WO2023090218A1 - レシプロエンジンシステム、レシプロエンジンの運転方法 - Google Patents

レシプロエンジンシステム、レシプロエンジンの運転方法 Download PDF

Info

Publication number
WO2023090218A1
WO2023090218A1 PCT/JP2022/041687 JP2022041687W WO2023090218A1 WO 2023090218 A1 WO2023090218 A1 WO 2023090218A1 JP 2022041687 W JP2022041687 W JP 2022041687W WO 2023090218 A1 WO2023090218 A1 WO 2023090218A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating engine
ammonia
auxiliary fuel
liquid auxiliary
air
Prior art date
Application number
PCT/JP2022/041687
Other languages
English (en)
French (fr)
Inventor
哲哉 田貝
豊 眞島
裕 増田
孝行 廣瀬
健太 宮内
宏樹 相場
Original Assignee
株式会社Ihi原動機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi原動機 filed Critical 株式会社Ihi原動機
Priority to CN202280075594.5A priority Critical patent/CN118234931A/zh
Priority to KR1020247014884A priority patent/KR20240089322A/ko
Priority to JP2023553934A priority patent/JP7394270B2/ja
Publication of WO2023090218A1 publication Critical patent/WO2023090218A1/ja
Priority to JP2023189340A priority patent/JP2024012521A/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0235Throttle control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a reciprocating engine system and a method of operating a reciprocating engine.
  • This application claims priority based on Japanese Patent Application No. 2021-186474 filed in Japan on November 16, 2021, the content of which is incorporated herein.
  • ammonia As a fuel, the problem is that it is more difficult to burn than conventionally used fuels such as heavy oil, light oil, gasoline, and natural gas.
  • Patent Document 1 in a reciprocating engine, gaseous ammonia is premixed with air, compressed in a cylinder, and fuel oil such as heavy oil is injected from a fuel injection valve in a combustion chamber and ignited. is described as an ignition source for mixed combustion with ammonia.
  • fuel oil such as heavy oil is injected from a fuel injection valve in a combustion chamber and ignited.
  • the ratio of ammonia and heavy oil an example is described in which the heavy oil is 80% and the ammonia is 20% in terms of calorie ratio.
  • the reason why the ratio of ammonia to the entire fuel is only 20% is that the ratio of ammonia must be reduced because ammonia is difficult to burn. In this case, the effect of reducing carbon dioxide emissions will be limited.
  • Patent Document 2 describes a reciprocating engine that injects ammonia and a combustion-supporting fuel into an intake pipe, and ignites a mixture of the ammonia, the combustion-supporting fuel, and air by spark discharge of a spark plug.
  • Patent Document 2 describes increasing the usage ratio of ammonia with a decrease in the rotation speed of the internal combustion engine, or increasing the usage ratio of ammonia with an increase in the load of the internal combustion engine.
  • Patent Document 2 does not specify what percentage of ammonia is in the total fuel, but it can be understood that it is not easy to increase the percentage of ammonia.
  • the present invention has been made in view of the above problems, and aims to further increase the effect of reducing carbon dioxide emissions in a reciprocating engine that uses ammonia as fuel.
  • a reciprocating engine system includes a cylinder that forms a combustion chamber, a piston that reciprocates within the cylinder, an ammonia fuel supply device that supplies gaseous ammonia to the cylinder and premixes it with air, a reciprocating engine having a liquid auxiliary fuel supply device that supplies a liquid auxiliary fuel that ignites the ammonia in the cylinder; and a state in which a compression end temperature in the cylinder is a predetermined temperature or higher at which combustion delay of the ammonia does not occur. and a control device for co-firing operation with the ammonia and the liquid auxiliary fuel.
  • the inventors of the present application have found that when the air-fuel mixture is compressed in the cylinder, the work from the piston changes to heat, and the temperature of the air-fuel mixture in the cylinder rises. It has been found that good combustion of ammonia becomes possible by setting the compression end temperature, which is the temperature of , to a predetermined temperature or higher at which ammonia combustion delay does not occur. As a result, the ratio of ammonia to liquid auxiliary fuel can be increased more than before, and the effect of reducing carbon dioxide emissions can be increased in a reciprocating engine that uses ammonia as fuel.
  • the liquid auxiliary fuel a liquid fuel that self-ignites at a predetermined compression end temperature can be used, and fuels generally used in diesel engines, specifically heavy oil, light oil, vegetable oil, etc. can be suitably used. .
  • the predetermined temperature may be 750K.
  • the ignition temperature of ammonia is about 652° C. (925 K), which is higher than 247° C. (520 K) for light oil and 537° C. (810 K) for methane, which is the main component of natural gas, by more than 100° C.
  • the compression end temperature of the mixture has not been increased sufficiently. Therefore, when the liquid auxiliary fuel is injected into the cylinder and ignited, the ammonia air-fuel mixture existing in the vicinity of the flame caused by the combustion of the liquid auxiliary fuel is exposed to the high temperature of the flame and burns, but is separated from the flame. The mixture does not burn well.
  • the compression end temperature is set to a predetermined temperature or higher at which no ammonia combustion delay occurs, specifically 750 K or higher, the mixture of gaseous ammonia and air reaches the ignition temperature of ammonia. Compressed and held in the combustion chamber at a similar temperature. Therefore, when an ammonia air-fuel mixture is ignited by igniting an appropriate amount of liquid auxiliary fuel, the flame from the combustion of ammonia propagates in the combustion chamber, and the air-fuel mixture burns throughout the combustion chamber.
  • the predetermined temperature of the compression end temperature at which the combustion delay of ammonia does not occur is specifically 750K or higher, but it can be changed according to conditions such as the size of the cylinder, the rotation speed of the engine, and the state of operation. .
  • a four-stroke engine is described as an example of a reciprocating engine, but the same principle is applied to a two-stroke engine.
  • the stroke volume per cylinder may be 5000 cc or more, and the rated rotational speed of the reciprocating engine may be 1200 rpm or less.
  • the compression end temperature of the air-fuel mixture rises according to the compression ratio.
  • heat escapes to the inner surface of the combustion chamber, so the compression end temperature is lower than in ideal adiabatic compression.
  • the cylinder, cylinder head, and piston that form the inner surface of the combustion chamber each have a heat capacity and are cooled by cooling water and lubricating oil, which causes the compression end temperature to drop.
  • the amount of heat that escapes from the combustion chamber correlates with the area of the inner surface of the combustion chamber, and the amount of heat generated in the combustion chamber correlates with the volume of the combustion chamber.
  • Enlarging the combustion chamber is effective in raising the compression end temperature to a predetermined temperature or higher at which no ammonia combustion delay occurs.
  • the stroke volume per cylinder is set to 5000 cc or more.
  • the rated rotation speed of the reciprocating engine is set to 1200 rpm or less.
  • the compression ratio is often set to about 13 to 14, but in the case of a reciprocating engine that burns an ammonia mixture, the compression ratio is set to a higher value of 15. Setting above is more desirable in terms of raising the compression end temperature.
  • the control device increases the mixed combustion ratio of ammonia with respect to the entire fuel in accordance with an increase in the output of the reciprocating engine in the mixed combustion operation, and the maximum mixed combustion ratio of ammonia is the calorie ratio may be 80% or more.
  • the maximum co-firing ratio of ammonia is 80% or more in terms of calorific value near the maximum output, a sufficient effect of reducing carbon dioxide emissions can be obtained.
  • the co-firing rate of ammonia with respect to the entire fuel is increased in accordance with the rise in the compression end temperature, and the maximum co-firing rate of ammonia is 80% in calorie ratio. and above.
  • control device may set the equivalence ratio of the entire fuel to the air to 0.5 or more and 1.0 or less in the co-firing operation.
  • nitrous oxide is one of the greenhouse gases, and high production of nitrous oxide offsets the carbon dioxide reduction effect of using ammonia as fuel.
  • the inventors of the present application have found that the generation of nitrous oxide is related to the total equivalence ratio of fuel to air (the sum of the equivalence ratio of ammonia and the equivalence ratio of liquid auxiliary fuel). More specifically, it was found that when the total fuel to air equivalence ratio is less than 0.5, nitrous oxide production increases sharply as the equivalence ratio decreases.
  • the equivalence ratio of the entire fuel to air is 0.5 or more. Further, when the equivalence ratio of the entire fuel to air is 1.0 or more, the air required for combustion of the fuel is insufficient, so the fuel is discharged as an unburned component. In this case, ammonia is mainly emitted as an unburned component because ammonia is less combustible than the liquid auxiliary fuel. Therefore, in co-firing operation, it is desirable that the equivalence ratio of the entire fuel to air is 1.0 or less.
  • the control device sets the co-firing ratio of ammonia to zero in an operating region where the equivalence ratio of the entire fuel to the air is less than a predetermined value, and operates with only the liquid auxiliary fuel. good too.
  • a method of adjusting the amount of fuel supplied is generally used to adjust the output.
  • the equivalence ratio of fuel to air is not fixed at around 1 and is operated at a lower equivalence ratio.
  • the rate of decrease in the amount of fuel supplied is greater than the rate of decrease in the amount of air supplied, and the equivalence ratio tends to decrease.
  • ammonia and a liquid auxiliary fuel are co-combusted, if the overall fuel supply is reduced in order to lower the output, the amount of heat generated will be reduced, making ammonia less likely to burn.
  • the equivalence ratio of the entire fuel to air is less than a predetermined value
  • the co-firing ratio of ammonia is set to zero, and operation is performed using only the liquid auxiliary fuel. This prevents the generation of unburned ammonia and nitrous oxide.
  • the operating region in which the equivalence ratio is less than a predetermined value varies depending on the specific conditions of the engine, but examples include idling and low output operation close to idling.
  • control device may perform control to raise the compression end temperature in an operating region in which the compression end temperature is lower than the predetermined temperature.
  • the control to raise the compression end temperature includes control to raise the target value of the cooling temperature in the air cooler provided downstream of the compressor of the supercharger, control to heat air downstream or upstream of the compressor of the supercharger, reciprocating engine and control to increase the effective compression ratio of.
  • control to raise the compression end temperature before starting the supply of gaseous ammonia.
  • the above-described control can be performed in order to enable co-combustion of ammonia even in a region where the output of the reciprocating engine is low.
  • the control to raise the compression end temperature may be control to heat the intake air of the reciprocating engine.
  • a device for heating intake air (hereinafter also referred to as "supply air") is provided downstream or upstream of the compressor of the supercharger in the intake passage of the reciprocating engine. It is effective to control the heating of intake air.
  • the reciprocating engine system further includes a supercharger having a compressor and a turbine and supercharging the reciprocating engine, and the control device controls the operation in an operating region where the intake air temperature downstream of the compressor is lower than a predetermined temperature. , control may be performed to heat the intake air.
  • Factors that govern the compression end temperature include the temperature of the outside air drawn into the reciprocating engine, temperature rise due to compression work in the turbocharger compressor, and temperature rise due to compression work in the cylinder of the reciprocating engine.
  • the compression ratio in the cylinder of the reciprocating engine is a design value predetermined to a desired value, and can be grasped as a volume ratio even when a variable mechanism such as variable valve timing is used.
  • the compression ratio of the turbocharger compressor depends on the operating conditions of the reciprocating engine.
  • the temperature of the outside air depends on the environmental conditions.
  • the temperature of the intake air downstream of the compressor is the sum of the temperature of the outside air and the influence of the compression ratio of the compressor, it is effective to control the heating of the intake air using this as a criterion. be.
  • the control device performs control to heat the intake air in order to obtain an appropriate compression end temperature in an operation region where the temperature of the intake air downstream of the compressor is lower than a predetermined temperature.
  • control device may keep the supply amount of the liquid auxiliary fuel constant and speed control the supply amount of the ammonia in the co-firing operation.
  • a simple and effective control method is to keep the supply amount of liquid auxiliary fuel constant and control the supply amount of gaseous ammonia.
  • it is effective to increase the co-firing ratio of ammonia to the total fuel in accordance with the increase in output.
  • speed regulation control is required to increase or decrease the amount of fuel supplied so that the reciprocating engine reaches a target rotational speed. If the amount of auxiliary liquid fuel supplied is kept constant at the amount necessary to maintain the low output of the reciprocating engine, and the amount of gaseous ammonia supplied is controlled according to the demand for increased output, these two requests are satisfied at the same time.
  • control device may map-control the supply amount of the liquid auxiliary fuel and speed-regulate the supply amount of the ammonia in the co-firing operation.
  • a turbocharger having a compressor and a turbine for supercharging the reciprocating engine, an intake passage connecting the compressor and the reciprocating engine, and an exhaust passage connecting the reciprocating engine and the turbine and at least one of an openable first short circuit that connects the intake path and the exhaust path, and at least one of an openable second short circuit that connects the intake path and a downstream side of the turbine, wherein the control device may perform opening/closing control of at least one of the first short circuit and the second short circuit according to the exhaust temperature of the reciprocating engine.
  • the equivalence ratio of the entire fuel is higher than in conventional diesel engines and gas engines using fuel such as natural gas. Therefore, at medium and high loads, the exhaust temperature at the turbine inlet may exceed the permissible temperature of the turbine. Therefore, at medium and high loads, the air at the compressor outlet is bypassed to the turbine inlet to lower the temperature of the exhaust gas flowing into the turbine, and the temperature of the exhaust gas at the catalyst inlet, which will be described later, is also made appropriate.
  • the turbocharger does not work sufficiently, so the pressure at the turbine inlet becomes higher than the pressure at the compressor outlet, and there is a risk of exhaust gas flowing back from the turbine inlet to the compressor outlet. Therefore, at low loads, the air at the compressor outlet is bypassed downstream of the turbine (catalyst inlet) to bring the temperature of the exhaust flowing to the catalyst to an appropriate temperature.
  • a temperature sensor is provided at the turbine inlet and the catalyst inlet, and based on the measured value, the first short circuit and the second short circuit are controlled. Either one of the two short circuits may be opened or closed.
  • the reciprocating engine system further includes a throttle valve that limits the amount of air on the intake side of the reciprocating engine, and the control device controls the equivalence ratio of the ammonia to the air so that the mixed combustion operation is possible.
  • the opening degree of the throttle valve may be controlled at the same time.
  • the equivalence ratio of ammonia is maintained within the target range that enables co-firing operation by providing a throttle valve at the intake inlet to throttle the amount of intake air.
  • the equivalence ratio of ammonia which is the target range, is desirably 0.4 to 0.8.
  • the equivalence ratio of the entire fuel including the liquid auxiliary fuel is 0.5 to 1.0. 0.5 or more and 1.0 or less.
  • the control device starts the reciprocating engine only with the liquid auxiliary fuel, operates with only the liquid auxiliary fuel until the compression end temperature reaches the predetermined temperature, and The co-firing operation may be performed after the temperature reaches the predetermined temperature.
  • the engine is started only with the liquid auxiliary fuel, and is operated only with the liquid auxiliary fuel until the compression end temperature reaches a predetermined value. Then, after the compression end temperature reaches a predetermined value, the co-firing operation with liquid auxiliary fuel and gaseous ammonia is performed.
  • the compression end temperature may be measured by providing a sensor in the combustion chamber. Also, the compression end temperature may be obtained as an estimated value from the design value of the reciprocating engine, the measured temperature of each part, and the operating conditions.
  • a condition may be set in advance so that the compression end temperature reaches a predetermined value with a certain margin. After that condition is reached, the co-firing operation with liquid auxiliary fuel and gaseous ammonia may be started.
  • the supply of gaseous ammonia is zero and operation is performed using only liquid auxiliary fuel. , becomes.
  • the control device starts the reciprocating engine only with the liquid auxiliary fuel, operates with only the liquid auxiliary fuel until the reciprocating engine reaches a predetermined output, and
  • the co-firing operation may be performed after the output of is reached.
  • the control device is first started using only the liquid auxiliary fuel, operates only with the liquid auxiliary fuel until the predetermined output is reached, and then After reaching a predetermined output, the co-firing operation with liquid auxiliary fuel and gaseous ammonia may be performed. Since there is a correlation between the output and the compression end temperature, it is simple and practical to use the output as a reference as the control parameter.
  • the control device starts the reciprocating engine only with the liquid auxiliary fuel, increases the injection amount of the liquid auxiliary fuel, and reaches a predetermined value when the equivalence ratio of the entire fuel to the air reaches a predetermined value.
  • Co-firing operation using the liquid auxiliary fuel and the ammonia may be performed later.
  • the equivalence ratio of the entire fuel to air is 0.5 or more. Therefore, it is desirable to start with only the liquid auxiliary fuel, increase the injection amount of the liquid auxiliary fuel to increase the output, and start supplying gaseous ammonia after the equivalence ratio reaches a predetermined value to perform mixed combustion operation. Further, when increasing the injection amount of the liquid auxiliary fuel, the supply pressure may be controlled to control the amount of supply air so as to control the equivalence ratio more accurately.
  • the control device starts the reciprocating engine only with the liquid auxiliary fuel, operates only with the liquid auxiliary fuel until the temperature of the exhaust gas of the reciprocating engine reaches a predetermined temperature, After the temperature of the exhaust gas reaches a predetermined temperature, the co-firing operation with the liquid auxiliary fuel and the ammonia may be performed.
  • the temperature of the reciprocating engine exhaust gas is measured with a sensor. Then, the co-firing operation is started under the condition that the measured value of the sensor rises to a predetermined temperature determined in advance by experiment or the like. As a result, good combustion of ammonia can be expected. Further, when using a catalyst treatment device for treating exhaust gas as described later, the temperature of the exhaust gas reaches the treatment temperature at which the catalyst functions, and then the co-firing operation is started, so that the nitrogen generated by the co-firing operation is Oxide (NOx), nitrous oxide, and unburned ammonia can be treated.
  • Oxide Oxide
  • nitrous oxide nitrous oxide
  • unburned ammonia unburned ammonia
  • the above reciprocating engine system includes a catalyst treatment device that is provided downstream of an exhaust passage of the cylinder and that treats exhaust gas discharged from the cylinder using a catalyst, and the control device controls only the liquid auxiliary fuel.
  • the control device controls only the liquid auxiliary fuel. to start the reciprocating engine, operate with only the liquid auxiliary fuel until the temperature of the catalyst treatment device reaches the treatment temperature at which the catalyst functions, and after the temperature of the catalyst treatment device reaches the treatment temperature, The co-firing operation may be performed.
  • the temperature of this catalytic treatment device is measured by a sensor. Then, on the condition that the measured value of the sensor reaches the processing temperature at which the catalyst functions, the co-firing operation is started. As a result, nitrogen oxides (NOx), nitrous oxide, and unburned ammonia generated by co-firing operation can be effectively treated.
  • NOx nitrogen oxides
  • nitrous oxide nitrous oxide
  • unburned ammonia generated by co-firing operation can be effectively treated.
  • the reciprocating engine system includes a heating device for heating the catalyst treatment device, and the control device heats the catalyst treatment device with the heating device so that the temperature of the catalyst treatment device reaches the treatment temperature.
  • the reciprocating engine is a marine engine that directly or indirectly drives a propeller, and the control device increases output by increasing the supply amount of the liquid auxiliary fuel, and then The supply amount of the ammonia may be increased while the supply amount of the liquid auxiliary fuel is decreased.
  • the reciprocating engine is a marine engine that directly or indirectly drives a propeller
  • power is increased by increasing the supply of liquid auxiliary fuel, and then gaseous ammonia is added while decreasing the supply of liquid auxiliary fuel.
  • gaseous ammonia is added while decreasing the supply of liquid auxiliary fuel.
  • the output of the reciprocating engine is low, the amount of heat generated is small, so ammonia is difficult to burn. Therefore, by increasing the supply amount of the liquid auxiliary fuel, the output is increased, the amount of heat generated is increased, and the temperature of the reciprocating engine main body and the cooling water is raised. In this state, if the supply amount of gaseous ammonia is increased while the supply amount of liquid auxiliary fuel is decreased, co-combustion operation can be performed while suppressing an increase in the emission of unburned ammonia.
  • the increase in power output by increasing the amount of liquid supplemental fuel supplied may be done until the rotational speed or power reaches the rating, or to an intermediate suitable power below the rating.
  • the expression that the reciprocating engine directly drives the propeller includes mechanically driving the propeller via a speed reducer or the like as required by the output shaft of the reciprocating engine.
  • the fact that the reciprocating engine indirectly drives the propeller includes the case where the reciprocating engine drives the generator and the electric power obtained by the reciprocating engine drives the propeller with the motor.
  • the reciprocating engine is a power generating engine that drives a generator
  • the control device increases the output by increasing the supply amount of the liquid auxiliary fuel when the load is applied, and then The supply amount of the ammonia may be increased while the supply amount of the liquid auxiliary fuel is decreased.
  • the output is increased by increasing the amount of liquid auxiliary fuel supplied during load application, and then gaseous ammonia is generated while decreasing the amount of liquid auxiliary fuel supplied. may be increased.
