WO2023089266A1 - Procédé et dispositif de dessalement de l'eau - Google Patents

Procédé et dispositif de dessalement de l'eau Download PDF

Info

Publication number
WO2023089266A1
WO2023089266A1 PCT/FR2022/052095 FR2022052095W WO2023089266A1 WO 2023089266 A1 WO2023089266 A1 WO 2023089266A1 FR 2022052095 W FR2022052095 W FR 2022052095W WO 2023089266 A1 WO2023089266 A1 WO 2023089266A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
ice crystals
concentrated
temperature
incoming
Prior art date
Application number
PCT/FR2022/052095
Other languages
English (en)
Inventor
Siu Bun David LAM
Original Assignee
Seanergy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seanergy filed Critical Seanergy
Publication of WO2023089266A1 publication Critical patent/WO2023089266A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/04Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
    • B04B1/08Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/145Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies
    • F25C1/147Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies by using augers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2301/00Special arrangements or features for producing ice
    • F25C2301/002Producing ice slurries

Definitions

  • the present invention relates to a method and a device for desalinating seawater using more particularly a cryocrystallization method.
  • seawater can be desalinated either by vaporizing it through thermal distillation or by jetting it through a ultra-thin membrane that retains salt by reverse osmosis.
  • Thermal distillation the oldest method, consists of sifting seawater to remove its largest impurities and then heating it until it evaporates in tanks where the salts settle. The evaporated water then passes into a condensation tank where it returns in a liquid form.
  • Reverse osmosis the method most commonly used today, consists of carefully filtering seawater through layers of sand and coal. This makes it possible to remove micro-algae and particles in suspension, to so that only the salts remain. The water is then projected under high pressure through very fine semi-permeable membranes. These membranes trap salt and only allow water molecules to pass.
  • Patent application WO 2005/015008 discloses another process for producing fresh water by cryo-crystallization in which the ice crystals in suspension in the water are separated by centrifugation. In this process, the decantation is replaced by passage through a centrifuge to separate the ice from the seawater. Such a process makes it possible to treat a larger volume of ice crystals but requires a significant energy input for the separation of the ice crystals.
  • the present invention therefore aims to remedy the aforementioned drawbacks, in particular to propose a method for extracting fresh water from seawater by cryo-crystallization by coupling decantation and centrifugation technologies. Freezing makes it possible to obtain both ice crystals with a high level of purity and residual seawater with a sodium concentration of a few parts per million. This concentration is much lower than that of brine from known desalination methods described above. The combination of decantation and centrifugation makes it possible to obtain a high throughput while reducing the energy required to separate the ice crystals from the seawater.
  • the invention discloses, as a first object, a seawater desalination process comprising a step of cooling incoming seawater to a temperature between -2 and 0 degrees Celsius in order to to obtain ice crystals suspended in concentrated sea water. Said method further comprises:
  • the step of cooling the incoming seawater of said method may comprise a first step of cooling the incoming seawater to a temperature substantially equal to 5 degrees Celsius and a second stage of cooling the incoming sea water to a temperature between -2 and 0 degrees Celsius.
  • the first step of cooling the incoming seawater can be carried out by heat exchange with the concentrated seawater then with the ice crystals collected at the end of the centrifugation step to cool the incoming seawater.
  • the concentrated seawater containing the ice crystals can be maintained at a temperature of between -2 and 0 degrees Celsius during the settling and centrifugation steps.
  • the invention discloses a seawater desalination device comprising:
  • At least one chiller cooling incoming seawater to a temperature between -2 and 0 degrees Celsius in order to cause ice crystals to appear in suspension in concentrated seawater;
  • a refrigerated centrifuge maintained at a temperature between -2 and 0 degrees Celsius, said centrifuge receiving the concentrated seawater and the ice crystals in suspension coming from the at least one cooler, in order to separate the ice crystals from the concentrated sea water.
  • the at least one cooler may comprise a first cooler cooling the incoming sea water to a temperature of 5 degrees Celsius and a second cooler consisting of an ice crystal generator cooling the seawater leaving the first cooler to a temperature of -2 degrees Celsius.
  • the ice crystal generator may comprise a cooling tube and a rotating scraper which scrapes the internal walls of said tube on which the ice crystals form.
  • the refrigerated centrifuge may comprise a tank with at least one mobile disc rotated in order to rotate the ice crystals and concentrated sea water, the disc being connected to the tank by anti-friction bearings.
  • the at least one mobile disc in order to increase the active surface of the centrifuge, may comprise a plurality of conical discs.
  • Figure 1 shows a preferred example of implementation of a seawater desalination device according to the invention
  • FIG. 2 shows a representative flowchart of steps of the seawater desalination process according to the invention
  • Figure 3 shows a sectional view of a centrifuge, along the axis of revolution of said centrifuge according to the invention
  • sea water being salty, freezes at a lower temperature than fresh water, which has a very low salinity.
  • salt lowers the solidification temperature of water by a few degrees, depending on the amount of salt.
  • the solidification of water is the transition from a liquid state, disordered water molecules, to a solid state, water molecules neatly arranged next to each other, in an orderly fashion.
  • a so-called liquid state fresh and/or pure water has molecules that are relatively free to move relative to each other: they bind together and then quickly undo these molecules. links, and so on.
  • the process is different.
  • the volume of a salt ion is roughly equal to the volume of a water molecule.
  • such ions appreciate the proximity of water molecules.
  • the salt ions separate and separate the water molecules from each other, locally disturbing the arrangement of the latter.
  • the constituents of the salt will come between the water molecules, introducing disorder.
  • this disorder must be compensated with a temperature lower than 0 degrees Celsius, because the lowering of temperature favors the arrangement of molecules in order to form a solid.
  • sea water containing approximately 35 grams of salt per liter solidifies around -2 degrees Celsius.
  • EM1 seawater i.e. water molecules with no nearby salt ion
  • salt ions will prevent the crystallization of water molecules in their surrounding area.
