于上述确定的Q个目标载波,可以确定出第q个目标载波的侧行测量结果反馈的时延边界信息,进而根据第q个目标载波的侧行测量结果反馈的时延边界信息以及在 第q个目标载波的侧行测量结果所在的时隙信息,确定第q个目标载波的第三时间区间。可理解,该第q个目标载波为确定的Q个目标载波中的任意一个载波。
可选的,在一种可能的设计中,可以将该第三时间区间确定为上述的第一时间区间。
相应的,上述S804(在Q个目标载波上,反馈M个载波的侧行测量结果)具体可以为:在第一时间区间内,在第q个目标载波上反馈M个载波的侧行测量结果。
可选的,在将第q个目标载波的第三时间区间确定为上述的第一时间区间时,便可以在该第一时间区间内,在第q个目标载波上反馈或上报上述M个载波的侧行测量结果。
在本申请的实施例中,第一终端设备在M个载波上接收M个侧行参考信号,且获取到M个载波的侧行测量结果时,可以首先确定出用于M个载波的侧行测量结果反馈的第一时间区间,并且在第一时间区间内,在Q个目标载波上,反馈M个载波的侧行测量结果。该技术方案,基于每个载波在侧行测量结果反馈的时延边界信息确定,能够准确的提升反馈的成功率。
可选的,在本申请的实施例中,各个载波上对应的侧行测量结果反馈的时延边界信息是相同的。例如,在第一终端设备和第二终端设备建立PC5连接时,第二终端设备向第一终端设备发送指示信息,该指示信息用于指示侧行测量结果反馈的时延边界信息,该时域边界信息适用于所有的侧行载波,或适用于第二终端设备和第一终端设备进行侧行通信所用的所有载波。
由上述各实施例的分析可知,上述各实施例介绍了如何确定反馈或上报侧行测量结果的Q个目标载波,且在每个反馈CSI的目标载波上都需要反馈M个载波的侧行测量结果。可选的,在本申请的实施例中,上述M个载波的侧行测量结果承载于同一MAC CE,或者,该M个载波的侧行测量结果承载在同一PSSCH中。下面通过具体的实施例介绍在MAC CE中如何承载M个载波的侧行测量结果。
在本申请的实施例中,当在MAC CE中承载M个载波的侧行测量结果时,需要解决的问题是如何让第二终端设备(发送端终端)获知第一终端设备(接收端终端)反馈的侧行测量结果中是包括哪些载波的侧行测量结果。
可理解,在本申请的实施例中,以CSI为例进行说明,而本申请提供的信息反馈方法可以适用于第一终端设备(接收端终端)向第二终端设备(发送端终端)反馈其他信息的情况,如反馈S-RSRP测量结果等。例如,将实施例中MAC CE中包括的CSI替换成S-RSRP信息。其中,S-RSRP是根据PSCCH DMRS或PSSCH DMRS测量得到。
可选的,侧行参考信号为SL CSI-RS,侧行测量结果为CSI时,当第二终端设备在M个载波上发送SL CSI-RS,但是由于半双工限制或者CSI检测性能的影响,第一终端设备有可能并没有在所有的M个载波中都检测到SL CSI-RS,而只是检测到一部分载波上的SL CSI-RS,此时,第一终端设备只能反馈检测到的这一部分载波上的CSI,此时就需要让第二终端设备获知第一终端设备反馈的CSI是对应哪些载波的。
示例性的,在本申请的实施例中,以上述M个载波的侧行测量结果承载于同一MAC CE中进行解释说明。
可选的,该MAC CE还包括M个载波对应的载波索引信息。
具体的,在本申请的实施例中,第一终端设备反馈或上报M个载波的侧行测量结果时,一种可能设计中,MAC CE中包括M个载波的侧行测量结果;在另一种可能的设计中,MAC CE中同时包括M个载波的侧行测量结果和M个载波对应的载波索引信息。
示例性的,第一终端设备可以在MAC CE中包括M个侧行测量结果以及各个侧行测量结果对应的载波索引,这时,当第二终端设备(在M个载波上发送侧行参考信号的终端设备)获取该MAC CE时,即可确定每个侧行测量结果所对应的载波信息。
例如,第一终端设备在MAC CE中包括待反馈或待上报的CSI以及各个CSI对应的载波索引,这时,当第二终端设备(在M个载波上发送SL CSI-RS的终端设备)获取该MAC CE时,即可确定每个CSI所对应的载波信息。
示例性的,下述以侧行参考信号为SL CSI-RS,侧行测量结果为CSI进行举例说明。假设CSI包括CQI和RI,其中,CQI包括4比特,RI包括1比特。可选的,若侧行多载波系统支持8个载波,则载波索引信息对应3比特。
可选的,图12为本申请的实施例中各个载波对应的信息在MAC CE中的第一种结构示意图。可选的,当第一终端设备在3个载波上接收到SL CSI-RS时,需要反馈3个CSI,这3个载波例如是载波0,载波2,载波3,则承载CSI反馈信息的MAC CE如图12所示,每个载波的载波索引信息、RI信息和CQI信息分别占用一个字节,例如,载波0索引信息、RI#0和CQI#0位于字节1的位置。可选的,在图12中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI索引信息,其中,k为0、2、3中的任意一个。
可理解,上述实施例中,图12中所示的各个载波对应的信息在MAC CE中的顺序可以是任意的,并不一定是从低到高的顺序,因为在MAC CE包括各个载波的索引信息时,各个载波对应的信息域(包括载波索引、CQI、RI信息)在MAC CE中的顺序可以是任意的。例如,对于图12所示的示例,在MAC CE中可以先排放载波2对应的信息(包括载波索引信息和CSI),然后排放载波0和载波3各自对应的信息。
在本申请的另一种可能设计中,MAC CE中包括M个信息域,每个信息域包括上述M个载波中的一个载波对应的载波索引信息和侧行测量结果。
在该种可能设计中,当第一终端设备在M个载波上接收到侧行参考信号时,这时MAC CE中可以包括M个信息域,相应的,每个信息域包括上述M个载波中的一个载波对应的载波索引信息和侧行测量结果。
可选的,在该种可能设计中,在MAC CE中指示M个载波的侧行测量结果时,可以采用差分索引方式。相应的,上述侧行测量结果包括第一测量量对应的测量结果,相应的,该MAC CE中包括第一索引信息,以及M-1个差分索引信息。
其中,第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;差分索引信息是根据第一载波的测量结果确定的差分索引信息。可选的,第一载波是具有最高的第一测量量对应的测量结果的载波。可以理解的是,第一载波还可以是具有最低的第一测量量对应的测量结果的载波,本申请实施例并不对其进行限定。
可选的,在MAC CE中,第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的载波索引信息和侧行测量结果之前。
可选的,确定差分索引信息的方式有多种,下述示例性的给出两种方式:
方式1:该差分索引信息是根据M个载波中除第一载波外的其他载波的测量结果与第一载波的测量结果的差值确定的。
示例性的,以侧行测量结果为CSI,第一测量量为CQI信息进行解释说明。具体的,第一终端设备获取到M个载波的CSI时,若采用差分CQI,则第一终端设备可以在待反馈的M个CQI信息中确定最大(或最小)的CQI值(注意,这里是最大CQI值,而不是最大CQI索引值),并将其作为参考CQI,然后确定其他M-1个CQI值与该参考CQI之间的M-1个CQI差值,进一步的确定该M-1个CQI差值对应的M-1个差分CQI索引,以及该参考CQI对应的CQI索引,相应的,在MAC CE中包括该参考CQI对应的CQI索引以及M-1个差分CQI索引。
可理解,该参考CQI对应的载波为第一载波,该参考CQI对应的索引信息为第一索引信息。
可选的,在MAC CE中,参考CQI对应的载波索引信息以及CSI位于MAC CE中的起始位置,随后的M-1个信息域中携带其他M-1个载波对应的载波索引信息、CSI,其中,参考CQI对应的CSI包括第一索引信息,其他M-1个载波的CSI包括差分索引信息。
可选的,在MAC CE中,参考CQI对应的载波索引信息以及CSI位于MAC CE中的M个信息域中最后一个信息域,其余M-1个信息域中携带其他M-1个载波对应的载波索引信息、CSI,其中,参考CQI对应的CSI包括第一索引信息,其他M-1个载波的CSI包括差分索引信息。
示例性的,假设CSI包括CQI和RI,其中,CQI包括4比特,差分CQI包括3比特,RI包括1比特。可选的,若侧行多载波系统支持8个载波,则载波索引信息对应3比特。图13为本申请的实施例中各个载波对应的信息在MAC CE中的第二种结构示意图。可选的,当第一终端设备在载波0、载波2和载波3等3个载波上接收到SL CSI-RS时,需要反馈3个CSI,其中,载波2上的CQI值最大,因此,可以分别计算载波0和载波3上的CQI相对于载波2上的CQI的差值,并且确定该差值对应的差分CQI索引。
可选的,参照图13所示,在MAC CE中,载波2对应的信息(包括载波索引信息、CSI)位于MAC CE的起始位置,相应的,载波0和载波3对应的信息(载波索引信息、CSI,其中CSI包括差分CQI索引)位于随后的信息域中。其中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI索引信息,Diff_CQI#k表示载波k对应的差分CQI索引信息,R表示预留信息位。
方式2:差分索引信息是根据M个载波中除第一载波外的其他载波的测量结果对应的索引与第一索引信息对应的索引的差值确定的。
