WO2023089771A1 - ニコチン含有組成物におけるニコチン分布の分析方法 - Google Patents

ニコチン含有組成物におけるニコチン分布の分析方法 Download PDF

Info

Publication number
WO2023089771A1
WO2023089771A1 PCT/JP2021/042588 JP2021042588W WO2023089771A1 WO 2023089771 A1 WO2023089771 A1 WO 2023089771A1 JP 2021042588 W JP2021042588 W JP 2021042588W WO 2023089771 A1 WO2023089771 A1 WO 2023089771A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotine
composition
absorbance
containing composition
concentration
Prior art date
Application number
PCT/JP2021/042588
Other languages
English (en)
French (fr)
Inventor
茜 有尾
道徳 横井
広樹 滝口
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/042588 priority Critical patent/WO2023089771A1/ja
Publication of WO2023089771A1 publication Critical patent/WO2023089771A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a method for analyzing nicotine distribution in nicotine-containing compositions.
  • a nicotine-containing composition is used, for example, as the contents of a nicotine-delivery oral pouch product.
  • product control it is important that such products contain a uniform amount of nicotine.
  • the nicotine-containing composition is a mixture of powder components of almost the same color, it is difficult to visually evaluate the distribution of nicotine.
  • absorbance measurement is known as a method for measuring the amount of nicotine (for example, Non-Patent Documents 1 and 2).
  • Non-Patent Document 1 outlines the spectrophotometry method, but does not disclose the use of this method for measuring the distribution of specific components in products.
  • Non-Patent Document 2 discloses a method for measuring nicotine in a tobacco powder sample, but does not disclose measuring the nicotine distribution in a nicotine-containing composition.
  • an object of the present invention is to provide a method for analyzing nicotine distribution in a nicotine-containing composition.
  • Aspect 1 (1) dividing the nicotine-containing composition into two or more compartments; (2) a step of determining the nicotine concentration for each compartment using nicotine absorbance AbsN; (3) calculating the standard deviation of the nicotine concentration for each compartment of the nicotine-containing composition; A method for analyzing nicotine distribution in nicotine-containing compositions.
  • Aspect 2 The above (2) is measuring the absorbance AbsC of the composition for each compartment; determining the nicotine extinction coefficient ⁇ N from AbsN; and determining the nicotine concentration for each compartment based on the AbsC and ⁇ N.
  • Aspect 3 The above (2) is (2A) identifying the pH of the composition for each compartment; and (2B) determining a corrected ⁇ N corrected according to the pH and determining the nicotine concentration for each compartment based on the AbsC and the corrected ⁇ N;
  • the method of aspect 2 comprising: Aspect 4
  • the above (2B) is (2B-1) obtaining the relationship between the pH of nicotine and the extinction coefficient; and (2B-2) determining the corrected ⁇ N based on the relationship;
  • a method according to aspect 2 or 3 comprising: Aspect 5 5.
  • the method according to aspect 4, wherein (2B-1) comprises measuring the extinction coefficient at a specific wavelength for nicotine with different pH and sigmoidal curve fitting to multiple sets of pH measurements and extinction coefficients.
  • Aspect 6 6.
  • any of aspects 1-5 wherein the nicotine-containing composition does not contain alkaloids other than nicotine that exhibit light absorption behavior at 200-260 nm.
  • Aspect 7 7. The method of any of aspects 1-6, wherein the nicotine-containing composition has a Hunter White Index of 60 or greater.
  • Aspect 8 8. The method of any of aspects 1-7, wherein the nicotine-containing composition is the content of a nicotine-delivering oral product.
  • Aspect 9 9. The method of any of aspects 1-8, wherein the nicotine-containing composition is the entire content used in one nicotine-delivering oral product.
  • the present invention can provide a method for analyzing nicotine distribution in nicotine-containing compositions.
  • X to Y includes X and Y which are the end values thereof.
  • the present invention is a method for analyzing nicotine distribution in a nicotine-containing composition, comprising the following steps. (1) dividing the nicotine-containing composition into two or more compartments; (2) A step of determining the nicotine concentration for each compartment using the nicotine absorbance AbsN. (3) A step of calculating the standard deviation of the nicotine concentration for each section of the nicotine-containing composition.
  • a nicotine-containing composition is a composition containing nicotine as an essential ingredient. Nicotine-containing compositions are useful for oral products or flavor inhalation articles, but compositions for oral products are preferred in the present invention.
  • the nicotine-containing composition for oral products can contain, in addition to nicotine, known components such as a base material such as cellulose, a release agent such as silica, a pH adjuster, a sugar alcohol, or a sweetener.
  • the amount of nicotine is not limited, but in one aspect can be 1-5% by weight in the composition.
  • the nicotine-containing composition is divided into two or more compartments.
  • the number of sections is not limited, the lower limit is preferably 4 or more and the upper limit is preferably 8 or less in order to improve accuracy.
  • the weight of each compartment is the same.
  • Step (2) the nicotine absorbance AbsN is used to determine the nicotine concentration in the compartment.
  • this step is carried out via: 1) Measure the absorbance AbsC of the composition for each compartment. 2) The nicotine absorbance AbsN is measured in advance, and the absorbance coefficient ⁇ N of nicotine is obtained by dividing AbsN by the concentration of the solution used for the measurement. 3) Determine the nicotine concentration for each compartment from AbsC and ⁇ N.