  • this by cooling the incoming seawater EM1 to a temperature between -2 and 0 degrees Celsius, this has the effect of crystallizing part of the fresh water contained in the seawater, thus forming ice crystals CG suspended in EM2 sea water with a higher concentration of salt.
  • FIG. 1 A preferred example of a seawater desalination device 100, in accordance with the invention, is shown in FIG.
  • Said seawater desalination device 100 is composed of at least one cooler 110, a settling tank 160 and a refrigerated centrifuge 120 and is implemented by a method of desalination of seawater.
  • sea 200 illustrated in the flowchart in FIG. 2.
  • Said device 100 is thus implemented by said method 200 in order to desalinate so-called incoming seawater EM1, taken, preferably offshore, at sea.
  • a first step 210 of said method 200 consists in cooling the incoming seawater EM1.
  • said incoming seawater EM1 is thus routed to the cooler 110.
  • the communication between the seawater EM1 and the cooler 110 can be done by means of a pipe 113, as illustrated in the figure 1 .
  • the person skilled in the art may use any other type of water connection compatible with the use made of it within said device 100, such as for example a tap or a valve. It is also possible that the incoming seawater EM1 is pre-filtered to remove any contaminants.
  • the cooler 110 is sized to cool the incoming seawater EM1 to a temperature between -2 and 0 degrees Celsius.
  • a cooler 110 can consist, for example, of a cooling tube 111 .
  • a refrigerant tube 111 can be a hollow structure which receives and conveys a refrigerant or otherwise called a refrigerant.
  • the refrigerant can be any type of fluid that can be used in a refrigeration device.
  • Such a refrigerant, circulating in said tube 111 makes it possible to lower the temperature of the latter to a temperature favoring the freezing of part of the incoming sea water EM1 in order to obtain the formation of ice crystals CG in suspension in concentrated sea water EM2.
  • the temperature of the cooling tube 111 must be lower than or equal to the freezing point of fresh water but higher than that of salty sea water. As a reminder, such a temperature is between -2 and 0 degrees Celsius.
  • the cooler tube 111 can be made of a material that facilitates heat transfer. By way of illustrative examples, such a material may be stainless steel, copper, aluminum, nickel, tin, or any other material, or any combination thereof.
  • the concentrated seawater EM2 in the liquid phase, then drives said CG crystals formed, towards the outlet of the cooler 110.
  • the invention is not limited to the choice of the type of cooler 110 nor even to the types of elements of which it is made. A person skilled in the art may use any other type of cooler compatible with the use made of it. within the invention, namely allowing at least one cooling of the seawater EM1 to a temperature between -2 and 0 degrees Celsius.
  • the cooler 110 can preferably consist of an ice crystal generator, making it possible to regulate the temperature of the incoming seawater EM1 between -2 and 0 degrees Celsius.
  • an ice crystal generator may be composed mainly of a cooling tube 111, allowing the formation of ice crystals CG, in particular on the walls of said tube 111 and of a rotary scraper 112 allowing said ice crystals CG to be detached from the walls of the cooling tube 111. This thus makes it possible to isolate purified fresh water in solid form on the walls of said cooler 110.
  • Said tube 111 and scraper 112 can be in a vertical position or in a horizontal position.
  • the refrigerant passes inside the walls of said tube 111 or outside the thermally conductive walls of said tube 111.
  • the incoming seawater EM1 for its part, passes through said tube 111.
  • CG ice crystals will form on all refrigerated surfaces in contact with liquid EM1 seawater.
  • the incoming seawater EM1 will tend to crystallize, preferentially, on the walls of the cooling tube 111.
  • Said rotary scraper 112 scrapes, by mechanical action, all the internal walls of said cooling tube 111 in order to detach the ice crystals CG which have formed there to bring them back into the concentrated sea water EM2.
  • Such a scraper 112 makes it possible to increase the crystallization yield.
  • Said scraper 112 is preferably formed of at least two blades arranged along the length of the scraper so that said scraper 112 has a helical shape.
  • the invention is not limited to the shape of the scraper or even to the tool and/or the manner used to detach the ice crystals CG from the walls of the cooling tube 111.
  • the ice crystals CG can be removed from the walls said tube 111 in various ways, such as, for example, by gravity, with the use of a lever or even by thermally reducing the strength of the connection between the tube 111 and the ice crystals CG.
  • a settling step 215 is carried out followed by a centrifugation step 220.
  • the step decantation 2115 consists in carrying out a first withdrawal of concentrated seawater EM2 before the centrifugation step 220 in order to reduce the volume to be treated by centrifugation.
  • the settling step 215 uses the natural separation which takes place when a solid is contained in suspension in a liquid under the effect of gravity and buoyancy.
  • the settling step 215 is carried out in the settling tank 160, as shown in Figure 1.
  • Such a tank 160 is dimensioned to allow by decantation to eliminate a first part of the concentrated seawater EM2 obtained after passing through the cooler 110.
  • the ice crystals CG will rise to the surface and a first part of the concentrated seawater EM2 will be removed from the mixture of CG ice crystals suspended in the concentrated seawater EM2 before passing through the centrifuge 120.
  • An upward grip will recover crystals of CG ice in suspension in the concentrated seawater EM2 which will then be transported to the centrifuge 120.
  • a downward intake will recover part of the concentrated seawater EM2 which contains no or very few ice crystals CG in order to throw it back into the sea.
  • the decantation step is not intended to extract the ice crystals CG but to extract part of the concentrated seawater EM2. Therefore, it is not necessary to wait for the ice crystals CG to rise completely to the surface but only for them to rise sufficiently in an upper part of the tank while remaining in suspension in the water of the tank. concentrated sea EM2. Obviously, it is necessary to maintain the temperature of the mixture of EM2 concentrated seawater and CG ice crystals at a temperature between -2 and 0 degrees Celsius during settling.
  • such a settling tank 160 may comprise a grid or a particle filter in order to prevent the CG ice crystals from going towards the outlet at the bottom of said tank 160.
  • a pump may also suck up EM2 concentrated seawater which is removed through the bottom intake.
  • the decantation can be forced at the level of the withdrawal of concentrated seawater EM2 and it is possible to withdraw up to 90% of the concentrated seawater EM2, which makes it possible to considerably reduce the volume of water from concentrated sea and ice crystals to be treated during the centrifugation step 220.