  • a generator engine used for power generation it is necessary to divide the load on the power system several times and apply the load stepwise to the generator. When the load is applied, it is necessary to increase the output in a short period of time.
  • the output is increased by increasing the amount of liquid auxiliary fuel supplied, and then by increasing the amount of gaseous ammonia supply while decreasing the amount of liquid auxiliary fuel supplied, the increase in unburned ammonia is suppressed. While doing so, it is possible to apply a large load.
  • the reciprocating engine may have a mixed combustion operation mode in which the mixed combustion operation is performed, and a diesel operation mode in which the operation is performed only with the liquid auxiliary fuel without supplying the ammonia.
  • the reciprocating engine can have a mixed combustion operation mode in which mixed combustion operation is performed, as well as a diesel operation mode in which the required power is continuously output only with liquid auxiliary fuel without supplying gaseous ammonia.
  • a mixed combustion operation mode in which mixed combustion operation is performed
  • a diesel operation mode in which the required power is continuously output only with liquid auxiliary fuel without supplying gaseous ammonia.
  • liquid auxiliary fuel in addition to operation using gaseous ammonia in order to ensure operational redundancy.
  • power generation engines to operate using only liquid auxiliary fuel from the standpoint of continuity of operation in the event of an emergency.
  • As a fuel injection device for injecting liquid auxiliary fuel during mixed combustion operation if a common rail type fuel injection device is used, it is advantageous in terms of control of injection timing and the number of injections.
  • one fuel injection device may be compatible with both the mixed combustion operation mode and the diesel operation mode.
  • the reciprocating engine system includes an air supply device that supplies additional air to the intake side of the reciprocating engine, and the control device controls the air supply device when switching from the mixed combustion operation mode to the diesel operation mode. Air may be temporarily supplied from the
  • the compressor or turbine is provided with a variable displacement turbocharger having a variable mechanism, and the control device controls the displacement of the turbocharger in the mixed combustion operation mode, whereby the turbocharger is is maintained higher than the speed required for supercharging, and more air is supplied by controlling the capacity of the supercharger when switching from the mixed combustion operation mode to the diesel operation mode.
  • variable capacity turbochargers have wedge-shaped movable vanes (wings) at the inlet on the compressor side, and by changing the angle of the movable vanes, the amount of air sucked into the impeller can be adjusted (inlet guide vanes, IGVs).
  • IGVs inlet guide vanes
  • the rotational speed of the turbocharger is maintained higher than necessary by controlling the movable vanes to be throttled to a state smaller than the optimum value for the operating state at that time during co-firing operation.
  • the movable vanes are temporarily opened to convert the rotational energy of the supercharger into the amount of air, thereby temporarily securing a large amount of air.
  • the above reciprocating engine system includes a catalyst treatment device that is provided downstream of an exhaust passage of the cylinder and uses a catalyst to treat the exhaust gas discharged from the cylinder, and the ammonia fuel supply device performs the mixed combustion operation.
  • WHEREIN You may supply a part of said ammonia to the said catalyst treatment apparatus as a reducing agent.
  • unburned ammonia acts as a reducing agent that takes oxygen from nitrogen oxides and nitrous oxide in the selective reduction catalyst or oxidation-reduction catalyst, so it is necessary to consider the rate of occurrence of these in the exhaust gas.
  • the amount of unburned ammonia generated is larger than the amount of nitrogen oxides and nitrous oxide generated, most of the nitrogen oxides and nitrous oxide are reduced by the unburned ammonia and become harmless. Further, the remaining unburned ammonia that has not reduced the nitrogen oxides and nitrous oxide is oxidized by the oxygen in the exhaust gas in the oxidation catalyst or redox catalyst and becomes harmless.
  • gaseous ammonia is supplied upstream of the selective reduction catalyst or the redox catalyst. This makes it possible to compensate for the shortage of ammonia even when the proportion of the generated amount of ammonia is small.
  • a branch is provided in a system for gaseous ammonia supplied as fuel from the ammonia supply device to the reciprocating engine, and a part of ammonia as fuel is diverted and supplied to the catalyst. As a result, the ammonia storage facility and replenishment work can be shared.
  • a sensor such as a NOx sensor or an ammonia sensor in the exhaust passage, and adjust the amount of gaseous ammonia supplied according to the components of the exhaust gas to be measured.
  • the ammonia fuel supply device may further supply part of the ammonia as a reducing agent to the catalyst treatment device even during operation using only the liquid auxiliary fuel.
  • a method of operating a reciprocating engine includes a cylinder forming a combustion chamber, a piston reciprocating within the cylinder, and an ammonia fuel supply device for supplying gaseous ammonia to the cylinder and premixing it with air. and a liquid auxiliary fuel supply device for supplying a liquid auxiliary fuel for igniting the ammonia in the cylinder, wherein a compression end temperature in the cylinder causes a combustion delay of the ammonia.
  • the co-firing operation with the ammonia and the liquid auxiliary fuel is performed at a temperature higher than or equal to a predetermined temperature.
  • the inventors of the present application have found that in a reciprocating engine, ammonia is premixed with air in a gaseous state, and the liquid auxiliary fuel is injected into the cylinder while the mixture is compressed in the cylinder to ignite. and concluded that co-firing operation, in which a mixture of gaseous ammonia and air is ignited, is optimal. Furthermore, the inventors of the present application have found that compressing the air-fuel mixture in the cylinder increases the temperature of the air-fuel mixture in the cylinder by converting the work from the piston into heat, but the temperature of the air-fuel mixture increases when the piston reaches top dead center.
  • the compression end temperature which is the temperature of
  • the ratio of ammonia to liquid auxiliary fuel can be set to, for example, 80% or more in terms of calorific value of ammonia, and the effect of reducing carbon dioxide emissions in a reciprocating engine using ammonia as fuel can be further increased. can be done.
  • FIG. 1 is a configuration diagram of a reciprocating engine system according to one embodiment; FIG. It is an explanatory view explaining operation of a diesel operation mode of a reciprocating engine concerning one embodiment.
  • FIG. 4 is an explanatory diagram illustrating the operation of the reciprocating engine according to the embodiment in a mixed combustion operation mode; 1 is a configuration diagram of an air supply/exhaust system of a reciprocating engine system according to one embodiment; FIG. FIG. 4 is a configuration diagram showing a modification of the air supply/exhaust system of the reciprocating engine system according to one embodiment; 1 is a configuration diagram of a catalytic treatment device according to one embodiment; FIG.
  • FIG. 4 is a graph showing the relationship between the compression end temperature in the cylinder and the combustion delay of the mixture of gaseous ammonia and air relative to the injection timing of the liquid supplemental fuel according to one embodiment.
  • 4 is a graph showing the relationship between the equivalence ratio of the entire fuel, N 2 O in the exhaust gas, and unburned NH 3 in the co-firing operation of gaseous ammonia and liquid auxiliary fuel according to one embodiment.
  • FIG. 4 is an explanatory diagram for explaining the operation when the reciprocating engine according to one embodiment is a marine engine; It is an explanation explaining the operation of the power generation engine in which the reciprocating engine according to one embodiment drives the power generator.
  • FIG. 1 is a configuration diagram of a reciprocating engine system 1 according to one embodiment.
  • the reciprocating engine system 1 includes a reciprocating engine 2 and a control device 3 for the reciprocating engine 2 .
  • the reciprocating engine 2 shown in FIG. 1 is a marine engine that directly or indirectly drives a propeller. Note that the reciprocating engine 2 may be a power generation engine that drives a generator as described later.
  • the reciprocating engine 2 includes a cylinder 11 forming a combustion chamber 10, a piston 12 reciprocating within the cylinder 11, a crankshaft 13 connected to the piston 12, and a rotation detection sensor 14 detecting rotation of the crankshaft 13. , and a torque detection sensor 15 for detecting the torque of the crankshaft 13 .
  • the crankshaft 13 is connected to, for example, the rotating shaft of a ship's propeller.
  • An intake passage 20 and an exhaust passage 30 are connected to the cylinder head of the cylinder 11 . Further, an intake valve 21 for opening and closing the intake passage 20 and an exhaust valve 31 for opening and closing the exhaust passage 30 are installed in the cylinder head. A liquid fuel injection valve 53 for injecting liquid auxiliary fuel into the combustion chamber 10 and an ignition device 55 are installed in the cylinder head.
  • the ignition device 55 is, for example, a micropilot oil injection valve, and is used in a mixed combustion operation mode, which will be described later.
  • the intake passage 20 includes a compressor 22 that compresses air for combustion, an air cooler 23 that is installed downstream of the compressor 22, and a fuel gas injection valve 43 that is installed downstream of the air cooler 23. .
  • the fuel gas injection valve 43 injects gaseous ammonia as a fuel into the intake passage 20 .
  • Gaseous ammonia is premixed with compressed air in the intake passage 20 to form an air-fuel mixture, which is supplied into the cylinder.
  • the air cooler 23 may be an air cooler/heating device that not only has a function of cooling air with cold water, but also has a function of warming air with hot water, a heater, or the like.
  • an air heating device 24 may be installed upstream of the compressor 22 in the intake passage 20 as necessary.
  • the air heating device 24 may have, for example, a cooling/heating system 25 that uses, as a heat source, a refrigerant that has exchanged heat with the reciprocating engine 2 .
  • the exhaust path 30 includes a turbine 33 that is rotated by the exhaust gas discharged from the combustion chamber 10, and a catalyst treatment device 60 that is installed downstream of the turbine 33 and treats substances contained in the exhaust gas.
  • the rotating shaft of the turbine 33 is connected to the compressor 22 as shown in FIG. 4, which will be described later, and rotates the compressor 22 using the exhaust gas as a rotation source. That is, the turbine 33 and the compressor 22 constitute the supercharger 4 .
  • the catalyst treatment device 60 uses a catalyst to treat specific substances such as nitrogen oxides (NOx), nitrous oxide, and unburned ammonia generated by combustion of ammonia and liquid auxiliary fuel.
  • a detection sensor 61 for detecting the specific substance is attached to the catalytic treatment device 60 .
  • the reciprocating engine 2 includes an ammonia fuel supply device 40 for supplying ammonia inside the cylinder 11 and a liquid auxiliary fuel supply device 50 for supplying a liquid auxiliary fuel for igniting ammonia inside the cylinder 11 .
  • the ammonia fuel supply device 40 includes an ammonia tank 41 , a vaporizer 42 and a fuel gas injection valve 43 .
  • the ammonia tank 41 contains liquid ammonia.
  • the vaporizer 42 vaporizes the liquid ammonia discharged from the ammonia tank 41 to generate gaseous ammonia.
  • the vaporizer 42 may include a pressure pump that pressurizes gaseous ammonia.
  • the vaporizer 42 is connected to a fuel gas injection valve 43 via an ammonia supply passage 44 .
  • the ammonia supply path 44 includes a regulator 44a and a pressure sensor 44b installed downstream of the regulator 44a.
  • the ammonia supply path 44 also includes a second ammonia supply path 45 branched upstream of the regulator 44a.
  • the ammonia second supply path 45 is connected to the catalyst treatment device 60 described above.
  • the ammonia second supply path 45 includes a regulator 45a and a pressure sensor 45b installed downstream of the regulator 45a.
  • the liquid auxiliary fuel supply device 50 includes a liquid auxiliary fuel tank 51 , a first liquid fuel supply pump 52 , a liquid fuel injection valve 53 , a second liquid fuel supply pump 54 and an ignition device 55 .
  • the liquid auxiliary fuel tank 51 contains liquid auxiliary fuel.
  • the first liquid fuel supply pump 52 supplies the liquid auxiliary fuel stored in the liquid auxiliary fuel tank 51 to the liquid fuel injection valves 53 .
  • the liquid fuel injection valve 53 is, for example, a mechanical fuel injection device used in a diesel operation mode, which will be described later.
  • the second liquid fuel supply pump 54 supplies the liquid auxiliary fuel contained in the liquid auxiliary fuel tank 51 to the ignition device 55 .
  • the ignition device 55 is, for example, a common rail fuel injection device used in a mixed combustion operation mode, which will be described later.
  • the reciprocating engine 2 configured as described above has a mixed combustion operation mode in which mixed combustion operation is performed with ammonia and liquid auxiliary fuel, and a diesel operation mode in which operation is performed only with liquid auxiliary fuel without supplying ammonia.
  • FIG. 2 is an explanatory diagram illustrating the operation of the reciprocating engine 2 in the diesel operation mode according to one embodiment.
  • liquid auxiliary fuel such as heavy oil is injected from the liquid fuel injection valve 53 into the combustion chamber 10 and ignited and burned in the compressed air compressed by the piston 12. At this time, the fuel gas injection valve 43 is stopped.
  • FIG. 3 is an explanatory diagram illustrating the operation of the reciprocating engine 2 in the mixed combustion operation mode according to one embodiment.
  • gaseous ammonia is injected from the fuel gas injection valve 43 into the intake passage 20 and premixed with air before the combustion chamber 10 .
  • the liquid auxiliary fuel for ignition is injected from the ignition device 55 into the combustion chamber 10 to ignite and burn the air-fuel mixture compressed by the piston 12 .
  • the liquid fuel injection valve 53 is stopped.
  • FIG. 4 is a configuration diagram of an intake and exhaust system of the reciprocating engine system 1 according to one embodiment.
  • the intake and exhaust system of the reciprocating engine system 1 includes a load L, a reciprocating engine 2, a supercharger 4, an air cooler 23, a pressure sensor 26, a rotation detection sensor 14, and a torque detection sensor.
  • a first drive unit 70, a first flow control valve 71, a second drive unit 80, a second flow control valve 81, an intake passage 20, an intake bypass passage 20a, an exhaust passage 30, and an exhaust A bypass 30 a and a control device 3 are provided.
  • Load L is a load that prevents the rotation of the engine.
  • the load L when the reciprocating engine system 1 is mounted on a ship, the load L includes a mechanical load when driving a propeller or the like.
  • the load L includes, for example, a mechanical load when the reciprocating engine system 1 is mounted on a vehicle, driving clutches, gears, throttle valves, wheels, and the like.
  • the load L includes, for example, electrical and mechanical loads when driving a generator or the like when the reciprocating engine system 1 is used for power generation.
  • the reciprocating engine 2 includes, for example, multiple cylinders 11 (combustion chambers).
  • the air compressed and supplied by the supercharger 4 is sent to the air cooler 23 through the intake passage 20 and then sent to the reciprocating engine 2 .
  • the reciprocating engine 2 burns the air compressed and supplied by the supercharger 4 in each cylinder 11 to reciprocate the internal piston 12 .
  • the reciprocating engine 2 converts reciprocating motion of a piston 12 in a cylinder 11 into rotary motion by a connecting rod (not shown) and a crankshaft 13 . Thereby, the reciprocating engine 2 gives energy based on this rotational motion to the load L to drive the load L. As shown in FIG.
  • the turbocharger 4 includes the compressor 22 and the turbine 33 as described above.
  • the compressor 22 takes in air from the outside according to the rotation of the turbine 33 and compresses the pressure of the taken-in air to the atmospheric pressure or higher.
  • the compressor 22 then supplies the compressed air to the reciprocating engine 2 via the intake passage 20 .
  • the turbine 33 takes in the exhaust gas that has been combusted in the reciprocating engine 2 and rotates according to the amount of the taken in exhaust gas.
  • the turbine 33 then discharges the exhaust gas used as a drive source for rotation to the outside.
  • the air cooler 23 is provided in part of the intake passage 20 for supplying air from the supercharger 4 to the reciprocating engine 2 .
  • the air cooler 23 cools the air passing through the intake passage 20 with cooling water supplied at a predetermined pressure from the outside through a supply passage (not shown). Cooling water is, for example, industrial water, seawater, or circulating cooling water.
  • the pressure sensor 26 is provided, for example, in the intake passage 20 on the downstream side of the air cooler 23, and measures the pressure of the air cooled by the air cooler 23 (unit [Pa], for example).
  • the rotation detection sensor 14 detects, for example, the rotational speed of the rotating shaft of the crankshaft 13 . Note that the rotation detection sensor 14 may detect the number of rotations or the angular velocity of the rotating shaft.
  • the torque detection sensor 15 detects, for example, the amount of torsion (for example, the amount of displacement) of the rotating shaft of the crankshaft 13, and derives the torque based on this amount of torsion and the radius of the rotating shaft.
  • One or both of the rotation detection sensor 14 and the torque detection sensor 15 may be a torsion detection sensor such as a shaft horsepower meter or an eddy current type electric dynamometer.
  • the first drive unit 70 and the second drive unit 80 are, for example, electromagnetic, hydraulic, pneumatic, or other actuators. Each of the first drive section 70 and the second drive section 80 is driven under the control of the control device 3 .
  • the first drive unit 70 drives the first flow rate adjustment valve 71 and adjusts the opening degree of the first flow rate adjustment valve 71 .
  • the second drive unit 80 drives the second flow control valve 81 and adjusts the opening degree of the second flow control valve 81 .
  • the intake bypass passage 20a is provided in part of the intake passage 20, and supplies part of the air passing through the intake passage 20 to the compressor 22 of the supercharger 4 for circulation. As shown in FIG. 4 , for example, the intake bypass passage 20a is provided in the intake passage 20 on the upstream side of the air cooler 23 . The intake bypass passage 20 a may be provided in the intake passage 20 on the downstream side of the air cooler 23 . In this case, the intake bypass 20a supplies part of the air cooled by the air cooler 23 to the compressor 22 of the turbocharger 4 for circulation.
  • the exhaust bypass passage 30a is provided in part of the exhaust passage 30, and exhausts part of the exhaust gas passing through the inside of the exhaust passage 30 to the outside without passing through the turbine 33 of the supercharger 4.
  • the first flow rate control valve 71 is provided in the intake bypass passage 20a and adjusts the flow rate of air circulating to the compressor 22 via the intake bypass passage 20a.
  • the first flow control valve 71 divides the air supplied from the compressor 22 into the intake path 20 directed to the air cooler 23 side and the intake bypass path 20a in an amount corresponding to the valve opening degree.
  • the first flow control valve 71 is fully open (when the valve opening is "1"), the air supplied from the compressor 22 is divided into the intake passage 20 directed to the air cooler 23 side and the intake bypass passage 20a. be.
  • the first flow control valve 71 is closed (when the valve opening is "0"), the entire amount of air supplied from the compressor 22 flows only through the intake passage 20 toward the air cooler 23 side.
  • the second flow rate control valve 81 is provided in the exhaust bypass path 30a and adjusts the flow rate of the exhaust gas discharged to the outside via the exhaust bypass path 30a.
  • the second flow control valve 81 divides the exhaust gas discharged from the reciprocating engine 2, for example, into the exhaust path 30 directed to the supercharger 4 side and the exhaust bypass path 30a in an amount corresponding to the valve opening degree. do. For example, when the valve is fully open (when the valve opening is "1"), the exhaust gas discharged from the reciprocating engine 2 is divided into the exhaust path 30 directed to the supercharger 4 side and the exhaust bypass path 30a. be done. Further, when the valve is closed (when the valve opening is "0"), the entire amount of exhaust gas discharged from the reciprocating engine 2 flows only through the exhaust passage 30 toward the supercharger 4 side.
  • the control device 3 includes, for example, a first control section 110, a second control section 120, a common section thereof, and a storage section (not shown).
  • the common unit is a third control unit different from first control unit 110 and second control unit 120, and part or all of the processing performed by itself is performed by first control unit 110 or second control unit 120. may be broken.
  • first control unit 110 the second control unit 120, and the common unit (third control unit) described above, for example, a processor such as a CPU (Central Processing Unit) is a program stored in a storage unit It is realized by executing Also, one or both of first control unit 110 and second control unit 120 are realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array).
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the storage unit is realized by, for example, a HDD (Hard Disc Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), ROM (Read Only Memory), or RAM (Random Access Memory).
  • the storage unit stores firmware, programs executed by the processor, and the like.
  • the current output (work [kW]) for the load is derived, and the load factor is derived based on the current output and the rated output stored in advance in the storage unit.
  • the load factor is derived, for example, by dividing the current output by the rated output. Note that the process of deriving the load factor may be performed by the first control unit 110 or the second control unit 120 .
  • the first control unit 110 controls the intake air pressure target value based on the load factor of the reciprocating engine 2 calculated by the common unit and the intake air pressure measured by the pressure sensor 26 . It controls the first drive unit 70 that adjusts the opening degree.
  • the first control unit 110 uses the derived load factor and boost pressure target value derivation information stored in advance in the storage unit to determine the target pressure in the intake passage 20 during feedback control (hereinafter referred to as boost pressure (referred to as the target value).
  • the boost pressure target value derivation information is information indicating the relationship between a predetermined load factor and boost pressure target value. This information is stored in advance in the storage unit as, for example, a map or function.
  • the second control unit 120 adjusts the valve opening degree of the second flow control valve 81 based on the valve opening degree information stored in advance in the storage unit and the load factor derived by the first control unit 110. It controls the second drive unit 80 to drive. Accordingly, the second control unit 120 controls the rotation speed of the supercharger 4 based on the load factor of the operating internal combustion engine.
  • the valve opening information is information that indicates the relationship between a predetermined load factor and the valve opening of the second flow control valve 81 that is set so that the pressure in the exhaust passage 30 becomes an ideal value.
  • the ideal value of the pressure in the exhaust passage 30 is, for example, the pressure in the intake passage 20 when the valve opening degree of the first flow control valve 71 at each load factor maintains a predetermined value or does not exceed a predetermined value. is the pressure in the exhaust passage 30 that is adjusted so that the pressure can be maintained at the boost pressure target value.