  • the extinction coefficient ⁇ N of nicotine is defined by the following formula.
  • the extinction coefficient ⁇ can be used even if it is converted into a molar extinction coefficient.
  • nicotine extinction coefficient ⁇ N absorbance AbsN of nicotine aqueous solution/concentration of the aqueous solution
  • the absorbance is measured using a known device such as a photometer.
  • a known device such as a photometer.
  • the aqueous solution derived from the composition refers to an aqueous solution, a supernatant, or a filtrate.
  • the lower limit of the wavelength used for measuring the absorbance AbsC of the composition and the absorbance AbsN of nicotine is preferably 200 nm or more, more preferably 220 nm or more, and still more preferably 240 nm or more.
  • the upper limit is preferably 300 nm or less, more preferably 260 nm or less.
  • the concentration of nicotine in the nicotine aqueous solution used for ⁇ N measurement is preferably 10 to 100 ⁇ g/mL.
  • the extinction coefficient is affected by the concentration of the solution, but if the concentration of nicotine is within this range, the value of the extinction coefficient is stable in the above wavelength range and can be regarded as a constant value.
  • the nicotine-containing composition contains, in addition to nicotine, a substance K that exhibits light absorption behavior at 200 to 260 nm, these follow the Beer-Lambert law, and there is interaction such as hydrogen bonding between them. If not, simultaneous quantification is also possible. In this case, the following equation holds. However, when an aqueous solution obtained from the composition is used for measurement, the “composition” in the following formula is strictly "aqueous solution derived from the composition".
  • Abs ⁇ 1 C and Abs ⁇ 2 C can be actually measured, and ⁇ 1 N, ⁇ 2 N, ⁇ 1 K, and ⁇ 2 K can be obtained in advance.
  • the density y of K can be determined.
  • substance K can be a sweetener such as acesulfame potassium.
  • this step (2) may include the following steps. (2A) A step of specifying the pH of the nicotine-containing composition; (2B) A step of obtaining a corrected ⁇ N corrected according to the pH, and obtaining a nicotine concentration from the AbsC and the corrected ⁇ N;
  • the pH of the nicotine-containing composition can be specified by measuring the pH using a known device such as a pH meter.
  • the pH is measured using an aqueous solution from the composition (including the supernatant of the dispersion dispersed in water as described above).
  • the liquid used for pH measurement is preferably prepared from the nicotine-containing composition to be measured for nicotine concentration.
  • the value can be used to specify the pH of the nicotine-containing composition.
  • Step (2B) preferably comprises the following steps.
  • (2B-1) Step of obtaining the relationship between the pH of nicotine and the extinction coefficient
  • (2B-2) Step of obtaining the corrected ⁇ N based on the relationship.
  • Step (2B-1) can be carried out by adding an acid or the like to the nicotine aqueous solution to adjust the pH and measuring the absorption coefficient at each pH.
  • nicotine aqueous solutions with known concentrations and pHs adjusted to 6, 7, 8, 9, and 10 are prepared, and the extinction coefficients at wavelengths ⁇ 1 and ⁇ 2 are measured.
  • a relationship between pH and extinction coefficient is then constructed. Specifically, an approximate curve can be obtained for multiple sets of pH measurement values and extinction coefficients, and the relationship between the two can be constructed.
  • linear approximation or sigmoid curve approximation can be performed, but from the viewpoint of accuracy, sigmoid curve approximation (for example, FIG. 4) is preferably performed.
  • step (2B-2) based on the pH measured in step (2A), nicotine absorption coefficients at ⁇ 1 and ⁇ 2 are corrected to nicotine absorption coefficients at ⁇ 1 and ⁇ 2 (corrected ⁇ 1 N and the correction ⁇ 2 N). This makes it possible to obtain a more accurate nicotine concentration.
  • x can be obtained by correcting (i) and (ii) above to (I) and (II) as follows.
  • Abs ⁇ 1 C ⁇ 1 N ⁇ x+ ⁇ 1 K ⁇ y (i)
  • Abs ⁇ 2 C ⁇ 2 N ⁇ x+ ⁇ 2 K ⁇ y (ii)
  • Abs ⁇ 1 C Correction ⁇ 1 N ⁇ x+ ⁇ 1 K ⁇ y (I)
  • Abs ⁇ 2 C Correction ⁇ 2 N x x + ⁇ 2 K x y (II)
  • This correction is particularly effective when the pH of the composition is in the neutral to alkaline range. Since the pH of the product at the time of manufacturing the oral product is in the neutral to alkaline range, the analysis method of the present invention that performs the correction has the advantage of being immediately applicable at the time of manufacturing. Here, a multi-component system has been described as an example, but this correction can also be performed in the one-component system. pH correction is particularly useful when the sample of interest is in the neutral to alkaline region (eg pH 7-11).
  • Step (3) the standard deviation of the nicotine concentration for each section of the nicotine-containing composition is calculated.
  • a standard deviation can be determined according to a known method.
  • This analysis method is highly accurate and more effective in analyzing compositions in which the presence of nicotine cannot be visually recognized. For example, since a nicotine-containing composition is usually composed of powder components of the same color, the presence of nicotine cannot be visually confirmed, but according to this analysis method, the distribution of nicotine can be measured with high accuracy. In particular, nicotine-containing compositions are often white, making it difficult to visually confirm nicotine. However, this analysis method can accurately analyze the nicotine distribution even in white nicotine-containing compositions.
  • the whiteness of the composition is preferably 60 or more in Hunter White Index.