示例性的,以侧行测量结果为CSI,第一测量量为CQI信息进行解释说明。具体的,第一终端设备获取到M个载波的CSI时,若采用差分CQI,第一终端设备可以在待反馈的M个CQI信息中确定出最大(或最小)的CQI索引(注意,这里是最大CQI索引值,而不是最大CQI值),并将其对应的CQI作为参考CQI,然后确定其他M-1个CQI索引值与该参考CQI的索引值之间的M-1个CQI索引差值, 进一步的确定M-1个CQI索引差值对应的差分CQI索引,相应的,在MAC CE中包括该参考CQI对应的CQI索引以及M-1个差分CQI索引。
可选的,在MAC CE中,参考CQI对应的载波索引信息以及CSI位于MAC CE中的起始位置,随后的M-1个信息域中携带其他M-1个载波对应的载波索引信息和CSI,其中,参考CQI对应的CSI包括第一索引信息,其他M-1个载波的CSI包括差分索引信息。
可选的,在MAC CE中,参考CQI对应的载波索引信息以及CSI位于MAC CE中的M个信息域中最后一个信息域,其余M-1个信息域中携带其他M-1个载波对应的载波索引信息、CSI,其中,参考CQI对应的CSI包括第一索引信息,其他M-1个载波的CSI包括差分索引信息。
示例性的,同样假设CSI包括CQI和RI,其中,CQI包括4比特,差分CQI包括2比特,RI包括1比特。可选的,若侧行多载波系统支持8个载波,则载波索引信息对应3比特。图14为本申请的实施例中各个载波对应的信息在MAC CE中的第三种结构示意图。可选的,当第一终端设备在3个载波上(这3个载波例如是载波0,载波2,载波3)检测到SL CSI-RS时,需要反馈3个CSI,例如,载波2上的CQI索引值最大,此时,可以分别计算载波0和载波3的CQI索引分别相对于载波2的CQI索引之间的差值,并且确定该差值对应的差分CQI索引。
可选的,参照图14所示,在MAC CE中,载波2对应的信息(载波索引信息、CSI)位于MAC CE的起始位置,载波0和载波3对应的信息(载波索引信息、CSI,其中,CSI包括差分CQI索引)位于随后的信息域中。其中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI索引信息,Diff_CQI#k表示载波k对应的差分CQI索引,R表示预留信息位。
由上述分析可知,在上述方式1中,以M个CSI中具有最大CQI值(或最小CQI值)的CQI作为参考CQI,并计算其他M-1个CQI相对于该参考CQI的差值,得到差分CQI;在上述方式2中,以M个CSI中具有最大CQI索引值(或最小CQI索引值)的CQI作为参考CQI,并计算其他M-1个CQI相对于该参考CQI的差值,得到差分CQI。可理解,在实际应用中,还可以以第一个载波对应的CQI作为参考CQI,计算其他M-1个载波的CQI相对于该参考CQI的差值,得到差分CQI。例如,在上述方式1或方式2中,以载波0对应的CQI#0作为参考CQI,计算载波2和载波3的CQI相对于载波0的CQI的差值,相应的,在MAC CE中,载波0的信息(包括载波索引信息和CSI)位于MAC CE包括的信息域的起始位置,载波2和载波3的信息(包括载波索引信息和CSI)位于载波0的信息之后。
在本申请实施例的再一种可能设计中,MAC CE中包括N个信息域,该N个信息域用于承载N个载波的侧行测量结果,其中,N是第一终端设备和第二终端设备进行侧行通信的最大载波数量,或N是侧行系统支持的最大载波数量,N为大于或等于M的整数。
在该种可能设计中,第一终端设备和第二终端设备进行侧行通信的最大载波数量是通过PC5-RRC交互的或者根据预配置信息或网络信息确定的。
作为一种示例,N个载波的侧行测量结果按照载波索引顺序在MAC CE中顺序排放。
具体的,N个信息域与该N个载波之间具有第一对应关系,其中,第一对应关系是预定义的,或根据预配置信息确定的,或根据网络配置信息确定的。示例性的,第一对应关系可以是正序的一一对应关系,也可以是倒序的一一对应关系,此处不作赘述。
可选的,若N个载波中的第二载波没有侧行测量结果,该第二载波在MAC CE中对应的信息域填充特殊符号,该特殊符号用于指示该信息域没有承载侧行测量结果。例如,该特殊符号是填充比特(padding bits)。
示例性的,当侧行多载波系统支持N个载波时,在MAC CE中包括N个信息域,分别对应N个载波的CSI,每个信息域中包括该载波对应的CSI,并且各个载波对应的CSI在MAC CE中顺序排放,即第一个信息域对应载波0的CSI,第二个信息域对应载波1的CSI,以此类推;或者反之,第一个信息域对应载波N的CSI,第二个信息域对应载波N-1的CSI,以此类推。若某个载波上没有CSI反馈,则该信息域填充占位符或特殊符号进行标记。
示例性的,图15为本申请的实施例中各个载波对应的信息在MAC CE中的第四种结构示意图。可选的,CSI包括CQI信息和RI信息,其中,CQI信息包括4比特,RI信息包括1比特。
参照图15所示,若侧行多载波系统支持8个载波,则MAC CE中共计包括8个信息域,每个信息域中包括RI和CQI信息。相应的,当第一终端设备在载波0,载波2,载波3上检测到SL CSI-RS时,在MAC CE中的该3个载波对应的信息域中包括相应的RI/CQI信息,其余5个载波对应的信息域填充占位符。其中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI信息,N/A表示占位符。
可选的,在本申请的实施例中,侧行测量结果包括第一测量量对应的测量结果,相应的:MAC CE中包括第一索引信息,以及N-1个差分索引信息;
其中,第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;差分索引信息 是根据第一载波的测量结果确定的差分索引信息;该第一载波是具有最高(或最低)的第一测量量对应的测量结果的载波。
可选的,在一种可能的设计中,MAC CE中还包括第一载波的载波索引信息。
在本实施例中,第一终端设备还可以将M个载波的侧行测量信息承载到具有N个信息域的MAC CE中进行反馈或上报。为了使得第二终端设备在接收到MAC CE后,能够识别出哪个载波的侧行测量信息作为参考测量信息,此时可以在MAC CE中包含第一载波的载波索引信息。
示例性的,在MAC CE中,第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的侧行测量结果之前。
作为一种示例,N个载波中除第一载波外的其他N-1个载波的侧行测量结果按照载波索引顺序在第一载波对应的载波索引信息和侧行测量结果之后顺序排放。
可理解,通过将第一载波对应的载波索引信息和侧行测量结果排放在其他载波对应的侧行测量结果之前,其他N-1个载波的侧行测量结果按照载波索引顺序在第一载波对应的载波索引信息和侧行测量结果之后顺序排放,这样的排放方式,能够使得第二终端设备在确定出第一载波的侧行测量结果之后,也可以相应的确定出其他N-1个载波的侧行测量结果。
在一种可能的设计中,若N个载波中的第三载波没有侧行测量结果,该第三载波在MAC CE中对应的信息域填充特殊符号,该特殊符号用于指示该信息域没有承载侧行测量结果;或者,第三载波对应的差分索引信息为无效索引或预留索引。
可选的,在本实施例中,以侧行测量结果为CSI,第一测量量为CQI信息进行解释说明。具体的,第一终端设备获取到M个载波的CSI时,可以基于侧行多载波系统支持的最大载波数量N,采用差分CQI的方式确定MAC CE中包括的第一索引信息以及N-1个差分索引信息。
可理解,本实施例中确定差分索引信息的方式可以参见上述方式1和方式2,这里不再赘述。但是,在MAC CE中,需要携带参考CQI对应的第一载波的载波索引信息,并且该第一载波对应的载波索引信息和CSI位于MAC CE中的起始位置,其余N-1个载波的差分CQI在该MAC CE中顺序排放,并且不需要携带其余N-1个载波的载波索引信息。
需要说明的是,对于没有CSI的载波,其对应的信息域上的CSI填充占位符或特殊符号进行标记,该信息域的长度与差分CQI对应的信息域长度相同。
作为一种示例,在本申请的实施例中,该差分索引信息是根据M个载波中除第一载波外的其他载波的测量结果与第一载波的测量结果的差值确定的。
其中,确定第一载波方式可以参见上述实施例中的记载,此处不作赘述。
示例性的,图16为本申请的实施例中各个载波对应的信息在MAC CE中的第五种结构示意图。可选的,CSI包括CQI信息和RI信息,其中,CQI信息包括4比特,RI信息包括1比特,可以采用方式1的方式确定差分CQI,差分CQI包括3比特;在本实施例中,以侧行多载波系统支持8个载波进行说明,相应的,载波索引信息对应3比特。
在本示例中,当第一终端设备在3个载波上(这3个载波例如是载波0,载波2,载波3)检测到SL CSI-RS时,这时,需要反馈该3个载波对应CSI,其中,载波2上的CQI值最大,因此,将其作为参考CQI,并分别计算载波0和载波3的CQI相对于参考CQI的差值,并且确定该差值对应的差分CQI索引。
