WO2023088375A1 - β-内酰胺酶抑制剂中间体及制备方法 - Google Patents

β-内酰胺酶抑制剂中间体及制备方法 Download PDF

Info

Publication number
WO2023088375A1
WO2023088375A1 PCT/CN2022/132591 CN2022132591W WO2023088375A1 WO 2023088375 A1 WO2023088375 A1 WO 2023088375A1 CN 2022132591 W CN2022132591 W CN 2022132591W WO 2023088375 A1 WO2023088375 A1 WO 2023088375A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
solvent
compound shown
reaction
compound
Prior art date
Application number
PCT/CN2022/132591
Other languages
English (en)
French (fr)
Inventor
汪绪凡
张慧鑫
王严飞
王文贵
胡源源
杜国稳
胡汉巍
Original Assignee
苏州信诺维医药科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州信诺维医药科技股份有限公司 filed Critical 苏州信诺维医药科技股份有限公司
Priority to AU2022393742A priority Critical patent/AU2022393742A1/en
Priority to CA3238268A priority patent/CA3238268A1/en
Priority to CN202280076434.2A priority patent/CN118215665A/zh
Publication of WO2023088375A1 publication Critical patent/WO2023088375A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems

Definitions

  • the invention relates to a beta-lactamase inhibitor intermediate and a preparation method.
  • ⁇ -lactam antibiotics were the first antibiotics to be used clinically. Since penicillin G was successfully applied clinically as the first ⁇ -lactam antibiotic, ⁇ -lactam antibiotics have been developed rapidly. Different structural types of ⁇ -lactam antibiotics have been developed and widely used clinically with good results. However, because bacterial cells can produce ⁇ -lactamase, which inactivates antibiotics, bacteria develop resistance to ⁇ -lactam antibiotics. ⁇ -lactamases are enzymes that catalyze the hydrolysis of ⁇ -lactam rings, which inactivate the antibacterial activity of ⁇ -lactam antibiotics and allow bacterial resistance to ⁇ -lactam antibiotics.
  • ⁇ -lactamases can be divided into class A, class B, class C and class D according to the difference in amino acid sequence in the molecular structure.
  • Class A ⁇ -lactamases preferentially hydrolyze penicillin antibiotics
  • Class B ⁇ -lactams can hydrolyze various ⁇ -lactam antibiotics, including carbapenems
  • Class C ⁇ -lactams are more effective Hydrolyze cephalosporin antibiotics
  • D-lactamases are more inclined to hydrolyze oxacillin and cloxacillin.
  • the resistance of bacteria, especially Gram-negative bacteria, to ⁇ -lactam antibiotics is usually mediated by ⁇ -lactamase.
  • Inhibition of ⁇ -lactamase can delay or inhibit the degradation of ⁇ -lactam antibiotics and restore the sensitivity of ⁇ -lactam antibiotic-resistant bacteria to ⁇ -lactam antibiotics.
  • the combined application of ⁇ -lactamase and ⁇ -lactam antibiotics can inactivate the hydrolysis activity of ⁇ -lactamase for ⁇ -lactam antibiotics, thereby enhancing the bacterial resistance to ⁇ -lactams.
  • Antibiotic susceptibility reducing or overcoming the problem of drug resistance.
  • the prior art discloses a variety of bacterial ⁇ -lactamase inhibitors, such as WO2013149121A1, WO2014141132A1, US20130296290A1, WO2013030735A1, WO2015110963A1, WO2015150890A1, WO2015159265A1, WO201517 3663, WO2015173665A1, WO2017055922A1 disclosed diazaspiro[bicyclo[3.2.1 ] Octane compounds.
  • ⁇ -lactamase inhibitors on the market, such as clavulanic acid, tazobactam, avibactam, Relebactam, etc.
  • Patent application WO2019144912A1 discloses a ⁇ -lactamase inhibitor represented by the following formula I, which has better antibacterial activity.
  • the first step uses condensing agent HATU etc. to condense, but the cost of HATU condensing agent is very high and is only suitable for small samples; (2) SM-6 and SM-7 are unstable in acidic systems; (3) from raw materials SM-1 starts with a total of 9 steps of reaction.
  • the original preparation method has a long reaction route and harsh reaction conditions, is not suitable for large-scale industrial production, and the yield needs to be further improved.
  • the technical problem to be solved by the present invention is to overcome the existence of lengthy synthetic route, low total yield, use of toxic, harmful, dangerous or expensive reagents, harsh reaction conditions and (or)
  • the technical defects such as poor repeatability and scalability of the reaction are not suitable for large-scale synthesis, so the ⁇ -lactamase inhibitor intermediate, preparation method, and intermediate are provided.
  • the preparation method provided by the invention has cheap and easy-to-obtain starting materials, avoids toxic, harmful and (or) dangerous reagents and harsh reaction conditions, significantly shortens the number of reaction steps, and significantly improves the total yield.
  • the reproducibility and scalability are significantly improved, making it more suitable for industrial synthesis.
  • the present invention solves the above-mentioned technical problems through the following technical solutions.
  • the present invention provides a method for preparing a diazabicyclooctane compound as shown in Formula 8, which comprises the following steps: adding a mixture of triphosgene and a solvent to the compound shown in Formula 7 and/or its In the mixture of salt, alkali and solvent, carry out amidation ring closure reaction as shown below, obtain the diazabicyclooctane compound as shown in formula 8;
  • the solvent may be one or more of acetonitrile, halogenated hydrocarbon solvents (such as dichloromethane) and aromatic hydrocarbon solvents (such as toluene).
  • the solvent can be used in an amount that does not affect the reaction, for example, the mass percentage of triphosgene in the mixture of triphosgene and solvent can be 10%.
  • the volume to mass ratio of the solvent to the compound shown in formula 7 can be 3mL/g.
  • the salt of the compound shown in formula 7 can be hydrochloride, for example, 2 equivalents of hydrochloric acid.
  • the base can be an organic base, such as N,N-diisopropylethylamine DIPEA and/or triethylamine.
  • the mol ratio of described alkali and described compound shown in formula 7 can be 4:1; Or, the mol ratio of described alkali and described compound shown in formula 7 can be 6: 1.
  • the molar ratio of the triphosgene to the compound represented by formula 7 and/or its salt may be 0.35:1 to 0.5:1; for example, 0.38:1 to 0.4:1.
  • the temperature of the indicated amidation ring-closing reaction may be from -10°C to 0°C.
  • the amidation ring-closing reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the preparation method can be the following steps: after adding the base to the mixture of the compound shown in formula 7 and/or its salt and solvent at an internal temperature of 10°C to 30°C, adding 10% Sanguang Gas and solvent solution, carry out amidation ring closure reaction as shown, obtain the diazabicyclooctane compound as shown in formula 8.
  • the progress of the amidation ring-closing reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR). Generally, when the compound shown in formula 7 disappears or no longer reacts, it is used as the end point of the reaction.
  • the time for the amidation ring-closing reaction is preferably 8 hours-15 hours, such as 9-10 hours.
  • Post-treatment may also be included in the step; the post-treatment may include the following steps: after the amidation reaction is completed, add water and methyl tert-butyl ether to mix, wash and separate the organic phase obtained, and concentrate the organic phase , add acetone to concentrate.
  • the quenching can be controlled by adding 5 times the mass ratio of water and 7 times the mass ratio of methyl tert-butyl ether of the compound shown in formula 7 at 15 to 25 ° C;
  • the washing can be A mixed aqueous solution of 5% sodium carbonate and 5% sodium chloride of 8 times the mass ratio of the compound shown in Formula 7 and a saturated aqueous sodium chloride solution of 5 times the mass ratio were added successively for washing.
  • the concentration can be controlled under reduced pressure at a temperature not higher than 55°C.
  • the solvent may be an ester solvent, such as ethyl acetate.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound shown in formula 6 can be 9mL/g-15mL/g, for example 12mL/g.
  • the molar ratio of the sulfuric acid to the compound 6 may be 4:1 to 12:1; for example, 12:1.
  • the sulfuric acid can be added in the form of a solution of concentrated sulfuric acid and the solvent; in the solution, the mass ratio of the concentrated sulfuric acid to the solvent can be 1.4:1.
  • the reaction temperature of step (1) may be -45°C to -5°C, for example -35°C to -25°C.
  • the reaction progress of step (1) can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 6 disappears or no longer reacts.
  • the reaction time is preferably 10 hours to 30 hours, for example 21 hours.
  • step (1) After the reaction in step (1) is completed, it can be directly used in step (2) for the reduction reaction to prepare the compound 7 without post-treatment.
  • the reducing agent can be sodium borohydride, borane methyl sulfide, lithium triethyl borohydride; for example sodium borohydride.
  • the molar ratio of the reducing agent to the compound represented by formula 6 may be 4:1 to 6:1; for example, 4:1.
  • the temperature of the reduction reaction may be -70°C to -35°C, for example -70°C to -60°C.
  • the progress of the reduction reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 7 no longer increases.
  • the time for the reduction reaction is preferably 2 hours to 10 hours, for example 4 hours.
  • Post-treatment may also be included in the step (2); the post-treatment may include the following steps: after the reduction reaction is finished, add water to quench the reaction, add ammonia water to neutralize the reaction, concentrate the separated organic phase, add Concentrate with ethanol to obtain the compound 7;
  • the quenching temperature can be from 0° C. to 10° C.; the concentration of the ammonia water can be 25%; the hydrogen chloride can be ethanol solution of hydrogen chloride, such as 4M ethanol solution of hydrogen chloride.
  • the described preparation method may also include the method for preparing the described compound 6, which includes the following steps: in a solvent, in the presence of a base, mix the compound shown in formula 5 with O-phenylhydroxylamine or its Salt is carried out Schiff base reaction, obtains described compound 6 and gets final product;
  • the solvent can be an alcohol solvent and/or an ester solvent
  • the alcohol solvent can be one or more of ethanol, isopropanol, tert-butanol and tert-amyl alcohol, and the ester
  • the quasi-solvent can be ethyl acetate.
  • the amount of the solvent may not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound shown in Formula 5 may be 8mL/g-12mL/g.
  • the molar ratio of the compound represented by formula 5 to O-phenylhydroxylamine or a salt thereof may be 1.15:1 to 1.5:1, for example 1.5:1.
  • the O-phenylhydroxylamine salt may be its hydrochloride.
  • the base may be an alkali metal bicarbonate, such as sodium bicarbonate.
  • the molar ratio of the base to the O-phenylhydroxylamine salt may be 2:1.5.
  • the molar ratio of the base to the compound represented by formula 5 may be 1.5:1 to 2:1, for example 2:1.
  • the Schiff base reaction is preferably carried out under an inert gas such as nitrogen and argon.
  • the temperature of the Schiff base reaction may be 15°C to 45°C, for example, 15°C to 25°C.
  • the method for preparing the compound 6 comprises the following steps: in a solvent, at 15°C to 25°C, adding the base to the O-phenylhydroxylamine or its salt and To the mixture of solvents, add the mixture of the compound shown in formula 5 and the solvent to carry out the Schiff base reaction to obtain the compound 6.
  • the process of the Schiff base reaction can be detected by conventional monitoring methods (such as TLC, HPLC or NMR) in the art, generally as the end point of the reaction when the compound shown in formula 5 disappears or no longer reacts .
  • the time for the ring closure reaction is preferably 1 hour to 10 hours, for example 3 hours.
  • Post-treatment may also be included in the steps; the post-treatment may include the following steps: after the Schiff base reaction is finished, concentrate, add methyl tert-butyl ether and water for extraction, add citric acid aqueous solution to the organic phase washing. Add sodium bicarbonate solution to the organic phase to wash, concentrate the organic phase, add ethyl acetate and concentrate under reduced pressure to obtain the compound 6.