  • the Hunter White Index is an index of whiteness developed by Hunter. Yellowish white has a Hunter White Index value of 100 or less, and bluish white has a Hunter White Index value of over 100.
  • the composition is preferably the content of a nicotine-supplying oral product.
  • a nicotine-delivering oral product is a product that can deliver nicotine when used in the mouth.
  • Contents of oral products refer to fillings filled in packaging materials such as pouches. Further, it is preferred that the composition is the entire content used in one nicotine-delivering oral product.
  • This analytical method is useful as a method for quantifying the distribution state of nicotine in a nicotine-containing composition.
  • Sample preparation Samples 1 and 2 900 g of a nicotine-containing composition was prepared by mixing the components shown in Composition 1 in Table 1. The composition was quartered and divided into 4 compartments (A, B, C, D). The concentration of each component in all compartments of the sample is uniform.
  • sample 3 A nicotine-free composition was prepared by mixing the ingredients shown in Composition 2 of Table 1 and divided into two compartments (A, B). Also, a nicotine-containing composition shown in Composition 1 of Table 1 was prepared and divided into two regions (C, D). Sections A to D were combined to form sample 3 as a whole. In sample 3, regions A and B had a nicotine-free composition, while regions C and D had the same composition as sample 1. The weight of each compartment was the same as Sample 1.
  • the absorbance was obtained for sample 3 using the same procedure. However, the amount of the composition collected was 200 mg.
  • the filtrates of compartments C and D of sample 3 were diluted in the same manner as in 4) above, but compartments A and B of sample 3 did not contain nicotine.
  • the filtrate was diluted with an equal volume of MiliQ.
  • ⁇ 260N absorption coefficient of nicotine (absorbance/nicotine concentration) [mL/ ⁇ g]
  • ⁇ 240K extinction coefficient of acesulfame K (absorbance/acesulfame K concentration) [mL/ ⁇ g]
  • ⁇ 260K extinction coefficient of acesulfame K (absorbance/acesulfame K concentration) [mL/ ⁇ g]
  • X [ ⁇ g/mL] nicotine concentration in the composition
  • Y [ ⁇ g/mL] acesulfame K concentration in the composition
  • Example 2 Using the nicotine-containing composition having the composition shown in Table 1, the nicotine concentration was measured according to the following procedure, and the effect of solution concentration and shaking time was examined. 1) 20 [mL] of MiliQ was added to each of 20 mg, 200 mg and 2 g of the composition. 2) The mixture was shaken at 200 rpm for 10 min, 30 min, 60 min. 3) The shaken mixture was filtered using Whatman® (0.2 ⁇ m, PVDF filter). 4) MiliQ was added to dilute the filtrate so that the calculated nicotine concentration in the filtrate was in the range of 10 to 100 [ ⁇ g/mL]. 5) The diluted solution was measured with the UV meter to obtain the absorbance at 200-320 [nm]. 6) Nicotine concentration was determined in the same manner as in Example 1. Table 3 shows the results.
  • Example 3 With pH correction 1) An aqueous solution containing 25 [ ⁇ g/mL] of nicotine and 2.5 [ ⁇ g/mL] of acesulfame K was prepared. HCl and NaOH were added to the aqueous solutions to prepare aqueous solutions with pHs of 6.4, 7.1, 8.0, 9.1, and 10.6. The absorbance of the aqueous solution was measured using the UV meter. The results are shown in FIG. As shown in FIG. 1, it is clear that the absorbance of the liquid varies with pH.
  • the concentration of nicotine in the aqueous solution was determined.
  • an aqueous solution containing 25 [ ⁇ g/mL] of nicotine and 2.5 [ ⁇ g/mL] of acesulfame K (hereinafter also referred to as "model aqueous solution") was prepared and adjusted to pH 6.5.
  • the absorbance of the model aqueous solution was measured at wavelengths of 240 nm and 260 nm.
  • the nicotine absorption coefficient at pH 6.5 (corrected nicotine absorption coefficient) is obtained from the approximate curve, and the nicotine concentration X in the pH 6.5 model aqueous solution is obtained using the following formula. rice field.
  • Abs240A ⁇ 240N′′ ⁇ X [ ⁇ g/mL]+ ⁇ 240K ⁇ Y [ ⁇ g/mL]
  • Abs260A ⁇ 260N′′ x X [ ⁇ g/mL] + ⁇ 260K x Y [ ⁇ g/mL] In the formula, each term is as follows.
  • Abs240A absorbance of aqueous solution (pH 6.5)
  • Abs260A absorbance of aqueous solution (pH 6.5)
  • ⁇ 240N′′ extinction coefficient of nicotine corrected to correspond to pH 6.5 [mL/ ⁇ g]
  • ⁇ 260N′′ extinction coefficient of nicotine corrected to correspond to pH 6.5 [mL/ ⁇ g]
  • ⁇ 240K extinction coefficient of acesulfame K [mL/ ⁇ g]
  • ⁇ 260K extinction coefficient of acesulfame K [mL/ ⁇ g]
  • the nicotine concentration X in the model aqueous solution was calculated as 26.41 [ ⁇ g/mL] from the above simultaneous equations.
  • Model aqueous solutions with pH adjusted to 7.2, 8.0, 9.0 and 10.2 were prepared, and the nicotine concentration X in each model aqueous solution was determined in the same manner. Table 5 shows the results.
  • Example 4 Without pH correction In Example 3, the nicotine concentration X in each model aqueous solution was calculated without using the values obtained from the approximate curve. Specifically, nicotine concentration X was calculated using the formula shown in Example 3, except that ⁇ 240N′′ was replaced with the absorption coefficient of nicotine at pH 7, and ⁇ 260N′′ was replaced with the absorption coefficient of nicotine at pH7. Table 5 shows the results.
  • Example 5 A nicotine-containing composition was prepared by mixing the components shown in Composition 1 above. The Hunter White Index was measured for the composition according to a standard method. Table 6 shows the results of three measurements.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(1)ニコチン含有組成物を2つ以上の区画に分ける工程、 (2)ニコチンの吸光度AbsNを利用して区画ごとのニコチン濃度を求める工程、 (3)前記ニコチン含有組成物の区画ごとのニコチン濃度の標準偏差を算出する工程、を備える、 ニコチン含有組成物におけるニコチン分布の分析方法。