示例性的,参照图16所示,在MAC CE中,载波2对应的信息位于MAC CE的起始位置,包括载波2的载波索引信息以及对应的CSI,其余载波对应的CSI随后顺序排放,由于载波1、载波4、载波5、载波6和载波7上没有CSI,因此,其对应的信息域填充特殊符号,例如,占位符或填充比特,因而,第一终端设备在MAC CE上反馈CSI的结构如图16所示。其中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI信息,Diff_CQI#k表示载波k对应的差分CQI信息,N/A表示占位符,R表示预留信息位。
作为另一种示例,在本申请的实施例中,该差分索引信息是根据M个载波中除第一载波外的其他载波的测量结果对应的索引与第一索引信息对应的索引的差值确定的。
其中,确定第一载波方式可以参见上述实施例中的记载,此处不作赘述。
示例性的,图17为本申请的实施例中各个载波对应的信息在MAC CE中的第六种结构示意图。可选的,CSI包括CQI信息和RI信息,其中,CQI信息包括4比特,RI信息包括1比特,可以采用方式2的方式确定差分CQI,差分CQI包括2比特。在本实施例中,以侧行多载波系统支持8个载波进行说明,相应的,载波索引信息对应3比特。
在本示例中,当第一终端设备在3个载波上(这3个载波例如是载波0,载波2,载波3)检测到SL CSI-RS时,需要反馈该3个载波对应CSI,其中,载波2上的CQI索引值最大,因此,将该载波2 上的CQI作为参考CQI,并分别计算载波0和载波3的CQI索引相对于参考CQI的CQI索引的差值,并且确定每个差值对应的差分CQI索引。
相应的,在MAC CE中,载波2对应的信息位于MAC CE的起始位置,载波2对应的信息包括载波2的载波索引信息以及对应的CSI(RI信息和CQI信息),其余载波对应的CSI随后顺序排放。
其中,由于载波1、载波4、载波5、载波6和载波7上没有CSI,因此,其载波1、载波4、载波5、载波6和载波7对应的信息域中均填充特殊符号,例如,占位符或填充比特,具体参见图17所示。其中,RI#k表示载波k对应的RI信息,CQI#k表示载波k对应的CQI信息,Diff_CQI#k表示载波k对应的差分CQI信息,N/A表示占位符,R表示预留信息位。
可以理解的是,在本申请的上述各实施例中,第一测量量包括侧行参考信号接收功率S-RSRP或信道质量指示CQI。例如,在侧行参考信号为SL CSI-RS时,侧行测量结果为CSI,相应的,第一测量量可以是CQI;在侧行参考信号为PSCCH DMRS或PSSCH DMRS时,第一测量量可以为S-RSRP。第一测量量的具体表现形式可以根据实际场景确定,此处不作赘述。
应理解,上述实施例中,以CSI包括RI和CQI为例进行说明,CSI中还可以包括PMI信息和/或HARQ-ACK信息,本申请不做限定;另外,上述各实施例中以RI占据1比特,CQI占据4比特,差分CQI占据2比特或3比特为例进行说明,本申请对各个信息占据的比特数不做限定,其可以根据实际场景确定。
应理解,上述实施例中,MAC CE中每个载波对应的信息之间的顺序不受限定,例如,可以是载波索引信息、RI信息、CQI信息的顺序,或者RI信息、CQI信息、载波索引信息的顺序。
由上述分析可知,上述介绍了在同一MAC CE上反馈M个载波的侧行测量结果的具体实现,基于本申请的技术方案,实现了在侧行多载波系统中反馈侧行测量结果的目的,提高了侧行测量结果的反馈成功率。
可选的,在本申请实施例中,图18为本申请提供的信息反馈方法实施例三的流程示意图。如图18所示,该信息反馈方法可以包括如下步骤:
S1801、在K个载波上接收侧行参考信号;其中,K是大于或等于M的整数。
可选的,在本申请的实施例中,当第二终端设备向第一终端设备发送侧行参考信号时,第一终端设备可以在信道上进行检测,以接收第二终端设备发送的侧行参考信号。例如,第一终端设备在K个载波上检测并接收到侧行参考信号。可理解,第二终端设备应该在大于或等于K个载波上发送了侧行参考信号。
S1802、根据该侧行参考信号获取K个载波的侧行测量结果。
在本步骤中,第二终端设备根据接收到的侧行参考信号,获取K个载波中的每个载波上的侧行测量结果,相应的,可以获取到该K个载波的侧行测量结果。
S1803、从K个载波中选取M个载波。
可选的,第一终端设备可以随机从K个载波中选取M个载波。
可选的,第一终端可以基于CBR测量结果从K个载波中选取M个载波。例如,选取CBR测量结果最低的M个载波。
可选的,第一终端可以基于优先级从K个载波中选取M个载波。例如,选取与侧行参考信号同时发送的PSSCH对应的优先级中最高的M个PSSCH所在的载波。
可选的,第一终端设备从K个载波中选取满足条件的M个载波,并且将该M个载波对应的侧行测量结果反馈给第二终端设备。
可选的,在本实施例中,第一终端设备还可以根据第三信息确定所述M的值;其中,所述第三信息包括如下信息中的至少一种:
优先级信息;
第二终端设备的指示信息或第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
可选的,第一终端设备可以基于与侧行参考信号一起发送的PSSCH对应的优先级信息来确定M的值。示例性的,当第一终端设备在K个载波上接收或检测到K个SL CSI-RS时,其可以获取该K个SL CSI-RS关联的PSSCH的K个优先级信息,进而根据该K个优先级信息确定要反馈的侧行测量结果的载波数量M。
可选的,第二终端设备可以向第一终端设备发送指示信息,用于指示第一终端设备要反馈的侧行测量结果的载波数量M,例如,第二终端设备向第一终端设备发送的SCI或MAC CE中包括指示信息,用于指示要反馈的侧行测量结果的载波数量M。或者,第一终端设备向第二终端设备发送指示信息, 用于指示第一终端设备反馈或上报CSI的载波数量M,例如,第一终端设备向第二终端设备发送的SCI或MAC CE中包括指示信息,用于指示反馈的侧行测量结果的载波数量M。又例如,在第一终端设备和第二终端设备建立PC5连接时,第二终端设备通过PC5-RRC信令向第一终端设备发送指示,用于指示第一终端设备要反馈的侧行测量结果的载波数量M;或者,第一终端设备通过PC5-RRC信令向第二终端设备发送指示,用于指示第一终端设备要反馈的侧行测量结果的载波数量M。
可选的,第一终端设备可以从网络设备获取到该网络设备发送的配置信息,并且基于该配置信息中包括的指示信息确定出要反馈的侧行测量结果的载波数量M。可选的,该配置信息可以是侧行BWP配置信息,该侧行BWP配置信息中的指示信息用于指示要反馈的侧行测量结果的载波数量M。可选的,该配置信息可以是资源池RP配置信息,该RP配置信息中的指示信息用于指示要反馈的侧行测量结果的载波数量M。
可选的,第一终端设备可以根据预配置信息从资源池中选取传输资源,确定出要反馈的侧行测量结果的载波数量M。可选的,该预配置信息可以是侧行BWP配置信息,该侧行BWP配置信息中的指示信息用于指示要反馈的侧行测量结果的载波数量M。可选的,该预配置信息可以是资源池RP配置信息,该RP配置信息中的指示信息用于指示要反馈的侧行测量结果的载波数量M。
可选的,作为一种示例,第一终端设备从K个载波中选取M个载波的具体方式可以如下:
根据优先级信息从高到低的顺序从K个载波中选取M个载波。其中,该优先级信息是根据与K个载波的侧行参考信号同时发送的PSSCH的优先级确定的。
在本申请的实施例中,第一终端设备首先根据第三信息先确定要反馈的侧行测量结果的载波数量M,然后从K个载波中选取优先级最高的M个载波,并且将其对应的侧行测量结果进行反馈。
作为另一种示例,从K个载波中选取M个载波的具体方式可以如下:
根据K个载波对应的K个第四时间区间的重叠部分选取M个载波,该M个载波对应的第四时间区间的重叠部分大于或等于第二门限值。
其中,第二门限值根据如下信息中的至少一种确定:
第二终端设备的指示信息或第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
可选的,第一终端设备在K个载波上检测并获取到K个载波的侧行测量结果时,对于K个载波中的每个载波,第一终端设备均可以确定出对应的第四时间区间。示例性的,对于K个载波中的第k个载波,第一终端设备可以是首先获取第k个载波的侧行测量结果反馈的时延边界信息,再根据第k个载波的侧行测量结果反馈的时延边界信息以及在第k个载波上的侧行参考信号所在的时隙信息,确定第k个载波的第四时间区间。
相应的,第一终端设备可以根据K个载波对应的K个第四时间区间,首先确定出K个第四时间区间的重叠部分,然后再基于该重叠部分与第二门限值的关系,确定出M个载波,例如,该M个载波对应的M个第四时间区间的重叠部分大于或等于该第二门限值。
在本申请的实施例中,第一终端设备可以首先获取K个载波的侧行测量结果,然后确定该K个载波中满足条件的M个载波,并将其测量结果反馈。其中,所述条件即是该M个载波对应的第四时间范围的重叠部分大于第二门限值。若K个载波的K个第四时间范围的重叠部分大于第二门限值,则M=K,即反馈K个载波中所有载波对应的侧行测量结果。
可选的,在资源池或侧行BWP配置信息中包括指示信息,该指示信息用于指示第二门限值。可选的,在第二终端设备和第一终端设备进行侧行RRC连接建立的过程中,第二终端设备向第一终端设备发送的指示信息或第一终端设备向第二终端设备发送的指示信息,该指示信息用于指示第二门限值。可选的,第一终端设备还可以根据优先级信息或其他的信息确定第一门限值,其可以根据实际场景确定,此处不作赘述。