  • Described citric acid aqueous solution can be 10% citric acid aqueous solution, and described washing can be 2 times; Described sodium bicarbonate solution can be 5% sodium bicarbonate solution; Described concentration can be controlled temperature less than 50 °C Concentrate under reduced pressure.
  • the described preparation method can also further include the method for preparing the described compound 5, which includes the following steps:
  • the solvent can be one or more of aromatic solvents, alcohol solvents, ether solvents, amide solvents and ester solvents;
  • the aromatic solvent can be toluene, and the alcohols Solvent can be tert-amyl alcohol and/or pentyl alcohol, described ether solvent can be cyclopentyl methyl ether and/or tetrahydrofuran, described amide solvent can be DMAc and/or DMF, described ester solvent It may be isopropyl acetate; for example toluene.
  • the amount of the solvent should not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound shown in formula 4 can be 2mL/g-3mL/g.
  • the catalyst can be bis(triphenylphosphine)cyclopentadienyl ruthenium(II) chloride, 1,5-cyclooctadiene iridium chloride dimer, methoxy(cyclooctadiene)
  • iridium dimer copper acetate, cuprous iodide, palladium(II) acetate, trans-bis(acetocyano)palladium(II) dichloride and palladium trifluoroacetate, such as bis(tri Phenylphosphine)cyclopentadienylruthenium(II) chloride.
  • the molar ratio of the catalyst to the compound represented by Formula 4 may be 0.01 to 0.1, such as 0.015:1.
  • ligands used in this type of reaction in the art can also be added to the ring-closing reaction, and the ligands can be phosphine ligands, such as triphenylphosphine.
  • the molar ratio of the ligand to the compound represented by formula 4 may be 0.01 to 0.1, for example 0.04:1.
  • the ring-closing reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the temperature of the ring-closing reaction may be from 60°C to 110°C, for example, from 95°C to 105°C.
  • the progress of the ring-closing reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 4 disappears or no longer reacts.
  • the time for the ring closure reaction is preferably 1 hour to 5 hours, for example 2 hours.
  • the steps may also include post-treatment; the post-treatment may include the following steps: after the ring-closing reaction is completed, add water to wash, and concentrate the organic phase.
  • the described preparation method can also include the method for preparing the described compound 4, which includes the following steps:
  • the solvent can be a mixture of ether solvent and dimethyl sulfoxide
  • the ether solvent can be tetrahydrofuran
  • the volume ratio of the ether solvent and dimethyl sulfoxide can be 1:1.2 to 3:1, for example 5:3.
  • the base may be an alcoholate of an alkali metal, such as potassium tert-butoxide.
  • the molar ratio of the base to the compound represented by formula 3 can be a conventional molar ratio for this type of reaction in the art, for example 1:1 to 1.4:1; for example 1.15:1 to 1.2:1.
  • the molar ratio of the described trimethylsulfoxide iodide to the compound shown in formula 3 can be the conventional molar ratio of this type of reaction in the art, for example 1:1 to 1.4:1; for example 1.15:1 to 1.2:1.
  • the ring-opening reaction is preferably carried out under an inert gas, and the inert gas can be argon or nitrogen.
  • the temperature of the ring-opening reaction may be -20-30°C.
  • the described step is preferably: after mixing the alkali and trimethylsulfoxide iodide in part of the ether solvent and dimethyl sulfoxide, sequentially add the remaining part of the ether solvent and the formula 3 Shown compound, carry out described ring-opening reaction.
  • the mixing temperature may be 20-30°C; the ring-opening reaction temperature may be -10-0°C.
  • the progress of the ring-opening reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 3 disappears or no longer reacts.
  • the time for the ring-opening reaction is preferably 5 hours to 24 hours, such as 12 hours.
  • Post-treatment may also be included in the steps; the post-treatment may include the following steps: after the ring-opening reaction is completed, add an organic solvent and 5% ammonium chloride solution in sequence, separate layers, and use an organic solvent for the water phase After washing, the combined organic phases are washed with 5% to 2% sodium chloride solution, dried, filtered, and the organic phases are concentrated.
  • the compound shown in formula 59 is subjected to the following cyclopropylation reaction with a methylating reagent to obtain the compound shown in formula 3. ;
  • the solvent may be an amide solvent, such as DMF.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound represented by Formula 59 can be 5 mL/g-30 mL/g; for example, 10 mL/g.
  • the molar ratio of the Zn/Cu or Zn/Ag reagent to the compound represented by formula 59 may be 0.5:1 to 3:1; for example, 2:1.
  • the methylating agent can be dibromomethane and/or diiodomethane.
  • the molar ratio of the methylating agent to the compound represented by formula 59 may be 01.5:1 to 3:1; for example, 2:1.
  • the cyclopropylation reaction is preferably carried out under an inert gas such as nitrogen and argon.
  • the temperature of the cyclopropylation reaction may be 15°C to 45°C, for example, 30°C to 40°C.
  • the process of the cyclopropylation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally when the compound shown in formula 59 disappears or no longer reacts as a reaction end.
  • the time for the cyclopropylation reaction is preferably 10 hours to 30 hours, such as 17 hours.
  • Post-treatment may also be included in the described steps; the post-treatment may include the following steps: after the completion of the cyclopropylation reaction, add ethyl acetate, ammonium chloride aqueous solution (for example 5%) successively, (by diatomaceous earth), separated, washed the aqueous phase with ethyl acetate, washed the combined organic phase with aqueous sodium chloride (eg 5%), concentrated, added methanol and water, precipitated solid, filtered, and dried.
  • the preparation method also includes a method for preparing the compound shown in formula 59, which includes the following steps:
  • the solvent can be one or more of ether solvents, halogenated hydrocarbon solvents, nitrile solvents, ketone solvents, ester solvents and N,N-dimethylformamide
  • the The ether solvent can be tetrahydrofuran and/or 1,4-dioxane
  • the halogenated hydrocarbon solvent can be dichloromethane
  • the ester solvent can be ethyl acetate
  • the nitrile solvent It may be acetonitrile
  • the ketone solvent may be acetone; for example, dichloromethane.
  • the amount of the solvent should not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound represented by formula 58 can be 8mL/g-12mL/g.
  • the phase transfer catalyst can be a quaternary ammonium salt, such as tetra-n-butylammonium iodide TBAI and/or tetrabutylammonium fluoride trihydrate TBAF.3H 2 O.
  • the molar ratio of the phase transfer catalyst to the compound represented by formula 58 may be 0.04:1 ⁇ 0.05:1; for example, 0.045:1.
  • Described base can be inorganic base and/or organic base, and described inorganic base can be one or more in alkali metal carbonate, alkali metal bicarbonate and alkali metal alcoholate, and described alkali Metal carbonate can be potassium carbonate and/or cesium carbonate, and described alkali metal bicarbonate can be potassium bicarbonate and/or sodium bicarbonate, and described alkali metal alcoholate can be potassium tert-butoxide, and described
  • the organic base can be triethylamine and/or diisopropylamine; for example potassium carbonate.
  • the molar ratio of the base to the compound represented by formula 58 may be 2:1 to 3:1.
  • the molar ratio of the formaldehyde or paraformaldehyde in the formaldehyde aqueous solution to the compound represented by formula 58 may be 1:1 to 6:1; for example, 3.4:1.
  • the alkali and the aqueous formaldehyde solution or paraformaldehyde are added in batches, for example in 3 times on average.
  • the reaction is preferably carried out under inert gas, such as nitrogen, argon.
  • the reaction temperature may be from 15°C to 55°C, for example, from 35°C to 45°C.
  • the progress of the reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound represented by formula 58 disappears or no longer reacts.
  • the reaction time is preferably 10 hours to 30 hours, for example 15 hours.
  • the steps may also include post-treatment; the post-treatment may include the following steps: after the reaction is completed, add 5% ammonium chloride aqueous solution to quench the reaction, wash the separated organic phase, and concentrate.
  • the described preparation method can also include the method for preparing the described compound shown in formula 58, which includes the following steps:
  • described solvent can be one or more in ketone solvent, nitrile solvent, ether solvent, ester solvent and halogenated hydrocarbon solvent, and described ketone solvent can be acetone, and described
  • the nitrile solvent can be acetonitrile
  • the ether solvent can be tetrahydrofuran
  • the ester solvent can be ethyl acetate
  • the halogenated hydrocarbon solvent can be methylene chloride; for example, tetrahydrofuran.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound represented by Formula 57 can be 5 mL/g-10 mL/g.
  • the molar ratio of the benzoyl chloride to the compound represented by formula 57 may be from 1.05:1 to 1.1:1.
  • the alkali can be an alkali metal alcoholate and/or bis(trimethylsilyl)amide lithium LiHMDS, and the alkali metal alcoholate can be sodium tert-butoxide, lithium tert-butoxide and potassium tert-butoxide one or more of.
  • the molar ratio of the base to the compound represented by Formula 57 may be 1.4:1 to 2.5:1.
  • the benzoylation reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the temperature of the benzoylation reaction may be -65°C to 25°C, for example -15°C to -5°C.
  • the process of the benzoylation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally when the compound shown in formula 57 disappears or no longer reacts as a reaction end.
  • the reaction time is preferably 1 hour.
  • the method for preparing the compound shown in formula 58 includes the following steps: at -15°C to -5°C, sequentially adding the base and benzoyl chloride to the
  • the compound shown in Formula 58 can be obtained by carrying out the benzoylation reaction in a mixture of the compound shown in Formula 57 and the solvent.
  • Post-treatment may also be included in the step; the post-treatment may include the following steps: after the benzoylation reaction is finished, add 10% citric acid aqueous solution to quench the reaction, wash the separated organic phase, and concentrate That's it.
  • the preparation method further includes the preparation method of the compound shown in formula 57, which includes the following steps:
  • the operation and conditions of the benzyl esterification reaction can be conventional operations and conditions in this type of reaction in the art; for example, the solvent can be an ester solvent, such as ethyl acetate.
  • the base can be an alkali metal carbonate, such as potassium carbonate.
  • the phase transfer catalyst can be tetrabutylammonium bromide TBAB.
  • the present invention provides a kind of preparation method of the diazabicyclooctane compound shown in formula 7, it comprises the following steps:
  • the operations and conditions in the preparation method can be the same as the operations and conditions in the preparation of the compound shown in Formula 7 in the above-mentioned preparation method of the diazabicyclooctane compound shown in Formula 8.
  • the present invention provides a kind of preparation method of the compound shown in formula 6, it comprises the steps:
  • the operation and reaction conditions in the described preparation method can be the same as the operation and conditions in the preparation of the compound shown in formula 6 in the preparation method of the diazabicyclooctane compound shown in formula 8 as described above .
  • the present invention provides a kind of preparation method of the compound shown in formula 5, it comprises the steps:
  • the operation and reaction conditions in the described preparation method can be the same as the operation and conditions in the preparation of the compound shown in formula 5 in the preparation method of the diazabicyclooctane compound shown in formula 8 as described above .
  • the present invention provides a kind of preparation method of the compound shown in formula 3, it comprises the steps:
  • the compound shown in formula 59 is subjected to the following cyclopropylation reaction with a methylating reagent to obtain the compound shown in formula 3. ;
  • the operations and reaction conditions in the described preparation method can be the same as the operations and conditions in the preparation of the compound shown in formula 3 in the preparation method of the diazabicyclooctane compound shown in formula 8 as described above .
  • the present invention provides a method for preparing a compound as shown in formula 59, which comprises the following steps:
  • the operations and reaction conditions in the preparation method can be the same as the operations and conditions in the preparation of the compound shown in formula 59 in the above-mentioned preparation method of the diazabicyclooctane compound shown in formula 8 .