  • This valve opening degree information is stored in the storage unit in advance as, for example, a map or a function.
  • FIG. 5 is a configuration diagram showing a modification of the intake and exhaust system of the reciprocating engine system 1 according to one embodiment.
  • the intake/exhaust system shown in FIG. 5 shows a configuration that can be implemented additionally or in place of the intake/exhaust system shown in FIG. 4 described above.
  • the same numbers are attached to the same configurations as those described in FIG. In the following, the description of the configurations with the same numbers will be omitted.
  • the reciprocating engine system 1 includes a supercharger 4 having a compressor 22 and a turbine 33 and supercharging the reciprocating engine 2, an intake passage 20 connecting the compressor 22 and the reciprocating engine 2, and the reciprocating engine 2 and the turbine 33. It is provided with an exhaust path 30 that connects.
  • the upstream side of the air cooler 23 in the intake passage 20 and the upstream side of the turbine 33 in the exhaust passage 30 are short-circuited via short-circuit passages 96, 97, and 98 (first short-circuit passage).
  • a first short-circuit valve 91 is provided between the short-circuit paths 96 and 97, and a second short-circuit valve 92 is provided between the short-circuit paths 97 and 98, respectively.
  • the short-circuit path 97 is provided with a branch, to which one end of the short-circuit path 99 is connected via the third short-circuit valve 93, and the other end of the short-circuit path 99 is connected to the exhaust path 30 downstream of the turbine 33.
  • the intake path 20 and downstream of the turbine are short-circuited via short-circuit paths 96, 97, 99 (second short-circuit paths). Further downstream of the exhaust path 30, a catalyst treatment device 60, which will be described later, is provided. Temperature sensors 66, 67, 68 are provided at the inlet of the turbine 33 in the exhaust path 30, the inlet of the catalyst treatment device 60, and the catalyst treatment device 60, respectively. Further, the catalyst treatment device 60 is provided with a heater 69 for heating the catalyst treatment device 60 as required.
  • the equivalence ratio of the entire fuel is higher than that of conventional diesel engines and gas engines using fuel such as natural gas.
  • the exhaust temperature at the inlet of the turbine 33 may exceed the permissible temperature of the turbine 33 . Therefore, at medium and high loads, the air at the outlet of the compressor 22 is bypassed to the inlet of the turbine 33 by the first short circuit to lower the temperature of the exhaust gas flowing into the turbine 33, and the temperature of the exhaust gas at the inlet of the catalyst treatment device 60 is also appropriate.
  • the third short-circuit valve 93 is closed, the first short-circuit valve 91 and the second short-circuit valve 92 are opened, and the degree of opening is adjusted by the control device 3 .
  • the supercharger 4 does not work sufficiently, so the pressure at the inlet of the turbine 33 becomes higher than the pressure at the outlet of the compressor 22, and the exhaust gas flows from the inlet of the turbine 33 to the outlet of the compressor 22. There is a risk of backflow. Therefore, at low load, the air at the outlet of the compressor 22 is bypassed downstream of the turbine 33 (catalyst inlet) through the second short circuit, thereby adjusting the temperature of the exhaust gas flowing to the catalyst treatment device 60 to an appropriate temperature.
  • the second short-circuit valve 92 When the bypass is performed by the second short-circuit path, the second short-circuit valve 92 is closed, the first short-circuit valve 91 and the third short-circuit valve 93 are opened, and the degree of opening is adjusted by the control device 3 . If necessary, the first short-circuit valve 91 is closed, the second short-circuit valve 92 and the third short-circuit valve 93 are opened, and the degree of opening is adjusted by the control device 3, so that the configuration similar to that of the second flow control valve 81 described above can be obtained. Therefore, the amount of exhaust gas supplied to the turbine 33 as the exhaust bypass 30a can also be controlled.
  • the reciprocating engine system 1 includes a throttle valve 94 that limits the amount of air on the intake side of the reciprocating engine 2 .
  • a throttle valve 94 is provided at each inlet of the six cylinders 11 #1 to #6.
  • the control device 3 controls the opening degree of the throttle valve 94 so that the equivalence ratio of ammonia to air falls within a range that enables mixed combustion operation with ammonia and liquid auxiliary fuel.
  • gaseous ammonia When the engine is operated with gaseous ammonia co-combusted with liquid auxiliary fuel, gaseous ammonia may be The equivalence ratio to air must be maintained within certain limits. However, since the absolute amount of ammonia required during low-load operation is small, the equivalence ratio of gaseous ammonia becomes lower than the target range even in the state of natural aspiration in which the turbocharger 4 is not working. Therefore, by providing a throttle valve 94 at the intake inlet to throttle the amount of intake air, the equivalence ratio of ammonia is maintained within a target range that enables mixed combustion operation.
  • the equivalence ratio of ammonia which is the target range, is set to 0.4 to 0.8.
  • the throttle valves 94 are provided at the inlets of the six cylinders 11 #1 to #6, respectively. A single throttle valve 94 may be provided in the nearby intake passage 20 .
  • the reciprocating engine system 1 includes an air tank device 95 that is an air supply device that supplies additional air and is connected to the intake side of the reciprocating engine 2, specifically near the outlet of the compressor 22 in the intake passage 20.
  • the control device 3 temporarily supplies air from the air tank device 95 when switching from the mixed combustion operation mode to the diesel operation mode.
  • a wedge-shaped movable vane (blade) is provided at the suction port of the compressor 22 of the supercharger 4, and the amount of air sucked into the impeller can be adjusted by changing the angle of the movable vane.
  • An adjusting variable capacitance type (IGV) may be used.
  • the control device 3 controls the angle of the movable vanes to be narrower than the optimum angle for the co-firing operation at that time, thereby maintaining the rotation speed of the supercharger higher than necessary. Then, the control device 3 performs control to temporarily open the movable vanes when switching from the mixed combustion operation mode to the diesel operation mode. As a result, the rotational energy of the supercharger is converted into air volume, temporarily securing a large air volume.
  • the control device 3 controls the movable vanes to an angle suitable for diesel operation.
  • FIG. 6 is a configuration diagram of a catalytic treatment device 60 according to one embodiment.
  • the catalyst treatment device 60 shown in FIG. 6A includes a selective reduction catalyst tank 62 that treats the exhaust gas discharged from the reciprocating engine 2, and an oxidation catalyst tank 63 that further treats the exhaust gas discharged from the selective reduction catalyst tank 62. , is equipped with Part of the gaseous ammonia supplied as fuel to the reciprocating engine 2 is branched and guided to the upstream side of the selective reduction catalyst tank 62 via the second ammonia supply passage 45, and is injected into the exhaust gas from an injection nozzle (not shown). is injected into At least one of the downstream side of the selective reduction catalyst tank 62 and the downstream side of the oxidation catalyst tank 63 is provided with a detection sensor 61 such as a NOx sensor or an ammonia sensor. supply is adjusted.
  • a detection sensor 61 such as a NOx sensor or an ammonia sensor. supply is adjusted.
  • nitrous oxide and unburned ammonia are generated in the exhaust gas of the engine.
  • This unburned ammonia works as a reducing agent that removes oxygen from nitrogen oxides and nitrous oxide in the selective reduction catalyst tank 62 .
  • gaseous ammonia corresponding to the shortage is injected into the exhaust gas from the injection nozzle of the second ammonia supply passage 45 .
  • the nitrogen oxides and nitrous oxide are reduced in the selective reduction catalyst tank 62 and rendered harmless.
  • the equivalence ratio of the entire fuel to air is 0.5 or more and 1.0 or less. is made in the lean-burn region. Therefore, the exhaust gas contains a certain proportion of oxygen.
  • surplus ammonia remains in the exhaust gas, such as when the rate of unburned ammonia generation is higher than the rate of generation of nitrogen oxides and nitrous oxide, ammonia is removed from the exhaust gas in the oxidation catalyst tank 63 on the downstream side. is oxidized by oxygen and rendered harmless.
  • an oxidation catalyst tank 64 is further provided between the reciprocating engine 2 and the selective reduction catalyst tank 62 of the example shown in FIG. 6(a). In this way, the oxidation catalyst tank 64 immediately after the reciprocating engine 2 can more effectively treat unburned hydrocarbons and carbon monoxide in the exhaust gas.
  • an oxidation-reduction catalyst tank 65 is provided on the downstream side of the reciprocating engine 2.
  • the oxidation-reduction catalyst tank 65 accelerates both the reduction reaction of nitrogen oxides and nitrous oxide with ammonia and the oxidation reaction of ammonia with oxygen in the exhaust gas. Also in this example, the effects of the reduction of nitrogen oxides and nitrous oxide by ammonia and the oxidation of ammonia by oxygen in the exhaust gas are obtained.
  • the reciprocating engine system 1 configured as described above is characterized in that mixed combustion operation with ammonia and liquid auxiliary fuel is performed in a state where the compression end temperature in the cylinder 11 is equal to or higher than a predetermined temperature at which ammonia combustion delay does not occur.
  • 7 and 8 below show the results of co-firing tests of gaseous ammonia and liquid auxiliary fuel, which were carried out using a rapid compression/expansion device reproducing only the cylinder 11 portion of the reciprocating engine 2 described above.
  • FIG. 7 is a graph showing the relationship between the compression end temperature in the cylinder 11 and the combustion delay of the mixture of gaseous ammonia and air with reference to the injection timing of the liquid auxiliary fuel according to one embodiment.
  • the dashed line is the measured value of the combustion delay (ignition delay) with respect to the compression end temperature when the intake pressure is 0.1 MPa and the compression end pressure is 2.6 MPa
  • the dashed line is the intake pressure of 0.2 MPa and the compression end pressure. Measured values at 5.3 MPa are shown respectively.
  • the compression end temperature is less than 750K, the combustion delay becomes large, and it is found that the combustion delay becomes remarkable especially under the former condition where the charge air pressure is low.
  • the compression end temperature has a dominant effect on the combustion of the ammonia mixture.
  • FIG. 8 is a graph showing the relationship between the equivalence ratio of the entire fuel and the N 2 O (solid line) and unburned NH 3 (dashed line) in the exhaust gas in the mixed combustion operation of gaseous ammonia and liquid auxiliary fuel according to one embodiment.
  • the total fuel to air equivalence ratio is less than 0.5, nitrous oxide production increases rapidly as the equivalence ratio decreases.
  • the equivalence ratio of the entire fuel to air is 1.0 or more, the air required for combustion of the fuel is insufficient, so the fuel is discharged as an unburned component.
  • ammonia is mainly discharged as an unburned component because ammonia is less combustible than the liquid auxiliary fuel.
  • the specifications of the reciprocating engine 2 (actual in-line engine) shown in FIG. 1 and the preliminary test single-cylinder engine used for the preliminary test are as follows.
  • the reciprocating engine system 1 of this embodiment uses ammonia as fuel.
  • ammonia used as fuel is pressurized and stored in an ammonia tank 41 in a liquid state, and is vaporized by a vaporizer 42 to become gaseous ammonia.
  • Gaseous ammonia is pressure-controlled by a regulator 44a and supplied into the intake passage 20 via a fuel gas injection valve 43 (electromagnetic valve). Also, part of the gaseous ammonia is branched and supplied to the catalytic treatment device 60 while the pressure is controlled by the regulator 45a.
  • the liquid auxiliary fuel is injected into the combustion chamber 10 by the liquid fuel injection valve 53 and the ignition device 55 .
  • the liquid fuel injection valve 53 is, for example, a mechanical fuel injection device
  • the ignition device 55 is, for example, a common rail fuel injection device.
  • a common rail fuel injection device that facilitates adjustment of fuel injection timing is mainly used, but a mechanical fuel injection device (liquid fuel injection A valve 53) may also be used. Further, by performing multi-stage injection by means of a common rail fuel injection device (ignition device 55), there is an effect of improving the combustibility of ammonia.
  • liquid fuel injector 53 In the liquid auxiliary fuel only diesel operating mode, the mechanical fuel injector (liquid fuel injector 53) is primarily used. Heavy oil and light oil can generally be used as liquid auxiliary fuel.
  • the liquid auxiliary fuel used here may be a CO2 - free alternative fuel such as a biofuel that prevents carbon dioxide generation during its life cycle. In this case, together with the effect of using ammonia, almost 100% reduction in carbon dioxide emissions is possible.
  • valve gear for the intake valve 21 it is preferable to use a valve gear having a variable valve timing mechanism.
  • the closing timing of the intake valve 21 is made earlier than the timing of the bottom dead center of the piston 12 in the intake stroke (early closing) or later than the timing of the bottom dead center (late closing), thereby achieving effective compression.
  • the ratio can be varied. For example, when the reciprocating engine 2 is started or when the output is low, the compression end temperature can be increased by increasing the effective compression ratio. It is possible to shift to auxiliary fuel co-firing operation. Further, by lowering the effective compression ratio in a high output operating state, the pressure in the cylinder 11 can be prevented from becoming excessively high, and an effect of improving the efficiency by the Miller cycle can be obtained.
  • An air cooler 23 is provided in the intake passage 20 downstream of the compressor 22 of the supercharger 4 .
  • the air cooler 23 may be an air cooler/heater having a function of not only cooling the intake air with cold water but also warming the intake air with hot water or a heater.
  • an air heating device 24 may be provided to warm the air taken into the upstream side of the compressor.
  • the air heating device 24 has a cooling/heating system 25 that uses cooling water that has undergone heat exchange with the reciprocating engine 2 as a heat source. When the reciprocating engine 2 is started or when the output is low, the intake air is heated by the air cooler 23 or the air heater 24 to increase the compression end temperature. It is possible to shift to co-firing operation of gaseous ammonia and liquid auxiliary fuel.
  • a temperature sensor (not shown) may be provided at a position on the downstream side of the compressor 22 in the intake passage 20, more specifically near the outlet of the air cooler 23.
  • the air cooler 23 or the air heater 24 may heat the intake air in an operating range where the temperature of the intake air measured by the temperature sensor is lower than a predetermined temperature.
  • FIG. 9 is an explanatory diagram for explaining the operation when the reciprocating engine 2 according to one embodiment is a marine engine.
  • the reciprocating engine 2 directly drives a fixed pitch propeller
  • the lines indicating the output and fuel supply amount shift up and down depending on the propeller pitch.
  • the power generation amount may fluctuate while the rotational speed of the reciprocating engine 2 is constant.
  • the operation is based on an example of a power generation engine that drives a generator, which will be described later.
  • the amount of power generation is increased or decreased while increasing or decreasing the rotational speed of the engine, the operation is based on the present embodiment.
  • the horizontal axis indicates the passage of time
  • the vertical axis (a) indicates the rotation speed of the reciprocating engine 2
  • (b) indicates the output of the reciprocating engine 2
  • (c) and (d) indicate examples of fuel supply amounts.
  • the reciprocating engine 2 is started at T0, and is operated at a constant rotational speed in the idling state until T1.
  • the output of the reciprocating engine 2 during this time is zero, but a constant amount of fuel is supplied to maintain idling.
  • the reciprocating engine 2 is speed-controlled, and the fuel supply amount is speed-controlled so that the rotational speed of the reciprocating engine 2 becomes a target rotational speed.
  • the speed governing control gradually increases the amount of fuel supplied to the reciprocating engine.
  • the output of the engine 2 gradually increases and reaches the rated output at T2.
  • the pitch of the propeller is constant, the relationship between the output and the rotational speed follows a so-called marine cube curve in which the output is approximately proportional to the cube of the rotational speed.
  • FIG. 9(c) is an example of fuel supply control suitable when the speed increase is relatively slow, or when the stroke volume per cylinder 11 of the reciprocating engine 2 is relatively large.
  • a substantially constant amount of liquid auxiliary fuel is supplied in the idling state after starting the reciprocating engine 2.
  • the temperature of the reciprocating engine 2 rises to a warm state, and when the compression end temperature reaches a predetermined temperature or higher, the diesel operation mode is switched to the mixed combustion operation mode to control the speed of gaseous ammonia. Controlled feeding is started.
  • the supply amount of liquid auxiliary fuel is kept constant and the target rotational speed is gradually increased, the supply amount of gaseous ammonia gradually increases due to the action of the speed regulation control.
  • the co-firing ratio of ammonia is 80% or more in terms of heat quantity.
  • FIG. 9(d) is an example of fuel supply control suitable when the speed increase is relatively fast or when the stroke volume per cylinder 11 of the reciprocating engine 2 is relatively small.
  • the amount of liquid auxiliary fuel supplied is speed-regulated. Gradually increase the amount.
  • operation is on liquid supplemental fuel only until rotational speed and power are rated.
  • the diesel operation mode is switched to the mixed combustion operation mode, and gaseous ammonia is started to be supplied by speed control. .
  • the supply amount of the liquid auxiliary fuel is gradually decreased, and the supply amount of gaseous ammonia increases due to the action of speed regulation control.
  • the co-firing ratio of ammonia becomes 80% or more in terms of heat quantity ratio.
  • the reciprocating engine 2 is operated only with the liquid auxiliary fuel until the rotational speed and output reach the rated values.
  • the operation is performed using only the liquid auxiliary fuel until the compression end temperature reaches a predetermined temperature or higher, for example, 50% output. may start supplying
  • the hatched area above the one-dot chain line in FIG. 9(d) is also the ammonia supply area.
  • the supply amount of the liquid auxiliary fuel is gradually decreased, and the gaseous ammonia supply amount is increased by the function of speed regulation control.
  • Appropriate control in various patterns becomes possible by map-controlling the supply amount of liquid auxiliary fuel according to the operating conditions and controlling the speed control of the supply amount of gaseous ammonia.
  • FIG. 10 is an explanatory diagram for explaining the operation of the power generation engine in which the reciprocating engine 2 according to one embodiment drives the power generator.
  • a generator is driven by a power generating engine on land to supply power to a power system will be described as a typical example. If the amount of power generation fluctuates in a constant state, this example is followed.
  • the reciprocating engine 2 is started at T0, and is operated at a constant rotational speed in the idling state until T1.
  • the reciprocating engine 2 is speed-controlled, and the fuel supply amount is speed-controlled so that the rotational speed of the reciprocating engine 2 becomes a target rotational speed.
  • the target value of the rotation speed of the reciprocating engine 2 is increased, and at T2, the rotation speed of the reciprocating engine 2 reaches the rated rotation speed corresponding to the power generation frequency.
  • the output of the reciprocating engine 2 is zero, but a constant amount of fuel is supplied to maintain rotation.
  • An initial load is applied to the generator at T3. When the load is applied, the fuel supply is increased for a short time in order to maintain the rotational speed.
  • the load is applied for the second time, the amount of fuel supplied increases again, and the reciprocating engine 2 reaches the rated output.
  • the number of times of load application is not limited to two, and may be divided into more times, or may be performed only once.
  • the reciprocating engine 2 is operated with only the liquid auxiliary fuel until the first load application, which is often performed immediately after the reciprocating engine 2 is started and the temperature does not rise sufficiently, and then the liquid auxiliary fuel is used. is gradually decreased to a constant value, and the supply amount of gaseous ammonia is gradually increased by the function of speed regulation control.
  • the first load application some time has passed and the second load application is performed while the temperature of the reciprocating engine 2 has risen. Respond to load input by increasing the amount.
  • the co-firing ratio of ammonia becomes 80% or more in terms of heat quantity ratio.
  • FIG. 10(d) is an example of fuel supply control when the load application is completed in a shorter time or when the stroke volume per cylinder 11 of the reciprocating engine 2 is relatively small.
  • operation is performed using only the liquid auxiliary fuel until a plurality of load inputs are completed, then the supply amount of the liquid auxiliary fuel is gradually reduced to a constant value, and the supply amount of gaseous ammonia is gradually reduced by the function of speed regulation control. increase to Ultimately, the co-firing ratio of ammonia becomes 80% or more in terms of heat quantity ratio.
  • the conditions for starting the mixed combustion operation with the liquid auxiliary fuel and ammonia are the compression end temperature, the output of the reciprocating engine 2, and the equivalence ratio of the entire fuel to air. other conditions may be used as needed.
  • a temperature sensor 67 is provided at the inlet of the catalytic treatment device 60 in the exhaust path 30 .
  • the control device 3 starts the reciprocating engine 2 using only the liquid auxiliary fuel, and continues operation using the liquid auxiliary fuel until the temperature of the exhaust gas measured by the temperature sensor 67 reaches a predetermined temperature. This predetermined temperature is experimentally obtained in advance as the temperature of the exhaust gas for the catalyst to function. When the temperature of the exhaust gas reaches a predetermined temperature, the control device 3 starts the co-firing operation with liquid auxiliary fuel and ammonia.
  • the catalyst treatment device 60 is provided with a temperature sensor 68 for measuring the temperature of the catalyst treatment device 60.
  • the control device 3 starts the reciprocating engine 2 only with the liquid auxiliary fuel, and continues operation with the liquid auxiliary fuel until the temperature of the catalytic treatment device 60 measured by the temperature sensor 68 reaches a predetermined temperature.
  • This predetermined temperature is experimentally obtained in advance as a treatment temperature at which the catalyst functions.
  • the control device 3 starts the co-firing operation with liquid auxiliary fuel and ammonia.
  • the catalytic treatment device 60 includes a heater 69 that heats the catalytic treatment device 60 .
  • the controller 3 heats the catalyst treatment device 60 with the heater 69 until the temperature of the catalyst treatment device 60 reaches the treatment temperature.
  • the control device 3 starts the co-firing operation with liquid auxiliary fuel and ammonia.
  • the control device 3 ends the heating by the heater 69 .
  • the control device 3 continues measuring the temperature of the catalyst treatment device 60 with the temperature sensor 68, and resumes heating by the heater 69 when the temperature of the catalyst treatment device 60 is below a predetermined temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