Description

ニコチン含有組成物におけるニコチン分布の分析方法
 本発明は、ニコチン含有組成物におけるニコチン分布の分析方法に関する。
 ニコチン含有組成物は、例えばニコチン供給オーラルパウチ製品の内容物として使用される。このような製品において、規定量のニコチンが均一に含まれていることは、製品管理上重要である。しかし、ニコチン含有組成物はほぼ同色の粉成分の混合物であるので、目視によりニコチンの分布を評価することは困難である。ところで、ニコチン量を測定する方法として吸光度測定が知られている(例えば非特許文献1、2)。
上田 陽、分析化学vol. 18 (1969) 「有機吸光光度法」 小畠弐郎、分析化学 vol. 5 (1956) 「たばこのニコチン測定法」
 非特許文献1は吸光光度法を概説するが、当該方法を製品における特定成分の分布測定に利用することは開示しない。また、非特許文献2はたばこ粉末試料中のニコチンの測定方法を開示するが、ニコチン含有組成物におけるニコチン分布を測定することは開示しない。かかる事情に鑑み、本発明はニコチン含有組成物におけるニコチン分布の分析方法を提供することを課題とする。
 発明者らは、ニコチン含有組成物を2つ以上の区画に分け、区画ごとのニコチン濃度およびその標準偏差を算出することで、前記課題を解決することを見出した。すなわち、前記課題は以下の本発明によって解決される。
態様1
 (1)ニコチン含有組成物を2つ以上の区画に分ける工程、
 (2)ニコチンの吸光度AbsNを利用して区画ごとのニコチン濃度を求める工程、
 (3)前記ニコチン含有組成物の区画ごとのニコチン濃度の標準偏差を算出する工程、を備える、
 ニコチン含有組成物におけるニコチン分布の分析方法。
態様2
 前記(2)が、
 区画ごとに前記組成物の吸光度AbsCを測定する工程、
 AbsNからニコチンの吸光係数εNを求める工程、および
 前記AbsCとεNに基づいて区画ごとのニコチン濃度を求める工程、を備える、
 態様1に記載の方法。
態様3
 前記(2)が、
 (2A)区画ごとの前記組成物のpHを特定する工程、および
 (2B)当該pHに応じて補正された補正εNを求め、前記AbsCと補正εNに基づいて区画ごとのニコチン濃度を求める工程、
を備える、態様2に記載の方法。
態様4
 前記(2B)が、
 (2B-1)ニコチンのpHと吸光係数との関係を取得する工程、および
 (2B-2)当該関係に基づいて、前記補正εNを求める工程、
を備える、態様2または3に記載の方法。
態様5
 前記(2B-1)が、pHの異なるニコチンについて特定の波長における吸光係数を測定し、複数組のpH測定値および吸光係数に対してシグモイド曲線近似することを含む、態様4に記載の方法。
態様6
 前記ニコチン含有組成物が、200~260nmにおいて吸光挙動を示すニコチン以外のアルカロイドを含有しない、態様1~5のいずれかに記載の方法。
態様7
 前記ニコチン含有組成物のハンターホワイトインデックスが60以上である、態様1~6のいずれかに記載の方法。
態様8
 前記ニコチン含有組成物は、ニコチン供給オーラル製品の内容物である、態様1~7のいずれかに記載の方法。
態様9
 前記ニコチン含有組成物は、1つのニコチン供給オーラル製品に使用される全内容物である、態様1~8のいずれかに記載の方法。
 本発明によってニコチン含有組成物におけるニコチン分布の分析方法を提供できる。
ニコチンにおける吸光度とpHの関係を示す図 ニコチンにおける吸光度とpHの関係を示す図 アセスルファムKにおける吸光度とpHの関係を示す図 ニコチンの240nmにおける吸光度とpHの近似曲線 ニコチンの260nmにおける吸光度とpHの近似曲線
 以下、本発明を詳細に説明する。本発明においてX~Yはその端値であるXおよびYを含む。
1.分析方法
 本発明はニコチン含有組成物におけるニコチン分布を分析する方法であり、以下の工程を備える。
 (1)ニコチン含有組成物を2つ以上の区画に分ける工程。
 (2)ニコチン吸光度AbsNを利用して区画ごとのニコチン濃度を求める工程。
 (3)前記ニコチン含有組成物の区画ごとのニコチン濃度の標準偏差を算出する工程。
(1)工程(1)
 ニコチン含有組成物とは、ニコチンを必須成分として含む組成物である。ニコチン含有組成物は、オーラル製品または香味吸引物品に有用であるが、本発明においてはオーラル製品用組成物であることが好ましい。オーラル製品用ニコチン含有組成物はニコチンの他に、セルロース等の基材、シリカ等の離型剤、pH調整剤、糖アルコール、または甘味料等の公知の成分を含むことができる。ニコチンの量は限定されないが、一態様において、組成物中に1~5重量%とすることができる。
 本工程においては、ニコチン含有組成物を2つ以上の区画に分ける。区画の数は限定されないが、より精度を高めるために、その下限は好ましくは4以上であり、その上限は好ましくは8以下である。各区画の重量は同じであることが好ましい。
(2)工程(2)
 本工程ではニコチン吸光度AbsNを利用して区画におけるニコチン濃度を求める。好ましくは、本工程は以下を経て実施される。
1)区画ごとの組成物の吸光度AbsCを測定する。
2)予めニコチン吸光度AbsNを測定し、AbsNをその測定に供した溶液の濃度で除して得たニコチンの吸光係数εNを求める。
3)AbsCとεNとから、区画ごとのニコチン濃度を求める。
 ニコチンの吸光係数εNとは、以下の式で定義される。本発明において吸光係数εはモル吸光係数に換算しても利用できる。
  ニコチンの吸光係数εN=ニコチン水溶液の吸光度AbsN/当該水溶液の濃度
 吸光度は光度計等の公知の機器を用いて測定される。本発明においては、作業効率等の観点から、前記区画における組成物と水と混合して水溶液を得て、当該水溶液が光線を吸収する度合いを測定する吸光光度法を用いることが好ましい。本発明において、組成物と水を混合した場合に不溶物が生じる場合は、その上澄液またはろ液を前記水溶液として用いる。したがって本発明において組成物由来の水溶液とは、水溶液、上澄液、またはろ液をいう。
 感度の観点から、組成物の吸光度AbsCおよびニコチンの吸光度AbsNの測定に用いる波長の下限値は好ましくは200nm以上、より好ましくは220nm以上、さらに好ましくは240nm以上である。またその上限値は好ましくは300nm以下、より好ましくは260nm以下である。εNの測定に供するニコチン水溶液のニコチンの濃度は10~100μg/mLであることが好ましい。一般に、吸光係数は溶液濃度によって影響を受けるが、ニコチンの濃度がこの範囲であると、前記波長の範囲において吸光係数の値が安定し、一定値であるとみなすことができる。
 以下、具体的な態様について説明する。
 1)一成分系の場合
 ニコチン含有組成物に、特定の波長において吸光特性を持つ物質がニコチン以外に存在しない場合、以下の式が成立する。
  AbsC=εN×x
 xは組成物中の未知のニコチン濃度である。AbsCは実測でき、εNは予め測定しておくことができるので、この式から区画ごとのニコチン濃度xを求めることができる。このように、ニコチン含有組成物が200~260nmにおいて吸光挙動を示すニコチン以外のアルカロイドを含有しないと、簡便にニコチン濃度を測定できるので好ましい。
 2)多成分系の場合
 ニコチン含有組成物が、ニコチンの他に200~260nmにおいて吸光挙動を示す物質K含み、これらがランベルト・ベールの法則に従い、かつこれらの間に水素結合などの相互作用がない場合は、同時定量も可能である。この場合、以下の方程式が成立する。ただし組成物から得た水溶液を測定に用いた場合、下記式において「組成物」は厳密には「組成物由来の水溶液」である。