  • the present invention also provides a preparation method of the compound shown in formula 58, which comprises the following steps:
  • the present invention provides a compound shown in formulas 5, 6, and 58,
  • the present invention also provides a preparation method of oxadiazazole compounds and/or tautomers thereof, which comprises the following steps (a) and/or steps (b);
  • the oxadiazazole compound shown can be;
  • the solvent can be one or more of aromatic solvents, ether solvents, ester solvents and halogenated hydrocarbon solvents, and the aromatic solvent can be toluene,
  • the ether solvent may be tetrahydrofuran
  • the ester solvent may be ethyl acetate
  • the halogenated hydrocarbon solvent may be dichloromethane.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound represented by Formula 18 can be 6.5 mL/g-10 mL/g.
  • the dehydrating agent can be Burgess reagent (Burgess reagent, methyl N-(triethylsulfamoyl)carbamate).
  • the molar ratio of the dehydrating agent to the compound represented by formula 18 may be 2:1 ⁇ 10:1; for example, 4.6:1.
  • the base may be an organic base, such as N,N-diisopropylethylamine and/or triethylamine.
  • the molar ratio of the base to the compound represented by formula 18 may be 4:1-6.5:1; for example, 4.1:1, 6.2:1.
  • the ring-closing reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the temperature of the ring-closing reaction may be from 10°C to 45°C, for example, from 25°C to 35°C.
  • the progress of the ring-closing reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and the end point of the reaction is generally when the compound shown in formula 18 disappears or no longer reacts.
  • the time for the ring-closing reaction is preferably 10 hours to 30 hours, for example, 20 hours.
  • the step (a) may also include post-treatment; the post-treatment may include the following steps: after the ring-closing reaction is completed, add water to quench the reaction, and wash the separated organic phase.
  • the quenching can be controlled by adding water with a mass ratio of 5-10 times the mass ratio of the compound shown in formula 18 at 15-25°C; the washing can be by adding the compound shown in formula 18 5-10 times the mass ratio of the compound for washing with saturated sodium chloride aqueous solution.
  • the post-treated organic phase containing the compound shown in formula 20 can be directly fed into the next step reaction without purification.
  • the organic solvent can be one or more of aromatic solvents, ether solvents, ester solvents and halogenated hydrocarbon solvents, and the aromatic solvent can be toluene , the ether solvent may be tetrahydrofuran, the ester solvent may be ethyl acetate, and the halogenated hydrocarbon solvent may be dichloromethane.
  • the volume ratio of the water to the organic solvent may be 1.3:1 to 1:1.
  • the solvent can be used in an amount that does not affect the reaction, for example, the mass ratio of the water to the compound shown in formula 19 can be 5-10 times.
  • the acidic condition can be pH to 6-8; the acidic condition can be adjusted by adding 5% citric acid, and the adding temperature of 5% citric acid can be 15-25 °C.
  • the temperature of the tautomerization reaction may be from 10°C to 45°C, for example, from 35°C to 45°C.
  • the process of the tautomerization reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally when the compound shown in formula 19 disappears or no longer reacts as end point of the reaction.
  • the time for the tautomerization reaction is preferably 10 hours to 30 hours, such as 20 hours.
  • the post-treatment may also be included in the step (b); the post-treatment may include the following steps: after the tautomerization reaction is completed, add n-heptane, stir, and cool down to 5-15°C, Stir; filter, rinse with water, and dry.
  • the n-heptane is preferably added dropwise, and the addition temperature of the n-heptane can be 15-25°C; the mass ratio of the n-heptane to the compound shown in formula 20 can be 3:1; the stirring time can be 3 hours; the mass ratio of the water in the rinsing to the compound shown in formula 20 can be 3:1.
  • the hydrazide compound shown in formula 19 can be prepared by the step (a).
  • step (a) it may also include the method for preparing the hydrazide compound shown in formula 18 and/or its tautomer, which includes the following step (c):
  • the acid anhydride compound shown in formula 24 is amidated with the hydrazine compound shown in formula 17 and/or its tautomer to obtain the hydrazide shown in formula 18 Compounds and/or tautomers thereof;
  • the solvent can be one or more of aromatic hydrocarbon solvents, ether solvents, ester solvents and halogenated hydrocarbon solvents
  • the aromatic hydrocarbon solvents can be toluene
  • the ether solvents can be is tetrahydrofuran
  • the ester solvent can be ethyl acetate
  • the halogenated hydrocarbon solvent can be dichloromethane.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound shown in Formula 17 can be 10 mL/g-20 mL/g.
  • the molar ratio of the acid anhydride compound shown in formula 24 to the hydrazine compound shown in formula 17 and/or its tautomer can be 1.3:1 to 1:1.3; for example 1:1.2 .
  • the temperature of the amidation reaction may be -15°C to 0°C, for example -10°C to 0°C.
  • the amidation reaction is preferably carried out under an inert gas such as nitrogen and argon.
  • the progress of the amidation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 24 disappears or no longer reacts.
  • the amidation reaction time is preferably 1 hour to 3 hours, for example 1 hour.
  • the step (c) may also include post-treatment; the post-treatment may include the following steps: after the amidation reaction is finished, after washing the organic phase, replace the organic solvent with ethyl acetate, and wash with water Finally, add methyl tert-butyl ether to mix and precipitate, filter, wash, and dry; the washing can be carried out with water and 5% sodium bicarbonate solution in sequence, and the amount of water and 5% sodium bicarbonate solution It can be 0.3 times the volume of the reaction system; preferably washed at 10 ° C; the replacement of the organic solvent can be the following steps: the washed organic phase, concentrated (to 2-4 times the volume of the product), add ( 4-5 times the volume of the product) ethyl acetate mixed, concentrated (to about 4 times the volume of the product), added (9-10 times the volume of the product) ethyl acetate and (2-3 times the volume of the product) water Mixing, separation and concentration of the organic phase (to 4-6 times the volume of the product) can be used
  • the precipitation can be mixed by adding (3-5 times the volume of the product) methyl tert-butyl ether, cooling to precipitate solids; the mixing temperature can be 35-45 °C, and the cooling can be down to 10- 20°C; the washed solid can be filtered and washed with a mixed solution of ethyl acetate and methyl tert-butyl ether (volume ratio 1.2:1) (0.8-1 times the volume of the product).
  • the raw materials for the amidation reaction are the acid anhydride compound shown in formula 24, the hydrazine compound shown in formula 17 and/or its tautomer and the solvent.
  • Scheme (i) is a method for preparing the acid anhydride compound shown in formula 24, which includes the following step (d): in a solvent, in the presence of a base, the carboxylic acid compound shown in formula 9 and pivaloyl chloride is acylated to obtain the described acid anhydride compounds shown in formula 24,
  • Scheme (ii) is a method for preparing the hydrazine compound shown in formula 17, which includes the following step (e): hydrazine and the nitrogen heterocyclic compound shown in formula 16 and/or its tautomerization
  • the conformer is subjected to the hydrazide reaction as shown below to obtain the hydrazide compound shown in formula 17 and/or its tautomer,
  • step (d) the molar ratio of the carboxylic acid compound shown in formula 9 to pivaloyl chloride may be 1:1 to 1:1.6; for example, 1:1.1.
  • the solvent can be one or more of aromatic solvents, ether solvents, ester solvents and halogenated hydrocarbon solvents, the aromatic solvent can be toluene, and the ether solvent can be tetrahydrofuran , the ester solvent may be ethyl acetate, and the halogenated hydrocarbon solvent may be dichloromethane.
  • the amount of the solvent can be used without affecting the reaction, for example, the volume to mass ratio of the solvent to the compound shown in formula 9 can be 10mL/g-20mL/g.
  • the base can be an organic base, such as one or more of N,N-diisopropylethylamine DIPEA, pyridine and triethylamine.
  • the molar ratio of the base to the carboxylic acid compound shown in Formula 9 may be 3:1 to 1:1; for example, 2:1.
  • the acylation reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the temperature of the acylation reaction may be -10-10°C, for example -10-0°C.
  • the step (d) is preferably: after adding the base and pivaloyl chloride sequentially to the mixture of the compound shown in formula 9 and the solvent at below -5°C, Carry out the acylation reaction at -10-0°C to obtain the acid anhydride compound shown in formula 24.
  • the progress of the acylation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 9 disappears or no longer reacts.
  • the amidation reaction time is preferably 1 hour to 3 hours, such as 2.5 hours.
  • step (e) the molar ratio of the hydrazine to the nitrogen heterocyclic compound represented by formula 16 and/or its tautomer may be 1.5:1 to 3:1.
  • the hydrazine may be hydrazine hydrate, such as 80% hydrazine hydrate.
  • Described solvent is one or more in alcoholic solvent, aromatic hydrocarbon solvent and halogenated alkanes; Described alcoholic solvent can be one or more in methyl alcohol, ethanol and Virahol, and described aromatic hydrocarbon
  • the quasi-solvent can be toluene, and the halogenated alkane can be dichloromethane.
  • the solvent can be used in an amount that does not affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound represented by formula 16 can be 10 mL/g-20 mL/g, for example 12 mL/g.
  • the hydrazidation reaction is preferably carried out under an inert gas such as nitrogen and argon.
  • the temperature of the hydrazide reaction may be -20-10°C, for example -10-5°C.
  • the step (e) is preferably: control the temperature below 5°C, add hydrazine to the mixture of the azacyclic compound shown in formula 16 and the solvent, and carry out the acyl Hydrazine reaction to obtain the hydrazide compound shown in formula 17 and/or its tautomer.
  • the process of the hydrazidation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the compound shown in formula 16 disappears or no longer reacts as the reaction end point .
  • the time for the hydrazidation reaction is preferably 1 hour to 3 hours, for example 1 hour.
  • the step (e) may also include post-treatment; the post-treatment may include the following steps: after the hydrazide reaction is completed, sequentially add (10%) ammonium chloride aqueous solution and methylene chloride to mix, separate , the aqueous phase was extracted with dichloromethane, the organic phases were combined, washed with water, and concentrated; it could be directly used in the next amidation reaction.
  • the molar ratio of the triphenylphosphine to the guanidine compound shown in formula 15 may be 1.1:1 to 1.3:1.
  • the molar ratio of the imidazole to the guanidine compound represented by formula 15 may be 2.2:1 to 2.6:1.
  • the molar ratio of the iodine to the guanidine compound represented by formula 15 may be 1.1:1 to 1.3:1.
  • Described solvent can be nitrile solvent and/or halogenated hydrocarbon solvent, and described nitrile solvent can be acetonitrile, and described halogenated hydrocarbon solvent can be dichloromethane;
  • the consumption of described solvent is not It only needs to affect the reaction, for example, the volume-to-mass ratio of the solvent to the compound shown in formula 15 can be 16mL/g-40mL/g.
  • the temperature of the Appel reaction and the ring closure reaction may be -10°C to 10°C, for example -5°C to 5°C.
  • the Appel reaction and ring-closing reaction are preferably carried out under inert gas, such as nitrogen and argon.
  • Step (f) is preferably: the mixture of the guanidine compound shown in formula 15 and the solvent is added dropwise to the mixture of iodine, triphenylphosphine, imidazole and the solvent .
  • Step (f) is preferably: at -5°C to 5°C, iodine is added in batches to the mixture of triphenylphosphine, imidazole and the solvent to obtain the reaction system 1, and then the formula
  • the mixture of the guanidine compound shown in 15 and the solvent is added to the above reaction system 1 to perform the Appel reaction and the ring closure reaction to obtain the nitrogen heterocyclic compound shown in formula 16 and/or its Tautomers, yes.
  • the mixture of the guanidine compound shown in Formula 15 and the solvent is preferably added dropwise into the reaction system 1.
  • the progress of the ring-closing reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 15 disappears or no longer reacts.