このレシプロエンジンシステムは、燃焼室を形成するシリンダと、前記シリンダ内を往復移動するピストンと、前記シリンダに気体のアンモニアを供給し空気と予混合させるアンモニア燃料供給装置と、前記シリンダ内に前記アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置と、を有するレシプロエンジンと、前記シリンダ内の圧縮端温度が前記アンモニアの燃焼遅れが生じない所定の温度以上の状態で、前記アンモニアと前記液体補助燃料による混焼運転を行う制御装置と、を備える。

Description

レシプロエンジンシステム、レシプロエンジンの運転方法
 本発明は、レシプロエンジンシステム、レシプロエンジンの運転方法に関するものである。
 本願は、2021年11月16日に、日本に出願された特願2021-186474号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球温暖化対策として、温室効果ガスである二酸化炭素(CO)の排出を削減することが求められている。アンモニア(NH)は、燃焼時に二酸化炭素を発生しない新たな燃料として注目されている。
 アンモニアを燃料として用いるレシプロエンジンについては、以下のような特許出願がなされている。
特許第6702475号公報 特許第4919922号公報
 アンモニアを燃料として用いる場合、従来から使用されている燃料である重油、軽油、ガソリン、天然ガスなどに比べ、燃焼しにくい点が問題となる。
 特許文献1には、レシプロエンジンにおいて、気体状態のアンモニアを空気と予混合してシリンダ内で圧縮し、燃焼室内で燃料噴射弁から重油等の燃料油を噴射して着火させることで、燃料油を点火源としてアンモニアと混合燃焼させるものが記載されている。ここで、アンモニアと重油の割合について、熱量比で重油が80%に対してアンモニアを20%とする例が記載されている。燃料全体に対するアンモニアの割合がわずかに20%に留まるのは、アンモニアが燃焼しにくいことからアンモニアの割合を少なくせざるを得ないためである。この場合、二酸化炭素の排出削減の効果は限定的となる。
 特許文献2には、レシプロエンジンにおいて、アンモニアと助燃燃料を吸気管内に噴射し、アンモニア及び助燃燃料と空気との混合気に、点火栓の火花放電により点火するものが記載されている。また、特許文献2には、内燃機関の回転速度の減少に対してアンモニアの使用割合を増加させる、あるいは、内燃機関の負荷の増大に対してアンモニアの使用割合を増加させることが記載されている。ここで特許文献2には、燃料全体に対するアンモニアの割合が何%であるかについては明示されていないが、アンモニアの割合を増やすことが容易ではないことが理解できる。
 本発明は、上記問題点に鑑みてなされたものであり、アンモニアを燃料として用いるレシプロエンジンにおいて、二酸化炭素の排出削減の効果をより大きくすることを目的とする。
 本発明の一態様に係るレシプロエンジンシステムは、燃焼室を形成するシリンダと、前記シリンダ内を往復移動するピストンと、前記シリンダに気体のアンモニアを供給し空気と予混合させるアンモニア燃料供給装置と、前記シリンダ内に前記アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置と、を有するレシプロエンジンと、前記シリンダ内の圧縮端温度が前記アンモニアの燃焼遅れが生じない所定の温度以上の状態で、前記アンモニアと前記液体補助燃料による混焼運転を行う制御装置と、を備える。
 レシプロエンジンシステムは、アンモニアを燃料として用いる場合、従来から使用されている燃料に比べて燃焼しにくい点が問題となる。従来では、アンモニア単独で燃焼を開始させるのが困難であることから補助燃料との混焼が試みられていた。また、従来の研究や特許出願の例では、補助燃料の種類の選択や、補助燃料の混焼割合を増やすことでアンモニアの燃焼を確保する試みがなされていた。
 本願発明者らは、鋭意研究の結果、レシプロエンジンにおいて、アンモニアを気体の状態で空気と予混合し、シリンダ内で混合気を圧縮した状態で液体補助燃料をシリンダ内に噴射して着火させることで、気体アンモニアと空気の混合気に点火する混焼運転を行うのが最適であるとの結論に至った。また、本願発明者らは、シリンダ内で混合気を圧縮するとピストンからの仕事が熱に変わることでシリンダ内の混合気の温度は上昇するが、ピストンが上死点に到達する際の混合気の温度である圧縮端温度を、アンモニアの燃焼遅れが生じない所定の温度以上とすることで、アンモニアの良好な燃焼が可能になることを見出した。これにより、アンモニアと液体補助燃料の割合について、従来よりもアンモニアの割合を増やすことができ、アンモニアを燃料として用いるレシプロエンジンにおいて、二酸化炭素の排出削減の効果をより大きくすることができる。
 ここで、液体補助燃料としては、所定の圧縮端温度で自着火をする液体燃料が使用可能であり、一般にディーゼルエンジンで用いられる燃料、具体的には重油、軽油、植物油などが好適に使用できる。
 上記レシプロエンジンシステムにおいては、前記所定の温度が、750Kであってもよい。
 アンモニアの着火温度は、約652℃(925K)であり、軽油の約247℃(520K)、天然ガスの主成分であるメタンの537℃(810K)に比べ、100℃以上高い。従来の研究や特許出願の例においては、混合気の圧縮端温度は充分に高くされていない。したがって、液体補助燃料をシリンダ内に噴射して着火させた場合、液体補助燃料の燃焼による火炎に近い所に存在するアンモニアの混合気は火炎の高温にさらされて燃焼するが、火炎から離れた混合気は充分に燃焼しない。一方、本願発明者らの知見に基づき、圧縮端温度をアンモニアの燃焼遅れが生じない所定の温度以上、具体的には750K以上とすれば、気体アンモニアと空気の混合気がアンモニアの着火温度に近い温度で燃焼室内に圧縮されて保持された状態となる。そのため、適量の液体補助燃料が着火することでアンモニアの混合気に点火がされると、アンモニアの燃焼による火炎は燃焼室内を伝播し、燃焼室内の全体にわたって混合気が燃焼する。
 なお、圧縮端温度のアンモニアの燃焼遅れが生じない所定の温度は、具体的には750K以上であるが、シリンダの大きさ、エンジンの回転速度、運転の状態等の条件に応じて変更され得る。また、後述する発明を実施するための形態では、レシプロエンジンとして4ストロークのエンジンを例に上げて説明しているが、2ストロークのエンジンについても同じ原理が適用される。
 上記レシプロエンジンシステムにおいては、前記シリンダの一つ当たりの行程容積が5000cc以上であり、且つ、前記レシプロエンジンの定格回転速度が1200rpm以下であってもよい。
 シリンダ内の混合気のピストンによる圧縮が理想的な断熱圧縮であれば、圧縮比に応じて混合気の圧縮端温度が上昇する。しかしながら、実際には、燃焼室の内面に熱が逃げるため、圧縮端温度は理想的な断熱圧縮の場合よりも下がる。燃焼室の内面を形成するシリンダ、シリンダヘッド、ピストンは、それぞれが熱容量を有し、かつ冷却水や潤滑油によって冷却されるため、圧縮端温度が下がる要因となる。燃焼室から逃げる熱の量は、燃焼室内面の面積に相関し、燃焼室で発生する熱の量は燃焼室の容積に相関するため、二乗三乗の法則の関係となる。圧縮端温度をアンモニアの燃焼遅れが生じない所定の温度以上とするためには、燃焼室を大きくするのが有効ある。具体的には、一つのシリンダあたりの行程容積を5000cc以上とする。また、燃焼行程においてアンモニアの燃焼に必要な時間を確保するため、レシプロエンジンの定格回転速度を1200rpm以下とする。なお、一般に天然ガスの混合気を燃焼するレシプロエンジンでは、圧縮比を13~14程度に設定する例が多いが、アンモニアの混合気を燃焼するレシプロエンジンの場合には、圧縮比をより高く15以上に設定することが、圧縮端温度を上げる点でより望ましい。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記混焼運転において、前記レシプロエンジンの出力の増大に応じて燃料全体に対する前記アンモニアの混焼率を増大させ、前記アンモニアの最大の混焼率は、熱量比で80%以上としてもよい。
 レシプロエンジンの実際の運転においては、出力を上下させる必要がある。レシプロエンジンの出力が小さい場合は、シリンダ内で燃料が燃焼することによる温度上昇は小さくなり、燃焼室内面の温度は低下し、圧縮端温度も低下する傾向となる。また、レシプロエンジンの出力が大きい場合には、上記出力が小さい場合と逆の傾向となる。よって、アンモニアの混合気の燃焼を確保するため、出力が小さい場合は、燃料全体に対するアンモニアの混焼率を小さくし、出力の増大に応じてアンモニアの混焼率を増大させる。また、最大出力付近におけるアンモニアの最大の混焼率を熱量比で80%以上とすることで、充分な二酸化炭素の排出削減の効果を得る。なお、上述した制御装置の処理を別の表現とすると、混焼運転において、圧縮端温度の上昇に応じて燃料全体に対するアンモニアの混焼率を増大させ、アンモニアの最大の混焼率は熱量比で80%以上とする、となる。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記混焼運転において、前記空気に対する燃料全体の当量比を0.5以上且つ1.0以下としてもよい。
 アンモニアを燃料として用いる場合には、亜酸化窒素(NO)の発生が問題視されている。亜酸化窒素は温室効果ガスの一つであり、亜酸化窒素の発生が多いと、アンモニアを燃料とすることによる二酸化炭素削減の効果を相殺することになる。本願発明者らは研究の結果、亜酸化窒素の発生には、空気に対する燃料全体の当量比(アンモニアの当量比と液体補助燃料の当量比の合計)が関係することを見出した。より具体的には、空気に対する燃料全体の当量比が0.5未満では、当量比が下がるほど亜酸化窒素の発生が急激に増加することを見出した。したがって、混焼運転では、空気に対する燃料全体の当量比を0.5以上とすることが望ましい。
 また、空気に対する燃料全体の当量比を1.0以上とした場合には、燃料の燃焼に必要な空気が不足するため、燃料が未燃成分として排出される。この場合、アンモニアは液体補助燃料に比べ燃焼しにくいため、主にアンモニアが未燃成分として排出される。したがって、混焼運転では、空気に対する燃料全体の当量比を1.0以下とすることが望ましい。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記空気に対する燃料全体の当量比が所定の値未満となる運転領域では、前記アンモニアの混焼率をゼロとし、前記液体補助燃料のみで運転を行ってもよい。
 レシプロエンジンでは、出力を調整するために、燃料の供給量を調整する手法が一般に用いられる。ここで、いわゆるリーンバーンのエンジンにおいては、空気に対する燃料の当量比を1近辺に固定せずにより低い当量比で運転を行う。このリーンバーンのエンジンにおいては、出力を下げるために燃料の供給量を下げる場合、空気の供給量の減少割合よりも燃料の供給量の減少割合が大きくなり、当量比が下がる傾向がある。アンモニアと液体補助燃料の混焼運転を行うエンジンにおいて、出力を下げるために燃料全体の供給量を下げた場合、発生する熱の量が小さくなるためアンモニアは燃えにくくなる。また、当量比が下がって所定値未満、具体的には0.5未満となる領域では、上述の亜酸化窒素の増加の問題が生じる。そこで、空気に対する燃料全体の当量比が所定値未満となる運転領域では、アンモニアの混焼率をゼロとし、液体補助燃料のみで運転を行う。これにより、未燃アンモニアの発生及び亜酸化窒素の発生を防止する。当量比が所定値未満となる運転領域は、エンジンの具体的な条件により異なるが、例として、アイドリングや、アイドリングに近い低出力での運転が挙げられる。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記圧縮端温度が前記所定の温度より低い運転領域において、前記圧縮端温度を上げる制御を行ってもよい。
 レシプロエンジンの起動後のしばらくの間は、燃焼室の内面の温度が低い状態であるため、圧縮端温度が上がりにくい。また、レシプロエンジン起動後の出力が低く燃料の供給量が少ない状態では熱の発生が小さいため、圧縮端温度が上がりにくい。このような運転領域において、アンモニアの供給を開始して液体補助燃料との混焼を行うと、未燃アンモニアの発生が増加する可能性がある。そこで、圧縮端温度が低い運転領域においては、圧縮端温度を上げる制御を行う。圧縮端温度を上げる制御としては、過給機のコンプレッサの下流に設けられるエアクーラでの冷却温度の目標値を上げる制御、過給機のコンプレッサの下流または上流で空気の加熱を行う制御、レシプロエンジンの有効圧縮比を上げる制御、等が挙げられる。特に、レシプロエンジンの起動後やレシプロエンジンの出力が低い状態からレシプロエンジンの出力を上昇する際、気体アンモニアの供給の開始に先立って、この圧縮端温度を上げる制御を行うのが効果的である。また、レシプロエンジンの出力が低い領域でもアンモニアの混焼を可能とするために、上述の制御を行うこともできる。
 上記圧縮端温度を上げる制御は、前記レシプロエンジンの吸気を加熱する制御であってもよい。
 上述の圧縮端温度を上げる制御としては、レシプロエンジンの吸気路において、過給機のコンプレッサの下流または上流に、吸気(以下、「給気」とも言う。)を加熱する装置を設け、これにより吸気を加熱する制御を行うのが効果的である。
 上記レシプロエンジンシステムにおいては、コンプレッサとタービンを有し前記レシプロエンジンに過給を行う過給機をさらに備え、前記制御装置は、前記コンプレッサの下流における吸気の温度が所定の温度より低い運転領域において、吸気を加熱する制御を行ってもよい。
 圧縮端温度を支配する要素として、レシプロエンジンが吸入する外気の温度、過給機のコンプレッサでの圧縮仕事による温度上昇、レシプロエンジンのシリンダでの圧縮仕事による温度上昇、が挙げられる。ここで、レシプロエンジンのシリンダでの圧縮比は、予め所望の値に定められる設計値であり、可変バルブタイミングなどの可変機構を用いる場合でも、容積比として把握ができる。一方で、過給機のコンプレッサでの圧縮比は、レシプロエンジンの運転状況に依存する。また、外気の温度は、環境条件に依存する。ここで、コンプレッサの下流における吸気の温度は、外気の温度と、コンプレッサの圧縮比の影響とを合わせたものであることから、これを判断材料として吸気を加熱する制御を行うことが効果的である。例えば、レシプロエンジンの出力が低い運転状況では、コンプレッサの圧縮仕事による吸気の温度上昇が少ないため、コンプレッサの下流における吸気の温度が、適切な圧縮端温度を得るのに必要な温度(例えば50℃)に達しない運転領域が生じる。これは、外気の温度が低い場合により顕著である。そこで、制御装置は、コンプレッサの下流における吸気の温度が所定の温度より低い運転領域において、適切な圧縮端温度を得るために、吸気を加熱する制御を行う。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記混焼運転において、前記液体補助燃料の供給量を一定とし、前記アンモニアの供給量を調速制御してもよい。
 混焼運転では、液体補助燃料の供給量を一定とし、気体アンモニアの供給量を調速制御する制御の手法が簡易かつ効果的である。前述のように、混焼運転においては、出力の増大に応じて燃料全体に対するアンモニアの混焼率を増大させるのが効果的である。またレシプロエンジンの運転においては、レシプロエンジンが目標の回転速度となるように燃料の供給量の増減を行う調速制御が必要となる。液体補助燃料の供給量を、レシプロエンジンの出力が低い状態を維持するのに必要な供給量で一定とし、出力増大の要求に応じて気体アンモニアの供給量を調速制御すれば、これら二つの要求が同時に満たされる。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記混焼運転において、前記液体補助燃料の供給量をマップ制御し、前記アンモニアの供給量を調速制御してもよい。
 より高度な制御の手法として、液体補助燃料の供給量を運転条件に応じてマップ制御し、気体アンモニアの供給量を調速制御することが、より効果的である。レシプロエンジンの起動後のしばらくの間や、レシプロエンジンの出力が低く燃料の供給量が少ない状態を継続した状態では、燃焼室の内面の温度が低い状態であるためアンモニアが燃えにくい。そこで、このような状態では、液体補助燃料の供給量を増やすことが望ましい。一方、レシプロエンジンが運転を継続する状態、特に、レシプロエンジンの出力が高く燃料の供給量が多い状態では、燃焼室の内面の温度が高い状態であるためアンモニアが燃えやすい。そこで、このような状態では、液体補助燃料の供給量を減らし、替わりにアンモニアの供給量を増やすことが望ましい。そこで、液体補助燃料の供給量を、出力、運転時間、レシプロエンジン各部の温度の測定値などの運転条件に応じてマップ制御し、それをベースとして気体アンモニアの供給量を調速制御すれば、よりレシプロエンジンの運転状態に対応した制御が可能となる。
 上記レシプロエンジンシステムにおいては、コンプレッサとタービンを有し前記レシプロエンジンに過給を行う過給機と、前記コンプレッサと前記レシプロエンジンとを繋ぐ吸気路と、前記レシプロエンジンと前記タービンとを繋ぐ排気路と、前記吸気路と前記排気路とを繋ぐ開閉式の第1短絡路及び前記吸気路と前記タービンの下流とを繋ぐ開閉式の第2短絡路の少なくとも一方と、をさらに備え、前記制御装置は前記レシプロエンジンの排気温度に応じて前記第1短絡路及び前記第2短絡路の少なくとも一方の開閉制御を行ってもよい。
 気体のアンモニアを液体補助燃料と混焼させてエンジンを運転している際は、燃料全体の当量比が従来のディーゼルエンジンや天然ガス等の燃料を用いたガスエンジンの場合に比べて高い。したがって、中・高負荷では、タービン入口での排気温度がタービンの許容温度を超える可能性がある。そのため、中・高負荷では、コンプレッサ出口の空気をタービン入口にバイパスさせてタービンに流入する排気の温度を下げると共に、後述する触媒入口の排気温度も適切にする。一方で、低負荷になると過給機が充分に働いていないために、コンプレッサ出口の圧力に比べてタービン入口の圧力の方が高くなり、タービン入口からコンプレッサ出口へ排気が逆流する恐れがある。そのため、低負荷では、コンプレッサ出口の空気をタービンの下流(触媒入口)にバイパスさせることで、触媒に流れる排気の温度を適切な温度にする。ここで、第1短絡路及び第2短絡路のいずれか一方の開閉制御の具体例としては、例えばタービン入口、触媒入口に温度センサを設け、その測定値に基づいて、第1短絡路及び第2短絡路のいずれか一方の開閉を行っても良い。
 上記レシプロエンジンシステムにおいては、前記レシプロエンジンの吸気側に空気量を制限するスロットルバルブをさらに備え、前記制御装置は、前記空気に対する前記アンモニアの当量比が前記混焼運転を可能とする範囲に入るように前記スロットルバルブの開度を制御してもよい。