  • the centrifugation step 220 consists of separating the ice crystals CG formed from the concentrated seawater EM2, due to their difference in density, by subjecting them to centrifugal force. Separation by centrifugation is also known in particular for the skimming of milk or even for the separation of a solid in a liquid according to their density. This same principle is applied to step 220 of said process 200 in accordance with the invention in order to make it possible to accelerate the separation of the ice crystals CG from the concentrated sea water EM2. Indeed, any solid contained in a liquid is subject to gravity, a force which is exerted from top to bottom, and to the buoyancy force, a force which is exerted from bottom to top.
  • Vz where r is the radius of the solid in suspension, Ap is the difference in density between the solid in suspension and the liquid containing the solid in suspension, g is the acceleration due to the centrifugal force in the centrifuge and ri the viscosity of the liquid.
  • the ice crystals CG in suspension in the concentrated sea water EM2 pass through the centrifuge refrigerated 120, maintained at a temperature between -2 and 0 degrees Celsius.
  • CG ice crystals have a density substantially equal to 0.9168 grams per milliliter.
  • concentrated seawater EM2 which has a density substantially equal to 1.0273 grams per milliliter.
  • the ice crystals CG lighter than the concentrated sea water EM2
  • the ice crystals CG will be projected and attracted to the top and the center of the refrigerated centrifuge 120 along a diagonal of gravity modified while the concentrated seawater EM2 will be projected towards the periphery of the centrifuge 120.
  • the centrifuge 120 is thus sized to separate the ice crystals CG from the concentrated seawater EM2 at a temperature between -2 and 0 degrees Celsius.
  • a centrifuge 120 is composed of a tank 121 having refrigerated fixed walls and partitions and comprising a central axis of rotation 123 making it possible to reach high speed of rotation.
  • the speed of rotation of said centrifuge 120 in the case of the invention, can be between 1,000 and 5,000 revolutions per minute.
  • the tank 121 can be refrigerated, for example, by means of an external cooler which surrounds said tank 121 .
  • the invention is not limited to the means used to cool said tank 121 in order to maintain it between -2 and 0 degrees Celsius: any other equivalent means may be used.
  • any other equivalent means may be used.
  • the use of relatively neutral and insulating materials is preferred for the design of the centrifuge 120.
  • the tank 121 can be made of stainless steel and/or a material reinforced composite.
  • the tank 121 of the refrigerated centrifuge 120 may comprise one or more mobile discs 122 which are driven in rotation at the level of the central axis of rotation 123 of the tank 121 .
  • Each disk 122 is connected to the tank 121 by bearings in order to support and guide said disk 122 in rotation.
  • bearings can preferably be antifriction bearings such as polytetrafluoroethylene, abbreviated as PTFE.
  • PTFE polytetrafluoroethylene
  • the person skilled in the art may use any other type of material for the antifriction bearings such as, for example, materials based on polyester, and/or polyetheretherketone, designated by the abbreviation PEEK.
  • the tank 121 comprises a set of discs arranged in parallel with a cone angle, corresponding to the inclination of the centrifugal force combined with gravity, allowing the speed of separation to be increased.
  • the conical shape allows the CG ice crystals to be guided by the combined force of centrifugal force and gravity.
  • the tank 121 has an inlet
  • the concentrated seawater EM2 flows from the periphery of the centrifuge 120 to the first outlet 126 while the ice crystals move from the central part of the centrifuge 120 to the second outlet 125.
  • Such a centrifugation step 220 then makes it possible to obtain both ice crystals CG corresponding for example to 10% of the incoming seawater EM1 and both concentrated seawater EM2 thus having a concentration in salt increased significantly by 11% compared to the incoming seawater EM1.
  • an increase of 11% brings the concentrated seawater EM2 to a concentration of approximately 38 grams of salt per liter which is very acceptable compared to brine with significantly higher salt contents.
  • step 230 of collecting ice crystals CG.
  • the CG ice crystals can be, for example, collected in a tank maintained at ambient temperature.
  • a step 240 for obtaining fresh water ED is then carried out by melting the ice crystals CG.
  • the concentrated seawater EM2 is discharged into the sea.
  • an additional cooling step 211 of the seawater EM1, prior to the step of cooling 210 in order to reduce energy consumption, it is possible to carry out an additional cooling step 211 of the seawater EM1, prior to the step of cooling 210.
  • a step 211 consists in cooling the incoming sea water EM1 to a temperature substantially equal to 5 degrees Celsius.
  • a heat exchanger 150 prior to the cooler 110.
  • such a heat exchanger 150 is, for its part, sized to cool the incoming sea water EM1 down to at a temperature of 5 degrees Celsius before said seawater EM1 is routed to the cooler 110 which will allow it thermal regulation of the incoming seawater EM1 between -2 and 0 degrees Celsius.
  • the heat exchange is carried out by first using concentrated sea water EM2 after the removal of the CG ice crystals, then in a second step, using the CG ice crystals collected at the end of the centrifugation step 220.
  • the incoming seawater EM1 warmer than the concentrated seawater EM2 and than the ice crystals CG from the settling 215 and centrifugation 220 steps, will heat the water EM2 sea salt and CG ice crystals while losing calories.
  • the incoming seawater EM1 will naturally cool down.
  • the heat exchanger 150 may comprise a coil-shaped tube immersed in a tank containing the concentrated seawater EM2 after the removal of the CG ice crystals and/or in a container containing the CG ice crystals collected at the end of the centrifugation 220.
  • a passage in the container containing the sea water EM2 then a passage in the tank containing the ice crystals CG, or the reverse.
  • Said submerged tube has an inlet receiving the incoming seawater EM1, for example from a pump, and an outlet connected to the cooler 110.
  • the incoming seawater EM1 will enter inside the submerged tube and will circulate inside said tube.
  • the incoming seawater EM1 will be recovered at the outlet to be conveyed to the cooler 110 and thus be regulated at a temperature between -2 and 0 degrees Celsius.
  • the heat exchanger 150 may be sized to enable the desired temperature to be reached as precisely as possible for the incoming seawater EM1 before it passes through the cooler 110: such a temperature depending on the length of the tube. Nevertheless, the invention is not limited to the type of heat exchanger used. A person skilled in the art may use any other type of heat exchanger compatible with the use made of it within the invention. [0050] It will be appreciated by those skilled in the art that the present disclosure is not limited to what is particularly shown and described above. Other modifications can be envisaged without departing from the scope of the present invention defined by the appended claims.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