  • the time for the Appel reaction and ring-closing reaction is preferably 1 hour to 3 hours, for example 1 hour.
  • the step (f) may also include post-treatment; the post-treatment may include the following steps: after the ring-closing reaction is completed, add (5%) Na 2 SO 3 aqueous solution, and wash the separated organic phase with water , concentrate, add DMF and n-heptane (mass ratio ⁇ 14:1) to mix, concentrate, add water to mix, filter, filter cake is washed with DMF/water (volume ratio ⁇ 1:1), add ethyl acetate to dissolve, add water to wash ( 2 times), concentrate, add n-heptane and methyl tert-butyl ether (mass ratio ⁇ 1:1), mix, filter, filter cake washing, drying, to obtain the nitrogen heterocycle compound shown in formula 16 and/or its tautomers. For example, add (5%) Na 2 SO 3 aqueous solution at -5 ⁇ 5°C.
  • the guanidine compound shown in formula 15 can be prepared by the following steps: in an organic solvent and water, in the presence of a base, combine the compound shown in formula 13 with the following steps: The compound shown in formula 14 is subjected to the imidization reaction shown below to obtain the guanidine compound shown in formula 15,
  • the molar ratio of the compound shown in formula 13 to the compound shown in formula 14 may be 1:1.
  • the organic solvent can be a nitrile solvent and/or a halogenated hydrocarbon solvent, the nitrile solvent can be acetonitrile, and the halogenated hydrocarbon solvent can be methylene chloride.
  • the amount of the solvent should not affect the reaction, for example, the volume-to-mass ratio of the organic solvent to the compound shown in formula 14 can be 6mL/g-15mL/g, such as 8mL/g-10mL /g.
  • the imidization reaction is preferably carried out under inert gas, such as nitrogen and argon.
  • the temperature of the imidization reaction may be 10°C to 40°C, for example, 20°C to 30°C.
  • the base may be alkali metal carbonate and/or bicarbonate, such as potassium carbonate and/or potassium bicarbonate.
  • the mass ratio of the water to the alkali may be 1.5 to 2.5:1, for example 2:1.
  • the process of the imidization reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), and generally the end point of the reaction is when the compound shown in formula 15 disappears or no longer reacts .
  • the time for the imidization reaction is preferably 10 hours to 20 hours, for example, 16 hours.
  • the step (f) may also include post-treatment; the post-treatment may include the following steps: after the imidization reaction is completed, add water to wash the organic phase (for example, twice), and concentrate the separated organic phase to obtain Can.
  • the tautomer refers to the and and The compounds of the fragments are tautomers of each other.
  • the present invention provides a nitrogen heterocyclic compound as shown in formula 16 and/or its tautomer, a hydrazine compound as shown in formula 17 and/or its tautomer, as shown in formula 24
  • the present invention provides a method for preparing hydrazide compounds and/or tautomers thereof as shown in formula 18, which comprises the following steps:
  • the acid anhydride compound shown in formula 24 is amidated with the hydrazine compound shown in formula 17 and/or its tautomer to obtain the hydrazide compound shown in formula 18 and / or its tautomers;
  • the operation and reaction conditions in the preparation method of the hydrazide compound shown in formula 18 and/or its tautomer can be the same as the above-mentioned oxadiazole compound and/or its tautomer
  • the operation and reaction conditions in the method for preparing the hydrazide compound shown in formula 18 and/or its tautomer in the method for preparing the isomer can be the same as the above-mentioned oxadiazole compound and/or its tautomer.
  • the present invention provides a method for preparing an acid anhydride compound as shown in formula 24, which comprises the following steps: in a solvent, in the presence of a base, acylating a carboxylic acid compound as shown in formula 9 with pivaloyl chloride chemical reaction to obtain the described acid anhydride compounds shown in formula 24,
  • the operations and reaction conditions in the preparation method of the acid anhydride compound shown in formula 24 and/or its tautomer can be the same as the above-mentioned oxadiazole compound and/or its tautomer Operation and reaction conditions in the method for preparing the acid anhydride compound shown in formula 24 and/or its tautomer in the method for preparing the body.
  • the present invention provides a method for preparing hydrazine compounds and/or tautomers thereof as shown in formula 17, which comprises the following steps:
  • the operation and reaction conditions in the preparation method of the hydrazine compound shown in formula 17 and/or its tautomer can be the same as the above-mentioned oxadiazole compound and/or its tautomer Operation and reaction conditions in the method for preparing the hydrazide compound shown in formula 17 and/or its tautomer in the preparation method of the body.
  • the present invention provides a method for preparing nitrogen heterocyclic compounds and/or tautomers thereof as shown in formula 16, which comprises the following steps:
  • reaction conditions and operations in the preparation method of the nitrogen-heterocyclic compounds shown in Formula 16 and/or their tautomers can be the same as those of the above-mentioned oxadiazole compounds and/or The reaction conditions and operations in the method for preparing the nitrogen heterocyclic compound represented by formula 16 and/or its tautomer in the preparation method of its tautomer.
  • the invention provides a kind of preparation method of ⁇ -lactamase inhibitor and intermediate, and it is following scheme:
  • Step (1) comprising the following steps (a) and/or steps (b),
  • Step (2) In a solvent, in the presence of a palladium catalyst and hydrogen, the imidazoline compounds shown in formula 20 and/or their tautomers are subjected to the debenzylation reaction shown to obtain The hydroxylamine compound shown in formula 21 and/or its tautomer can be; the preparation of the imidazoline compound shown in formula 20 and/or its tautomer is the same as described above step (a) or (b);
  • Step (1) Step (1) in the same scheme one;
  • Step (2) Step (2) in the same scheme one;
  • Step (3) In a solvent, in the presence of pyridine and a sulfonating reagent, carry out the sulfonation reaction of the hydroxylamine compound shown in formula 21 and/or its tautomer as shown, to obtain The sulfonic acid oxygen compound shown in formula 22 and/or its tautomer is enough;
  • Scheme three the preparation method of imine compound as shown in formula I, it comprises the following steps:
  • Steps (1) to (3) same as steps (1) to (3) in scheme two;
  • Step (4) In water and an organic solvent, the sulfonic acid oxygen compound shown in formula 22 and/or its tautomer is subjected to the deamination protecting group reaction shown in the formula to obtain the formula The imine compounds shown in I get final product;
  • step (1) of Scheme 1 the reaction operation and conditions are the same as those in the above-mentioned preparation method of oxadiazole compounds and/or their tautomers.
  • described solvent can be one or more in alcohol solvent, ether solvent, amide solvent and halogenated hydrocarbon solvent; Described alcohol solvent can be methyl alcohol, One or more of ethanol and Virahol; the halogenated hydrocarbon solvent can be dichloromethane, the ether solvent can be tetrahydrofuran, and the amide solvent can be dimethylacetamide DMAc and/or N-methylpyrrolidone NMP. For example tetrahydrofuran.
  • the amount of the solvent can be used without affecting the reaction, for example, the volume to mass ratio of the solvent to the imidazoline compound shown in formula 20 and/or its tautomer can be 15mL/g to 27mL/g.
  • the palladium catalyst can be palladium carbon, palladium hydroxide; for example, 10% palladium carbon (dry basis).
  • the mass ratio of the palladium catalyst to the imidazoline compound represented by formula 20 and/or its tautomer may be 0.02:1 to 0.9:1; for example, 0.09:1.
  • the pressure of the hydrogen can be 0.3Mpa to 0.5Mpa.
  • the temperature of the debenzylation reaction may be from 0°C to 40°C, for example, from 10°C to 20°C.
  • the process of the debenzylation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally with the imidazoline compound shown in formula 20 and/or its interconversion
  • the end point of the reaction was when the isomer disappeared or no longer reacted.
  • the time for the debenzylation reaction is preferably 10 hours to 30 hours, such as 24 hours.
  • the scheme one may also include post-treatment; the post-treatment may include the following steps: after the debenzylation reaction is completed, add dimethyl sulfoxide to mix, filter, wash the filter cake with tetrahydrofuran, and combine the filtrates , add mercapto silica gel and activated carbon (mass ratio 1:1), mix, filter, wash the filter cake with tetrahydrofuran, combine the filtrates, concentrate, add water and acetonitrile (mass ratio 1.27:1), mix, filter, rinse, and dry.
  • the post-treatment may include the following steps: after the debenzylation reaction is completed, add dimethyl sulfoxide to mix, filter, wash the filter cake with tetrahydrofuran, and combine the filtrates , add mercapto silica gel and activated carbon (mass ratio 1:1), mix, filter, wash the filter cake with tetrahydrofuran, combine the filtrates, concentrate, add water and acetonitrile (mass ratio 1.27:1), mix
  • the consumption of described dimethyl sulfoxide can be 10 to 12 times of described imidazoline compound shown in formula 20 and/or its tautomer;
  • the consumption of described mercapto silica gel and gac can be It is 0.16 times of the imidazoline compound shown in formula 20 and/or its tautomer;
  • the amount of water and acetonitrile can be the imidazoline compound shown in formula 20 And/or 14 to 15 times its tautomers.
  • described solvent can be halogenated hydrocarbon solvent and/or nitrile solvent; Described halogenated hydrocarbon solvent can be dichloromethane, and described nitrile solvent It can be acetonitrile. For example acetonitrile.
  • the amount of the solvent can be used without affecting the reaction, for example, the volume to mass ratio of the solvent to the hydroxylamine compound shown in formula 21 and/or its tautomer can be from 5mL/g to 20mL/g.
  • the sulfonating reagent can be one or more of pyridine sulfur trioxide, triethylamine sulfur trioxide and trimethylamine sulfur trioxide.
  • the mass ratio of the pyridine sulfur trioxide to the hydroxylamine compound shown in formula 21 and/or its tautomer can be 1.2:1 to 6:1; for example, 1.2:1 to 5.97:1 .
  • the mass ratio of the pyridine to the hydroxylamine compound represented by formula 21 and/or its tautomer may be 2.5:1 to 6.25:1.
  • the temperature of the sulfonation reaction may be 15°C to 35°C, for example, 25°C to 35°C.
  • the process of the sulfonation reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally with the hydroxylamine compound shown in formula 21 and/or its tautomer
  • the end point of the reaction was when the body disappeared or no longer reacted.
  • the time for the sulfonation reaction is preferably 5 hours to 10 hours, for example 6 hours.
  • Post-treatment may also be included in the step (3) of the scheme two; the post-treatment may include the following steps: after the sulfonation reaction is finished, add activated carbon to mix, filter, wash the filter cake with acetonitrile, and combine the filtrate , you can. The filtrate can be directly used in the next reaction.
  • the organic solvent can be a nitrile solvent; the nitrile solvent can be acetonitrile.
  • the consumption of described water and organic solvent gets final product without affecting reaction, for example the volume mass ratio of described organic solvent and described sulfonic acid oxygen compound shown in formula 22 and/or its tautomer It can be from 9 mL/g to 11 mL/g.
  • the temperature of the deamination-protecting group reaction may be 18°C to 40°C, for example, 30°C to 40°C.
  • the process of the deamination protecting group reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally with the sulfonic acid oxygen compound shown in formula 22 and/or its The end point of the reaction was when the tautomer disappeared or no longer reacted.
  • the time for the deamination-protecting group reaction is preferably 3 hours to 10 hours, for example, 5 hours.
  • the following purification steps may also be included: after the reaction is completed, cool down to 0°C to 10°C, precipitate solids, filter, wash the filter cake with 10% acetonitrile aqueous solution, and add dimethyl sulfoxide , heat up to 45-65°C and mix, add acetonitrile dropwise at this temperature, cool down to 0-10°C and mix, precipitate solid, filter, rinse the filter cake with acetonitrile, add water, control the temperature at 20-30°C, mix, cool down to 0-10°C, mix, precipitate solid, filter, wash the filter cake with water, and dry.