 AbsλC=ελN×x+ελK×y ・・・(i)
 AbsλC=ελN×x+ελK×y ・・・(i i)
     x[μg/mL]=組成物中のニコチンの濃度
     y[μg/mL]=組組成物中のKの濃度
     AbsλC   =波長λにおける組成物の吸光度
     ελN     =波長λにおけるニコチンの吸光係数
     ελK     =波長λにおける物質Kの吸光係数
     AbsλC   =波長λにおける組成物の吸光度
     ελN     =波長λにおけるニコチンの吸光係数
     ελK     =波長λにおける物質Kの吸光係数
 AbsλCおよびAbsλCは実測でき、ελN、ελN、ελK、およびελKは予め求めることができるから、前記連立方程式を解くことで区画ごとのニコチン濃度xおよび物質Kの濃度yを求めることができる。
 一態様において物質Kは、アセスルファムカリウム等の甘味料であることができる。
 3)ベースライン補正
 吸光度測定において、ベースラインを変動させる可能性のある物質が存在する場合は、当該物質の吸光度を差し引くことが好ましい。例えば、オーラル製品用ニコチン含有組成物は、離型剤としてシリカを含むことが多いが、シリカの一部は水に溶解し、吸光度曲線のベースラインを変動させ得る。この点に関し、発明者らはシリカの吸光度は、波長によってあまり変化せず比較的一定であるため、310nmにおけるシリカの吸光度(Abs310S)を差し引けば、ニコチンの吸光度測定に大きな影響を与えないことを見出した。具体的に、前記式(i)および(ii)において、左辺をそれぞれ(AbsλC-Abs310S)および(AbsλC-Abs310S)とすることができる。この補正は、前記一成分系においても同様に行うことができる。
 4)pH補正
 ニコチンの吸光係数はpHによって変動しうるので、補正することが好ましい。具体的に、本工程(2)は、以下の工程を備えていてもよい。
 (2A)ニコチン含有組成物のpHを特定する工程
 (2B)当該pHに応じて補正された補正εNを求め、前記AbsCと補正εNから、ニコチン濃度を求める工程。
 工程(2A)においては、公知の機器、例えばpH計を用いてpHを測定することでニコチン含有組成物のpHを特定できる。pHは、組成物由来の水溶液(前述のとおり水に分散させた分散液の上澄み液を含む)を用いて測定される。pH測定に用いる液は、ニコチン濃度測定の対象となるニコチン含有組成物から調製されることが好ましい。また、すでにニコチン含有組成物のpHがわかっている場合は、その値を以てニコチン含有組成物のpHを特定できる。
 工程(2B)は、好ましくは以下の工程を備える。
 (2B-1)ニコチンのpHと吸光係数との関係を取得する工程
 (2B-2)当該関係に基づいて、補正εNを求める工程。
 工程(2B-1)は、ニコチン水溶液に酸等を加えてpHを調整し、各pHにおける吸光係数を測定することで実施できる。例えば、濃度が既知であり、pHを6、7、8、9、10に調整したニコチン水溶液を準備して、波長λおよびλにおける吸光係数を測定する。次いで、pHと吸光係数の関係を構築する。具体的には、複数組のpH測定値および吸光係数に対して近似曲線を求め、両者の関係を構築することができる。この際、直線近似またはシグモイド曲線近似を行うことができるが、精度の観点からはシグモイド曲線近似(例えば図4)を行うことが好ましい。
 工程(2B-2)において、工程(2A)で測定したpHに基づいて、λおよびλにおけるニコチンの吸光係数を、補正されたλおよびλにおけるニコチンの吸光係数(補正ελNおよび補正ελN)に置き換える。これによって、より正確なニコチン濃度を求めることができる。
 具体的に、前述の(i)および(ii)を、以下のように(I)および(II)に補正してxを求めることができる。
[補正前]
 AbsλC=ελN×x+ελK×y ・・・(i)
 AbsλC=ελN×x+ελK×y ・・・(ii)
[補正後]
 AbsλC=補正ελN×x+ελK×y ・・・(I)
 AbsλC=補正ελN×x+ελK×y ・・・(II)
 この補正は、組成物のpHが中性~アルカリ領域において特に有効である。オーラル製品製造時の製品のpHは、中性~アルカリ領域であるので、当該補正を行う本発明の分析方法は、製造時に即適用できるという利点を有する。ここでは、多成分系を例に説明したが、この補正は、前記一成分系においても同様に行うことができる。pH補正は、対象試料が中性~アルカリ領域(例えばpH7~11)にある場合において、特に有用である。
(3)工程(3)
 本工程では、前記ニコチン含有組成物の区画ごとのニコチン濃度の標準偏差を算出する。公知の方法に従って標準偏差を求めることができる。
(4)本分析方法の特徴
 本分析方法は精度に優れており、かつ目視ではニコチンの存在を認識できない組成物の分析においてより効果を発揮する。例えば、ニコチン含有組成物は、通常、同色の粉末成分から構成されるのでニコチンの存在を目視では確認できないが、本分析方法によれば、精度よくニコチンの分布を測定できる。特にニコチン含有組成物は白色であることが多く、より目視でのニコチンの確認は困難である。しかし、本分析方法は白色ニコチン含有組成物においても精度よくニコチン分布を分析できる。当該組成物の白色度は、ハンターホワイトインデックスにして60以上であることが好ましい。ハンターホワイトインデックスとは、Hunterによって開発された白色度の指標である。黄味がかった白はハンターホワイトインデックスが100以下の値となり、青味がかった白はハンターホワイトインデックスが100超の値となる。
 また、前記組成物はニコチン供給オーラル製品の内容物であることが好ましい。ニコチン供給オーラル製品とは、口中で使用する際にニコチンを供給できる製品である。オーラル製品の内容物とは、パウチ等の包装材に充填される充填物をいう。さらには、前記組成物は1つのニコチン供給オーラル製品に使用される全内容物であることが好ましい。
2.用途
 本分析方法は、ニコチン含有組成物におけるニコチンの分布状態を定量化する方法として有用である。
[実施例1]
(1)サンプルの調製
 サンプル1、2
 表1の組成1に示す成分を混合してニコチン含有組成物900gを調製した。当該組成物を四等分して4つの区画(A、B、C、D)に分けた。当該サンプルのすべての区画における各成分の濃度は均一である。
 サンプル3
 表1の組成2に示す成分を混合してニコチンを含まない組成物を調製し、2つの区画(A、B)に分けた。また、表1の組成1に示すニコチン含有組成物を調製し、2つの領域(C、D)に分けた。A~Dの区画を合わせて全体としてサンプル3とした。サンプル3において、領域AとBはニコチンを含まない組成であり、領域CとDはサンプル1と同一の組成とした。各区画の重量はサンプル1と同じであった。
Figure JPOXMLDOC01-appb-T000001
(2)吸光度測定
 サンプル1、2において、それぞれ以下の手順で吸光度を測定した。
1)サンプル1については区画Aから200mg、サンプル2については2gの組成物を採取した。採取したそれぞれの組成物に対してMiliQを20[mL]加えた。
2)当該混合物を、200rpmで10min振とうした。
3)振とう後の混合物をWhatman(登録商標)(0.2μm、PVDFフィルタ)を用いてろ過した。
4)ろ液中の計算上のニコチン濃度が10~100[μg/mL]の範囲となるように、MiliQを追加してろ液を希釈した。