 気体アンモニアを液体補助燃料と混焼させてエンジンを運転している際は、気体アンモニアの空気に対する当量比を一定の範囲内で維持する必要がある。この当量比の維持は、前述の亜酸化窒素、未燃アンモニアやその他の窒素酸化物などの排ガス成分の発生や、燃焼安定性と関係している。しかし、低負荷運転時は、必要となるアンモニアの絶対量が少なく、過給機が充分に働かない自然吸気の状態でも空気量が多いため、気体アンモニアの当量比が目標範囲より低くなってしまう。そのため、吸気入口にスロットルバルブを設けて吸気量を絞ることでアンモニアの当量比を、混焼運転が可能となる目標の範囲内に維持する。目標の範囲となるアンモニアの当量比は、0.4~0.8とすることが望ましい。これは、アンモニアの混焼率が80%である場合には、液体補助燃料を含めた燃料全体の当量比に換算すると0.5~1.0となり、前述の空気に対する燃料全体の当量比を0.5以上且つ1.0以下とすることとも整合する。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記圧縮端温度が前記所定の温度となるまで前記液体補助燃料のみにより運転を行い、前記圧縮端温度が前記所定の温度に到達した後に、前記混焼運転を行ってもよい。
 アンモニアは燃えにくいことから、レシプロエンジンが停止しエンジンが冷えた状態において、アンモニアを燃料として燃焼させることは困難である。したがって、液体補助燃料のみにより起動し、圧縮端温度が所定値となるまで液体補助燃料のみにより運転を行う。そして、圧縮端温度が所定値に到達した後に、液体補助燃料と気体アンモニアによる混焼運転を行う。圧縮端温度は、燃焼室内にセンサを設けて温度を測定してもよい。また、圧縮端温度は、レシプロエンジンの設計値および各部の温度の測定値や運転条件から推定値として求めてもよい。また、圧縮端温度として実測値や推定値を求めて制御することをせず、予め圧縮端温度が所定値に一定の余裕をもって達する条件を設定してもよい。そして、その条件に達した後に、液体補助燃料と気体アンモニアによる混焼運転を開始してもよい。
 上述した制御装置の処理を別の表現とすると、圧縮端温度がアンモニアの燃焼遅れが生じない所定の温度以上とならない運転領域においては、気体アンモニアの供給をゼロとし液体補助燃料のみで運転を行う、となる。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記レシプロエンジンが所定の出力に達するまで前記液体補助燃料のみにより運転を行い、前記レシプロエンジンが所定の出力に達した後に、前記混焼運転を行ってもよい。
 上記の圧縮端温度が所定値に一定の余裕をもって達する条件の一例として、制御装置は、先ず、液体補助燃料のみにより起動し、所定の出力に達するまで液体補助燃料のみにより運転を行い、次に、所定の出力に達した後に、液体補助燃料と気体アンモニアによる混焼運転を行ってもよい。出力と圧縮端温度は、相関関係があるため、制御パラメータとして出力を基準に用いるのが簡易かつ実用的である。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記液体補助燃料の噴射量を増加させ、前記空気に対する燃料全体の当量比が所定値に到達した後に、前記液体補助燃料と前記アンモニアによる混焼運転を行ってもよい。
 前述のように、亜酸化窒素の発生の抑制の観点からは、空気に対する燃料全体の当量比を0.5以上とすることが望ましい。したがって、液体補助燃料のみにより起動し、液体補助燃料の噴射量を増加させて出力を増加させ、当量比が所定値に到達した後に気体アンモニアの供給を開始して混焼運転を行うことが望ましい。また、液体補助燃料の噴射量を増加させる際には、給気圧の制御を行って給気量をコントロールし、当量比をより正確に制御するようにしてもよい。
 上記レシプロエンジンシステムにおいては、前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記レシプロエンジンの排気ガスの温度が所定の温度に達するまで前記液体補助燃料のみにより運転を行い、前記排気ガスの温度が所定の温度に達した後に、前記液体補助燃料と前記アンモニアによる混焼運転を行ってもよい。
 混焼運転を開始するための条件として、レシプロエンジンの排気ガスの温度をセンサにより測定する。そして、センサの測定値が予め実験等により定めておいた所定の温度まで上昇したことを条件として混焼運転を開始する。これにより、アンモニアの良好な燃焼が期待できる。また、後述のように排気ガスを処理する触媒処理装置を用いる場合には、排気ガスの温度が、触媒が機能する処理温度に達した後に、混焼運転を開始することで、混焼運転によって生じる窒素酸化物(NOx)、亜酸化窒素、未燃アンモニアの処理を行うことができる。
 上記レシプロエンジンシステムにおいては、前記シリンダの排気路の下流に設けられ、前記シリンダから排気される排気ガスを、触媒を用いて処理する触媒処理装置を備え、前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記触媒処理装置の温度が、触媒が機能する処理温度に達するまで前記液体補助燃料のみにより運転を行い、前記触媒処理装置の温度が前記処理温度に達した後に、前記混焼運転を行ってもよい。
 排気ガスを処理する触媒処理装置を用いる場合には、この触媒処理装置の温度をセンサにより測定する。そして、センサの測定値が、触媒が機能する処理温度まで高くなったことを条件として、混焼運転を開始する。これにより、混焼運転によって生じる窒素酸化物(NOx)、亜酸化窒素、未燃アンモニアの処理を良好に行うことができる。
 上記レシプロエンジンシステムにおいては、前記触媒処理装置を加熱する加熱装置を備え、前記制御装置は、前記触媒処理装置の温度が、前記処理温度に達するよう、前記加熱装置により前記触媒処理装置を加熱してもよい。
 液体補助燃料のみによりレシプロエンジンを起動すれば、液体補助燃料の燃焼による排気ガスで触媒処理装置が加熱される。しかし、触媒処理装置の温度を触媒が機能する処理温度にするためには、液体補助燃料の供給量を増加して出力を増加した状態をしばらく維持し、高温の排気ガスで触媒処理装置を加熱する必要がある。ここで加熱装置により触媒処理装置を加熱すれば、より短時間で触媒が機能する処理温度となり、混焼運転を開始することができる。加熱装置としては、電力によるヒータや、燃料を燃焼させることで加熱する装置が利用できる。
 上記レシプロエンジンシステムにおいては、前記レシプロエンジンは、直接的または間接的にプロペラを駆動する舶用エンジンであり、前記制御装置は、前記液体補助燃料の供給量を増加させることで出力を増加し、次いで前記液体補助燃料の供給量を減少させながら前記アンモニアの供給量を増加させてもよい。
 レシプロエンジンが直接的または間接的にプロペラを駆動する舶用エンジンである場合には、液体補助燃料の供給量を増加させることで出力を増加し、次いで液体補助燃料の供給量を減少させながら気体アンモニアの供給量を増加させるようにしてもよい。上述のように、レシプロエンジンの出力が小さい場合には発生する熱の量が小さくなるため、アンモニアは燃えにくい。したがって、液体補助燃料の供給量を増加させることで出力を増加させ、発生する熱の量を大きくし、レシプロエンジン本体や冷却水の温度が高くなった状態とする。この状態で、液体補助燃料の供給量を減少させながら気体アンモニアの供給量を増加させれば、未燃アンモニアの排出の増加を抑制しながら混焼運転が行える。液体補助燃料の供給量を増加させることによる出力の増加は、回転速度または出力が定格に達するまで行ってもよいし、定格未満の中間の適当な出力まで行ってもよい。
 ここで、レシプロエンジンが直接的にプロペラを駆動するとは、レシプロエンジンの出力軸が必要により減速機等を介して機械的にプロペラを駆動することを含む。レシプロエンジンが間接的にプロペラを駆動するとは、レシプロエンジンが発電機を駆動して、得られた電力によりモータでプロペラを駆動することを含む。
 上記レシプロエンジンシステムにおいては、前記レシプロエンジンは、発電機を駆動する発電エンジンであり、前記制御装置は、負荷投入の際に前記液体補助燃料の供給量を増加させることで出力を増加し、次いで前記液体補助燃料の供給量を減少させながら前記アンモニアの供給量を増加させてもよい。
 レシプロエンジンが発電機を駆動する発電エンジンである場合には、負荷投入の際は液体補助燃料の供給量を増加させることで出力を増加し、次いで液体補助燃料の供給量を減少させながら気体アンモニアの供給量を増加させるようにしてもよい。特に、発電に用いられる発電エンジンの場合には、電力系統上の負荷を何回かに分けて、段階的に発電機に接続する負荷投入の操作が必要になる。負荷投入の際には短い時間で出力を増加する必要があるが、アンモニアの供給量を短い時間で増加すれば未燃アンモニアが増加する懸念がある。負荷投入の際は液体補助燃料の供給量を増加させることで出力を増加し、次いで液体補助燃料の供給量を減少させながら気体アンモニアの供給量を増加させれば、未燃アンモニアの増加を抑制しながら、大きな負荷の投入が可能となる。
 上記レシプロエンジンシステムにおいては、前記レシプロエンジンは、前記混焼運転を行う混焼運転モードと、前記アンモニアの供給を行わずに前記液体補助燃料のみで運転を行うディーゼル運転モードと、を有してもよい。
 レシプロエンジンは、混焼運転を行う混焼運転モードに加え、気体アンモニアの供給を行わずに液体補助燃料のみで必要とされる出力を継続して出力するディーゼル運転モードを有することができる。舶用エンジンでは、運転の冗長性を確保するために、気体アンモニアを使用した運転の他、液体補助燃料のみでの運転の要請がある。また、発電エンジンにおいても、非常時の運転の継続性の観点などから液体補助燃料のみで運転を行う要請がある。混焼運転時に液体補助燃料を噴射する燃料噴射装置としては、コモンレール方式の燃料噴射装置を用いれば、噴射タイミングや噴射回数のコントロールの点で有利である。このコモンレール方式の燃料噴射装置に加えて機械的な燃料噴射弁装置も備えることで、液体補助燃料のみでの運転も可能となる。また、コモンレール方式の燃料噴射装置をより噴射量が大きい範囲に対応可能なものとすることで、一つの燃料噴射装置により混焼運転モードとディーゼル運転モードの両方の運転に対応してもよい。
 上記レシプロエンジンシステムにおいては、前記レシプロエンジンの吸気側に追加となる空気を供給する空気供給装置を備え、前記制御装置は、前記混焼運転モードから前記ディーゼル運転モードに切り替える際に、前記空気供給装置から一時的に空気を供給させてもよい。
 混焼運転モードとディーゼル運転モードの双方で運転が可能なレシプロエンジンシステムでは、混焼運転モードでの運転を維持するのに何らかの問題が生じた場合に、短時間でディーゼル運転モードに切り替えることが必要となる。何らかの問題としては、例えば、想定を超える大きな負荷変動が生じた場合やレシプロエンジンシステムに異常の兆候が生じた場合などである。気体アンモニアと液体補助燃料を混焼させてエンジンを運転している際は、同一負荷において液体補助燃料単体で運転している時と比べ、過給機の運転点が大幅に異なる。過給機の運転点は、液体補助燃料単体で運転している時の方が大幅に空気の風量および過給圧が高い。一方で、レシプロエンジンで気体アンモニアを混焼させて運転している場合は、排気バイパス路に設けられた弁を開いて過給機の運転点を下げ、吸気バイパス路に設けられた弁を活用して一定の空気量を逃がしている。そのため、燃料を気体アンモニア燃料から液体燃料へ瞬時に切り替えた場合は、空気量の不足によりスモークの排出、機関出力の低下や機関回転数の低下が懸念される。そこで、吸気バイパス路や排気バイパス路に設けられた弁を閉じて過給機の回転数が上昇するまでの間、空気量の不足を補うため空気供給装置から追加空気を供給し、液体補助燃料の燃焼に必要な空気量を確保する。空気供給装置としては、例えば空気を充填したエアタンクを用いるのが簡易であり、また電気式のブロアなどを用いても良い。
 上記レシプロエンジンシステムにおいては、コンプレッサ又はタービンに可変機構を備える可変容量型の過給機を備え、前記制御装置は、前記混焼運転モードにおいて前記過給機の容量を制御することで前記過給機の回転速度を過給に必要な速度よりも高く維持し、前記混焼運転モードから前記ディーゼル運転モードに切り替える際に前記過給機の容量を制御することでより多くの空気を供給させてもよい。
 上述のように、燃料を気体アンモニア燃料から液体燃料へ瞬時に切り替えた場合は、空気量の不足が生じる。そこで、コンプレッサ又はタービンに可変機構を備える可変容量型の過給機を利用する。可変容量型の過給機としては、コンプレッサの側で吸入口にくさび状の可動ベーン(翼)を設け、可動ベーンの角度を変えることによりインペラに吸い込まれる空気量を調整するものがある(インレットガイドベーン、IGV)。また、可変容量型の過給機としては、タービンの側で排気ガスを吹き込むノズル部分に可動ベーンを設けるもの等がある。例えばIGVの場合、混焼運転において可動ベーンをそのときの運転状態における最適値よりも絞った状態に制御することで、過給機の回転速度を必要より高く維持する。そして、混焼運転モードからディーゼル運転モードに切り替える際に、一時的に可動ベーンを開くことで過給機の回転エネルギーを空気量に変換し、一時的に大きな空気量を確保する。
 上記レシプロエンジンシステムにおいては、前記シリンダの排気路の下流に設けられ、前記シリンダから排気される排気ガスを、触媒を用いて処理する触媒処理装置を備え、前記アンモニア燃料供給装置は、前記混焼運転において、前記アンモニアの一部を、還元剤として前記触媒処理装置に供給してもよい。
 アンモニアと液体補助燃料の混焼運転においては、従来のディーゼルエンジンでも問題とされていた窒素酸化物(NOx)の発生に加え、亜酸化窒素、未燃アンモニアの発生の懸念がある。これらに対しては、エンジン単体での対応は困難である。したがって、窒素酸化物、亜酸化窒素を処理する選択還元触媒および未燃アンモニアを処理する酸化触媒、または、還元触媒と酸化触媒の両方の機能を発揮する酸化還元触媒を備えるとよい。ここで、未燃アンモニアは、選択還元触媒または酸化還元触媒において、窒素酸化物および亜酸化窒素から酸素を奪う還元剤として働くため、排気ガス中のこれらの発生割合を考慮する必要がある。窒素酸化物および亜酸化窒素の発生量よりも、未燃アンモニアの発生量の割合が大きい場合は、ほとんどの窒素酸化物および亜酸化窒素は、未燃アンモニアによって還元されて無害となる。また、窒素酸化物および亜酸化窒素を還元しなかった余った未燃アンモニアは、酸化触媒または酸化還元触媒において排気ガス中の酸素により酸化されて無害となる。一方、窒素酸化物および亜酸化窒素の発生量よりも、未燃アンモニアの発生量の割合が小さい場合は、還元しきれない窒素酸化物および亜酸化窒素が排出されることになる。そこで、選択還元触媒または酸化還元触媒の上流に気体アンモニアを供給する。これにより、アンモニアの発生量の割合が小さい場合にも、アンモニアの不足を補うことができる。また、供給する気体アンモニアとして、アンモニア供給装置からレシプロエンジンに燃料として供給される気体アンモニアの系統に分岐を設け、燃料としてのアンモニアの一部を流用して触媒に供給する。これによりアンモニアの貯蔵設備と補給作業の共通化が図られる。ここで排気路中には、NOxセンサ、アンモニアセンサ等のセンサを設け、測定される排気の成分に応じて気体アンモニアの供給量を調整することが望ましい。
 上記レシプロエンジンシステムにおいては、前記アンモニア燃料供給装置は、さらに、前記液体補助燃料のみの運転においても、前記アンモニアの一部を、還元剤として前記触媒処理装置に供給してもよい。
 上述のように、アンモニアと液体補助燃料の混焼運転では、アンモニアの供給量をゼロとし液体補助燃料のみで運転する状態が生じる。また、気体アンモニアの供給を行わずに液体補助燃料のみで必要とされる出力を継続して出力するディーゼル運転モードの要請もある。一方で、アンモニアを燃料とするレシプロエンジンでは圧縮端温度を上げる必要があるため、液体補助燃料のみで運転を行う場合、従来のディーゼルエンジンよりもNOxの発生が増加する可能性がある。そこでレシプロエンジンに液体補助燃料のみが供給される運転状態において、気体アンモニアを、選択還元触媒または酸化還元触媒の上流に供給することでNOxを処理する。ここで、液体補助燃料のみが供給される運転の際は、アンモニアと液体補助燃料の混焼運転の際よりも、気体アンモニアの供給量を増加させることが望ましい。それは、液体補助燃料のみが供給される運転の際は、未燃アンモニアの発生が無いため、その分を、気体アンモニアの供給量を増やすことで補う必要があるためである。
 本発明の一態様に係るレシプロエンジンの運転方法は、燃焼室を形成するシリンダと、前記シリンダ内を往復移動するピストンと、前記シリンダに気体のアンモニアを供給し空気と予混合させるアンモニア燃料供給装置と、前記シリンダ内に前記アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置と、を有するレシプロエンジンの運転方法であって、前記シリンダ内の圧縮端温度が前記アンモニアの燃焼遅れが生じない所定の温度以上の状態で、前記アンモニアと前記液体補助燃料による混焼運転を行う。
 本願発明者らは、鋭意研究の結果、レシプロエンジンにおいて、アンモニアを気体の状態で空気と予混合し、シリンダ内で混合気を圧縮した状態で液体補助燃料をシリンダ内に噴射して着火させることで、気体アンモニアと空気の混合気に点火する混焼運転を行うのが最適であるとの結論に至った。さらに、本願発明者らは、シリンダ内で混合気を圧縮するとピストンからの仕事が熱に変わることでシリンダ内の混合気の温度は上昇するが、ピストンが上死点に到達する際の混合気の温度である圧縮端温度をアンモニアの燃焼遅れが生じない所定の温度以上とすることで、アンモニアの良好な燃焼が可能になることを見出した。これにより、アンモニアと液体補助燃料の割合について、熱量比でアンモニアを例えば80%以上とすることが可能になり、アンモニアを燃料として用いるレシプロエンジンにおいて、二酸化炭素の排出削減の効果をより大きくすることができる。
 上記本発明の一態様によれば、アンモニアを燃料として用いるレシプロエンジンにおいて、二酸化炭素の排出削減の効果をより大きくすることができる。
一実施形態に係るレシプロエンジンシステムの構成図である。 一実施形態に係るレシプロエンジンのディーゼル運転モードの動作を説明する説明図である。 一実施形態に係るレシプロエンジンの混焼運転モードの動作を説明する説明図である。 一実施形態に係るレシプロエンジンシステムの給排気系統の構成図である。 一実施形態に係るレシプロエンジンシステムの給排気系統の変形例を示す構成図である。 一実施形態に係る触媒処理装置の構成図である。 一実施形態に係るシリンダ内の圧縮端温度と、液体補助燃料の噴射タイミングを基準とした、気体アンモニアと空気の混合気の燃焼遅れとの関係を示すグラフである。 一実施形態に係る気体アンモニアと液体補助燃料の混焼運転における燃料全体の当量比と排気ガス中のNO、未燃NHの関係を示すグラフである。 一実施形態に係るレシプロエンジンが舶用エンジンの場合の動作を説明する説明図である。 一実施形態に係るレシプロエンジンが発電機を駆動する発電エンジンの動作を説明する説明である。
 以下、本発明の一実施形態について図面を参照して説明する。
 図1は、一実施形態に係るレシプロエンジンシステム1の構成図である。
 図1に示すように、レシプロエンジンシステム1は、レシプロエンジン2と、レシプロエンジン2の制御装置3と、を備えている。図1に示すレシプロエンジン2は、直接的または間接的にプロペラを駆動する舶用エンジンである。なお、レシプロエンジン2は、後述するように発電機を駆動する発電エンジンであってもよい。