可选的,在本申请的实施例中,第一终端设备确定第k个载波对应的第四时间区间的具体实现可以如下:
获取K个载波中第k个载波的侧行测量结果反馈的时延边界信息,根据第k个载波的侧行测量结果反馈的时延边界信息,确定第k个载波对应的第四时间区间。其中,第四时间区间用于指示在第k个载波上反馈侧行测量结果的时间区间。
可选的,在本申请的实施例中,第一终端设备可以根据PC5-RRC信令中的参数sl-LatencyBoundCSI-Report来确定K个载波中第k个载波的侧行测量结果反馈的时延边界信息,第k个载波为K个载波中的任意一个,再根据第k个载波的侧行测量结果反馈的时延边界信息以及在第k个载波上的侧行参考信号所在的时隙信息,确定第k个载波的第四时间区间。
本申请的实施例中,第一终端设备可以在K个载波上接收侧行参考信号,并根据该侧行参考信号获取K个载波的侧行测量结果,最后从K个载波中选取M个载波。该技术方案中,第一终端设备可以选择反馈或上报的M个载波的侧行测量结果,其能够为第二终端设备调整传输参数提供条件。
图19为本申请提供的信息反馈装置实施例的结构示意图。该装置可以集成在第一终端设备中,也可以为第一终端设备。如图19所示,该装置可以包括:
接收模块1901,用于在M个载波上接收侧行参考信号,M为大于等于2的整数;
接收模块1902,用于根据所述侧行参考信号获取所述M个载波的侧行测量结果;
确定模块1903,用于确定Q个目标载波,其中,Q是正整数;
发送模块1904,用于在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
在本申请实施例的一种可能设计中,所述确定模块1903,具体用于根据第一信息,确定Q个目标载波;
其中,所述第一信息包括如下信息的至少一种:
所述侧行参考信号所在的载波或接收到所述侧行参考信号的载波;
所述侧行参考信号所关联的物理侧行共享信道PSSCH对应的优先级信息;
信道占用率;
载波索引信息;
第二终端设备的指示信息或所述第一终端设备的指示信息;
所述侧行测量结果所关联的逻辑信道对应的载波信息;
承载所述M个载波的侧行测量结果的PSSCH信道所关联的逻辑信道对应的载波信息;
所述第一终端设备已选取的用于传输PSSCH的载波信息;
其中,所述第二终端设备是发送所述侧行参考信号的终端设备。
可选的,所述确定模块1903,具体用于根据第二信息确定所述Q的值;
其中,所述第二信息包括如下信息中的至少一种:
优先级信息;
所述第二终端设备的指示信息或所述第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息;
所述M的取值。
可选的,所述发送模块1904,具体用于在所述Q个目标载波中的每个目标载波上反馈所述M个载波的侧行测量结果。
在本申请实施例的另一种可能设计中,所述确定模块1903,还用于确定第一时间区间;
相应的,所述发送模块1904,具体用于在所述第一时间区间内,在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
可选的,所述确定模块1903,具体用于:
确定所述M个载波中第m个载波的第二时间区间,m为小于或等于M的正整数;
根据所述M个载波的M个第二时间区间的重叠部分,确定所述第一时间区间,其中,所述第二时间区间是根据所述M个载波中第m个载波的侧行测量结果反馈的时延边界信息确定的。
可选的,所述确定模块1903,具体用于:
获取第m个载波的侧行测量结果反馈的时延边界信息;
根据所述第m个载波的侧行测量结果反馈的时延边界信息以及在所述第m个载波上所述侧行参考信号所在的时隙信息,确定所述第m个载波的第二时间区间。
可选的,所述M个载波的M个第二时间区间的重叠部分大于或等于第一门限值。
可选的,所述第一门限值根据如下信息中的至少一种确定:
所述第二终端设备的指示信息或所述第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
在本申请实施例的再一种可能设计中,所述确定模块1903,具体用于根据如下信息中的至少一种确定所述第一时间区间:
侧行测量结果反馈的时延边界信息;
所述M个侧行参考信号所在的时隙中最早的时隙位置;
所述M个侧行参考信号所在的时隙中最晚的时隙位置。
可选的,所述确定模块1903,具体用于:
根据所述Q个目标载波中第q个目标载波的侧行测量结果反馈的时延边界信息,确定所述第q个目标载波的第三时间区间,q为小于或等于Q的正整数;
将所述第三时间区间确定为所述第一时间区间;
相应的,所述发送模块1904,具体用于在所述第一时间区间内,在所述第q个目标载波上反馈所述M个载波的侧行测量结果。
在本申请实施例的上述各可能设计中,所述M个载波的侧行测量结果承载于同一介质访问控制层的控制单元MAC CE中。
可选的,所述MAC CE还包括所述M个载波对应的载波索引信息。
可选的,所述MAC CE中包括M个信息域,每个信息域包括所述M个载波中的一个载波对应的载波索引信息和侧行测量结果。
可选的,所述侧行测量结果包括第一测量量对应的测量结果,相应的,所述MAC CE中包括第一索引信息,以及M-1个差分索引信息;
其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
可选的,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
可选的,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果对应的索引与所述第一索引信息对应的索引的差值确定的。
可选的,在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的载波索引信息和侧行测量结果之前。
在本申请实施例的又一种可能设计中,所述MAC CE中包括N个信息域,所述N个信息域用于承载N个载波的侧行测量结果,其中,所述N是所述第一终端设备和所述第二终端设备进行侧行通信的最大载波数量,N为大于或等于M的整数。
可选的,所述N个载波的侧行测量结果按照载波索引顺序在所述MAC CE中顺序排放。
可选的,所述N个信息域与所述N个载波之间具有第一对应关系,其中,所述第一对应关系是预定义的,或根据预配置信息确定的,或根据网络配置信息确定的。
可选的,若所述N个载波中的第二载波没有侧行测量结果,所述第二载波在所述MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示所述信息域没有承载侧行测量结果。
可选的,所述侧行测量结果包括第一测量量对应的测量结果,相应的:所述MAC CE中包括第一索引信息,以及N-1个差分索引信息;
其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
可选的,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
可选的,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果对应的索引与所述第一索引信息对应的索引的差值确定的。
可选的,所述MAC CE中还包括所述第一载波的载波索引信息。
可选的,在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的侧行测量结果之前。
可选的,所述N个载波中除所述第一载波外的其他N-1个载波的侧行测量结果按照载波索引顺序在所述第一载波对应的载波索引信息和侧行测量结果之后顺序排放。
可选的,若所述N个载波中的第三载波没有侧行测量结果,所述第三载波在MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示该信息域没有承载侧行测量结果;或者,所述第三载波对应的差分索引信息为无效索引或预留索引。
在本申请实施例的上述可能设计中,所述第一测量量包括侧行参考信号接收功率S-RSRP或信道质 量指示CQI。
在本申请实施例的又一种可能设计中,所述接收模块1901,还用于在K个载波上接收侧行参考信号;
所述接收模块1902,还用于根据所述侧行参考信号获取所述K个载波的侧行测量结果;
所述确定模块1903,还用于从所述K个载波中选取所述M个载波;其中K是大于或等于M的整数。
可选的,所述确定模块1903,还用于根据第三信息确定所述M的值;
其中,所述第三信息包括如下信息中的至少一种:
优先级信息;
所述第二终端设备的指示信息或所述第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
可选的,所述确定模块1903,具体用于根据优先级信息从高到低的顺序从所述K个载波中选取所述M个载波。
可选的,所述优先级信息是根据与所述K个载波的侧行参考信号同时发送的PSSCH的优先级确定的。
可选的,所述确定模块1903,还用于:
获取所述K个载波中第k个载波的侧行测量结果反馈的时延边界信息;
根据所述第k个载波的侧行测量结果反馈的时延边界信息,确定所述第k个载波对应的第四时间区间;其中,所述第四时间区间用于指示在所述第k个载波上反馈侧行测量结果的时间区间。