L'invention concerne un procédé de dessalement de l'eau de mer comportant une étape de refroidissement d'une eau de mer entrante à une température comprise entre -2 et 0 degré Celsius afin d'obtenir des cristaux de glace en suspension dans une eau de mer concentrée. Ledit procédé comporte en outre : une étape de décantation (215) permettant d'avoir un premier retrait d'eau de mer concentrée une étape de centrifugation (220) pour séparer les cristaux de glace de l'eau de mer concentrée; une étape de collecte (230) des cristaux de glace; une étape d'obtention (240) d'une eau douce, par fusion des cristaux de glace.

Description

Description
Titre de l'invention : Procédé et dispositif de dessalement de l’eau pomaine Technique
[0001] La présente invention se rapporte à un procédé et un dispositif de dessalement de l’eau de mer utilisant plus particulièrement une méthode de cryo- cristallisation.
Arrière-Plan Technologique
[0002] L’eau est de plus en plus convoitée de par le monde. En effet, la demande en eau n’a fait qu’augmenter ces dernières années et est destinée à continuer de croitre fortement, notamment en raison des besoins de l'industrie, de l'énergie, avec entre autres la fabrication de l’hydrogène et également en raison de l'accroissement de la population. C’est pourquoi l’eau est devenue un enjeu planétaire. Or, environ quatre-vingt-dix-sept pourcents de l’eau présente sur la Terre est salée. Ainsi, le développement industriel de production d’eau douce voire d’eau pure par procédés de dessalement a pris son essor ces dernières années.
[0003] Le dessalement de l’eau de mer permet d’obtenir de l’eau douce voire de l’eau pure à partir d’une eau saumâtre ou salée, telle que l’eau de mer ou des océans présentant en moyenne 35 grammes de sel par litre d’eau. À ce jour, il existe deux principales méthodes employées dans les stations de dessalement de l’eau de mer. À ce titre, l’eau de mer peut être dessalée, soit en la vaporisant par distillation thermique, soit en la projetant à travers une membrane ultrafine qui retient le sel par osmose inverse.
[0004] La distillation thermique, méthode la plus ancienne, consiste à tamiser l’eau de mer pour retirer ses plus grosses impuretés puis à la chauffer jusqu’à évaporation dans des cuves où les sels se déposent. L’eau évaporée passe ensuite dans une cuve de condensation où elle revient sous une forme liquide.
[0005] L'osmose inverse, méthode la plus couramment utilisée aujourd'hui, consiste à filtrer soigneusement l’eau de mer, via des couches de sable et de charbon. Cela permet de supprimer des micro-algues et des particules en suspension, de façon à ce qu’il ne reste que les sels. L’eau est ensuite projetée sous forte pression à travers des membranes semi-perméables très fines. Ces membranes piègent le sel et ne laissent passer que les molécules d’eau.
[0006] Cependant, ces méthodes éprouvées pour le dessalement de l’eau de mer présentent plusieurs inconvénients notamment en termes d’impact environnemental. En effet, la distillation thermique est très gourmande en énergie. L’osmose inverse, quant à elle, consomme moins d’énergie mais nécessite de nettoyer continuellement les membranes en utilisant des produits chimiques. Toutefois, l’impact environnemental majeur reste le rejet, le plus souvent en mer, des effluents issus des usines employant ces méthodes de dessalement. La principale caractéristique de ces effluents rejetés est leur forte salinité, ainsi qualifiés de saumure. Or, lorsque la saumure est rejetée sans dilution ni traitement, elle induit une augmentation de la concentration en sel autour de la zone de rejet pouvant conduire à des modifications du milieu local, telles que l’anoxie et/ou la diminution de la lumière au niveau des fonds marins, affectant ainsi les écosystèmes marins. Parallèlement, de tels effluents peuvent contenir des produits chimiques, utilisés pour le fonctionnement de l’usine, et présenter une température élevée modifiant la température de l’eau de mer au niveau de la zone de rejet de la saumure.
[0007] Pour répondre à cette problématique, un procédé de dessalement de l’eau de mer n’engendrant pas de rejet de saumure, trouve tout son intérêt.
[0008] À ce titre, le brevet américain US 3,377,814 et la demande de brevet FR 2 334 627 divulguent des procédés de production d'eau douce par cryo- cristall isation . L’eau de mer est refroidie pour former des cristaux de glace. Les cristaux de glace en suspension dans l’eau de mer sont ensuite séparés de l’eau de mer par décantation. Les cristaux de glace sont, par la suite, collectés et se transforment, par fusion, en une eau douce liquide. Néanmoins, de tels procédés nécessitent un temps de séparation par décantation relativement long et très souvent incompatible avec les besoins et/ou cadences industriels.
[0009] La demande de brevet WO 2005/015008 divulgue un autre procédé de production d'eau douce par cryo-cristallisation dans lequel les cristaux de glace en suspension dans l’eau sont séparés par centrifugation. Dans ce procédé, la décantation est remplacée par le passage dans une centrifugeuse pour séparer la glace de l’eau de mer. Un tel procédé permet de traiter un volume de cristaux de glace plus important mais nécessite un apport énergétique important pour la séparation des cristaux de glace.
Résumé de l’invention
[0010] La présente invention vise donc à remédier aux inconvénients précités, notamment à proposer un procédé pour extraire l’eau douce de l’eau de mer par cryo-cristallisation en couplant des technologies de décantation et de centrifugation. La congélation permet d’obtenir à la fois des cristaux de glace présentant un haut niveau de pureté et une eau de mer résiduelle présentant une concentration en sodium de quelques parties par million. Cette concentration est bien inférieure à celle de la saumure issue des méthodes de dessalement connues et décrites précédemment. La combinaison de la décantation et de la centrifugation permet, quant à elle, d’obtenir un débit élevé tout en réduisant l’énergie nécessaire à la séparation des cristaux de glace de l’eau de mer.
[0011] À cet effet, l’invention divulgue, comme premier objet, un procédé de dessalement de l’eau de mer comportant une étape de refroidissement d’une eau de mer entrante à une température comprise entre -2 et 0 degré Celsius afin d’obtenir des cristaux de glace en suspension dans une eau de mer concentrée. Ledit procédé comporte en outre :
- une étape de décantation permettant d’avoir un premier retrait d’eau de mer concentrée,
- une étape de centrifugation réalisée après l’étape de décantation pour séparer les cristaux de glace de l’eau de mer concentrée ;
- une étape de collecte des cristaux de glace ;
- une étape d’obtention d’une eau douce, par fusion des cristaux de glace.
[0012] Afin de réduire la consommation énergétique nécessaire, l’étape de refroidissement de l’eau de mer entrante dudit procédé peut comprendre une première étape de refroidissement de l’eau de mer entrante à une température sensiblement égale à 5 degrés Celsius et une deuxième étape de refroidissement de l’eau de mer entrante à une température comprise entre -2 et 0 degré Celsius. [0013] Afin de disposer d’un procédé fermé en continu et ainsi de réaliser des gains d’énergie, la première étape de refroidissement de l’eau de mer entrante peut être réalisée par échange thermique avec l’eau de mer concentrée puis avec les cristaux de glace collectés à l’issue de l’étape de centrifugation pour refroidir l’eau de mer entrante.
[0014] Pour éviter une fonte trop rapide des cristaux de glace, l’eau de mer concentrée contenant les cristaux de glace peut être maintenue à une température comprise entre -2 et 0 degré Celsius pendant les étapes de décantation et de centrifugation.
[0015] En deuxième objet, l’invention divulgue un dispositif de dessalement de l’eau de mer comportant :
- au moins un refroidisseur refroidissant une eau de mer entrante à une température comprise entre -2 et 0 degré Celsius afin de faire apparaître des cristaux de glace en suspension dans une eau de mer concentrée ;
- un bac de décantation permettant par décantation, après la génération des cristaux de glace, d’éliminer une première partie de l’eau de mer concentrée,
- une centrifugeuse réfrigérée, maintenue à une température comprise entre -2 et 0 degré Celsius, ladite centrifugeuse recevant l’eau de mer concentrée et les cristaux de glace en suspension provenant du au moins un refroidisseur, afin de séparer les cristaux de glace de l’eau de mer concentrée.