  • the invention provides a kind of preparation method of ⁇ -lactamase inhibitor, it is characterized in that, it comprises the steps:
  • Step 1 In a solvent, in the presence of a base and a phase transfer catalyst, the compound shown in formula 56 and benzyl bromide are subjected to the following benzyl esterification reaction to obtain the compound shown in formula 57;
  • Step 2 In a solvent, in the presence of a base, perform the benzoylation reaction of the compound shown in formula 57 with benzoyl chloride as shown below to obtain the compound shown in formula 58;
  • Step 3 In a solvent, in the presence of an alkali, aqueous formaldehyde solution or paraformaldehyde, and a phase transfer catalyst, the compound shown in formula 58 is subjected to the following reaction to obtain the compound shown in formula 59;
  • Step 4 In a solvent, in the presence of Zn/Cu or Zn/Ag reagent, the compound shown in formula 59 is subjected to the following cyclopropylation reaction with a methylating reagent to obtain the compound shown in formula 3 compound;
  • Step 5 In a solvent, in the presence of a base, the compound shown in formula 3 is subjected to the following ring-opening reaction with trimethylsulfoxide iodide to obtain the compound 4;
  • Step 6 In a solvent, in the presence of a catalyst and a ligand, the compound shown in Formula 4 is subjected to the following ring-closing reaction to obtain the compound 5;
  • Step 7 In a solvent, in the presence of a base, perform a Schiff base reaction on the compound shown in formula 5 and O-phenylhydroxylamine or its salt to obtain the compound 6;
  • Step 8 (1) In a solvent, in the presence of sulfuric acid, the compound shown in formula 6 is reacted with an acid to obtain a mixture A; (2) a reducing agent is added to the mixture A for a reduction reaction to obtain a compound as shown in formula 7 the indicated compound;
  • Step 9 Add the mixture of triphosgene and solvent to the compound shown in formula 7 and/or its salt, alkali and solvent mixture, and carry out the amidation ring closure reaction as shown below to obtain the compound shown in formula 8 Diazabicyclooctane compounds;
  • Step 10 In an organic solvent and water, add a base to the compound shown in formula 8, and hydrolyze to obtain the compound shown in formula 9;
  • Step 11 In a solvent, in the presence of a base, acylate the carboxylic acid compound shown in Formula 9 with pivaloyl chloride to obtain the acid anhydride compound shown in Formula 24;
  • Step 12 In an organic solvent and water, in the presence of a base, carry out the following imidization reaction between the compound shown in formula 13 and the compound shown in formula 14 to obtain the compound shown in formula 15 guanidine compounds;
  • Step 13 In a solvent, in the presence of triphenylphosphine, imidazole and iodine, the guanidine compound shown in formula 15 is subjected to the Appel reaction and ring closure reaction shown below to obtain the compound shown in formula 16
  • Step 14 Carrying out the hydrazide reaction of hydrazine with the azacyclic compound shown in formula 16 and/or its tautomer as shown below to obtain the hydrazides shown in formula 17 compounds and/or tautomers thereof;
  • Step 15 Carrying out amidation reaction between the acid anhydride compound shown in formula 24 and the hydrazine compound shown in formula 17 and/or its tautomer to obtain the hydrazide shown in formula 18 Compounds and/or their tautomers;
  • Step 16 In a solvent, in the presence of a dehydrating agent and a base, subject the hydrazide compound shown in formula 18 and/or its tautomer to the ring-closing reaction shown in the formula 19 to obtain Oxadiazole compounds and/or their tautomers;
  • Step seventeen in an organic solvent and water, under acidic conditions, carry out the tautomerization reaction of the hydrazide compound shown in formula 19 to obtain its tautomer, as shown in formula 20 Oxadiazole compounds;
  • Step 18 In a solvent, in the presence of a palladium catalyst and hydrogen, carry out the debenzylation reaction of the imidazoline compound shown in formula 20 and/or its tautomer to obtain the following: The hydroxylamine compound represented by formula 21 and/or its tautomer;
  • Step 19 In a solvent, in the presence of pyridine and a sulfonating reagent, carry out the sulfonation reaction of the hydroxylamine compound shown in formula 21 and/or its tautomer to obtain the formula Sulfonic acid oxygen compounds shown in 22 and/or their tautomers;
  • Step 20 In water and an organic solvent, subject the sulfonic acid oxygen compound shown in formula 22 and/or its tautomer to the deaminated protecting group reaction shown in the formula I The imine compounds shown.
  • each step of the reaction in the preparation method can be the same as the operation and conditions of the corresponding reaction in any of the above-mentioned schemes in the present invention.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention lies in: adopting the method provided by the present invention to prepare the ⁇ -lactamase inhibitor and intermediate, the cost is low, and the repeatability and scalability of key reactions are improved, which is significantly better than that of the prior art.
  • the method improves the total yield, reduces the number of reaction steps, and has the technical advantages of being green, safe, efficient and simple; it is suitable for industrial production.
  • Zn/Ag reagent preparation nitrogen protection in the reaction kettle, add 50ml of acetic acid, stir, add 50mg of silver acetate, heat the system to reflux, add 5.58g of zinc powder, cool the system to 20-30°C, filter, add the filter cake to the reaction kettle, Add 50ml of tetrahydrofuran, stir for 30 minutes, filter, add the filter cake to the reaction kettle, add 50ml of tetrahydrofuran, stir for 30 minutes, filter, and dry the filter cake to obtain 5.2g of Zn/Ag reagent.
  • reaction solution was cooled to 10-30°C, 30g of water was added to the reaction solution, stirred, allowed to stand and separated, and the organic phase was collected to obtain 36g of XNW210002 ethyl acetate solution with a purity of 97.5%, a content of 35.6%, and a yield of 93.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种氧杂二氮唑类化合物和/或其互变异构体的制备方法,其包括步骤(a)在溶剂中,在脱水剂和碱存在下,将如式18所示的化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的化合物和/或其互变异构体;和/或步骤(b)在溶剂中,在酸性条件下,将如式19所示的化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的化合物。采用该方法制备β-内酰胺酶抑制剂及中间体,成本低,提高了关键反应的可重复性和可放大性,相比现有技术显著提高了总收率、减少了反应步数,具有绿色安全高效简便的技术优势;适于工业化生产。