可选的,所述确定模块1903,具体用于根据所述K个载波对应的K个第四时间区间的重叠部分选取M个载波,所述M个载波对应的第四时间区间的重叠部分大于或等于第二门限值。
可选的,所述第二门限值根据如下信息中的至少一种确定:
所述第二终端设备的指示信息或所述第一终端设备的指示信息;
网络设备发送的配置信息;
预配置信息。
在本申请实施例的各可能设计中,所述侧行参考信号为下述信息中的任意一种:
侧行信道状态信息参考信号SL CSI-RS、物理侧行共享信道解调参考信号PSSCH DMRS、物理侧行控制信道解调参考信号PSCCH DMRS。
可选的,所述侧行测量结果包括以下信息中的至少一种:
信道质量指示CQI、秩指示RI、预编码矩阵指示PMI或侧行参考信号接收功率S-RSRP。
本实施例提供的装置,用于执行前述实施例中的第一终端设备侧的技术方案,其实现原理和技术效果类似,第一终端设备在多个载波上接收侧行参考信号时,在根据该侧行参考信号获取多个载波的侧行测量结果后,可以确定出用于反馈该多个载波的侧行测量结果的一个或多个目标载波,并在这一个或多个目标载波上进行反馈或上报。该技术方案提供一种在侧行多载波系统中接收端终端反馈或上报多载波的侧行测量结果的实现方案,可以提高系统资源利用率,降低半双工的影响,或者提高侧行测量结果反馈的成功率。
应理解,本申请实施例提到的装置可以为芯片,该芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器 (central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图20为本申请提供的终端设备实施例的结构示意图。该终端设备可以侧行通信系统中的任意一个终端设备,例如,该终端设备为上述实施例中的第一终端设备。如图20所示,该终端设备可以包括:处理器2001、存储器2002、收发器2003和系统总线2004。其中,存储器2002和收发器2003通过系统总线2004与处理器2001连接并完成相互间的通信。
该处理器2001用于从存储器2002中获取计算机指令,并执行该计算机指令时实现上述方法实施例中第一终端设备的技术方案。
该存储器2002用于存储计算机指令,其可以是独立于处理器2001的一个单独的器件,也可以集成在处理器2001中,此处不作限定。
该收发器2003用于和其他设备进行通信,具体的,可以获取其他设备发送的侧行参考信号,并反馈或上报获取到的侧行测量结果。可理解,该收发器2003可以称为通信接口。
在图20中,系统总线2004可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器CPU、网络处理器(network processor,NP)等;还可以是数字信号处理器DSP、专用集成电路ASIC、现场可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
上述的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
图21为本申请提供的一种通信系统实施例的结构示意图。如图21所示,该通信系统包括第一终端设备2101和第二终端设备2102。
其中,该第一终端设备2101可以是上述实施例的信息反馈装置,该第二终端设备2102可以是与第一终端设备2101进行通信。
示例性的,该通信系统可以称为车联网系统或者D2D系统。
可选的,本申请的通信系统还可以包括:网络设备2103。该网络设备2103可以为第一终端设备2101和/或第二终端设备2102提供服务。
在本实施例中,关于第一终端设备2101的具体实现方式可参见上述方法实施例中的记载,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被处理器执行时用于实现前述方法实施例中第一终端设备的技术方案。
本申请实施例还提供一种计算机程序,当该计算机程序被处理器执行时,用于执行前述方法实施例中第一终端设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时用于实现前述方法实施例中第一终端设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中第一终端设备的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述方法实施例中第一终端设备的技术方案。
示例性的,该芯片可以包括存储器、处理器,存储器中存储代码和数据,该存储器与处理器耦合,该处理器运行存储器中的代码使得该芯片用于执行上述方法实施例中第一终端设备的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (84)

  1. 一种信息反馈方法,应用于第一终端设备,其特征在于,包括:
    在M个载波上接收侧行参考信号,M为大于等于2的整数;
    根据所述侧行参考信号获取所述M个载波的侧行测量结果;
    确定Q个目标载波,其中,Q是正整数;
    在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
  2. 根据权利要求1所述的方法,其特征在于,所述确定Q个目标载波,包括:
    根据第一信息,确定Q个目标载波;
    其中,所述第一信息包括如下信息的至少一种:
    所述侧行参考信号所在的载波或接收到所述侧行参考信号的载波;
    所述侧行参考信号所关联的物理侧行共享信道PSSCH对应的优先级信息;
    信道占用率;
    载波索引信息;
    第二终端设备的指示信息或所述第一终端设备的指示信息;
    所述侧行测量结果所关联的逻辑信道对应的载波信息;
    承载所述M个载波的侧行测量结果的PSSCH信道所关联的逻辑信道对应的载波信息;
    所述第一终端设备已选取的用于传输PSSCH的载波信息;
    其中,所述第二终端设备是发送所述侧行参考信号的终端设备。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定Q个目标载波,包括:
    根据第二信息确定所述Q的值;
    其中,所述第二信息包括如下信息中的至少一种:
    优先级信息;
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息;
    所述M的取值。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述在所述Q个目标载波上,反馈所述M个载波的侧行测量结果,包括:
    在所述Q个目标载波中的每个目标载波上反馈所述M个载波的侧行测量结果。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    确定第一时间区间;
    相应的,所述在所述Q个目标载波上,反馈所述M个载波的侧行测量结果,包括:
    在所述第一时间区间内,在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
  6. 根据权利要求5所述的方法,其特征在于,所述确定第一时间区间,包括:
    确定所述M个载波中第m个载波的第二时间区间,m为小于或等于M的正整数;
    根据所述M个载波的M个第二时间区间的重叠部分,确定所述第一时间区间,其中,所述第二时间区间是根据所述M个载波中第m个载波的侧行测量结果反馈的时延边界信息确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述M个载波中第m个载波的第二时间区间,包括:
    获取第m个载波的侧行测量结果反馈的时延边界信息;
    根据所述第m个载波的侧行测量结果反馈的时延边界信息以及在所述第m个载波上所述侧行参考信号所在的时隙信息,确定所述第m个载波的第二时间区间。
  8. 根据权利要求6或7所述的方法,其特征在于,所述M个载波的M个第二时间区间的重叠部分大于或等于第一门限值。
  9. 根据权利要求8所述的方法,其特征在于,所述第一门限值根据如下信息中的至少一种确定:
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  10. 根据权利要求5所述的方法,其特征在于,所述确定第一时间区间,包括:
    根据如下信息中的至少一种确定所述第一时间区间:
    侧行测量结果反馈的时延边界信息;
    所述M个侧行参考信号所在的时隙中最早的时隙位置;
    所述M个侧行参考信号所在的时隙中最晚的时隙位置。
  11. 根据权利要求5或6所述的方法,其特征在于,所述确定第一时间区间包括:
    根据所述Q个目标载波中第q个目标载波的侧行测量结果反馈的时延边界信息,确定所述第q个目标载波的第三时间区间,q为小于或等于Q的正整数;
    将所述第三时间区间确定为所述第一时间区间;
    相应的,所述在所述Q个目标载波上,反馈所述M个载波的侧行测量结果,包括:在所述第一时间区间内,在所述第q个目标载波上反馈所述M个载波的侧行测量结果。