[0016] Dans un mode de réalisation préféré permettant de réduire les consommations énergétiques nécessaires à la mise en œuvre dudit dispositif, le au moins un refroidisseur peut comporter un premier refroidisseur refroidissant l’eau de mer entrante jusqu’à une température de 5 degrés Celsius et un deuxième refroidisseur consistant en un générateur de cristaux de glace refroidissant l’eau de mer sortant du premier refroidisseur jusqu’à une température de -2 degré Celsius.
[0017] Préférentiellement, afin de gagner en productivité, le générateur de cristaux de glace peut comporter un tube réfrigérant et un racloir rotatif qui racle les parois internes dudit tube sur lesquelles se forme les cristaux de glace.
[0018] Préférentiellement, la centrifugeuse réfrigérée peut comporter une cuve avec au moins un disque mobile entrainé en rotation afin d’entrainer en rotation les cristaux de glace et l’eau de mer concentrée, le disque étant relié à la cuve par des paliers antifriction.
[0019] Dans un mode de réalisation préféré, afin d’augmenter la surface active de la centrifugeuse, le au moins un disque mobile peut comporter une pluralité de disques coniques.
Brève Description des figures
[0020] L’invention sera mieux comprise et d’autres caractéristiques et avantages de celle-ci apparaîtront à la lecture de la description suivante de modes de réalisation particuliers de l’invention, donnés à titre d’exemples illustratifs et non limitatifs, et faisant référence aux dessins annexés, parmi lesquels :
[0021] La figure 1 montre un exemple préféré de mise en œuvre d’un dispositif de dessalement de l’eau de mer selon l’invention,
[0022] La figure 2 montre un organigramme représentatif d’étapes du procédé de dessalement de l’eau de mer conforme à l’invention,
[0023] La figure 3 montre une vue en coupe d’une centrifugeuse, selon l’axe de révolution de ladite centrifugeuse selon l’invention,
[Description détaillée
[0024] Afin de simplifier la description, une même référence est utilisée dans différentes figures pour désigner un même objet. Ainsi, lorsque la description cite un objet référencé, cet objet pourra être identifié sur plusieurs figures. En outre, les figures ainsi que la description sont données à titre d’exemples non limitatifs de réalisation.
[0025] En préambule, il est important de rappeler qu’une eau de mer, étant salée, gèle à une température plus basse qu’une eau douce, présentant une très faible salinité. En effet, le sel abaisse la température de solidification de l’eau de quelques degrés, suivant la quantité de sel.
[0026] La solidification de l’eau est le passage d’un état liquide, molécules d’eau désordonnés, à un état solide, molécules d’eau bien rangées les unes à côté des autres, de façon ordonnée. Dans un état dit liquide, l’eau douce et/ou pure présente des molécules relativement libres d’effectuer des mouvements les unes par rapport aux autres : elles se lient entre elles puis défont rapidement ces liaisons, et ainsi de suite. En abaissant la température de l’eau douce et/ou pure à une température comprise entre -2 et 0 degré Celsius, les mouvements des molécules d’eau vont ralentir jusqu’à cesser, les molécules d’eau vont arriver à s’ordonner et vont se lier alors de manière suffisamment durable entre elles, pour se figer sous forme de glace.
[0027] En revanche, si l’eau contient du sel, tel que c’est le cas pour une eau de mer EM1 , contenant à la fois des molécules d’eau et des ions de sel, le processus est différent. À ce titre, le volume d’un ion de sel est sensiblement égal au volume d’une molécule d’eau. Or, de tels ions apprécient la proximité des molécules d’eau. Ainsi en se glissant entre les molécules d’eau, les ions de sel séparent et écartent les molécules d’eau les unes des autres perturbant localement l’arrangement de ces dernières. Les constituants du sel vont s’interposer entre les molécules d’eau, introduisant du désordre. Ainsi, pour que l’eau de mer se solidifie, il faut compenser ce désordre avec une température plus basse que 0 degré Celsius, car l’abaissement de température favorise le rangement des molécules afin de former un solide. Pour exemple, une eau de mer contenant sensiblement 35 grammes de sel par litre se solidifie autour de -2 degrés Celsius. En conséquence, à une température comprise entre -2 et 0 degré Celsius, seulement une partie des molécules d’eau de l’eau de mer EM1 , à savoir les molécules d’eau ne présentant pas d’ion de sel à proximité, vont ainsi pouvoir cristalliser. A contrario, les ions de sel vont empêcher, dans leur zone environnante, la cristallisation des molécules d’eau. Ainsi, en refroidissant l’eau de mer entrante EM1 à une température comprise entre -2 et 0 degré Celsius, cela a pour effet de cristalliser une partie de l’eau douce contenue dans l’eau de mer, formant ainsi des cristaux de glace CG en suspension dans une eau de mer EM2 plus concentrée en sel.
[0028] Un exemple préféré de dispositif de dessalement de l’eau de mer 100, conforme à l’invention, est représenté sur la figure 1 . Ledit dispositif de dessalement de l’eau de mer 100 est composé d’au moins un refroidisseur 110, d’un bac de décantation 160 et d’une centrifugeuse réfrigérée 120 et est mis en œuvre par un procédé de dessalement de l’eau de mer 200, illustré sur l’organigramme en figure 2. Ledit dispositif 100 est ainsi mis en œuvre par ledit procédé 200 afin de dessaler une eau de mer dite entrante EM1 , prélevée, préférentiellement au large, en mer.
[0029] Une première étape 210 dudit procédé 200 consiste à refroidir l’eau de mer entrante EM1 . Pour ce faire, ladite eau de mer entrante EM1 est ainsi acheminée jusqu’au refroidisseur 110. La communication entre l’eau de mer EM1 et le refroidisseur 110 peut se faire par le biais d’un tuyau 113, tel qu’illustré sur la figure 1 . Cependant, l’homme de métier pourra utiliser tout autre type de raccordement d'eau compatible avec l’utilisation qui en est faite au sein dudit dispositif 100, tel que par exemple un robinet ou une vanne. Il est également envisageable que l’eau de mer entrante EM1 soit pré filtrée pour éliminer d’éventuels contaminants.
[0030] Le refroidisseur 110 est dimensionné pour refroidir l’eau de mer entrante EM1 à une température comprise entre -2 et 0 degré Celsius. Un tel refroidisseur 110 peut consister, par exemple en un tube réfrigérant 111 . Un tel tube réfrigérant 111 peut être une structure creuse qui reçoit et achemine un réfrigérant ou autrement nommé un fluide frigorigène. Le fluide frigorigène peut être n'importe quel type de fluide pouvant être utilisé dans un dispositif de réfrigération. Un tel fluide frigorigène, circulant dans ledit tube 111 , permet d’abaisser la température de ce dernier à une température favorisant la congélation d’une partie de l’eau de mer entrante EM1 afin d’obtenir la formation des cristaux de glace CG en suspension dans l’eau de mer concentrée EM2. Ainsi, la température du tube réfrigérant 111 doit être inférieure ou égale au point de congélation de l'eau douce mais supérieure à celui de l’eau de mer salée. Pour rappel, une telle température est comprise entre -2 et 0 degré Celsius. En tant que tel, le tube réfrigérant 111 peut être réalisé en un matériau qui facilite le transfert de chaleur. À titre d’exemples illustratifs, un tel matériau peut être de l'acier inoxydable, du cuivre, de l'aluminium, du nickel, de l’étain, ou tout autre matériau, ou toute combinaison de ceux-ci. L’eau de mer concentrée EM2, en phase liquide, entraine ensuite lesdits cristaux CG formés, vers la sortie du refroidisseur 110. Néanmoins, l’invention ne se limite pas au choix du type de refroidisseur 110 ni- même aux types d’éléments dont il est constitué. L’homme du métier pourra utiliser tout autre type de refroidisseur compatible avec l’utilisation qui en est faite au sein de l’invention, à savoir permettre au moins un refroidissement de l’eau de mer EM1 à une température comprise entre -2 et 0 degré Celsius.