 レシプロエンジン2は、燃焼室10を形成するシリンダ11と、シリンダ11内を往復移動するピストン12と、ピストン12に連結されたクランク軸13と、クランク軸13の回転を検出する回転検出センサ14と、クランク軸13のトルクを検出するトルク検出センサ15と、を備えている。クランク軸13は、例えば、船舶のプロペラの回転軸に連結されている。
 シリンダ11のシリンダヘッドには、吸気路20と排気路30とが接続されている。また、シリンダヘッドには、吸気路20を開閉する吸気弁21と、排気路30を開閉する排気弁31とが設置されている。また、シリンダヘッドには、燃焼室10に液体補助燃料を噴射する液体燃料噴射弁53及び着火装置55が設置されている。着火装置55は、例えば、マイクロパイロット油噴射弁であり、後述する混燃運転モードで使用される。
 吸気路20は、燃焼用の空気を圧縮するコンプレッサ22と、コンプレッサ22の下流側に設置されたエアクーラ23と、エアクーラ23よりも下流側に設置された燃料ガス噴射弁43と、を備えている。燃料ガス噴射弁43は、吸気路20の内部に、燃料となる気体アンモニアを噴射する。気体アンモニアは、吸気路20において、圧縮空気と予混合されて混合気となり、シリンダ内に供給される。
 なお、エアクーラ23は、冷水で空気を冷やす機能だけでなく、温水やヒータ等により空気を温める機能を持った空気冷却器兼加熱装置としてもよい。また必要に応じ、吸気路20におけるコンプレッサ22の上流側に、空気加熱装置24を設置してもよい。空気加熱装置24は、例えば、レシプロエンジン2と熱交換した冷媒を熱源として用いる冷却加熱系統25を有するとよい。
 排気路30は、燃焼室10から排出された排ガスによって回転するタービン33と、タービン33の下流側に設置され、排ガスに含まれる物質を処理する触媒処理装置60と、を備えている。タービン33の回転軸は、後述する図4に示すように、コンプレッサ22に接続されており、排ガスを回転源としてコンプレッサ22を回転させる。つまり、タービン33及びコンプレッサ22は、過給機4を構成している。
 図1に戻り、触媒処理装置60は、アンモニアと液体補助燃料の燃焼によって発生する、窒素酸化物(NOx)、亜酸化窒素、未燃アンモニア等の特定物質を、触媒を用いて処理する。触媒処理装置60には、当該特定物質を検出する検出センサ61が取り付けられている。
 レシプロエンジン2は、シリンダ11内に、アンモニアを供給するアンモニア燃料供給装置40と、シリンダ11内に、アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置50と、を備えている。アンモニア燃料供給装置40は、アンモニアタンク41と、気化装置42と、燃料ガス噴射弁43と、を備えている。
 アンモニアタンク41は、液体アンモニアを収容している。気化装置42は、アンモニアタンク41から排出された液体アンモニアを気化し、気体アンモニアを生成する。ここで、気化装置42は、気体アンモニアを加圧する加圧ポンプを含んでも良い。気化装置42は、アンモニア供給路44を介して燃料ガス噴射弁43に接続されている。アンモニア供給路44は、レギュレータ44aと、レギュレータ44aの下流側に設置された圧力センサ44bと、を備えている。
 また、アンモニア供給路44は、レギュレータ44aの上流側で分岐したアンモニア第2供給路45を備えている。アンモニア第2供給路45は、上述した触媒処理装置60と接続されている。アンモニア第2供給路45は、レギュレータ45aと、レギュレータ45aの下流側に設置された圧力センサ45bと、を備えている。
 液体補助燃料供給装置50は、液体補助燃料タンク51と、第1液体燃料供給ポンプ52と、液体燃料噴射弁53と、第2液体燃料供給ポンプ54と、着火装置55と、を備えている。液体補助燃料タンク51は、液体補助燃料を収容している。第1液体燃料供給ポンプ52は、液体補助燃料タンク51に収容された液体補助燃料を液体燃料噴射弁53に供給する。
 液体燃料噴射弁53は、例えば、後述するディーゼル運転モードで使用する機械式燃料噴射装置である。第2液体燃料供給ポンプ54は、液体補助燃料タンク51に収容された液体補助燃料を着火装置55に供給する。着火装置55は、例えば、後述する混焼運転モードで使用するコモンレール式燃料噴射装置である。
 上記構成のレシプロエンジン2は、アンモニアと液体補助燃料による混焼運転を行う混焼運転モードと、アンモニアの供給を行わずに液体補助燃料のみで運転を行うディーゼル運転モードと、を有する。
 図2は、一実施形態に係るレシプロエンジン2のディーゼル運転モードの動作を説明する説明図である。
 図2に示すように、ディーゼル運転モードのときは、液体燃料噴射弁53から重油等の液体補助燃料を燃焼室10に噴射させ、ピストン12で圧縮された圧縮空気中で着火・燃焼させる。このとき、燃料ガス噴射弁43は、停止している。
 図3は、一実施形態に係るレシプロエンジン2の混焼運転モードの動作を説明する説明図である。
 図3に示すように、混焼運転モードのときは、燃料ガス噴射弁43から気体アンモニアを吸気路20内に噴射させ、燃焼室10の手前で空気と予混合させる。次に、着火装置55から着火用の液体補助燃料を燃焼室10に噴射させ、ピストン12で圧縮された混合気を着火・燃焼させる。このとき、液体燃料噴射弁53は、停止している。
 図4は、一実施形態に係るレシプロエンジンシステム1の吸排気系統の構成図である。
 図4に示すように、レシプロエンジンシステム1の吸排気系統は、負荷Lと、レシプロエンジン2と、過給機4と、エアクーラ23と、圧力センサ26と、回転検出センサ14と、トルク検出センサ15と、第1駆動部70と、第1流量調整弁71と、第2駆動部80と、第2流量調整弁81と、吸気路20と、吸気バイパス路20aと、排気路30と、排気バイパス路30aと、制御装置3と、を備えている。
 負荷Lとは、エンジンの回転を妨げる負荷である。負荷Lは、例えば、レシプロエンジンシステム1が船舶に搭載される場合、プロペラ等を駆動させる際の機械的負荷を含む。また、負荷Lは、例えば、レシプロエンジンシステム1が車両に搭載される場合、クラッチ、ギア、スロットルバルブ、車輪等を駆動させる際の機械的負荷を含む。また、負荷Lは、例えば、レシプロエンジンシステム1が発電用に用いられる場合、発電機等を駆動させる際の電気的および機械的負荷を含む。
 レシプロエンジン2は、例えば、複数のシリンダ11(燃焼室)を備える。過給機4によって圧縮されて供給される空気は、吸気路20を介してエアクーラ23に送られ、その後、レシプロエンジン2に送られる。
 レシプロエンジン2は、過給機4によって圧縮されて供給された空気を、各シリンダ11内で燃焼させて、内部のピストン12を往復運動させる。レシプロエンジン2は、シリンダ11内のピストン12の往復運動を、図示しないコネクティングロッドおよびクランク軸13により回転運動に変える。これによって、レシプロエンジン2は、この回転運動に基づくエネルギーを負荷Lに与え、負荷Lを駆動させる。
 過給機4は、上述したように、コンプレッサ22と、タービン33とを備えている。コンプレッサ22は、タービン33の回転に応じて、外部から空気を取り込み、取り込んだ空気の圧力を大気圧以上に圧縮する。そして、コンプレッサ22は、圧縮した空気を、吸気路20を介してレシプロエンジン2に供給する。タービン33は、レシプロエンジン2内にて燃焼した排気ガスを取り込み、取り込んだ排気ガスの量に応じて回転する。そして、タービン33は、回転の駆動源として利用した排気ガスを外部に排気する。
 エアクーラ23は、過給機4からレシプロエンジン2に空気を供給するための吸気路20の一部に設けられる。エアクーラ23は、図示しない供給路を介して外部から所定の圧力で供給される冷却水によって、吸気路20の内部を通過する空気を冷却させる。冷却水は、例えば、工業用水、海水、循環冷却水である。
 圧力センサ26は、例えば、エアクーラ23の下流側の吸気路20に設けられ、エアクーラ23によって冷却された空気の圧力(例えば単位[Pa])を測定する。
 回転検出センサ14は、例えば、クランク軸13の回転軸の回転速度を検出する。なお、回転検出センサ14は、回転軸の回転数や回転角速度を検出してもよい。
 トルク検出センサ15は、例えば、クランク軸13の回転軸のねじれ量(例えば変位量)を検出し、このねじれ量と回転軸の半径とに基づいて、トルクを導出する。なお、回転検出センサ14およびトルク検出センサ15の一方または双方は、軸馬力計等のねじれ検出センサであってもよいし、渦電流式の電気動力計であってもよい。
 第1駆動部70および第2駆動部80は、例えば、電磁式や、油圧式、空気圧式等のアクチュエータである。第1駆動部70および第2駆動部80のそれぞれは、制御装置3による制御を受けて駆動する。第1駆動部70は、第1流量調整弁71を駆動し、第1流量調整弁71の弁開度を調整する。第2駆動部80は、第2流量調整弁81を駆動し、第2流量調整弁81の弁開度を調整する。
 吸気バイパス路20aは、吸気路20の一部に設けられ、吸気路20内部を通過する空気の一部を、過給機4のコンプレッサ22に供給して循環させる。図4に示すように、例えば、吸気バイパス路20aは、エアクーラ23の上流側の吸気路20に設けられる。なお、吸気バイパス路20aは、エアクーラ23の下流側の吸気路20に設けられてもよい。この場合、吸気バイパス路20aは、エアクーラ23により冷却された空気の一部を、過給機4のコンプレッサ22に供給して循環させる。
 排気バイパス路30aは、排気路30の一部に設けられ、排気路30内部を通過する排気ガスの一部を、過給機4のタービン33を介さずに外部に排気する。
 第1流量調整弁71は、吸気バイパス路20aに設けられ、吸気バイパス路20aを介してコンプレッサ22に循環する空気の流量を調整する。第1流量調整弁71は、例えば、コンプレッサ22から供給される空気を、弁開度に応じた分量で、エアクーラ23側へ向けた吸気路20と、吸気バイパス路20aとに分流する。第1流量調整弁71が全開の場合(弁開度が“1”の場合)、コンプレッサ22から供給された空気は、エアクーラ23側へ向けた吸気路20と、吸気バイパス路20aとに分流される。また、第1流量調整弁71が閉じている場合(弁開度が“0”の場合)、コンプレッサ22から供給される空気は、エアクーラ23側へ向けた吸気路20のみに全量流れる。
 第2流量調整弁81は、排気バイパス路30aに設けられ、排気バイパス路30aを介して外部に排気する排気ガスの流量を調整する。第2流量調整弁81は、例えば、レシプロエンジン2から排出される排気ガスを、弁開度に応じた分量で、過給機4側へ向けた排気路30と、排気バイパス路30aとに分流する。例えば、弁が全開の場合(弁開度が“1”の場合)、レシプロエンジン2から排出される排気ガスは、過給機4側へ向けた排気路30と、排気バイパス路30aとに分流される。また、弁が閉じている場合(弁開度が“0”の場合)、レシプロエンジン2から排出される排気ガスは、過給機4側へ向けた排気路30のみに全量流れる。
 制御装置3は、例えば、第1制御部110と、第2制御部120と、その共通部と、記憶部(不図示)とを備える。共通部とは、第1制御部110および第2制御部120と異なる第3の制御部であり、自身が行う処理の一部または全部は、第1制御部110または第2制御部120により行われてもよい。
 上述した第1制御部110、第2制御部120及び共通部(第3の制御部)のいずれか又は全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、記憶部に記憶されたプログラムを実行することにより実現される。また、第1制御部110および第2制御部120の一方または双方は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよい。
 記憶部は、例えば、HDD(Hard Disc Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)などにより実現される。記憶部には、ファームウェアやプロセッサが実行するプログラムなどが記憶される。
 制御装置3の共通部においては、例えば、回転検出センサ14により検出された回転速度と、トルク検出センサ15により検出されたトルクとに基づいて、現時点での負荷に対する出力(仕事量[kW])を導出し、この現時点での出力と、予め記憶部に記憶させておいた定格出力とに基づいて、負荷率を導出する。負荷率は、例えば、現時点での出力を定格出力で除算することで導出される。なお、負荷率を導出する処理については、第1制御部110または第2制御部120が行ってもよい。
 第1制御部110は、共通部により算出されたレシプロエンジン2の負荷率に基づく給気圧目標値と、圧力センサ26により測定された給気圧力とに基づいて、第1流量調整弁71の弁開度を調整する第1駆動部70を制御する。
 第1制御部110は、導出した負荷率と、予め記憶部に記憶させておいた給気圧目標値導出情報とを用いて、フィードバック制御時に目標とする吸気路20内の圧力(以下、給気圧目標値と称する)を導出する。給気圧目標値導出情報とは、予め定められた負荷率および給気圧目標値の関係を示した情報である。この情報は、例えば、マップや関数として予め記憶部に記憶されている。
 第2制御部120は、記憶部に予め記憶させておいた弁開度情報と、第1制御部110により導出された負荷率とに基づいて、第2流量調整弁81の弁開度を調整する第2駆動部80を制御する。これにより、第2制御部120は、稼動中の内燃機関の負荷率に基づいて、過給機4の回転速度を制御していることになる。
 弁開度情報とは、予め定められた負荷率と、排気路30内の圧力が理想値となるように設定された第2流量調整弁81の弁開度との関係を示した情報である。排気路30内の圧力の理想値は、例えば、各負荷率における第1流量調整弁71の弁開度が所定値を維持した状態、または所定値を超えない状態で、吸気路20内の圧力を給気圧目標値に保つことができるように調整された排気路30内の圧力である。この弁開度情報は、例えば、マップや関数として予め記憶部に記憶されている。
 図5は、一実施形態に係るレシプロエンジンシステム1の吸排気系統の変形例を示す構成図である。図5に示す吸排気系統は、上述した図4に示す吸排気系統において、さらに付加的あるいは置換的に実施可能な構成を示している。また、図5では、図4において説明したものと同じ構成については同じ番号を付している。以下では、同じ番号を付した構成についての説明を省略する。
 レシプロエンジンシステム1は、コンプレッサ22とタービン33を有しレシプロエンジン2に過給を行う過給機4と、コンプレッサ22とレシプロエンジン2とを繋ぐ吸気路20と、レシプロエンジン2とタービン33とを繋ぐ排気路30とを備える。
 吸気路20のエアクーラ23の上流側と、排気路30のタービン33の上流側とは、短絡路96、97、98を介して短絡される(第1短絡路)。短絡路96と短絡路97の間には第1短絡弁91が、短絡路97と短絡路98の間には第2短絡弁92が、それぞれ設けられている。短絡路97には分岐が設けられており、その分岐には第3短絡弁93を介して短絡路99の一端が接続され、短絡路99の他端はタービン33の下流において排気路30に接続されている。吸気路20とタービンの下流とは、短絡路96、97、99を介して短絡される(第2短絡路)。排気路30のさらに下流には、後述する触媒処理装置60が設けられている。排気路30のタービン33の入口、触媒処理装置60の入口、および触媒処理装置60には、それぞれ温度センサ66、67、68が設けられている。また、触媒処理装置60には、必要に応じて触媒処理装置60を加熱するヒータ69が設けられている。
 気体のアンモニアを液体補助燃料と混焼させてエンジンを運転している際は、燃料全体の当量比が従来のディーゼルエンジンや天然ガス等の燃料を用いたガスエンジンの場合に比べて高いため、中・高負荷ではタービン33の入口での排気温度がタービン33の許容温度を超える可能性がある。そのため、中・高負荷ではコンプレッサ22の出口の空気をタービン33の入口に第1短絡路によりバイパスさせ、タービン33に流入する排気の温度を下げると共に、触媒処理装置60の入口の排気温度も適切にする。第1短絡路によりバイパスを行う際は、第3短絡弁93は閉とされ、第1短絡弁91及び第2短絡弁92は開とされて制御装置3により開度が調整される。
 一方で、低負荷になると過給機4が充分に働いていないためにコンプレッサ22の出口の圧力に比べてタービン33の入口圧力の方が高くなりタービン33の入口からコンプレッサ22の出口へ排気が逆流する恐れがある。そのため、低負荷ではコンプレッサ22の出口の空気をタービン33の下流(触媒入口)に第2短絡路によりバイパスさせることで、触媒処理装置60に流れる排気の温度を適切な温度にする。第2短絡路によりバイパスを行う際は、第2短絡弁92は閉とされ、第1短絡弁91及び第3短絡弁93は開とされて制御装置3により開度が調整される。また必要により、第1短絡弁91を閉とし第2短絡弁92及び第3短絡弁93を開として制御装置3により開度を調整することで、前述の第2流量調整弁81と同様の構成となり、排気バイパス路30aとしてタービン33に供給する排気ガスの量を制御することもできる。
 レシプロエンジンシステム1は、レシプロエンジン2の吸気側に空気量を制限するスロットルバルブ94を備える。本実施形態では、#1~#6の6つのシリンダ11のそれぞれの入り口にスロットルバルブ94を設けている。制御装置3は、空気に対するアンモニアの当量比が、アンモニアと液体補助燃料による混焼運転を可能とする範囲に入るようにスロットルバルブ94の開度を制御する。
 気体アンモニアを液体補助燃料と混焼させてエンジンを運転している際は、前述の亜酸化窒素、未燃アンモニアやその他の窒素酸化物などの排ガス成分や燃焼安定性との関係上、気体アンモニアの空気に対する当量比を一定の範囲内で維持する必要がある。しかし、低負荷運転時は必要となるアンモニアの絶対量が少ないため、過給機4が働いていない自然吸気の状態でも気体アンモニアの当量比が目標範囲より低くなってしまう。そのため、吸気入口にスロットルバルブ94を設けて吸気量を絞ることでアンモニアの当量比を、混焼運転が可能となる目標の範囲内に維持する。ここで、目標の範囲となるアンモニアの当量比は、0.4~0.8とする。
 なお、本実施形態では#1~#6の6つのシリンダ11のそれぞれの入口にスロットルバルブ94を設けているが、吸気路20が各シリンダに向けて分岐する前の、エアクーラ23の出口あるいは入口付近の吸気路20に1つのスロットルバルブ94を設けても良い。
 レシプロエンジンシステム1は、レシプロエンジン2の吸気側、具体的には吸気路20のコンプレッサ22の出口付近に接続された、追加となる空気を供給する空気供給装置であるエアタンク装置95を備える。制御装置3は、混焼運転モードからディーゼル運転モードに切り替える際に、エアタンク装置95から一時的に空気を供給する。
 混焼運転モードとディーゼル運転モードの双方で運転が可能なレシプロエンジンシステム1では、混焼運転モードでの運転を維持するのに何らかの問題が生じた場合に短時間でディーゼル運転モードに切り替えることが必要となる場合がある。この場合、空気量の不足によりスモークの排出、機関出力の低下や機関回転数の低下が懸念される。そこで、吸気バイパス路20aや排気バイパス路30aに設けられた弁を閉じて過給機4の回転数が上昇するまでの間、空気量の不足を補うためエアタンク装置95から追加となる空気を供給し、液体補助燃料の燃焼に必要な空気量を確保する。