  12. 根据权利要求1至9任一项所述的方法,其特征在于,所述M个载波的侧行测量结果承载于同一介质访问控制层的控制单元MAC CE中。
  13. 根据权利要求12所述的方法,其特征在于,
    所述MAC CE还包括所述M个载波对应的载波索引信息。
  14. 根据权利要求13所述的方法,其特征在于,所述MAC CE中包括M个信息域,每个信息域包括所述M个载波中的一个载波对应的载波索引信息和侧行测量结果。
  15. 根据权利要求13或14所述的方法,其特征在于,所述侧行测量结果包括第一测量量对应的测量结果,相应的,所述MAC CE中包括第一索引信息,以及M-1个差分索引信息;
    其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
  16. 根据权利要求15所述的方法,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
  17. 根据权利要求15所述的方法,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果对应的索引与所述第一索引信息对应的索引的差值确定的。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的载波索引信息和侧行测量结果之前。
  19. 根据权利要求12所述的方法,其特征在于,所述MAC CE中包括N个信息域,所述N个信息域用于承载N个载波的侧行测量结果,其中,所述N是所述第一终端设备和所述第二终端设备进行侧行通信的最大载波数量,N为大于或等于M的整数。
  20. 根据权利要求19所述的方法,其特征在于,所述N个载波的侧行测量结果按照载波索引顺序在所述MAC CE中顺序排放。
  21. 根据权利要求19所述的方法,其特征在于,所述N个信息域与所述N个载波之间具有第一对应关系,其中,所述第一对应关系是预定义的,或根据预配置信息确定的,或根据网络配置信息确定的。
  22. 根据权利要求19至21任一项所述的方法,其特征在于,若所述N个载波中的第二载波没有侧行测量结果,所述第二载波在所述MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示所述信息域没有承载侧行测量结果。
  23. 根据权利要求19所述的方法,其特征在于,所述侧行测量结果包括第一测量量对应的测量结果,相应的:
    所述MAC CE中包括第一索引信息,以及N-1个差分索引信息;
    其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
  24. 根据权利要求23所述的方法,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
  25. 根据权利要求23所述的方法,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果对应的索引与所述 第一索引信息对应的索引的差值确定的。
  26. 根据权利要求23至25任一项所述的方法,其特征在于,所述MAC CE中还包括所述第一载波的载波索引信息。
  27. 根据权利要求26所述的方法,其特征在于,
    在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的侧行测量结果之前。
  28. 根据权利要求27所述的方法,其特征在于,所述N个载波中除所述第一载波外的其他N-1个载波的侧行测量结果按照载波索引顺序在所述第一载波对应的载波索引信息和侧行测量结果之后顺序排放。
  29. 根据权利要求23至28任一项所述的方法,其特征在于,若所述N个载波中的第三载波没有侧行测量结果,所述第三载波在MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示该信息域没有承载侧行测量结果;或者,所述第三载波对应的差分索引信息为无效索引或预留索引。
  30. 根据权利要求15至18、23至29任一项所述的方法,其特征在于,所述第一测量量包括侧行参考信号接收功率S-RSRP或信道质量指示CQI。
  31. 根据权利要求1至30任一项所述的方法,其特征在于,所述方法还包括:
    在K个载波上接收侧行参考信号;
    根据所述侧行参考信号获取所述K个载波的侧行测量结果;
    从所述K个载波中选取所述M个载波;其中K是大于或等于M的整数。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    根据第三信息确定所述M的值;
    其中,所述第三信息包括如下信息中的至少一种:
    优先级信息;
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  33. 根据权利要求31或32所述的方法,其特征在于,所述从所述K个载波中选取所述M个载波,包括:根据优先级信息从高到低的顺序从所述K个载波中选取所述M个载波。
  34. 根据权利要求33所述的方法,其特征在于,所述优先级信息是根据与所述K个载波的侧行参考信号同时发送的PSSCH的优先级确定的。
  35. 根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    获取所述K个载波中第k个载波的侧行测量结果反馈的时延边界信息;
    根据所述第k个载波的侧行测量结果反馈的时延边界信息,确定所述第k个载波对应的第四时间区间;其中,所述第四时间区间用于指示在所述第k个载波上反馈侧行测量结果的时间区间。
  36. 根据权利要求35所述的方法,其特征在于,所述从所述K个载波中选取所述M个载波,包括:根据所述K个载波对应的K个第四时间区间的重叠部分选取M个载波,所述M个载波对应的第四时间区间的重叠部分大于或等于第二门限值。
  37. 根据权利要求36所述的方法,其特征在于,所述第二门限值根据如下信息中的至少一种确定:
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  38. 根据权利要求1至37任一项所述的方法,其特征在于,所述侧行参考信号为下述信息中的任意一种:
    侧行信道状态信息参考信号SL CSI-RS、物理侧行共享信道解调参考信号PSSCH DMRS、物理侧行控制信道解调参考信号PSCCH DMRS。
  39. 根据权利要求1至38任一项所述的方法,其特征在于,所述侧行测量结果包括以下信息中的至少一种:
    信道质量指示CQI、秩指示RI、预编码矩阵指示PMI或侧行参考信号接收功率S-RSRP。
  40. 一种信息反馈装置,应用于第一终端设备,其特征在于,所述装置包括:
    接收模块,用于在M个载波上接收侧行参考信号,M为大于等于2的整数;
    处理模块,用于根据所述侧行参考信号获取所述M个载波的侧行测量结果;
    确定模块,用于确定Q个目标载波,其中,Q是正整数;
    发送模块,用于在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
  41. 根据权利要求40所述的装置,其特征在于,所述确定模块,具体用于根据第一信息,确定Q个目标载波;
    其中,所述第一信息包括如下信息的至少一种:
    所述侧行参考信号所在的载波或接收到所述侧行参考信号的载波;
    所述侧行参考信号所关联的物理侧行共享信道PSSCH对应的优先级信息;
    信道占用率;
    载波索引信息;
    第二终端设备的指示信息或所述第一终端设备的指示信息;
    所述侧行测量结果所关联的逻辑信道对应的载波信息;
    承载所述M个载波的侧行测量结果的PSSCH信道所关联的逻辑信道对应的载波信息;
    所述第一终端设备已选取的用于传输PSSCH的载波信息;
    其中,所述第二终端设备是发送所述侧行参考信号的终端设备。
  42. 根据权利要求40或41所述的装置,其特征在于,所述确定模块,具体用于根据第二信息确定所述Q的值;
    其中,所述第二信息包括如下信息中的至少一种:
    优先级信息;
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息;
    所述M的取值。
  43. 根据权利要求40至42任一项所述的装置,其特征在于,所述发送模块,具体用于在所述Q个目标载波中的每个目标载波上反馈所述M个载波的侧行测量结果。
  44. 根据权利要求40至43任一项所述的装置,其特征在于,所述确定模块,还用于确定第一时间区间;
    相应的,所述发送模块,具体用于在所述第一时间区间内,在所述Q个目标载波上,反馈所述M个载波的侧行测量结果。
  45. 根据权利要求44所述的装置,其特征在于,所述确定模块,具体用于:
    确定所述M个载波中第m个载波的第二时间区间,m为小于或等于M的正整数;
    根据所述M个载波的M个第二时间区间的重叠部分,确定所述第一时间区间,其中,所述第二时间区间是根据所述M个载波中第m个载波的侧行测量结果反馈的时延边界信息确定的。
  46. 根据权利要求45所述的装置,其特征在于,所述确定模块,具体用于:
    获取第m个载波的侧行测量结果反馈的时延边界信息;
    根据所述第m个载波的侧行测量结果反馈的时延边界信息以及在所述第m个载波上所述侧行参考信号所在的时隙信息,确定所述第m个载波的第二时间区间。
  47. 根据权利要求45或46所述的装置,其特征在于,所述M个载波的M个第二时间区间的重叠部分大于或等于第一门限值。
  48. 根据权利要求47所述的装置,其特征在于,所述第一门限值根据如下信息中的至少一种确定:
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  49. 根据权利要求44所述的装置,其特征在于,所述确定模块,具体用于根据如下信息中的至少一种确定所述第一时间区间:
    侧行测量结果反馈的时延边界信息;
    所述M个侧行参考信号所在的时隙中最早的时隙位置;
    所述M个侧行参考信号所在的时隙中最晚的时隙位置。
  50. 根据权利要求44或45所述的装置,其特征在于,所述确定模块,具体用于:
    根据所述Q个目标载波中第q个目标载波的侧行测量结果反馈的时延边界信息,确定所述第q个目标载波的第三时间区间,q为小于或等于Q的正整数;
    将所述第三时间区间确定为所述第一时间区间;
    相应的,所述发送模块,具体用于在所述第一时间区间内,在所述第q个目标载波上反馈所述M个载波的侧行测量结果。
  51. 根据权利要求40至48任一项所述的装置,其特征在于,所述M个载波的侧行测量结果承载 于同一介质访问控制层的控制单元MAC CE中。
  52. 根据权利要求51所述的装置,其特征在于,所述MAC CE还包括所述M个载波对应的载波索引信息。
  53. 根据权利要求52所述的装置,其特征在于,所述MAC CE中包括M个信息域,每个信息域包括所述M个载波中的一个载波对应的载波索引信息和侧行测量结果。
  54. 根据权利要求52或53所述的装置,其特征在于,所述侧行测量结果包括第一测量量对应的测量结果,相应的,所述MAC CE中包括第一索引信息,以及M-1个差分索引信息;
    其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
  55. 根据权利要求54所述的装置,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
  56. 根据权利要求54所述的装置,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除所述第一载波外的其他载波的测量结果对应的索引与所述第一索引信息对应的索引的差值确定的。
  57. 根据权利要求54至56任一项所述的装置,其特征在于,在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的载波索引信息和侧行测量结果之前。
  58. 根据权利要求51所述的装置,其特征在于,所述MAC CE中包括N个信息域,所述N个信息域用于承载N个载波的侧行测量结果,其中,所述N是所述第一终端设备和所述第二终端设备进行侧行通信的最大载波数量,N为大于或等于M的整数。
  59. 根据权利要求58所述的装置,其特征在于,所述N个载波的侧行测量结果按照载波索引顺序在所述MAC CE中顺序排放。
  60. 根据权利要求58所述的装置,其特征在于,所述N个信息域与所述N个载波之间具有第一对应关系,其中,所述第一对应关系是预定义的,或根据预配置信息确定的,或根据网络配置信息确定的。
  61. 根据权利要求58至60任一项所述的装置,其特征在于,若所述N个载波中的第二载波没有侧行测量结果,所述第二载波在所述MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示所述信息域没有承载侧行测量结果。
  62. 根据权利要求58所述的装置,其特征在于,所述侧行测量结果包括第一测量量对应的测量结果,相应的:所述MAC CE中包括第一索引信息,以及N-1个差分索引信息;
    其中,所述第一索引信息是根据第一载波的第一测量量对应的测量结果确定的索引信息;所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息;所述第一载波是具有最高的第一测量量对应的测量结果的载波。
  63. 根据权利要求62所述的装置,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果与所述第一载波的测量结果的差值确定的。
  64. 根据权利要求62所述的装置,其特征在于,所述差分索引信息是根据所述第一载波的测量结果确定的差分索引信息,包括:
    所述差分索引信息是根据所述M个载波中除第一载波外的其他载波的测量结果对应的索引与所述第一索引信息对应的索引的差值确定的。
  65. 根据权利要求62至64任一项所述的装置,其特征在于,
    所述MAC CE中还包括所述第一载波的载波索引信息。
  66. 根据权利要求65所述的装置,其特征在于,
    在所述MAC CE中,所述第一载波对应的载波索引信息和侧行测量结果位于其他载波对应的侧行测量结果之前。
  67. 根据权利要求66所述的装置,其特征在于,所述N个载波中除所述第一载波外的其他N-1个载波的侧行测量结果按照载波索引顺序在所述第一载波对应的载波索引信息和侧行测量结果之后顺序排放。
  68. 根据权利要求62至67任一项所述的装置,其特征在于,若所述N个载波中的第三载波没有 侧行测量结果,所述第三载波在MAC CE中对应的信息域填充特殊符号,所述特殊符号用于指示该信息域没有承载侧行测量结果;或者,所述第三载波对应的差分索引信息为无效索引或预留索引。
  69. 根据权利要求54至57、62至68任一项所述的装置,其特征在于,所述第一测量量包括侧行参考信号接收功率S-RSRP或信道质量指示CQI。
  70. 根据权利要求40至69任一项所述的装置,其特征在于,所述接收模块,还用于在K个载波上接收侧行参考信号;
    所述处理模块,还用于根据所述侧行参考信号获取所述K个载波的侧行测量结果;
    所述确定模块,还用于从所述K个载波中选取所述M个载波;其中K是大于或等于M的整数。
  71. 根据权利要求70所述的装置,其特征在于,所述确定模块,还用于根据第三信息确定所述M的值;
    其中,所述第三信息包括如下信息中的至少一种:
    优先级信息;
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  72. 根据权利要求70或71所述的装置,其特征在于,所述确定模块,具体用于根据优先级信息从高到低的顺序从所述K个载波中选取所述M个载波。
  73. 根据权利要求72所述的装置,其特征在于,所述优先级信息是根据与所述K个载波的侧行参考信号同时发送的PSSCH的优先级确定的。
  74. 根据权利要求70或71所述的装置,其特征在于,所述确定模块,还用于:
    获取所述K个载波中第k个载波的侧行测量结果反馈的时延边界信息;
    根据所述第k个载波的侧行测量结果反馈的时延边界信息,确定所述第k个载波对应的第四时间区间;其中,所述第四时间区间用于指示在所述第k个载波上反馈侧行测量结果的时间区间。
  75. 根据权利要求74所述的装置,其特征在于,所述确定模块,具体用于根据所述K个载波对应的K个第四时间区间的重叠部分选取M个载波,所述M个载波对应的第四时间区间的重叠部分大于或等于第二门限值。
  76. 根据权利要求75所述的装置,其特征在于,所述第二门限值根据如下信息中的至少一种确定:
    所述第二终端设备的指示信息或所述第一终端设备的指示信息;
    网络设备发送的配置信息;
    预配置信息。
  77. 根据权利要求40至76任一项所述的装置,其特征在于,所述侧行参考信号为下述信息中的任意一种:
    侧行信道状态信息参考信号SL CSI-RS、物理侧行共享信道解调参考信号PSSCH DMRS、物理侧行控制信道解调参考信号PSCCH DMRS。
  78. 根据权利要求40至77任一项所述的装置,其特征在于,所述侧行测量结果包括以下信息中的至少一种:
    信道质量指示CQI、秩指示RI、预编码矩阵指示PMI或侧行参考信号接收功率S-RSRP。
  79. 一种终端设备,其特征在于,包括:处理器、存储器、收发器和系统总线;
    所述存储器用于存储计算机执行指令;
    所述处理器用于从所述存储器中获取计算机指令,并执行所述计算机指令以实现上述权利要求1至39任一项所述的方法。
  80. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被处理器执行时用于实现上述权利要求1至39任一项所述的方法。
  81. 一种计算机程序,其特征在于,当所述计算机程序被处理器执行时,用于实现上述权利要求1至39任一项所述的方法。
  82. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被处理器执行时用于实现上述权利要求1至39任一项所述的方法。