[0031] Dans un mode de réalisation préféré, le refroidisseur 110 peut, préférentiellement, consister en un générateur de cristaux de glace, permettant de réguler la température de l’eau de mer entrante EM1 entre -2 et 0 degré Celsius. Un tel générateur de cristaux de glace peut être composé principalement d’un tube réfrigérant 111 , permettant la formation de cristaux de glace CG, notamment sur les parois dudit tube 111 et d’un racloir rotatif 112 permettant de détacher lesdits cristaux de glace CG des parois du tube réfrigérant 111. Cela permet ainsi d’isoler une eau douce purifiée sous forme solide sur les parois dudit refroidisseur 110. Ledit tube 111 et le racloir 112 peuvent être en position verticale ou en position horizontale. Selon ce mode préféré, le fluide frigorigène passe à l’intérieur des parois dudit tube 111 ou à l’extérieur des parois thermiquement conductrices dudit tube 111. L’eau de mer entrante EM1 , quant à elle, passe à travers ledit tube 111. Des cristaux de glace CG vont se former sur toutes les surfaces réfrigérées en contact avec l’eau de mer EM1 liquide. Toutefois, l’eau de mer entrante EM1 aura tendance à cristalliser, préférentiellement, sur les parois du tube réfrigérant 111.
[0032] Ledit racloir rotatif 112 vient racler, par action mécanique, toutes les parois internes dudit tube réfrigérant 111 afin de détacher les cristaux de glace CG qui s’y sont formés pour les ramener dans l’eau de mer concentrée EM2. Un tel racloir 112 permet d’augmenter le rendement de cristallisation. Ledit racloir 112 est formé préférentiellement d’au moins deux lames disposées sur la longueur du racloir de manière à ce que ledit racloir 112 présente une forme hélicoïdale. Cependant, l’invention ne se limite pas à la forme du racloir ni même à l’outil et/ou la manière utilisés pour détacher les cristaux de glace CG des parois du tube réfrigérant 111. Les cristaux de glace CG peuvent être retirés des parois dudit tube 111 de diverses manières, telle que, par exemple, par gravité, avec l’utilisation d’un levier ou même en réduisant thermiquement la résistance de la liaison entre le tube 111 et les cristaux de glace CG.
[0033] Avec un tel refroidisseur 110, il est possible de contrôler la quantité de cristaux de glace CG en suspension dans l’eau de mer concentrée EM2 en jouant sur le débit d’eau de mer EM1 traversant le refroidisseur 110. A titre d’exemple, une variation du débit peut permettre d’avoir une proportion de l’ordre de 5% à 40% de cristaux de glace CG. Afin d’éviter une trop forte concentration de sel dans l’eau de mer concentrée tout en assurant une production de cristaux de glace importante, il est préféré de réguler le débit d’eau de mer pour obtenir en sortie du refroidisseur 110 environ 10% de cristaux de glace pour 90% d’eau de mer concentrée EM2.
[0034] Une fois l’étape de refroidissement 210 réalisée et l’obtention des cristaux de glace CG en suspension dans l’eau de mer EM2, une étape de décantation 215 est réalisée suivie d’une étape de centrifugation 220. L’étape de décantation 2115 consiste à réaliser un premier retrait d’eau de mer concentrée EM2 avant l’étape de centrifugation 220 afin de réduire le volume à traiter par centrifugation.
[0035] L’étape de décantation 215 utilise la séparation naturelle qui s’effectue quand un solide est contenu en suspension dans un liquide sous l’effet de la pesanteur et de la poussée d’Archimède. L’étape de décantation 215 est réalisée dans le bac de décantation 160, tel qu’illustré en figure 1 . Un tel bac 160 est dimensionné pour permettre par décantation d’éliminer une première partie de l’eau de mer concentrée EM2 obtenue après le passage dans le refroidisseur 110. Sous l’effet de la pesanteur, les cristaux de glace CG vont remonter à la surface et une première partie de l’eau de mer concentrée EM2 va être retiré du mélange des cristaux de glace CG en suspension dans l’eau de mer concentrée EM2 avant le passage dans la centrifugeuse 120. Une prise vers le haut va récupérer des cristaux de glace CG en suspension dans l’eau de mer concentrée EM2 qui vont être ensuite acheminés vers la centrifugeuse 120. Une prise vers le bas va récupérer une partie de l’eau de mer concentrée EM2 qui ne contient ou très peu de cristaux de glace CG afin de la rejeter en mer.
[0036] Selon l’invention et contrairement une décantation de l’état de la technique, l’étape de décantation ne vise pas à extraire les cristaux de glace CG mais à extraire une partie de l’eau de mer concentrée EM2. De ce fait, il n’est pas nécessaire d’attendre que les cristaux de glace CG remontent complètement en surface mais seulement à ce qu’ils remontent de manière suffisante dans une partie supérieure du bac tout en restant en suspension dans l’eau de mer concentrée EM2. Bien évidemment, il convient de maintenir la température du mélange d’eau de mer concentrée EM2 et de cristaux de glace CG à une température comprise entre -2 et 0 degré Celsius pendant la décantation.
[0037] Afin d’accélérer la décantation, un tel bac de décantation 160 peut comporter une grille ou un filtre à particules afin d’éviter que les cristaux de glace CG n’aillent vers la prise du bas dudit bac 160. Une pompe peut également aspirer l’eau de mer concentrée EM2 qui est retirée par la prise du bas. Ainsi, la décantation peut être forcée au niveau du retrait d’eau de mer concentrée EM2 et il est possible de retirer jusqu’à 90 % de l’eau de mer concentrée EM2, ce qui permet de réduire considérablement de volume d’eau de mer concentrée et de cristaux de glace à traiter pendant l’étape de centrifugation 220.
[0038] L’étape de centrifugation 220 consiste en la séparation des cristaux de glace CG formés de l’eau de mer EM2 concentrée, du fait de leur différence de densité, en les soumettant à une force centrifuge. La séparation par centrifugation est également connue notamment pour l’écrémage du lait ou même pour la séparation d’un solide dans un liquide en fonction de leur densité. Ce même principe est appliqué à l’étape 220 dudit procédé 200 conforme à l’invention afin de permettre d’accélérer la séparation des cristaux de glace CG de l’eau de mer concentrée EM2. En effet, tout solide contenu dans un liquide est soumis à la gravité, force qui s’exerce du haut vers le bas, et à la poussée d’Archimède, force qui s’exerce du bas vers le haut. Ainsi avec le temps, un solide en suspension dans un liquide finit soit par tomber au fond du récipient dans lequel il se trouve soit par remonter à la surface en fonction de sa densité massique par rapport à celle du liquide. Or, la réalisation d’une telle étape de centrifugation 220 permet d’accélérer ce phénomène naturel de séparation. Dans le cas d’un processus de centrifugation, la vitesse de séparation Vz est régie par la loi de Stokes :
[0039] [Math.1]
Vz = où r est le rayon du solide en suspension, Ap est la différence de densité entre le solide en suspension et le liquide contenant le solide en suspension, g est l’accélération due à la force centrifuge dans la centrifugeuse et ri la viscosité du liquide.
[0040] Pour ce faire, tel qu’illustré en figure 1 , les cristaux de glace CG en suspension dans l’eau de mer concentrée EM2 passe dans la centrifugeuse réfrigérée 120, maintenue à une température entre -2 et 0 degré Celsius. Les cristaux de glace CG présentent une densité sensiblement égale à 0,9168 grammes par millilitre. Entre -2 et 0 degré Celsius, de tels cristaux CG sont plus légers que l’eau de mer concentrée EM2 qui présente une densité sensiblement égale à 1 ,0273 grammes par millilitre. Ainsi, soumis à la force centrifuge combinée à la gravité, les cristaux de glace CG, plus légers que l’eau de mer concentrée EM2, vont être projetés et attirés vers le haut et le centre de la centrifugeuse réfrigérée 120 suivant une diagonale de pesanteur modifiée tandis que l’eau de mer concentrée EM2 va être projetée vers la périphérie de la centrifugeuse 120.
[0041] La centrifugeuse 120 est ainsi dimensionnée pour séparer les cristaux de glace CG de l’eau de mer concentrée EM2 à une température comprise entre -2 et 0 degré Celsius. Tel qu’illustré en figure 3, une telle centrifugeuse 120 est composée d’une cuve 121 présentant des parois et cloisons fixes réfrigérées et comportant un axe central de rotation 123 permettant d’atteindre de grande vitesse de rotation. Pour exemple, la vitesse de rotation de ladite centrifugeuse 120, dans le cas de l’invention, peut être comprise entre 1 000 et 5 000 tours par minute. Afin de maintenir une température comprise entre -2 et 0 degré Celsius, la cuve 121 peut être réfrigérée, par exemple, par le biais d’un refroidisseur extérieur qui vient entourer ladite cuve 121 . Néanmoins, l’invention n’est pas limitée au moyen utilisé pour refroidir ladite cuve 121 afin de la maintenir entre -2 et 0 degré Celsius : tout autre moyen équivalent pourra être utilisé. De plus, pour limiter les déperditions énergétiques, il est privilégié l’emploi de matériaux relativement neutres et isolants pour la conception de la centrifugeuse 120. Ainsi, à titre d’exemple, la cuve 121 peut être en acier inoxydable et/ou en matériau composite renforcé.