 またエアタンク装置95を用いない別の例として、過給機4のコンプレッサ22の吸入口に、くさび状の可動ベーン(翼)を設け、可動ベーンの角度を変えることによりインペラに吸い込まれる空気量を調整する可変容量型のもの(IGV)を用いてもよい。制御装置3は、混焼運転モードにおいて、可動ベーンをそのときの混焼運転の運転状態における最適な角度よりも絞った状態に制御することで、過給機の回転速度を必要より高く維持する。そして、制御装置3は、混焼運転モードからディーゼル運転モードに切り替える際に、一時的に可動ベーンを開く制御を行う。これにより過給機の回転エネルギーが空気量に変換され、一時的に大きな空気量を確保する。ディーゼル運転モードへの切り替えの終了の後は、制御装置3は可動ベーンをディーゼル運転に適した角度にする制御を行う。
 図6は、一実施形態に係る触媒処理装置60の構成図である。
 図6(a)に示す触媒処理装置60は、レシプロエンジン2から排出された排ガスを処理する選択還元触媒槽62と、選択還元触媒槽62から排出された排ガスをさらに処理する酸化触媒槽63と、を備えている。選択還元触媒槽62の上流側には、アンモニア第2供給路45を介して、レシプロエンジン2に燃料として供給される気体アンモニアの一部が分岐されて導かれ、図示しない噴射ノズルより排気ガス中に噴射される。選択還元触媒槽62の下流側及び酸化触媒槽63の下流側の、少なくとも一方には、NOxセンサ、アンモニアセンサ等の検出センサ61が設けられ、測定される排気ガス中の成分に応じて気体アンモニアの供給量が調整される。
 アンモニアと液体補助燃料の混焼運転においては、エンジンの排気ガス中に、窒素酸化物(NOx)に加え、亜酸化窒素、未燃アンモニアが発生する。この未燃アンモニアは、選択還元触媒槽62において、窒素酸化物および亜酸化窒素から酸素を奪う還元剤として働く。未燃アンモニアの発生割合が、窒素酸化物および亜酸化窒素の発生割合に対し不足する場合、不足分の気体アンモニアがアンモニア第2供給路45の噴射ノズルより排気ガス中に噴射される。
 窒素酸化物および亜酸化窒素の大部分は、選択還元触媒槽62において還元されて無害化される。また、気体アンモニアと液体補助燃料の混焼運転においては、空気に対する燃料全体の当量比が0.5以上1.0以下とすることが望ましく、実際の運転の大部分は当量比が1.0未満のリーンバーンの領域でなされる。そのため、排気ガス中には一定割合の酸素が含まれている。未燃アンモニアの発生割合が、窒素酸化物および亜酸化窒素の発生割合に対し多い場合など排気ガス中に余剰のアンモニアが残る場合には、下流側の酸化触媒槽63において、アンモニアは排気ガス中の酸素で酸化されて無害化される。
 図6(b)に示す例では、図6(a)に示す例のレシプロエンジン2と選択還元触媒槽62との間に、さらに酸化触媒槽64が設けられている。このようにすれば、レシプロエンジン2の直後の酸化触媒槽64によって、排気ガス中の未燃炭化水素や一酸化炭素をより効果的に処理することができる。
 図6(c)に示す例では、レシプロエンジン2の下流側に、酸化還元触媒槽65が設けられている。酸化還元触媒槽65は、窒素酸化物および亜酸化窒素のアンモニアによる還元反応と、アンモニアの排気ガス中の酸素による酸化反応の両方を促進する。この例においても、窒素酸化物および亜酸化窒素のアンモニアによる還元と、アンモニアの排気ガス中の酸素による酸化の効果が得られる。
 上記構成のレシプロエンジンシステム1は、シリンダ11内の圧縮端温度がアンモニアの燃焼遅れが生じない所定の温度以上の状態で、アンモニアと液体補助燃料による混焼運転を行うことを特徴としている。
 以下の図7及び図8は、上述したレシプロエンジン2のシリンダ11部分のみを再現した急速圧縮膨張装置を用いて行った、気体アンモニアと液体補助燃料の混焼試験の結果を示している。
 図7は、一実施形態に係るシリンダ11内の圧縮端温度と、液体補助燃料の噴射タイミングを基準とした、気体アンモニアと空気の混合気の燃焼遅れとの関係を示すグラフである。
 同図において、破線は給気圧力0.1MPa、圧縮端圧力2.6MPaの場合の圧縮端温度に対する燃焼遅れ(点火遅れ)の測定値を、一点鎖線は給気圧力0.2MPa、圧縮端圧力5.3MPaの場合の測定値を、それぞれ示す。いずれにおいても圧縮端温度が750K未満では燃焼遅れが大きくなり、特に前者の給気圧力が低い条件において燃焼遅れが著しくなることが分かる。このように、圧縮端温度がアンモニア混合気の燃焼に支配的な影響を与えることが分かる。
 図8は、一実施形態に係る気体アンモニアと液体補助燃料の混焼運転における燃料全体の当量比と排気ガス中のNO(実線)、未燃NH(破線)の関係を示すグラフである。空気に対する燃料全体の当量比が0.5未満では、当量比が下がるほど亜酸化窒素の発生が急激に増加する。また、空気に対する燃料全体の当量比を1.0以上とした場合には、燃料の燃焼に必要な空気が不足するため、燃料が未燃成分として排出される。この場合、アンモニアは液体補助燃料に比べ燃焼しにくいため、主にアンモニアが未燃成分として排出されることが分かる。
 なお、図1に示すレシプロエンジン2(実機用列形エンジン)と、その予備実験に使用した予備試験用単気筒エンジンの仕様は、以下の通りである。
(1)予備試験用単気筒エンジン
   シリンダ数       1
   ボア×  ストローク    180×200 mm
   シリンダあたり行程容積 5089 cc
   定格回転速度      1000~1200 rpm
(2)実機用列形エンジン
   シリンダ数       6
   ボア×  ストローク    280×390 mm
   シリンダあたり行程容積 24014 cc
   定格回転速度      750 ~800 rpm
 続いて、上記構成のレシプロエンジンシステム1の動作(レシプロエンジン2の運転方法)について説明する。なお、以下の動作は、制御装置3が主体となって制御を行う。
 本実施形態のレシプロエンジンシステム1は、アンモニアを燃料として使用する。図1に示すように、燃料として使用されるアンモニアは、加圧されて液体の状態でアンモニアタンク41内に貯蔵され、気化装置42により気化されて気体アンモニアとなる。気体アンモニアは、レギュレータ44aで圧力が制御され、燃料ガス噴射弁43(電磁弁)を介して吸気路20中に供給される。また、気体アンモニアの一部は分岐され、レギュレータ45aで圧力が制御されて触媒処理装置60に供給される。
 液体補助燃料は、液体燃料噴射弁53、および、着火装置55により、燃焼室10内に噴射される。液体燃料噴射弁53は、例えば、機械式燃料噴射装置であり、着火装置55は、例えば、コモンレール式燃料噴射装置である。気体アンモニアと液体補助燃料の混焼運転モードでは、燃料噴射タイミングの調整が容易なコモンレール式燃料噴射装置(着火装置55)が主に使用されるが、補助的に機械式燃料噴射装置(液体燃料噴射弁53)を用いてもよい。また、コモンレール式燃料噴射装置(着火装置55)により多段噴射を行うことで、アンモニアの燃焼性を向上する効果がある。
 液体補助燃料のみのディーゼル運転モードにおいては、機械式燃料噴射装置(液体燃料噴射弁53)が主に使用される。液体補助燃料としては、重油、軽油が一般的に使用できる。ここで使用する液体補助燃料としては、ライフサイクルで二酸化炭素の発生が防止されるバイオ燃料などのCOフリーの代替燃料を用いてもよい。この場合には、アンモニア利用の効果と併せ、ほぼ100%の二酸化炭素の排出削減が可能となる。
 吸気弁21の動弁装置としては、可変バルブタイミング機構を有する動弁装置を使用するとよい。これにより、吸気弁21の閉じるタイミングを給気行程でのピストン12の下死点のタイミングより早くし(早閉じ)、または下死点のタイミングより遅くする(遅閉じ)することで、有効圧縮比を可変することができる。例えば、レシプロエンジン2の始動時や出力が低い運転状態では、有効圧縮比を高くすることで圧縮端温度を上げることができ、より早いタイミングで、液体補助燃料のみによる運転から、気体アンモニアと液体補助燃料の混焼運転に移行することができる。また、出力が高い運転状態では有効圧縮比を低くすることで、シリンダ11内圧力が過剰に高くなるのを防ぎ、またミラーサイクル化による効率の向上の効果が得られる。
 吸気路20には、過給機4のコンプレッサ22の下流側にエアクーラ23が設けられる。このエアクーラ23は冷水で吸気を冷やす機能だけでなく、温水やヒータ等により吸気を温める機能を持った空気冷却器兼加熱装置としてもよい。また必要に応じ、コンプレッサの上流側に吸入する空気を温める空気加熱装置24を備えてもよい。空気加熱装置24は、レシプロエンジン2と熱交換した冷却水を熱源として利用する冷却加熱系統25を有している。レシプロエンジン2の始動時や出力が低い運転状態では、エアクーラ23又は空気加熱装置24により吸気を加熱することで圧縮端温度を上げることができ、より早いタイミングで、液体補助燃料のみによる運転から、気体アンモニアと液体補助燃料の混焼運転に移行することができる。また、吸気路20においてコンプレッサ22の下流側となる位置、より具体的にはエアクーラ23の出口付近に図示しない温度センサを設けてもよい。この温度センサによって測定される吸気の温度が所定の温度より低くなる運転領域において、エアクーラ23又は空気加熱装置24が吸気を加熱してもよい。
 図9は、一実施形態に係るレシプロエンジン2が舶用エンジンの場合の動作を説明する説明図である。なお、ここでは、レシプロエンジン2が固定ピッチプロペラを直接的に駆動する場合を代表例として説明する。なお、レシプロエンジン2が可変ピッチプロペラを駆動する場合でもプロペラピッチによって出力、燃料供給量を示す線が上下にシフトする以外は、図9と同様となる。また、レシプロエンジン2が発電機を駆動して、得られた電力によりモータでプロペラを駆動する場合、レシプロエンジン2の回転速度が一定の状態で発電量を上下する場合もある。この場合は後述の発電機を駆動する発電エンジンの例に準じた運転となるが、エンジンの回転速度を上下しつつ発電量を上下する場合には、本実施例に準じた運転となる。
 図9の横軸は、時間の経過、縦軸の(a)はレシプロエンジン2の回転速度、(b)はレシプロエンジン2の出力、(c)及び(d)は燃料供給量の例を示している。図9に示す例では、T0でレシプロエンジン2が始動され、T1までアイドリング状態の一定の回転速度でレシプロエンジン2が運転される。この間のレシプロエンジン2の出力はゼロであるが、アイドリングを維持するため一定量の燃料が供給される。レシプロエンジン2は調速制御されており、レシプロエンジン2の回転速度が目標回転速度となるよう、燃料の供給量が調速制御される。T1で船舶の推進が開始され、T2で定格の回転速度となるまで、レシプロエンジン2の目標回転速度が徐々に上げられると、調速制御の働きにより燃料の供給量が徐々に増やされてレシプロエンジン2の出力が徐々に増加し、T2にて定格出力に到達する。プロペラのピッチが一定の場合、出力と回転速度との関係は、出力が回転速度の約三乗に比例するいわゆる舶用三乗曲線に沿った関係になる。
 図9(c)は、速力の増加が比較的遅い場合、あるいはレシプロエンジン2の一つのシリンダ11あたりの行程容積が比較的大きい場合に適した燃料供給の制御の例である。レシプロエンジン2の始動後のアイドリング状態では、ほぼ一定量の液体補助燃料が供給される。アイドリング運転を適当な時間行いレシプロエンジン2の温度が上昇して温態状態となり、圧縮端温度が所定の温度以上となった段階で、ディーゼル運転モードから混焼運転モードに切り替わり、気体アンモニアの調速制御による供給が開始される。液体補助燃料の供給量が一定とされ、目標回転速度が徐々に上げられると、調速制御の働きにより気体アンモニアの供給量が徐々に増加する。回転速度及び出力が定格に達した状態では、アンモニアの混焼率は熱量比で80%以上となる。
 図9(d)は、速力の増加が比較的速い場合、あるいはレシプロエンジン2の一つのシリンダ11あたりの行程容積が比較的小さい場合に適した燃料供給の制御の例である。アイドリング運転後、圧縮端温度が所定の温度以上とならない状態では、液体補助燃料の供給量が調速制御され、目標回転速度が徐々に上げられると、調速制御の働きにより液体補助燃料の供給量が徐々に増加する。この例では、回転速度及び出力が定格に達するまで液体補助燃料のみにより運転がされている。出力が増加してレシプロエンジン2の温度が上昇し、圧縮端温度が所定の温度以上となった段階で、ディーゼル運転モードから混焼運転モードに切り替わり、気体アンモニアの調速制御による供給が開始される。気体アンモニアの供給開始後、液体補助燃料の供給量は徐々に下げられ、調速制御の働きにより気体アンモニアの供給量が増加する。最終的にアンモニアの混焼率は熱量比で80%以上となる。
 なお、この例では、レシプロエンジン2の回転速度及び出力が定格に達するまで液体補助燃料のみにより運転がされている。しかしながら、例えば図9(d)中に一点鎖線で示すように、圧縮端温度が所定の温度以上となりうる適当な出力、例えば50%の出力まで液体補助燃料のみにより運転し、その段階で気体アンモニアの供給を開始してもよい。その場合は、図9(d)において一点鎖線の上のハッチングした領域もアンモニアの供給領域となる。この場合も、気体アンモニアの供給開始後、液体補助燃料の供給量は徐々に下げられ、調速制御の働きにより気体アンモニアの供給量が増加する。液体補助燃料の供給量を運転条件に応じてマップ制御し、気体アンモニアの供給量を調速制御すれば、さまざまなパターンでの適切な制御が可能になる。
 図10は、一実施形態に係るレシプロエンジン2が発電機を駆動する発電エンジンの動作を説明する説明図である。ここでは典型的な例として、陸上において発電エンジンにより発電機を駆動して電力系統に電力を供給する場合を代表例として説明するが、船舶において発電を行う場合でも、レシプロエンジン2の回転速度が一定の状態で発電量を上下する場合、この例に準じたものとなる。
 図10に示す例では、T0でレシプロエンジン2が始動され、T1までアイドリング状態の一定の回転速度でレシプロエンジン2が運転される。レシプロエンジン2は、調速制御されており、レシプロエンジン2の回転速度が目標回転速度となるよう、燃料の供給量が調速制御される。次いで、レシプロエンジン2の回転速度の目標値が上げられ、T2において、レシプロエンジン2の回転速度が発電周波数に応じた定格の回転速度に到達する。この間は、レシプロエンジン2の出力はゼロであるが、回転を維持するため一定量の燃料が供給される。T3で発電機に対して最初の負荷投入がされる。負荷投入がなされると、回転速度を維持するために、燃料の供給量は短時間で増加する。さらにT4で2回目の負荷投入がなされ、燃料の供給量が再度増加し、レシプロエンジン2は定格出力に達する。なお、負荷投入の回数は2回には限られず、より多くの回数に分けてなされる場合もあり、また1回だけの場合もある。
 ここで、負荷投入の際は短時間で燃料の供給量を増加する必要があるが、特にレシプロエンジン2の温度が充分に上がっておらず、圧縮端温度が充分に上がらない場合には、気体アンモニアの供給量を短時間で増加させると気体アンモニアが充分に燃焼せず未燃アンモニアが増加する恐れがある。
 図10(c)の例では、レシプロエンジン2が起動直後で温度が充分に上がらない状態で行われることの多い、1回目の負荷投入までは液体補助燃料のみにより運転を行い、次いで液体補助燃料の供給量を徐々に一定値まで下げ、気体アンモニアの供給量を調速制御の働きにより徐々に増加する。1回目の負荷投入後、しばらく時間が経過し、レシプロエンジン2の温度が上がった状態で2回目の負荷投入を行うが、この際は圧縮端温度が充分に上がっているため、気体アンモニアの供給量を増やすことで負荷投入に対応する。最終的にアンモニアの混焼率は熱量比で80%以上となる。
 図10(d)の例は、より短時間で負荷投入を完了する場合や、レシプロエンジン2の一つのシリンダ11あたりの行程容積が比較的小さい場合の燃料供給の制御の例である。この例においては、複数の負荷投入が終了するまで液体補助燃料のみにより運転を行い、次いで液体補助燃料の供給量を徐々に一定値まで下げ、気体アンモニアの供給量を調速制御の働きにより徐々に増加する。最終的にアンモニアの混焼率は熱量比で80%以上となる。
 液体補助燃料のみによりレシプロエンジン2を起動した後、液体補助燃料とアンモニアによる混焼運転を開始するための条件として、上述した圧縮端温度、レシプロエンジン2の出力、空気に対する燃料全体の当量比だけでなく、必要に応じて他の条件を用いてもよい。図5に示すように、排気路30の触媒処理装置60の入口には、温度センサ67が設けられる。制御装置3は、液体補助燃料のみによりレシプロエンジン2を起動し、温度センサ67によって測定される排気ガスの温度が所定の温度に到達するまで液体補助燃料による運転を継続する。この所定の温度は、触媒が機能するための排気ガスの温度として予め実験により求められる。制御装置3は、排気ガスの温度が所定の温度に到達すると、液体補助燃料とアンモニアによる混焼運転を開始する。
 また、図5に示すように、触媒処理装置60には、触媒処理装置60の温度を測定するための温度センサ68が設けられる。制御装置3は、液体補助燃料のみによりレシプロエンジン2を起動し、温度センサ68によって測定される触媒処理装置60の温度が所定の温度に到達するまで液体補助燃料による運転を継続する。この所定の温度は、触媒が機能する処理温度として予め実験により求められる。制御装置3は、触媒処理装置60の温度が上記処理温度に到達すると、液体補助燃料とアンモニアによる混焼運転を開始する。
 また、図5に示すように、触媒処理装置60は、触媒処理装置60を加熱するヒータ69を備える。制御装置3は、触媒処理装置60の温度が、上記処理温度に到達するまで、ヒータ69により触媒処理装置60を加熱する。制御装置3は、触媒処理装置60の温度が上記処理温度に到達すると、液体補助燃料とアンモニアによる混焼運転を開始する。混焼運転を開始し触媒処理装置60の温度が所定の温度を維持できる状態になると、制御装置3は、ヒータ69による加熱を終了する。また、制御装置3は、温度センサ68による触媒処理装置60の温度の測定を継続し、触媒処理装置60の温度が所定の温度を下回る場合には、ヒータ69による加熱を再開する。
 以上、本発明の好ましい実施形態を記載し説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。好ましい実施形態として4ストロークのエンジンを例に上げて説明したが、2ストロークのエンジンについても同じ原理が適用される。また、シリンダ内の圧縮端温度について実際の測定は必ずしも必要ではなく、レシプロエンジンの設計値および運転状態から合理的に推測し得る。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。
1 … レシプロエンジンシステム
2 … レシプロエンジン
3 … 制御装置
4 … 過給機
10 … 燃焼室
11 … シリンダ
12 … ピストン
20 … 吸気路
30 … 排気路
40 … アンモニア燃料供給装置
50 … 液体補助燃料供給装置
60 … 触媒処理装置
94 … スロットルバルブ
95 … エアタンク装置(空気供給装置)
96、97、98 … 短絡路(第1短絡路)
96、97、99 … 短絡路(第2短絡路)