5)希釈液をUV計で測定し、200~320[nm]における吸光度を求めた。
6)同じ手順で区画B~Dについて吸光度を求めた。
 同じ手順でサンプル3について吸光度を求めた。ただし組成物の採取量は200mgとした。サンプル3の区画C、Dのろ液は、前記4)と同様にして希釈したが、サンプル3の区画A、Bはニコチンを含まないので、前記4)においてサンプル1に対して追加した量と同量のMiliQでろ液を希釈した。
(3)濃度の算出
 計算に使用する波長として240nmおよび260nmを、対象成分としてニコチンおよびアセスルファムKを選択した。各波長における吸光係数(吸光度/対象成分の濃度)を計算した。また、SiOによって吸光度曲線のベースラインが上昇することが明らかになったので、この補正を行った。具体的には、310nm波長におけるSiOの吸光度(Abs310)を差し引いた。
 「組成物の吸光度=ニコチンの吸光度+アセスルファムKの吸光度+SiOの吸光度によるベースラインの上昇値」の関係が成立するので、以下の連立方程式が成立する。
Abs240’C=ε240N×X+ε240K×Y
Abs260’C=ε260N×X+ε260K×Y
 式中、各項は以下のとおりである。各項において数字は波長を示す。
 Abs240’C=ベースライン補正後の組成物の吸光度=Abs240C-Abs310S
 Abs260’C=ベースライン補正後の組成物の吸光度=Abs260C-Abs310S
 ε240N=ニコチンの吸光係数(吸光度/ニコチン濃度)[mL/μg]
 ε260N=ニコチンの吸光係数(吸光度/ニコチン濃度)[mL/μg]
 ε240K=アセスルファムKの吸光係数(吸光度/アセスルファムK濃度)[mL/μg]
 ε260K=アセスルファムKの吸光係数(吸光度/アセスルファムK濃度)[mL/μg]
 X[μg/mL]=組成物中のニコチン濃度
 Y[μg/mL]=組成物中のアセスルファムK濃度
 上記連立方程式を解くことによって、ニコチンの濃度を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果から、すべてのサンプル、すべての領域において、比較的高い精度でニコチン濃度が検出可能であることがわかった。また、標準偏差値によってサンプル内で均一にニコチンが分布しているか(サンプル1、2)、偏りがあるか(サンプル3)を区別可能なことがわかった。
[実施例2]
 表1に示す組成を有するニコチン含有組成物を用い、以下の手順でニコチン濃度を測定し、溶液濃度と振とう時間の影響を検討した。
1)20mg、200mg、2gの組成物に対し、それぞれMiliQを20[mL]加えた。
2)当該混合物を、200rpmで10min、30min、60min振とうした。
3)振とう後の混合物をWhatman(登録商標)(0.2μm、PVDFフィルタ)を用いてろ過した。
4)ろ液中の計算上のニコチン濃度が10~100[μg/mL]の範囲となるように、MiliQを追加してろ液を希釈した。
5)希釈液を前記UV計で測定し、200~320[nm]における吸光度を求めた。
6)実施例1と同じ方法で、ニコチン濃度を求めた。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例3]pH補正あり
 1)ニコチンを25[μg/mL]およびアセスルファムKを2.5[μg/mL]含む水溶液を調製した。当該水溶液にHClおよびNaOHを添加して、pHが6.4、7.1、8.0、9.1、および10.6である水溶液を調製した。前記UV計を用いて当該水溶液の吸光度を測定した。結果を図1に示す。図1のとおり、当該液の吸光度はpHによって変動することが明らかである。
 2)pHが表4に示す値でありニコチンを50[μg/mL]含む水溶液を調製した。前記1)と同じ方法で各pHにおける吸光度を測定した。結果を図2に示した。また、ランベルト・ベール則に則り、吸光度から吸光係数を求めた。結果を表4に示した。この結果から、ニコチンの吸光係数はpHによって変動することが明らかである。
Figure JPOXMLDOC01-appb-T000004
 3)アセスルファムKを5[μg/mL]含む水溶液を調製した。前記1)と同じ方法で各pHにおける吸光度を測定した。結果を図3に示す。この結果から、アセスルファムKの吸光度はpHによって変動しないことが明らかである。したがって、1)において測定された水溶液の吸光度のpHによる変動は、ニコチンに起因することが明らかとなった。
 4)前記2)で調製したニコチン水溶液の、pHと240[nm]における吸光係数の関係をプロットし、これらの値について、線形近似およびシグモイド曲線近似を行った。結果を図4に示す(上図:シグモイド曲線近似、下図:直線近似)。同様に、pHと260[nm]における吸光係数の関係をプロットし、これらの値について、シグモイド曲線近似(図5)および線形近似を行った。
 5)この近似によって得られた補正後のニコチンの吸光係数を用いて、水溶液中のニコチン濃度を求めた。
 まず、ニコチンを25[μg/mL]およびアセスルファムKを2.5[μg/mL]含む水溶液(以下「モデル水溶液」ともいう)を調製しpHを6.5に調整した。波長240nm、260nmにおける当該モデル水溶液の吸光度を測定した。次いで、前記近似曲線からpHが6.5である場合のニコチンの吸光係数(補正されたニコチンの吸光係数)を求め、以下の式を用いてpH6.5のモデル水溶液中のニコチン濃度Xを求めた。
 Abs240A=ε240N”×X[μg/mL]+ε240K×Y[μg/mL]
 Abs260A=ε260N”×X[μg/mL]+ε260K×Y[μg/mL]
 式中、各項は以下のとおりである。
  Abs240A=水溶液(pH6.5)の吸光度
  Abs260A=水溶液(pH6.5)の吸光度
  ε240N”=pH6.5に対応するように補正されたニコチンの吸光係数[mL/μg]
  ε260N”=pH6.5に対応するように補正されたニコチンの吸光係数[mL/μg]
  ε240K=アセスルファムKの吸光係数[mL/μg]
  ε260K=アセスルファムKの吸光係数[mL/μg]
 上記連立方程式からモデル水溶液中のニコチン濃度Xは26.41[μg/mL]と算出された。pHを7.2、8.0、9.0、10.2に調整したモデル水溶液を準備して、同じ方法で各モデル水溶系中のニコチン濃度Xを求めた。結果を表5に示す。
[実施例4]pH補正なし
 実施例3において、近似曲線で得た値を用いずに各モデル水溶液おけるニコチン濃度Xを計算した。具体的には、ε240N”をpH7のときのニコチンの吸光係数、ε260N”をpH7のときのニコチンの吸光係数に置き換えた以外は実施例3に示した式を用いてニコチン濃度Xを計算した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果から、試料が中性~アルカリ領域にある場合において、補正を行うことでより正確な測定が可能であることが明らかである。オーラル製品製造時の製品のpHは、中性~アルカリ領域であるので、当該補正を行う本発明の分析方法は、製造時に即適用できるという利点を有する。
 [実施例5]
 前記組成1に示す成分を混合して、ニコチン含有組成物を調製した。当該組成物について、定法に従い、ハンターホワイトインデックスを測定した。3回の測定を行った結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 本組成物のハンターホワイトインデックスは、83.8であった。