[0042] Dans un mode de réalisation privilégié, afin de faciliter la séparation par centrifugation, la cuve 121 de la centrifugeuse réfrigérée 120 peut comporter un ou plusieurs disques mobiles 122 qui sont entraînés en rotation au niveau de l’axe central de rotation 123 de la cuve 121 . Chaque disque 122 est relié à la cuve 121 par des paliers afin de supporter et guider en rotation ledit disque 122. Pour éviter tout échauffement au sein de la cuve 121 , de tels paliers peuvent être préférentiellement des paliers antifriction tels que des paliers à base de polytétrafluoroéthylène, désigné sous l’abréviation PTFE. En variante, l’homme de métier pourra utiliser tout autre type de matériau pour les paliers antifriction tel que par exemple, des matériaux à base de polyester, et/ou de polyétherethercétone, désigné sous l’abréviation PEEK.
[0043] Pour assurer un meilleur rendement de séparation, il est préférable de disposer de plusieurs disques mobiles rotatifs 122 empilés les uns sur les autres présentant, de préférence, une forme conique. À ce titre, la cuve 121 comporte un ensemble de disques disposés parallèlement avec un angle de cône, correspondant à l’inclinaison de la force centrifuge combinée à la pesanteur, permettant d’augmenter la vitesse de séparation. La forme conique permet de guider les cristaux de glace CG suivant la force combinée de la force centrifuge et de la pesanteur. Tel qu’illustré en figure 3, la cuve 121 comporte une entrée
124 par laquelle s’écoule le mélange de cristaux de glace CG et d’eau de mer concentrée EM2, en sortie du refroidisseur 110. Ledit mélange va ensuite circuler à travers les disques 122. La séparation entre les cristaux de glace CG et l’eau de mer concentrée EM2 est réalisée au niveau de chaque disque 122 empilé. Sous l’influence de la force centrifuge, le composant le plus lourd, à savoir l’eau de mer concentrée EM2, va se déposer radialement vers les cloisons extérieures de la cuve 121 pour ressortir au niveau d’une première sortie 126 de la centrifugeuse 120. Les composants les plus légers, à savoir les cristaux de glace CG, vont se déplacer vers le haut et vers l’axe de rotation central 123 de la cuve 121 . Les cristaux de glace vont ensuite ressortir au niveau d’une deuxième sortie
125 de ladite centrifugeuse 120. Ainsi, l’eau de mer concentrée EM2 s’écoule de la périphérie de la centrifugeuse 120 vers la première sortie 126 tandis que les cristaux de glace se déplacent de la partie centrale de la centrifugeuse 120 vers la deuxième sortie 125.
[0044] Une telle étape de centrifugation 220 permet alors d’obtenir à la fois des cristaux de glace CG correspondant par exemple à 10% de l’eau de mer entrante EM1 et à la fois une eau de mer concentrée EM2 présentant ainsi une concentration en sel augmentée sensiblement de 11% par rapport à l’eau de mer entrante EM1 . À titre d’exemple, pour une eau de mer entrante EM1 comprenant 35 grammes de sel par litre, une telle augmentation de 11 % amène l’eau de mer concentrée EM2 a une concentration d’environ 38 grammes de sel par litre ce qui est très acceptable par rapport à la saumure présentant des teneurs en sel nettement supérieures. En complément, il est possible d’ajuster la concentration en sel de l’eau de mer concentrée EM2 en fonction du débit dudit dispositif 100 mais aussi en fonction de la teneur en sel de l’eau de mer entrante EM1 .
[0045] Tel qu’illustré en figure 2, après cette étape de centrifugation 220, il s’en suit une étape de collecte 230 des cristaux de glace CG. Pour ce faire, les cristaux de glace CG peuvent être, par exemple, collectés dans un bac maintenu à température ambiante. Ainsi, une étape d’obtention 240 d’une eau douce ED est alors réalisée par fusion des cristaux de glace CG. Parallèlement, l’eau de mer concentrée EM2 est rejetée en mer.
[0046] Selon un mode particulier de l’invention illustré en figure 1 et 2, afin de réduire les consommations énergétiques, il est possible de réaliser une étape supplémentaire de refroidissement 211 de l’eau de mer EM1 , préalablement à l’étape de refroidissement 210. Préférentiellement, une telle étape 211 consiste à refroidir l’eau de mer entrante EM1 à une température sensiblement égale à 5 degrés Celsius. Pour ce faire, il est envisageable d’introduire au sein dudit dispositif 100 un échangeur thermique 150, préalablement au refroidisseur 110. Ainsi, un tel échangeur thermique 150 est, quant à lui, dimensionné pour refroidir l’eau de mer entrante EM1 jusqu’à une température de 5 degrés Celsius avant que ladite eau de mer EM1 soit acheminée au refroidisseur 110 qui va lui permettre une régulation thermique de l’eau de mer entrante EM1 entre -2 et 0 degré Celsius.
[0047] L’échange thermique s’effectue en utilisant dans un premier temps l’eau de mer concentrée EM2 après le retrait des cristaux de glace CG, puis dans un second temps, en utilisant les cristaux de glace CG collectés à l’issue de l’étape de centrifugation 220. Ainsi l’eau de mer entrante EM1 , plus chaude que l’eau de mer concentrée EM2 et que les cristaux de glace CG issus des étapes de décantation 215 et de centrifugation 220, va réchauffer l’eau de mer EM2 et les cristaux de glace CG tout en perdant des calories. Ainsi, l’eau de mer entrante EM1 va, naturellement, se refroidir.
[0048] Pour ce faire, l’échangeur thermique 150 peut comporter un tube en forme de serpentin immergé dans un bac contenant l’eau de mer concentrée EM2 après le retrait des cristaux de glace CG et/ou dans un bac contenant les cristaux de glace CG collectés à l’issue de la centrifugation 220. Dans un souci d’efficacité, il est préférable de faire les deux à savoir un passage dans le bac contenant l’eau de mer EM2 puis un passage dans le bac contenant les cristaux de glace CG, ou l’inverse. Ledit tube immergé comporte une entrée recevant l’eau de mer entrante EM1 , par exemple à partir d’une pompe, et une sortie reliée au refroidisseur 110. Ainsi, l’eau de mer entrante EM1 va rentrer à l’intérieur du tube immergé et va circuler à l’intérieur dudit tube. Lors du passage de l’eau de mer EM1 , circulant dans ledit tube, dans le bac contenant l’eau de mer concentrée EM2 après retrait des cristaux de glace CG, ladite eau de mer entrante EM1 , plus chaude, va perdre des calories, se refroidir et également réchauffer l’eau de mer concentrée EM2. Ceci permet d’abaisser la température de l’eau de mer entrante EM1 mais aussi de rapprocher la température de l’eau de mer concentrée EM2 de la température de la mer. En variante ou en complément, l’eau de mer concentrée EM2 peut être réchauffée naturellement par le soleil avant d’être rejetée dans la mer. Ceci a pour effet de limiter des différentiels de température trop importants entre l’eau de mer concentrée EM2 rejetée et la mer. Par la suite, lors du passage de l’eau de mer entrante EM1 , circulant dans ledit tube, dans le bac contenant les cristaux de glace CG, l’eau de mer entrante EM1 va de nouveau perdre des calories, va encore abaisser sa température et va réchauffer les cristaux de glace CG. Cela permet d’abaisser encore une fois la température de l’eau de mer entrante EM1 mais aussi d’accélérer la fusion des cristaux de glace CG afin d’obtenir de l’eau douce ED liquide.
[0049] Une fois, l’échange thermique réalisé, l’eau de mer entrante EM1 va être récupérée en sortie pour être acheminée jusqu’au refroidisseur 110 et ainsi être régulée à une température entre -2 et 0 degré Celsius. L’échangeur thermique 150 pourra être dimensionné pour permettre d’atteindre au plus juste la température recherchée pour l’eau de mer entrante EM1 avant son passage dans le refroidisseur 110 : une telle température dépendant de la longueur du tube. Néanmoins, l’invention ne se limite pas au type d’échangeur thermique utilisé. L’homme de métier pourra utiliser tout autre type d’échangeur thermique compatible avec l’utilisation qui en est faite au sein de l’invention. [0050] Il sera apprécié de l’homme du métier que la présente divulgation n’est pas limitée à ce qui est particulièrement montré et décrit ci-dessus. D’autres modifications peuvent être envisagées sans sortir du cadre de la présente invention définie par les revendications ci-annexées.