Description

β-内酰胺酶抑制剂中间体及制备方法
本申请要求申请日为2021/11/17的中国专利申请202111364821X和申请日为2021/11/17的中国专利申请2021113648262的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及β-内酰胺酶抑制剂中间体及制备方法。
背景技术
β-内酰胺类抗生素是最早引用于临床的抗生素。自从青霉素G作为第一种β-内酰胺类抗生素成功应用到临床上以来,β-内酰胺类抗生素得到了快速的发展。不同结构类型的β-内酰胺类抗生素得到开发并在临床上得到大量的应用,取得了很好的效果。但是,由于细菌细胞可以产生β-内酰胺酶,使得抗生素失活,导致细菌对β-内酰胺类抗生素产生耐药性。β-内酰胺酶是催化β-内酰胺环水解的酶,其使得β-内酰胺抗生素的抗菌活性失活并允许细菌对β-内酰胺抗生素具有耐药性。β-内酰胺酶依据分子结构中的氨基酸序列差异可以分为A类、B类、C类和D类等。A类β-内酰胺酶优选地水解青霉素类抗生素,B类β-内酰胺酶可以水解各种β-内酰胺类抗生素,包括碳青霉烯类抗生素,C类β-内酰胺酶能更有效地水解头孢菌素类抗生素,而D类β-内酰胺酶则更倾向于水解苯唑青霉素和邻氯青霉素。细菌,特别是革兰氏阴性菌对于β-内酰胺类抗生素的耐药性通常都是通过β-内酰胺酶介导的。
对β-内酰胺酶的抑制可以延缓或抑制β-内酰胺类抗生素的降解并恢复产生β-内酰胺类抗生素耐药性的细菌对β-内酰胺类抗生素的敏感性。目前,临床上通过将β-内酰胺酶与β-内酰胺类抗生素联合应用,可以使得β-内酰胺酶对于β-内酰胺类抗生素的水解活性失活,从而增强了细菌对β-内酰胺类抗生素的敏感性,减少或克服了耐药性问题。现有技术公开了多种细菌对β-内酰胺酶抑制剂,例如WO2013149121A1、WO2014141132A1、US20130296290A1、WO2013030735A1、WO2015110963A1、WO2015150890A1、WO2015159265A1、WO2015173663、WO2015173665A1、WO2017055922A1公开的二氮杂螺环[双环[3.2.1]辛烷类化合物。而且,市面上也有多种β-内酰胺酶抑制剂销售,例如克拉维酸、他唑巴坦、阿维巴坦、Relebactam等。但是,上述β-内酰胺酶抑制剂对β-内酰胺酶的抑制效果还不能令人十分满意。因此,目前存在对于新型β-内酰胺酶抑制剂的迫切需求,以期可以与β-内酰胺抗生素联合治疗由β-内酰胺抗生素具有抗性的细菌引起的感染。
专利申请WO2019144912A1中公开了一种如下式I所示的β-内酰胺酶抑制剂,其具有较佳的抑菌活性。
Figure PCTCN2022132591-appb-000001
该专利申请公开了如下反应路线:
其中,(1)第一步使用缩合剂HATU等进行缩合,但是HATU缩合剂成本非常高,只适合小样;(2)SM-6和SM-7在酸性体系中不稳定;(3)从原料SM-1开始总共需要9步反应。
因此,原制备方法存在反应路线长,反应条件苛刻,不适用于大规模工业化生产,收率有待进一步提高。
发明内容
本发明所要解决的技术问题是为了克服现有的式I所示的β-内酰胺酶抑制剂的制备方法存在合成路线冗长、总收率低、使用有毒有害危险或昂贵试剂、反应条件苛刻和(或)反应可重复性可放大性差等不适合较大规模的合成的技术缺陷,而提供了β-内酰胺酶抑制剂中间体及制备方法、及中间体。与现有技术相比,本发明提供的制备方法,起始原料价廉易得,避免了有毒有害和(或)危险试剂和苛刻反应条件,反应步数显著缩短,总收率显著提高,反应可重复性和可放大性显著改善,更为适合工业化合成。
本发明是通过下述技术方案来解决上述技术问题的。
本发明提供了一种如式8所示的二氮杂二环辛烷类化合物的制备方法,其包括如下步骤:将三光气和溶剂的混合物加入到如式7所示的化合物和/或其盐、碱和溶剂的混合物中,进行如下所示的酰胺化关环反应,得到如式8所示的二氮杂二环辛烷类化合物即可;
Figure PCTCN2022132591-appb-000002
其中,所述的溶剂可为乙腈、卤代烃类溶剂(例如二氯甲烷)和芳烃类溶剂(例如甲苯)中的一种或多种。所述的溶剂的用量以不影响反应即可,例如,三光气在所述的三光气和溶剂的混合物中的质量百分比可为10%。所述的如式7所示的化合物和/或其盐、碱和溶剂的混合物中,所述的溶剂与所述的如式7所示的化合物的体积质量比可为3mL/g。
所述的如式7所示的化合物的盐可为盐酸盐,例如2当量的盐酸。
所述的碱可为有机碱,例如N,N-二异丙基乙胺DIPEA和/或三乙胺。
所述的碱与所述的如式7所示的化合物的摩尔比可为4:1;或者,所述的碱与所述的如式7所示的化合物的盐的摩尔比可为6:1。
所述的三光气与所述的如式7所示的化合物和/或其盐的摩尔比可为0.35:1至0.5:1;例如0.38:1至0.4:1。
所述的所示的酰胺化关环反应的温度可为-10℃至0℃。
所述的酰胺化关环反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的制备方法可为如下步骤:内温10℃至30℃下加入所述的碱至所述的如式7所示的化合物和/或其盐和溶剂的混合物中后,加入10%三光气和溶剂的溶液,进行所示的酰胺化关环反应,得到如 式8所示的二氮杂二环辛烷类化合物即可。
所述的酰胺化关环反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测。一般以所述的如式7所示的化合物消失或不再反应时作为反应终点。所述酰胺化关环反应的时间优选8小时-15小时,例如9-10小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的酰胺化反应结束后,加水和甲基叔丁基醚混合,洗涤分离得到的有机相,有机相浓缩,加入丙酮浓缩,即可。所述的淬灭可为控制15~25℃下加入所述的如式7所示的化合物的5倍质量比的水和7倍质量比的甲基叔丁基醚;所述的洗涤可为依次加入所述的如式7所示的化合物的8倍质量比的5%碳酸钠和5%氯化钠的混合水溶液、5倍质量比的饱和氯化钠水溶液洗涤。所述的浓缩可为控制温度不高于55℃减压浓缩。
在某一方案中,所述的如式8二氮杂二环辛烷类化合物的制备方法中,其还包括所述的如式7所示的化合物和/或其盐酸盐的制备方法,
其包括如下步骤:
(1)在溶剂中,在硫酸存在下,将如式6所示的化合物与酸进行反应,得到混合物A;
(2)将还原剂加入混合物A中进行还原反应,得到如式7所示的化合物即可;
Figure PCTCN2022132591-appb-000003
其中,所述的溶剂可为酯类溶剂,例如乙酸乙酯。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式6所示的化合物的体积质量比可为9mL/g-15mL/g,例如12mL/g。
所述的硫酸与所述的化合物6的摩尔比可为4:1至12:1;例如12:1。
所述的硫酸可以浓硫酸与所述的溶剂的溶液形式加入;所述的溶液中,浓硫酸与所述的溶剂的质量比可为1.4:1。
步骤(1)的反应温度可为-45℃至-5℃,例如-35℃至-25℃。
步骤(1)的反应进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式6所示的化合物消失或不再反应时作为反应终点。所述反应的时间优选10小时-30小时,例如21小时。
步骤(1)的反应结束后,可不经后处理直接用于步骤(2)进行所述的还原反应制备所述的化合物7。
所述的还原剂可为硼氢化钠,硼烷甲基硫醚,三乙基硼氢化锂;例如硼氢化钠。
所述的还原剂与所述的如式6所示的化合物的摩尔比可为4:1至6:1;例如4:1。
所述的还原反应的温度可为-70℃至-35℃,例如-70℃至-60℃。
所述的还原反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式7所示的化合物不再增加时作为反应终点。所述还原反应的时间优选2小时10小时,例如4小时。
所述步骤(2)中还可包括后处理;所述的后处理可包括如下步骤:所述的还原反应结束后,加水淬灭反应,加氨水中和反应,分离得到的有机相浓缩,加乙醇浓缩,得到所述的化合物7即可;
或者,继续加乙醇、氯化氢成盐,析晶后过滤,滤饼用乙醇洗涤,(在50℃下真空)干燥,得到所述的化合物7的盐酸盐即可。所述的淬灭可在0℃至10℃;所述的氨水的浓度可为25%;所述的氯化氢可为氯化氢的乙醇溶液,例如4M的氯化氢乙醇溶液。
所述的制备方法中,其还可包括制备所述的化合物6的方法,其包括如下步骤:在溶剂中,在碱存在下,将如式5所示的化合物与O-苯基羟胺或其盐进行席夫碱反应,得到所述的化合物6即可;
Figure PCTCN2022132591-appb-000004
其中,所述的溶剂可为醇类溶剂和/或酯类溶剂,所述的醇类溶剂可为乙醇,异丙醇,叔丁醇和叔戊醇中的一种或多种,所述的酯类溶剂可为乙酸乙酯。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式5所示的化合物的体积质量比可为8mL/g-12mL/g。
所述的如式5所示的化合物与O-苯基羟胺或其盐的摩尔比可为1.15:1至1.5:1,例如1.5:1。
所述的O-苯基羟胺盐可为其盐酸盐。
所述的碱可为碱金属碳酸氢盐,例如碳酸氢钠。
所述的碱与所述的O-苯基羟胺的盐的摩尔比可为2:1.5。
所述的碱与所述的如式5所示的化合物的摩尔比可为1.5:1至2:1,例如2:1。
所述的席夫碱反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的席夫碱反应的温度可为15℃至45℃,例如15℃至25℃。
较佳地,所述的制备所述的化合物6的方法,其包括如下步骤:在溶剂中,于15℃至25℃,将所述的碱加入所述的O-苯基羟胺或其盐和溶剂的混合物中,再加入所述的如式5所示的化合物与溶剂的混合物,进行所述的席夫碱反应,得到所述的化合物6即可。
所述的席夫碱反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式5所示的化合物消失或不再反应时作为反应终点。所述关环反应的时间优选1小时-10小时,例如3小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的席夫碱反应结束后,浓缩,加入甲基叔丁基醚和水萃取,有机相加入柠檬酸水溶液洗涤。有机相加入碳酸氢钠溶液洗涤,浓缩有机相,加入乙酸乙酯减压浓缩,得到所述的化合物6即可。所述的柠檬酸水溶液可为10%柠檬酸水溶液,所述的洗涤可为2次;所述的碳酸氢钠溶液可为5%碳酸氢钠溶液;所述的浓缩可为控制温度小于50℃减压浓缩。
所述的制备方法中,其还可进一步包括制备所述的化合物5的方法,其包括如下步骤:
在溶剂中,在催化剂和配体存在下,将如式4所示的化合物进行如下所示的关环反应,得到所述的化合物5即可;
Figure PCTCN2022132591-appb-000005
其中,所述的溶剂可为芳烃类溶剂、醇类溶剂、醚类溶剂、酰胺类溶剂和酯类溶剂中的一种或多种;所述的芳烃类溶剂可为甲苯,所述的醇类溶剂可为叔戊醇和/或特戊醇,所述的醚类溶剂可为环戊基甲醚和/或四氢呋喃,所述的酰胺类溶剂可为DMAc和/或DMF,所述的酯类溶剂可为醋酸异丙酯;例如甲苯。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式4所示的化合物的体积质量比可为2mL/g-3mL/g。
所述的催化剂可为二(三苯基膦)环戊二烯基氯化钌(II),1,5-环辛二烯氯化铱二聚体,甲氧基(环辛二烯)合铱二聚体,醋酸铜,碘化亚铜,醋酸钯(II),反-二(乙氰)二氯化钯(II)和三氟乙酸钯中的一种或多种,例如二(三苯基膦)环戊二烯基氯化钌(II)。
所述的催化剂与所述的如式4所示的化合物的摩尔比可为0.01至0.1,例如0.015:1。
较佳地,所述的关环反应中还可加入本领域该类反应中常规的配体,所述的配体可为膦配体,例如三苯基膦。所述的配体与所述的如式4所示的化合物的摩尔比可为0.01至0.1,例如0.04:1。
所述的关环反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的关环反应的温度可为60℃至110℃,例如95℃至105℃。
所述的关环反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式4所示的化合物消失或不再反应时作为反应终点。所述关环反应的时间优选1小时-5小时,例如2小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的关环反应结束后,加水洗涤,浓缩有机相,即可。
所述的制备方法中,其还可包括制备所述的化合物4的方法,其包括如下步骤:
在溶剂中,在碱存在下,将如式3所示的化合物与三甲基碘化亚砜进行如下所示的开环反应,得到所述的化合物4即可,
Figure PCTCN2022132591-appb-000006
其中,所述的溶剂可为醚类溶剂和二甲基亚砜的混合物,所述的醚类溶剂可为四氢呋喃,所述的醚类溶剂与二甲基亚砜的体积比可为1:1.2至3:1,例如5:3。
所述的碱可为碱金属的醇化物,例如叔丁醇钾。
所述的碱与所述的如式3所示的化合物的摩尔比可为本领域该类反应常规的摩尔比,例如1:1至1.4:1;例如1.15:1至1.2:1。
所述的三甲基碘化亚砜与所述的如式3所示的化合物的摩尔比可为本领域该类反应常规的摩尔比,例如1:1至1.4:1;例如1.15:1至1.2:1。
所述的开环反应较佳地在惰性气体下进行,所述的惰性气体可为氩气或氮气。
所述的开环反应的温度可为-20~30℃。
所述的步骤较佳地为:将碱与三甲基碘化亚砜在部分醚类溶剂与二甲基亚砜中进行混合后,依次加入剩余部分的醚类溶剂及所述的如式3所示的化合物,进行所述的开环反应。所述的混合的温度可为20~30℃;所述的开环反应的温度可为-10~0℃。
所述的开环反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式3所示的化合物消失或不再反应时作为反应终点。所述开环反应的时间优选5小时-24小时,例如12小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的开环反应结束后,依次加入有机溶剂及5%氯化铵溶液,分层,水相用有机溶剂洗涤,合并后的有机相用5%至2%氯化钠溶液洗涤,干燥,过滤,浓缩有机相即可。
所述的制备方法中,其还可包括制备所述的如式3所示的化合物的方法,其包括如下步骤:
在溶剂中,在Zn/Cu或Zn/Ag试剂存在下,将如式59所示的化合物与甲基化试剂进行如下所示的环丙基化反应,得到如式3所示的化合物即可;