  83. 一种芯片,其特征在于,包括:处理模块与通信接口,所述处理模块用于执行上述权利要求1至39任一项所述的方法。
  84. 一种通信系统,其特征在于,包括:第一终端设备和第二终端设备;
    所述第一终端设备为上述权利要求40至78任一项所述的信息反馈装置。
PCT/CN2021/133272 2021-11-25 2021-11-25 信息反馈方法、装置、设备及存储介质 WO2023092418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/133272 WO2023092418A1 (zh) 2021-11-25 2021-11-25 信息反馈方法、装置、设备及存储介质
CN202180100934.0A CN117730548A (zh) 2021-11-25 2021-11-25 信息反馈方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133272 WO2023092418A1 (zh) 2021-11-25 2021-11-25 信息反馈方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023092418A1 true WO2023092418A1 (zh) 2023-06-01

Family

ID=86538566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133272 WO2023092418A1 (zh) 2021-11-25 2021-11-25 信息反馈方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117730548A (zh)
WO (1) WO2023092418A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200059962A1 (en) * 2016-11-04 2020-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Cooperation Between Nodes Operating in Licensed and Unlicensed Spectrum for Channel Access in Unlicensed Spectrum
CN111294938A (zh) * 2019-01-28 2020-06-16 展讯通信(上海)有限公司 一种多载波数据传输方法及装置
CN111586621A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 侧行链路管理方法及装置
CN111800219A (zh) * 2019-07-29 2020-10-20 维沃移动通信有限公司 数据传输方法、用户设备及控制节点
CN113645006A (zh) * 2020-05-11 2021-11-12 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200059962A1 (en) * 2016-11-04 2020-02-20 Telefonaktiebolaget Lm Ericsson (Publ) Cooperation Between Nodes Operating in Licensed and Unlicensed Spectrum for Channel Access in Unlicensed Spectrum
CN111294938A (zh) * 2019-01-28 2020-06-16 展讯通信(上海)有限公司 一种多载波数据传输方法及装置
CN111586621A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 侧行链路管理方法及装置
CN111800219A (zh) * 2019-07-29 2020-10-20 维沃移动通信有限公司 数据传输方法、用户设备及控制节点
CN113645006A (zh) * 2020-05-11 2021-11-12 上海朗帛通信技术有限公司 一种副链路无线通信的方法和装置

Also Published As

Publication number Publication date
CN117730548A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
EP4072195A1 (en) Method and device for terminal to transmit positioning reference signal in wireless communication system supporting sidelink communication
EP4047999A1 (en) Method for performing positioning by user equipment in wireless communication system supporting sidelink, and apparatus therefor
US20230422286A1 (en) Method and apparatus for carrier aggregation in sidelink communication
EP3854174B1 (en) Device discovery using sidelink discovery messages
WO2019091098A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
US20230337171A1 (en) Method for transmitting or receiving signal related to positioning by terminal in wireless communication system supporting sidelink, and apparatus therefor
US20230397150A1 (en) Method and device for transmitting or receiving positioning-related signal by terminal in wireless communication system supporting sidelink
JP2021502742A5 (zh)
CN108141701B (zh) 用于选择传输格式的方法和设备
US20220416976A1 (en) Method and device for terminal to transmit positioning reference signal in wireless communication system supporting sidelink communication
CN109151844B (zh) 一种终端之间通信的方法、终端和系统
US20220110075A1 (en) Information transmission method and apparatus, and storage medium
WO2020200014A1 (zh) 通信方法及装置
JP2021533596A (ja) 車両インターネットにおけるデータ伝送方法及び端末デバイス
TWI805798B (zh) 一種車聯網中傳輸資料的方法和終端設備
EP4290970A1 (en) Method for transmitting and receiving sidelink signal on unlicensed band by terminal in wireless communication system supporting sidelink, and device therefor
CN114402637A (zh) 通信方法和通信装置
WO2021168826A1 (zh) 资源排除方法、装置、设备及存储介质
CN112399621B (zh) 上行控制信息传输方法及通信装置
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
WO2023092418A1 (zh) 信息反馈方法、装置、设备及存储介质
US20220217702A1 (en) Information transmission method and apparatus
WO2018015612A1 (en) Determining a modulation and coding scheme for a broadcast or multicast transmission
WO2023108477A1 (zh) 资源选择的控制方法、装置、设备及存储介质
WO2022242694A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100934.0

Country of ref document: CN