Claims

Revendications
[Revendication 1] procédé de dessalement de l’eau de mer (200) comportant une étape de refroidissement (210) d’une eau de mer entrante (EM1 ) à une température comprise entre -2 et 0 degré Celsius afin d’obtenir des cristaux de glace (CG) en suspension dans une eau de mer concentrée (EM2), caractérisé en ce que le procédé comporte :
- une étape de décantation (215) permettant d’avoir un premier retrait d’eau de mer concentrée (EM2),
- une étape de centrifugation (220) réalisée à une température comprise après l’étape de décantation (215) pour séparer les cristaux de glace (CG) de l’eau de mer concentrée (EM2) ;
- une étape de collecte (230) des cristaux de glace (CG) ;
- une étape d’obtention (240) d’une eau douce (ED), par fusion des cristaux de glace (CG).
[Revendication 2] Procédé de dessalement de l’eau de mer selon la revendication 1 , dans lequel l’étape de refroidissement (210) de l’eau de mer entrante (EM1 ) comprend une première étape de refroidissement (211 ) de l’eau de mer entrante (EM1 ) à une température sensiblement égale à 5 degrés Celsius et une deuxième étape de refroidissement (210) de l’eau de mer entrante (EM1 ) à une température comprise entre -2 et 0 degré Celsius.
[Revendication 3] Procédé de dessalement de l’eau de mer selon la revendication 2, dans lequel la première étape de refroidissement (211 ) de l’eau de mer entrante (EM1 ) est réalisée par échange thermique avec l’eau de mer concentrée (EM2) puis avec les cristaux de glace (CG) collectés à l’issue de l’étape de centrifugation (220) pour refroidir l’eau de mer entrante (EM1 ).
[Revendication 4] Procédé de dessalement de l’eau de mer selon l’une des revendications 1 à 3, dans lequel l’eau de mer concentrée (EM2) contenant les cristaux de glace (CG) est maintenue à une température comprise entre -2 et 0 degré Celsius pendant les étapes de décantation (215) et de centrifugation (220).
[Revendication 5] Dispositif de dessalement de l’eau de mer (100) caractérisé en ce qu’il comporte : - au moins un refroid isseur (110, 150) refroidissant une eau de mer entrante (EM1 ) à une température comprise entre -2 et 0 degré Celsius afin de faire apparaître des cristaux de glace (CG) en suspension dans une eau de mer concentrée (EM2) ;
- un bac de décantation (160) permettant par décantation, après la génération des cristaux de glace (CG), d’éliminer une première partie de l’eau de mer concentrée (EM2) ;
- une centrifugeuse (120) réfrigérée afin d’être maintenue à une température comprise entre -2 et 0 degré Celsius, ladite centrifugeuse (120) recevant l’eau de mer concentrée (EM2) et les cristaux de glace (CG) en suspension provenant du bac de décantation (160) après retrait d’une partie de l’eau de mer concentrée, afin de séparer les cristaux de glace (CG) de l’eau de mer concentrée (EM2).
[Revendication 6] Dispositif de dessalement de l’eau de mer (100) selon la revendication 5, dans lequel le au moins un refroidisseur comporte un premier refroidisseur (150) refroidissant l’eau de mer entrante (EM1 ) jusqu’à une température de 5 degrés Celsius et un deuxième refroidisseur (110) consistant en un générateur de cristaux de glace refroidissant l’eau de mer sortant du premier refroidisseur (150) jusqu’à une température de -2 degrés Celsius.
[Revendication 7] Dispositif de dessalement de l’eau de mer (100) selon la revendication 6, pour lequel le premier refroidisseur (150) est un échangeur thermique donnant l’énergie aux cristaux de glace (CG) et à l’eau de mer concentrée (EM2) sortant de la centrifugeuse (120) pour refroidir l’eau de mer entrante (EM1 ).
[Revendication 8] Dispositif de dessalement de l’eau de mer (100) selon l’une des revendications 6 ou 7, pour lequel le générateur de cristaux de glace (110) comporte un tube réfrigérant (111 ) et un racloir rotatif (112) qui racle les parois internes dudit tube (111 ) sur lesquelles se forme les cristaux de glace (CG).
[Revendication 9] Dispositif de dessalement de l’eau de mer (100) selon l’une des revendications 5 à 8, pour lequel la centrifugeuse réfrigérée (120) comporte une cuve (121) avec au moins un disque (122) mobile entrainé en rotation afin d’entrainer en rotation les cristaux de glace (CG) et l’eau de mer concentrée (EM2), le disque (122) étant relié à la cuve (121 ) par des paliers antifriction.
[Revendication 10] Dispositif de dessalement de l’eau de mer (100) selon la revendication 9, pour lequel le au moins disque (122) mobile comporte une pluralité de disques (122) coniques, i
PCT/FR2022/052095 2021-11-18 2022-11-16 Procédé et dispositif de dessalement de l'eau WO2023089266A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2112176 2021-11-18
FR2112176A FR3129149A1 (fr) 2021-11-18 2021-11-18 Procédé et dispositif de dessalement de l’eau

Publications (1)

Publication Number Publication Date
WO2023089266A1 true WO2023089266A1 (fr) 2023-05-25

Family

ID=80446527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052095 WO2023089266A1 (fr) 2021-11-18 2022-11-16 Procédé et dispositif de dessalement de l'eau

Country Status (2)

Country Link
FR (1) FR3129149A1 (fr)
WO (1) WO2023089266A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1336375A (fr) * 1961-08-01 1963-08-30 Exxon Research Engineering Co Procédé pour séparer une substance cristallisable d'un liquide
US3377814A (en) 1966-05-02 1968-04-16 Donald F. Othmer Method for producing fresh water from slurry of ice in an aqueous liquid
FR2334627A1 (fr) 1975-12-09 1977-07-08 Saksir Fernand Procede de dessalement de l'eau de mer et dispositif pour la mise en oeuvre de ce procede
WO2005015008A1 (fr) 2003-08-11 2005-02-17 Henry Lemont Wienand Dessalement d'eau de mer
CN202007164U (zh) * 2011-03-04 2011-10-12 天津市环境保护科学研究院 冷冻离心污水脱盐与净化的装置
CN108275816B (zh) * 2015-12-23 2020-08-11 倍杰特集团股份有限公司 一种高盐废水零排放蒸发结晶盐分质装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1336375A (fr) * 1961-08-01 1963-08-30 Exxon Research Engineering Co Procédé pour séparer une substance cristallisable d'un liquide
US3377814A (en) 1966-05-02 1968-04-16 Donald F. Othmer Method for producing fresh water from slurry of ice in an aqueous liquid
FR2334627A1 (fr) 1975-12-09 1977-07-08 Saksir Fernand Procede de dessalement de l'eau de mer et dispositif pour la mise en oeuvre de ce procede
WO2005015008A1 (fr) 2003-08-11 2005-02-17 Henry Lemont Wienand Dessalement d'eau de mer
CN202007164U (zh) * 2011-03-04 2011-10-12 天津市环境保护科学研究院 冷冻离心污水脱盐与净化的装置
CN108275816B (zh) * 2015-12-23 2020-08-11 倍杰特集团股份有限公司 一种高盐废水零排放蒸发结晶盐分质装置及方法

Also Published As

Publication number Publication date
FR3129149A1 (fr) 2023-05-19

Similar Documents

Publication Publication Date Title
Rahman et al. Freezing‐melting process and desalination: I. Review of the state‐of‐the‐art
EP2897913B1 (fr) Procédé de traitement d'eau comprenant une flottation combinée à une filtration gravitaire et installation correspondante
EP2897716B1 (fr) Unité sous-marine de traitement de l'eau et procédé de nettoyage de ladite unité
FR2627704A1 (fr) Procede et installation de traitement d'eau par decantation faisant intervenir du sable fin
CA1189808A (fr) Procede pour floculer des particules en suspension dans un liquide
FR2920100A3 (fr) Microfiltration d'huile usagee sur membrane vibrante
BE1007448A3 (fr) Procede de fractionnement d'une composition de matiere grasse et produit ainsi obtenu.
WO2023089266A1 (fr) Procédé et dispositif de dessalement de l'eau
WO2004094318A1 (fr) Installation de traitement d'eaux par flottation
WO2015162180A1 (fr) Procede de traitement d'une solution aqueuse contenant des matieres dissoutes par cristallisation de clathrates hydrates
FR2934258A1 (fr) Procede de traitement d'eau ultra rapide et installation correspondante.
WO2017220100A1 (fr) Méthode et dispositif pour accélérer la filtration, la fluidification et la réaction chimique
EP0012687A1 (fr) Procédé et installation d'extraction de principes solubles de matières premières végétales
EP3075713B1 (fr) Procede de purification de l'eau par osmose directe et cristallisation de clathrates hydrates
WO2018083102A1 (fr) Dispositif de precipitation et separation de particules solides dissoutes dans un liquide comprenant un moyen de creation et de maintien de vortex, application au dessalement de l'eau de mer ou de l'eau saumâtre
US11945743B2 (en) Desalination of salt waters by salt repellent technique
EP1092459B1 (fr) Procédé et dispositif de purification de produits organiques par cristallisation fractionnée à vitesse de circulation variable
FR3061169A1 (fr) Installation et procede pour le traitement de l'eau
WO2022064161A1 (fr) Installation combinee de generation d'energie calorifique et de dessalement d'eau
EP0015626B1 (fr) Procédé et installation pour la préparation de cristaux de bicarbonate de sodium
BE493772A (fr)
EP1281424A1 (fr) Procédé de séparation d'un fluide
BE541544A (fr)
BE727378A (fr)
WO2016035024A1 (fr) Procede de dessalement d'eaux chaudes sursaturees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22835087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022835087

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022835087

Country of ref document: EP

Effective date: 20240618