Figure PCTCN2022132591-appb-000007
其中,所述的溶剂可为酰胺类溶剂,例如DMF。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式59所示的化合物的体积质量比可为5mL/g-30mL/g;例如10mL/g。
所述的Zn/Cu或Zn/Ag试剂与所述的如式59所示的化合物的摩尔比可为0.5:1至3:1;例如2:1。
所述的甲基化试剂可为二溴甲烷和/或二碘甲烷。
所述的甲基化试剂与所述的如式59所示的化合物的摩尔比可为01.5:1至3:1;例如2:1。
所述的环丙基化反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的环丙基化反应的温度可为15℃至45℃,例如30℃至40℃。
所述的环丙基化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式59所示的化合物消失或不再反应时作为反应终点。所述环丙基化反应的时间优选10小时-30小时,例如17小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的环丙基化反应结束后,依次加入乙酸乙酯、氯化铵水溶液(例如5%),(通过硅藻土)过滤,分离,用乙酸乙酯洗涤水相,用氯化钠水溶液(例如5%)洗涤合并的有机相,浓缩,加入甲醇和水,析出固体,过滤,干燥,即可。
在某一方案中,所述的制备方法中,其还包括制备如式59所示化合物的方法,其包括如下步骤:
在溶剂中,在碱、甲醛水溶液或多聚甲醛、相转移催化剂存在下,将如式58所示的化合物进行 如下所示的反应,得到如式59所示的化合物,即可;
Figure PCTCN2022132591-appb-000008
其中,所述的溶剂可为醚类溶剂、卤代烃类溶剂、腈类溶剂、酮类溶剂、酯类溶剂和N,N-二甲基甲酰胺中的一种或多种,所述的醚类溶剂可为四氢呋喃和/或1,4-二氧六环,所述的卤代烃类溶剂可为二氯甲烷,所述的酯类溶剂可为乙酸乙酯,所述的腈类溶剂可为乙腈,所述的酮类溶剂可为丙酮;例如二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式58所示的化合物的体积质量比可为8mL/g-12mL/g。
所述的相转移催化剂可为季铵盐,例如四正丁基碘化铵TBAI和/或四丁基氟化铵三水合物TBAF.3H 2O。所述的相转移催化剂与所述的如式58所示的化合物的摩尔比可为0.04:1~0.05:1;例如0.045:1。
所述的碱可为无机碱和/或有机碱,所述的无机碱可为碱金属碳酸盐、碱金属的碳酸氢盐和碱金属醇化物中的一种或多种,所述的碱金属碳酸盐可为碳酸钾和/或碳酸铯,所述的碱金属碳酸氢盐可为碳酸氢钾和/或碳酸氢钠,所述的碱金属醇化物可为叔丁醇钾,所述的有机碱可为三乙胺和/或二异丙胺;例如碳酸钾。
所述的碱与所述的如式58所示的化合物的摩尔比可为2:1至3:1。
所述的甲醛水溶液里的甲醛或多聚甲醛与所述的如式58所示的化合物的摩尔比可为1:1至6:1;例如3.4:1。
较佳地,所述的碱与所述的甲醛水溶液或多聚甲醛分批加入,例如平均分3次加入。
所述的反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的反应的温度可为15℃至55℃,例如35℃至45℃。
所述的反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式58所示的化合物消失或不再反应时作为反应终点。所述反应的时间优选10小时-30小时,例如15小时。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的反应结束后,加5%氯化铵水溶液淬灭反应,洗涤分离得到的有机相,浓缩即可。
所述的制备方法中,其还可包括制备所述的如式58所示的化合物的方法,其包括如下步骤:
在溶剂中,在碱存在下,将如式57所示的化合物与苯甲酰氯进行如下所示的苯甲酰化反应,得到所述的如式58所示的化合物即可;
Figure PCTCN2022132591-appb-000009
其中,所述的溶剂可为酮类溶剂、腈类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的酮类溶剂可为丙酮,所述的腈类溶剂可为乙腈,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;例如四氢呋喃。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式57所示的化合物的体积质量比可为5mL/g-10mL/g。
所述的苯甲酰氯与所述的如式57所示的化合物的摩尔比可为1.05:1至1.1:1。
所述的碱可为碱金属的醇化物和/或双(三甲基硅基)胺基锂LiHMDS,所述的碱金属醇化物可为叔丁醇钠,叔丁醇锂和叔丁醇钾中的一种或多种。
所述的碱与所述的如式57所示的化合物的摩尔比可为1.4:1至2.5:1。
所述的苯甲酰化反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的苯甲酰化反应的温度可为-65℃至25℃,例如-15℃至-5℃。
所述的苯甲酰化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式57所示的化合物消失或不再反应时作为反应终点。所述反应的时间优选1小时。
较佳地,所述的制备所述的如式58所示的化合物的方法,其包括如下步骤:于-15℃至-5℃,将所述的碱、苯甲酰氯依次至所述的如式57所示的化合物和所述的溶剂的混合物中进行所述的苯甲酰化反应,得到所述的如式58所示的化合物即可。
所述的步骤中还可包括后处理;所述的后处理可包括如下步骤:所述的苯甲酰化反应结束后,加10%柠檬酸水溶液淬灭反应,洗涤分离得到的有机相,浓缩即可。
在某一方案中,所述的制备方法中,其还进一步包括所述的如式57所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在碱和相转移催化剂存在下,将如式56所示的化合物和溴苄进行如下所示的苄酯化反应,得到所述的如式57所示的化合物即可,
Figure PCTCN2022132591-appb-000010
所述的苄酯化反应的操作及条件可为本领域该类反应中常规的操作及条件;例如,所述的溶剂可为酯类溶剂,例如乙酸乙酯。所述的碱可为碱金属碳酸盐,例如碳酸钾。所述的相转移催化剂可为四丁基溴化铵TBAB。
本发明提供了一种如式7所示的二氮杂二环辛烷类化合物的制备方法,其包括如下步骤:
(1)在溶剂中,在硫酸存在下,将如式6所示的化合物与酸进行反应,得到混合物A;
(2)将还原剂加入混合物A中进行还原反应,得到如式7所示的化合物即可;
Figure PCTCN2022132591-appb-000011
所述的制备方法中的操作及条件可同如上所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式7所示的化合物的制备中的操作及条件。
本发明提供了一种如式6所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在碱存在下,将如式5所示的化合物与O-苯基羟胺或其盐进行席夫碱反应,得到如式6所示的化合物即可;
Figure PCTCN2022132591-appb-000012
所述的制备方法中的操作和反应条件可同如上所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式6所示的化合物的制备中的操作及条件。
本发明提供了一种如式5所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在催化剂和配体存在下,将如式4所示的化合物进行如下所示的关环反应,得到如式5所示的化合物即可;
Figure PCTCN2022132591-appb-000013
所述的制备方法中的操作和反应条件可同如上所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式5所示的化合物的制备中的操作及条件。
本发明提供了一种如式3所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在Zn/Cu或Zn/Ag试剂存在下,将如式59所示的化合物与甲基化试剂进行如下所示的环丙基化反应,得到如式3所示的化合物即可;
Figure PCTCN2022132591-appb-000014
所述的制备方法中的操作和反应条件可同如上所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式3所示的化合物的制备中的操作及条件。
本发明提供了一种如式59所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在碱、甲醛水溶液或多聚甲醛、相转移催化剂存在下,将如式58所示的化合物进行如下所示的反应,得到如式59所示的化合物即可;
Figure PCTCN2022132591-appb-000015
所述的制备方法中的操作和反应条件可同如上所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式59所示的化合物的制备中的操作及条件。
本发明还提供了一种如式58所示的化合物的制备方法,其包括如下步骤:
在溶剂中,在碱存在下,将如式57所示的化合物与苯甲酰氯进行如下所示的苯甲酰化反应,得到所述的如式58所示的化合物即可;
Figure PCTCN2022132591-appb-000016
所述的制备方法中的操作和反应条件同如上所述的制备所述的如式8所示的二氮杂二环辛烷类化合物的制备方法中如式58所示的化合物的制备方法中的操作及条件。
本发明提供了一种如式5、6、58所示的化合物,
Figure PCTCN2022132591-appb-000017
本发明还提供了一种氧杂二氮唑类化合物和/或其互变异构体的制备方法,其包括如下步骤(a)和/或步骤(b);
步骤(a):
在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体即可;
Figure PCTCN2022132591-appb-000018
步骤(b):在有机溶剂和水中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物即可;
Figure PCTCN2022132591-appb-000019
其中,所述的如式18所示的酰肼类化合物的互变异构体如式18’所示,所述的如式19所示的氧杂二氮唑类化合物的互变异构体如式20所示,
Figure PCTCN2022132591-appb-000020
所述的步骤(a)中,所述的溶剂可为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式18所示的化合物的体积质量比可为6.5mL/g-10mL/g。
所述的步骤(a)中,所述的脱水剂可为伯吉斯试剂(Burgess试剂,N-(三乙基氨磺酰)氨基甲酸甲酯)。所述的脱水剂与所述的如式18所示的化合物的摩尔比可为2:1~10:1;例如4.6:1。
所述的步骤(a)中,所述的碱可为有机碱,例如N,N-二异丙基乙胺和/或三乙胺。所述的碱与所述的如式18所示的化合物的摩尔比可为4:1~6.5:1;例如4.1:1、6.2:1。
所述的关环反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的关环反应的温度可为10℃至45℃,例如25℃至35℃。
所述的关环反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式18所示的化合物消失或不再反应时作为反应终点。例如如式18所示的化合物消失或不再反应时作为反应终点,所述关环反应的时间优选10小时-30小时,例如20小时。
所述的步骤(a)中还可包括后处理;所述的后处理可包括如下步骤:所述的关环反应结束后,加水淬灭反应,洗涤分离得到的有机相,即可。所述的淬灭可为控制15~25℃下加入所述的如式18所示的化合物的5-10倍质量比的水;所述的洗涤可为加入所述的如式18所示的化合物的5-10倍质量比的饱和氯化钠水溶液洗涤。在本发明某一方案中,较佳地,可将后处理后的含所述的如式20所示的化合物的有机相不经纯化直接投料下步反应。
所述的步骤(b)中,所述的有机溶剂可为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷。所述的水与所述的有机溶剂的体积比可为1.3:1至1:1。所述的溶剂的用量以不影响反应即可,例如所述的水与所述的如式19所示的化合物的质量比可为5-10 倍。
所述的步骤(b)中,所述的酸性条件可为pH至6~8;所述的酸性条件可为加入5%柠檬酸调节得到,所述5%柠檬酸加入温度可为15~25℃。
所述的互变异构化反应的温度可为10℃至45℃,例如35℃至45℃。
所述的互变异构化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式19所示的化合物消失或不再反应时作为反应终点。所述互变异构化反应的时间优选10小时-30小时,例如20小时。
所述的步骤(b)中还可包括后处理;所述的后处理可包括如下步骤:所述的互变异构化反应结束后,加入正庚烷,搅拌,降温至5~15℃,搅拌;过滤,用水淋洗,干燥,即可。所述的正庚烷较佳地为滴加,所述正庚烷的加入温度可为15~25℃;所述的正庚烷与所述的如式20所示的化合物的质量比可为3:1;所述的搅拌的时间可为3小时;所述的淋洗中的水与所述的如式20所示的化合物的质量比可为3:1。
所述的步骤(b)中,所述的如式19所示的酰肼类化合物可采用步骤(a)制备得到。
在所述的步骤(a)中,其还可包括制备所述的如式18所示的酰肼类化合物和/或其互变异构体的方法,其包括如下步骤(c):
在溶剂中,将如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体进行酰胺化反应,得到所述的如式18所示的酰肼类化合物和/或其互变异构体即可;
Figure PCTCN2022132591-appb-000021
其中,所述的溶剂可为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式17所示的化合物的体积质量比可为10mL/g-20mL/g。
所述的如式24所示的酸酐类化合物与所述的如式17所示的肼类化合物和/或其互变异构体得摩尔比可为1.3:1至1:1.3;例如1:1.2。
所述酰胺化反应的温度可为-15℃至0℃,例如-10℃至0℃。
较佳地,其为如下步骤:控制温度在-10~0℃,将所述的如式24所示的酸酐类化合物和所述溶剂的混合物加入到所述的如式17所示的化合物和所述溶剂的混合物中,进行所述的酰胺化反应,得到所述的如式18所示的酰肼类化合物和/或其互变异构体即可。