Claims (9)

  1.  (1)ニコチン含有組成物を2つ以上の区画に分ける工程、
     (2)ニコチンの吸光度AbsNを利用して区画ごとのニコチン濃度を求める工程、
     (3)前記ニコチン含有組成物の区画ごとのニコチン濃度の標準偏差を算出する工程、を備える、
     ニコチン含有組成物におけるニコチン分布の分析方法。
  2.  前記工程(2)が、
     区画ごとに前記組成物の吸光度AbsCを測定する工程、
     AbsNからニコチンの吸光係数εNを求める工程、および
     前記AbsCとεNに基づいて区画ごとのニコチン濃度を求める工程、を備える、
     請求項1に記載の方法。
  3.  前記工程(2)が、
     (2A)区画ごとの前記組成物のpHを特定する工程、および
     (2B)当該pHに応じて補正された補正εNを求め、前記AbsCと補正εNに基づいて区画ごとのニコチン濃度を求める工程、
    を備える、請求項2に記載の方法。
  4.  前記工程(2B)が、
     (2B-1)ニコチンのpHと吸光係数との関係を取得する工程、および
     (2B-2)当該関係に基づいて、前記補正εNを求める工程、
    を備える、請求項2または3に記載の方法。
  5.  前記工程(2B-1)が、pHの異なるニコチンについて特定の波長における吸光係数を測定し、複数組のpH測定値および吸光係数に対してシグモイド曲線近似することを含む、請求項4に記載の方法。
  6.  前記ニコチン含有組成物が、200~260nmにおいて吸光挙動を示すニコチン以外のアルカロイドを含有しない、請求項1~5のいずれかに記載の方法。
  7.  前記ニコチン含有組成物のハンターホワイトインデックスが60以上である、請求項1~6のいずれかに記載の方法。
  8.  前記ニコチン含有組成物は、ニコチン供給オーラル製品の内容物である、請求項1~7のいずれかに記載の方法。
  9.  前記ニコチン含有組成物は、1つのニコチン供給オーラル製品に使用される全内容物である、請求項1~8のいずれかに記載の方法。
PCT/JP2021/042588 2021-11-19 2021-11-19 ニコチン含有組成物におけるニコチン分布の分析方法 WO2023089771A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042588 WO2023089771A1 (ja) 2021-11-19 2021-11-19 ニコチン含有組成物におけるニコチン分布の分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042588 WO2023089771A1 (ja) 2021-11-19 2021-11-19 ニコチン含有組成物におけるニコチン分布の分析方法