Claims (27)

  1.  燃焼室を形成するシリンダと、
     前記シリンダ内を往復移動するピストンと、
     前記シリンダに気体のアンモニアを供給し空気と予混合させるアンモニア燃料供給装置と、
     前記シリンダ内に前記アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置と、を有するレシプロエンジンと、
     前記シリンダ内の圧縮端温度が前記アンモニアの燃焼遅れが生じない所定の温度以上の状態で、前記アンモニアと前記液体補助燃料による混焼運転を行う制御装置と、を備える、
     レシプロエンジンシステム。
  2.  前記所定の温度が、750Kである、
     請求項1に記載のレシプロエンジンシステム。
  3.  前記シリンダの一つ当たりの行程容積が5000cc以上であり、且つ、前記レシプロエンジンの定格回転速度が1200rpm以下である、
     請求項2に記載のレシプロエンジンシステム。
  4.  前記制御装置は、前記混焼運転において、前記レシプロエンジンの出力の増大に応じて燃料全体に対する前記アンモニアの混焼率を増大させ、
     前記アンモニアの最大の混焼率は、熱量比で80%以上とする、
     請求項3に記載のレシプロエンジンシステム。
  5.  前記制御装置は、前記混焼運転において、前記空気に対する燃料全体の当量比を0.5以上且つ1.0以下とする、
     請求項4に記載のレシプロエンジンシステム。
  6.  前記制御装置は、前記空気に対する燃料全体の当量比が所定の値未満となる運転領域では、前記アンモニアの混焼率をゼロとし、前記液体補助燃料のみで運転を行う、
     請求項5に記載のレシプロエンジンシステム。
  7.  前記制御装置は、前記圧縮端温度が前記所定の温度より低い運転領域において、前記圧縮端温度を上げる制御を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  8.  前記圧縮端温度を上げる制御は、前記レシプロエンジンの吸気を加熱する制御である、
     請求項7に記載のレシプロエンジンシステム。
  9.  コンプレッサとタービンを有し前記レシプロエンジンに過給を行う過給機をさらに備え、
     前記制御装置は、前記コンプレッサの下流における吸気の温度が所定の温度より低い運転領域において、吸気を加熱する制御を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  10.  前記制御装置は、前記混焼運転において、前記液体補助燃料の供給量を一定とし、前記アンモニアの供給量を調速制御する、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  11.  前記制御装置は、前記混焼運転において、前記液体補助燃料の供給量をマップ制御し、前記アンモニアの供給量を調速制御する、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  12.  コンプレッサとタービンを有し前記レシプロエンジンに過給を行う過給機と、
     前記コンプレッサと前記レシプロエンジンとを繋ぐ吸気路と、
     前記レシプロエンジンと前記タービンとを繋ぐ排気路と、
     前記吸気路と前記排気路とを繋ぐ開閉式の第1短絡路及び前記吸気路と前記タービンの下流とを繋ぐ開閉式の第2短絡路の少なくとも一方と、をさらに備え、
     前記制御装置は、前記レシプロエンジンの排気温度に応じて前記第1短絡路及び前記第2短絡路の少なくとも一方の開閉制御を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  13.  前記レシプロエンジンの吸気側に空気量を制限するスロットルバルブをさらに備え、
     前記制御装置は、前記空気に対する前記アンモニアの当量比が前記混焼運転を可能とする範囲に入るように、前記スロットルバルブの開度を制御する、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  14.  前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記圧縮端温度が前記所定の温度となるまで前記液体補助燃料のみにより運転を行い、前記圧縮端温度が前記所定の温度に到達した後に、前記混焼運転を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  15.  前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記レシプロエンジンが所定の出力に達するまで前記液体補助燃料のみにより運転を行い、前記レシプロエンジンが所定の出力に達した後に、前記混焼運転を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  16.  前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記液体補助燃料の噴射量を増加させ、前記空気に対する燃料全体の当量比が所定値に到達した後に、前記混焼運転を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  17.  前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記レシプロエンジンの排気ガスの温度が所定の温度に達するまで前記液体補助燃料のみにより運転を行い、前記排気ガスの温度が所定の温度に達した後に、前記混焼運転を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  18.  前記シリンダの排気路の下流に設けられ、前記シリンダから排気される排気ガスを、触媒を用いて処理する触媒処理装置を備え、
     前記制御装置は、前記液体補助燃料のみにより前記レシプロエンジンを起動し、前記触媒処理装置の温度が、前記触媒が機能する処理温度に達するまで前記液体補助燃料のみにより運転を行い、前記触媒処理装置の温度が前記処理温度に達した後に、前記混焼運転を行う、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  19.  前記触媒処理装置を加熱する加熱装置を備え、
     前記制御装置は、前記触媒処理装置の温度が、前記処理温度に達するよう、前記加熱装置により前記触媒処理装置を加熱する、
     請求項18に記載のレシプロエンジンシステム。
  20.  前記レシプロエンジンは、直接的または間接的にプロペラを駆動する舶用エンジンであり、
     前記制御装置は、前記液体補助燃料の供給量を増加させることで出力を増加し、次いで前記液体補助燃料の供給量を減少させながら前記アンモニアの供給量を増加させる、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  21.  前記レシプロエンジンは、発電機を駆動する発電エンジンであり、
     前記制御装置は、負荷投入の際に前記液体補助燃料の供給量を増加させることで出力を増加し、次いで前記液体補助燃料の供給量を減少させながら前記アンモニアの供給量を増加させる、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  22.  前記レシプロエンジンは、前記混焼運転を行う混焼運転モードと、前記アンモニアの供給を行わずに前記液体補助燃料のみで運転を行うディーゼル運転モードと、を有する、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  23.  前記レシプロエンジンの吸気側に追加となる空気を供給する空気供給装置を備え、
     前記制御装置は、前記混焼運転モードから前記ディーゼル運転モードに切り替える際に、前記空気供給装置から一時的に空気を供給させる、
     請求項22に記載のレシプロエンジンシステム。
  24.  コンプレッサ又はタービンに可変機構を備える可変容量型の過給機を備え、
     前記制御装置は、前記混焼運転モードにおいて前記過給機の容量を制御することで前記過給機の回転速度を過給に必要な速度よりも高く維持し、前記混焼運転モードから前記ディーゼル運転モードに切り替える際に前記過給機の容量を制御することでより多くの空気を供給させる、
     請求項22に記載のレシプロエンジンシステム。
  25.  前記シリンダの排気路の下流に設けられ、前記シリンダから排気される排気ガスを、触媒を用いて処理する触媒処理装置を備え、
     前記アンモニア燃料供給装置は、前記混焼運転において、前記アンモニアの一部を、還元剤として前記触媒処理装置に供給する、
     請求項1~6のいずれか一項に記載のレシプロエンジンシステム。
  26.  前記アンモニア燃料供給装置は、さらに、前記液体補助燃料のみの運転においても、前記アンモニアの一部を、還元剤として前記触媒処理装置に供給する、
     請求項25に記載のレシプロエンジンシステム。
  27.  燃焼室を形成するシリンダと、
     前記シリンダ内を往復移動するピストンと、
     前記シリンダに気体のアンモニアを供給し空気と予混合させるアンモニア燃料供給装置と、
     前記シリンダ内に前記アンモニアを着火させる液体補助燃料を供給する液体補助燃料供給装置と、を有するレシプロエンジンの運転方法であって、
     前記シリンダ内の圧縮端温度が前記アンモニアの燃焼遅れが生じない所定の温度以上の状態で、前記アンモニアと前記液体補助燃料による混焼運転を行う、
     レシプロエンジンの運転方法。
PCT/JP2022/041687 2021-11-16 2022-11-09 レシプロエンジンシステム、レシプロエンジンの運転方法 WO2023090218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280075594.5A CN118234931A (zh) 2021-11-16 2022-11-09 往复式发动机系统、往复式发动机的运行方法
KR1020247014884A KR20240089322A (ko) 2021-11-16 2022-11-09 왕복 엔진 시스템, 왕복 엔진의 운전 방법
JP2023553934A JP7394270B2 (ja) 2021-11-16 2022-11-09 レシプロエンジンシステム、レシプロエンジンの運転方法
JP2023189340A JP2024012521A (ja) 2021-11-16 2023-11-06 レシプロエンジンシステム、レシプロエンジンの運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186474 2021-11-16
JP2021186474 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090218A1 true WO2023090218A1 (ja) 2023-05-25

Family

ID=86396915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041687 WO2023090218A1 (ja) 2021-11-16 2022-11-09 レシプロエンジンシステム、レシプロエンジンの運転方法

Country Status (4)

Country Link
JP (2) JP7394270B2 (ja)
KR (1) KR20240089322A (ja)
CN (1) CN118234931A (ja)
WO (1) WO2023090218A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085169A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の制御装置
JP2009085168A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の制御装置
WO2011136034A1 (ja) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 アンモニア燃焼内燃機関
WO2011136151A1 (ja) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 アンモニア燃焼内燃機関
WO2011145435A1 (ja) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 内燃機関の制御装置
JP2020094517A (ja) * 2018-12-11 2020-06-18 いすゞ自動車株式会社 触媒加熱装置の制御装置
JP2021032230A (ja) * 2019-08-29 2021-03-01 株式会社豊田自動織機 内燃機関システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588363A (en) 1969-07-30 1971-06-28 Rca Corp Word recognition system for voice controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085169A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の制御装置
JP2009085168A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 内燃機関の制御装置
WO2011136151A1 (ja) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 アンモニア燃焼内燃機関
WO2011136034A1 (ja) * 2010-04-28 2011-11-03 トヨタ自動車株式会社 アンモニア燃焼内燃機関
WO2011145435A1 (ja) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 内燃機関の制御装置
JP2020094517A (ja) * 2018-12-11 2020-06-18 いすゞ自動車株式会社 触媒加熱装置の制御装置
JP2021032230A (ja) * 2019-08-29 2021-03-01 株式会社豊田自動織機 内燃機関システム

Also Published As

Publication number Publication date
JP2024012521A (ja) 2024-01-30
JP7394270B2 (ja) 2023-12-07
JPWO2023090218A1 (ja) 2023-05-25
CN118234931A (zh) 2024-06-21
KR20240089322A (ko) 2024-06-20

Similar Documents

Publication Publication Date Title
JP4426452B2 (ja) 内燃機関のNOx排出を低減する排気ガス再循環方法及び装置
US9145849B2 (en) Engine fueled by ammonia with selective reduction catalyst
JP5540729B2 (ja) 過給機付エンジンの制御方法および制御装置
US6804952B2 (en) Catalyst warm up control for diesel engine
US6474323B1 (en) Optimized lambda and compression temperature control for compression ignition engines
JP2020172928A (ja) 内燃機関
EP3845752A1 (en) Method and system for operating gaseous-fuelled direct injection internal combustion engine
KR20180122715A (ko) 내연 기관의 제어 장치 및 내연 기관의 제어 방법
WO2020200486A1 (en) Single point fuel injection in multi-fuel combustion engines
JP2017015072A (ja) 往復動ピストン内燃エンジンを運転するための低荷重運転方法、コンピュータ・プログラム製品、並びに往復動ピストン内燃エンジン
US8978603B2 (en) Six-stroke internal combustion engine valve activation system and method for operating such engine
WO2014084023A1 (ja) 天然ガスエンジン及び天然ガスエンジンの運転方法
JP6341511B2 (ja) 希薄予混合ガスエンジンの負荷追従性向上システム
JP7477311B2 (ja) 補助ブロワを備えた大型エンジン及び運転方法
WO2023090218A1 (ja) レシプロエンジンシステム、レシプロエンジンの運転方法
WO2023016742A1 (en) Multi point fuel injection in bi-fuel combustion engines
CN112789403B (zh) 废气再循环系统及包括该废气再循环系统的船舶
EP3612726A1 (en) Gas engine, method for operating a gas engine and generator set
WO2024202347A1 (ja) 内燃機関の制御装置および方法
US12104546B2 (en) Gaseous fuel engine operating strategy for improved derating performance using varied ratio fuel blend
WO2023285571A1 (en) Multi point fuel injection in tri-fuel combustion engines
US20060207242A1 (en) Lightweight engine
WO2023285572A1 (en) Single point fuel injection in multi-fuel combustion engines
JP2020176626A (ja) 大型エンジンの運転方法及び大型エンジン
EA043325B1 (ru) Способ ограничения выбросов в двигателе

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023553934

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247014884

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280075594.5

Country of ref document: CN