Publications (1)

Publication Number Publication Date
WO2023089771A1 true WO2023089771A1 (ja) 2023-05-25

Family

ID=86396499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042588 WO2023089771A1 (ja) 2021-11-19 2021-11-19 ニコチン含有組成物におけるニコチン分布の分析方法

Country Status (1)

Country Link
WO (1) WO2023089771A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626519B2 (ja) * 1989-08-24 1994-04-13 キユーピー株式会社 カルシウム強化剤
WO2013146926A1 (ja) * 2012-03-28 2013-10-03 日本たばこ産業株式会社 たばこ材料の製造方法、口腔用たばこ材料および口腔用たばこ製品
JP2014509645A (ja) * 2011-03-29 2014-04-21 ティルセ アクチエボラグ 遊離塩形態のニコチンを含有するパウチ
WO2016063551A1 (ja) * 2014-10-24 2016-04-28 日本たばこ産業株式会社 口腔用たばこ組成物及びその製造方法
JP2019515700A (ja) * 2016-02-29 2019-06-13 エンプリキュア・アクチエボラゲット ニコチンの蒸発及び吸入装置
WO2021165418A1 (en) * 2020-02-18 2021-08-26 Nerudia Limited Smokeless article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626519B2 (ja) * 1989-08-24 1994-04-13 キユーピー株式会社 カルシウム強化剤
JP2014509645A (ja) * 2011-03-29 2014-04-21 ティルセ アクチエボラグ 遊離塩形態のニコチンを含有するパウチ
WO2013146926A1 (ja) * 2012-03-28 2013-10-03 日本たばこ産業株式会社 たばこ材料の製造方法、口腔用たばこ材料および口腔用たばこ製品
WO2016063551A1 (ja) * 2014-10-24 2016-04-28 日本たばこ産業株式会社 口腔用たばこ組成物及びその製造方法
JP2019515700A (ja) * 2016-02-29 2019-06-13 エンプリキュア・アクチエボラゲット ニコチンの蒸発及び吸入装置
WO2021165418A1 (en) * 2020-02-18 2021-08-26 Nerudia Limited Smokeless article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOBATAKE, JIRO: "Tobacco nicotine measurement methods", BUNSEKI KAGAKU, vol. 5, no. 6, 1956, pages 364 - 369, XP009546412 *

Similar Documents

Publication Publication Date Title
McGrance et al. A simple and rapid colorimetric method for the determination of amylose in starch products
CN103299175B (zh) 填充性测定方法
WO2012127617A1 (ja) 見掛密度測定方法
JP2982891B2 (ja) 標準物質およびその調製方法並びにそれを用いた品質管理方法
Beutler et al. Simplified determination of carboxyhemoglobin.
JP4890645B2 (ja) 配合原料の水分測定方法
Sawale et al. Development and validation of UV spectrophotometric method for simultaneous estimation of Olmesartan Medoxomil and Chlorthalidone in bulk and tablet
WO2023089771A1 (ja) ニコチン含有組成物におけるニコチン分布の分析方法
WO2013145437A1 (ja) メンソール含量測定方法
Soni et al. Development and Validation of Dual Wavelength UV Spectrophotometric Method for simultaneous estimation of Cilnidipine and Olmesartan Medoxomil in Tablet dosage form
Yadav et al. A validated spectrophotometric method for determination of Vilazodone Hydrochloride in pharmaceutical dosage form
Mahedero et al. Resolution of ternary mixtures of nitrofurantoin, furaltadone and furazolidone by partial least-square analysis to the spectrophotometric signals after photo-decomposition
Brooks et al. Proposed phytic acid standard including a method for its analysis
Tellez et al. Comparative genotoxicity and mutagenicity of cigarette, cigarillo, and shisha tobacco products in epithelial and cardiac cells
Rele UV Derivative Spectrophotometric Methods for validation of Esomeprazole Magnesium tri-hydrate in Bulk and Pharmaceutical Dosage Form
Phadtare et al. Validated UV Spectroscopic Method for Estimation of Montelukast sodium from bulk and tablet formulations
Stolarczyk et al. Validation of derivative spectrophotometry method for determination of active ingredients from neuroleptics in pharmaceutical preparations
Wahbi et al. Spectrophotometric determination of phenobarbitone, methylphenobarbitone and phenytoin in tablets
Murfin et al. A colorimetric method for the determination of phenacetin and paracetamol. Part II. A manual procedure for the determination of phenacetin or paracetamol in formulations
Sharma et al. NEW SPECTROPHOTOMETRIC METHODS FOR ESTIMATION OF ANASTRAZOLE BULK AND TABLET DOSAGE FORM BY DERIVATIVE SPECTROSCOPY
CN110823754B (zh) 一种卷烟配方烟丝掺配均匀性的检测方法
Carey et al. Method for the analysis of total fluoride in fluoride-releasing dental varnishes
Cooke et al. An automated colorimetric method for determining oxalic acid in plant material
Pascualmarti et al. Determination of Paracetamol in the Presence of Caffeine and Acetylsalicylic Acid in Analgesic Formulations by the Linear Absorbances Method and the Derivative Spectroscopy Technique
JPH07198601A (ja) 近赤外分光分析法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964786

Country of ref document: EP

Kind code of ref document: A1