所述的酰胺化反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述的酰胺化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检 测,一般以所述的如式24所示的化合物消失或不再反应时作为反应终点。所述酰胺化反应的时间优选1小时-3小时,例如1小时。
所述的步骤(c)还可包括后处理;所述的后处理可包括如下步骤:所述的酰胺化反应结束后,洗涤有机相后,用乙酸乙酯进行有机溶剂的置换,并用水洗涤后,加入甲基叔丁基醚混合沉淀,过滤,洗涤,干燥即可;所述的洗涤可为依次用水和5%碳酸氢钠溶液进行洗涤,所述的水和5%碳酸氢钠溶液用量可为反应体系的0.3倍体积;较佳地在10℃下洗涤;所述的有机溶剂的置换可为如下步骤:洗涤后的有机相,浓缩(至产物的2-4倍体积),加(产物的4-5倍体积)乙酸乙酯混合,浓缩(至产物的约4倍体积),加入(产物的9-10倍体积的)乙酸乙酯和(产物的2-3倍体积的)水混合,分离得到的有机相浓缩(至产物的4-6倍体积),即可用于结晶步骤。所述的沉淀可为加入(产物的3-5倍体积)甲基叔丁基醚混合,降温析出固体;所述的混合温度可为35-45℃,所述的降温可为降温至10-20℃;所述的洗涤固体可为过滤后,用(产物的0.8-1倍体积的)乙酸乙酯和甲基叔丁基醚混合溶液(体积比1.2:1)洗涤。
所述的酰胺化反应的原料为所述的如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体以及所述的溶剂。
在某一方案中,所述的制备所述的如式18所示的酰肼类化合物和/或其互变异构体的方法中,其可包括如下方案(i)和/或方案(ii),
方案(i)为制备所述的如式24所示的酸酐类化合物的方法,其包括如下步骤(d):在溶剂中,在碱存在下,将如式9所示的羧酸类化合物与特戊酰氯进行酰化反应,得到所述的如式24所示的酸酐类化合物即可,
Figure PCTCN2022132591-appb-000022
方案(ii)为制备所述的如式17所示的肼类化合物的方法,其包括如下步骤(e):将肼与如式16所示的氮杂环类化合物和/或其互变异构体进行如下所示的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体即可,
Figure PCTCN2022132591-appb-000023
步骤(d)中,所述的如式9所示的羧酸类化合物与特戊酰氯的摩尔比可为1:1至1:1.6;例如1:1.1。
所述的溶剂可为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式9所示的化合 物的体积质量比可为10mL/g-20mL/g。
所述的碱可为有机碱,例如N,N-二异丙基乙胺DIPEA、吡啶和三乙胺中的一种或多种。
所述的碱与所述的如式9所示的羧酸类化合物的摩尔比可为3:1至1:1;例如2:1。
所述的酰化反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述酰化反应的温度可为-10~10℃,例如-10~0℃。
所述的步骤(d)较佳地为:于-5℃以下,将所述的碱、特戊酰氯依次加入到所述的如式9所示的化合物与所述的溶剂的混合物中后,于-10~0℃进行所述的酰化反应,得到所述的如式24所示的酸酐类化合物即可。
所述的酰化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式9所示的化合物消失或不再反应时作为反应终点。所述酰胺化反应的时间优选1小时-3小时,例如2.5小时。
所述的酰化反应结束后可不经后处理直接用于所述的酰胺化反应。
步骤(e)中,所述的肼与如式16所示的氮杂环类化合物和/或其互变异构体的摩尔比可为1.5:1至3:1。
所述的肼可为水合肼,例如80%的水合肼。
所述的溶剂为醇类溶剂、芳烃类溶剂和卤代烷烃中的一种或多种;所述的醇类溶剂可为甲醇、乙醇和异丙醇中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的卤代烷烃可为二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式16所示的化合物的体积质量比可为10mL/g-20mL/g,例如12mL/g。
所述的酰肼化反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
所述酰肼化反应的温度可为-20~10℃,例如-10~5℃。
所述的步骤(e)较佳地为:控制温度在5℃以下,将肼加入到所述的如式16所示的氮杂环类化合物和所述溶剂的混合物中,进行所述的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体即可。
所述的酰肼化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式16所示的化合物消失或不再反应时作为反应终点。所述酰肼化反应的时间优选1小时-3小时,例如1小时。
所述的步骤(e)还可包括后处理;所述的后处理可包括如下步骤:所述的酰肼化反应结束后,依次加入(10%)氯化铵水溶液和二氯甲烷混合,分离,水相用二氯甲烷萃取,合并有机相,用水洗涤,浓缩;即可直接用于下一步的酰胺化反应。
在所述的方案(ii)中,其还可包括制备所述的如式16所示的氮杂环类化合物和/或其互变异构体的方法,其包括如下步骤(f):
在溶剂中,在三苯基膦、咪唑和碘存在下,将如式15所示的胍类化合物进行如下所示的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体即可,
Figure PCTCN2022132591-appb-000024
其中,所述的三苯基膦与所述的如式15所示的胍类化合物的摩尔比可为1.1:1至1.3:1。
所述的咪唑与所述的如式15所示的胍类化合物的摩尔比可为2.2:1至2.6:1。
所述的碘与所述的如式15所示的胍类化合物的摩尔比可为1.1:1至1.3:1。
所述的溶剂可为腈类溶剂和/或卤代烃类溶剂,所述的腈类溶剂可为乙腈,所述的卤代烃类溶剂可为二氯甲烷;所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式15所示的化合物的体积质量比可为16mL/g-40mL/g。
所述Appel反应和关环反应的温度可为-10℃至10℃,例如-5℃至5℃。
所述的Appel反应和关环反应较佳地在惰性气体下进行,所述的惰性气体例如氮气、氩气。
步骤(f)较佳地为:所述的如式15所示的胍类化合物和所述的溶剂的混合物滴加到所述的碘、三苯基膦、咪唑和所述的溶剂的混合物中。
步骤(f)较佳地为:于-5℃至5℃,将碘分批加入到三苯基膦、咪唑和所述的溶剂的混合物中得到反应体系1后,再将所述的如式15所示的胍类化合物和所述的溶剂的混合物加入上述反应体系1中进行所述的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体,即可。所述的如式15所示的胍类化合物和所述的溶剂的混合物较佳地滴加到所述的反应体系1中。
所述的关环反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式15所示的化合物消失或不再反应时作为反应终点。所述Appel反应和关环反应的时间优选1小时-3小时,例如1小时。
所述的步骤(f)还可包括后处理;所述的后处理可包括如下步骤:所述的关环反应结束后,加入(5%)Na 2SO 3水溶液,分离得到的有机相用水洗涤,浓缩,加入DMF和正庚烷(质量比≈14:1)混合,浓缩,加水混合,过滤,滤饼用DMF/水(体积比≈1:1)洗涤,加入乙酸乙酯溶解,加水洗涤(2次),浓缩,加正庚烷和甲基叔丁基醚(质量比≈1:1)混合,过滤,滤饼洗涤,干燥,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体,即可。例如,在-5~5℃下加入(5%)Na 2SO 3水溶液。
在所述的方案(ii)中,所述的如式15所示的胍类化合物可采用如下步骤制备得到:在有机溶剂和水中,在碱存在下,将如式13所示的化合物与如式14所示的化合物进行如下所示的亚胺化反应,得到所述的如式15所示的胍类化合物即可,
Figure PCTCN2022132591-appb-000025
其中,所述的如式13所示的化合物与所述的如式14所示的化合物的摩尔比可为1:1。
所述的有机溶剂可为腈类溶剂和/或卤代烃类溶剂,所述的腈类溶剂可为乙腈,所述的卤代烃类溶剂可为二氯甲烷。所述的溶剂的用量以不影响反应即可,例如所述的有机溶剂与所述的如式14所示的化合物的体积质量比可为6mL/g-15mL/g,例如8mL/g-10mL/g。
所述的亚胺化反应较佳地在惰性气体下进行,例如氮气、氩气。
所述亚胺化反应的温度可为10℃至40℃,例如20℃至30℃。
所述的碱可为碱金属的碳酸盐和/或碳酸氢盐,例如碳酸钾和/或碳酸氢钾。
所述的水与所述的碱的质量比可为1.5至2.5:1,例如2:1。
所述的亚胺化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式15所示的化合物消失或不再反应时作为反应终点。所述亚胺化反应的时间优选10小时-20小时,例如16小时。
所述的步骤(f)还可包括后处理;所述的后处理可包括如下步骤:所述的亚胺化反应结束后,加水洗涤有机相(例如2次),分离得到的有机相浓缩即可。
本发明中,所述的互变异构体是指含
Figure PCTCN2022132591-appb-000026
Figure PCTCN2022132591-appb-000027
Figure PCTCN2022132591-appb-000028
片段的化合物互为互变异构体。
本发明提供了一种如式16所示的氮杂环类化合物和/或其互变异构体、如式17所示的肼类化合物和/或其互变异构体、如式24所示的酸酐类化合物、如式18所示的酰肼类化合物和/或其互变异构体,
Figure PCTCN2022132591-appb-000029
Figure PCTCN2022132591-appb-000030
Figure PCTCN2022132591-appb-000031
Figure PCTCN2022132591-appb-000032
Figure PCTCN2022132591-appb-000033
本发明提供了一种如式18所示的酰肼类化合物和/或其互变异构体的制备方法,其包括如下步骤:
在溶剂中,将如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体进行酰胺化反应,得到如式18所示的酰肼类化合物和/或其互变异构体即可;
Figure PCTCN2022132591-appb-000034
所述的如式18所示的酰肼类化合物和/或其互变异构体的制备方法中的操作和反应条件可同上所述的氧杂二氮唑类化合物和/或其互变异构体的制备方法中制备所述的如式18所示的酰肼类化合物和/或其互变异构体的方法中的操作和反应条件。
本发明提供了一种如式24所示的酸酐类化合物的制备方法,其包括如下步骤:在溶剂中,在碱存在下,将如式9所示的羧酸类化合物与特戊酰氯进行酰化反应,得到所述的如式24所示的酸酐类化合物即可,
Figure PCTCN2022132591-appb-000035
所述的如式24所示的酸酐类化合物和/或其互变异构体的制备方法中的操作和反应条件可同上所述的氧杂二氮唑类化合物和/或其互变异构体的制备方法中制备所述的如式24所示的酸酐类化合物和/或其互变异构体的方法中的操作和反应条件。
本发明提供了一种如式17所示的肼类化合物和/或其互变异构体的制备方法,其包括如下步骤:
将肼与如式16所示的氮杂环类化合物和/或其互变异构体进行如下所示的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体即可,
Figure PCTCN2022132591-appb-000036
所述的如式17所示的肼类化合物和/或其互变异构体的制备方法中的操作和反应条件可同上所述的氧杂二氮唑类化合物和/或其互变异构体的制备方法中制备所述的如式17所示的酰肼类化合物和/或其互变异构体的方法中的操作和反应条件。
本发明提供了一种如式16所示的所示的氮杂环类化合物和/或其互变异构体的制备方法,其包括如下步骤:
在溶剂中,在三苯基膦、咪唑和碘存在下,将如式15所示的胍类化合物进行Appel反应和如下 所示的关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体即可,
Figure PCTCN2022132591-appb-000037
所述如式16所示的所示的氮杂环类化合物和/或其互变异构体的制备方法中的反应条件和操作可同如上所述的氧杂二氮唑类化合物和/或其互变异构体的制备方法中制备所述的如式16所示的氮杂环类化合物和/或其互变异构体的方法中的反应条件和操作。
本发明提供了一种β-内酰胺酶抑制剂及中间体的制备方法,其为如下方案:
方案一、如式21所示的羟胺类化合物和/或其互变异构体的制备方法,其包括如下步骤:
步骤(1):包括如下步骤(a)和/或步骤(b),
步骤(a):
在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体即可;
Figure PCTCN2022132591-appb-000038
步骤(b):在溶剂中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物即可;
Figure PCTCN2022132591-appb-000039
步骤(2):在溶剂中,在钯催化剂和氢气存在下,将所述的如式20所示的咪唑啉类化合物和/或其互变异构体进行所示的脱苄基反应,得到如式21所示的羟胺类化合物和/或其互变异构体即可;所述的如式20所示的咪唑啉类化合物和/或其互变异构体的制备同如上所述的步骤(a)或(b);
Figure PCTCN2022132591-appb-000040
方案二、如式21所示的羟胺类化合物和/或其互变异构体的制备方法,其包括如下步骤:
步骤(1):同方案一中的步骤(1);
步骤(2):同方案一中的步骤(2);
步骤(3):在溶剂中,在吡啶和磺化试剂存在下,将所述的如式21所示的羟胺类化合物和/或其互变异构体进行所示的磺酸化反应,得到如式22所示的磺酸氧类化合物和/或其互变异构体即可;
Figure PCTCN2022132591-appb-000041
方案三、如式I所示的亚胺类化合物的制备方法,其包括如下步骤:
步骤(1)至(3):同方案二中的步骤(1)至(3);
步骤(4):在水和有机溶剂中,将所述的如式22所示的磺酸氧类化合物和/或其互变异构体进行所示的脱胺基保护基反应,得到如式I所示的亚胺类化合物即可;
Figure PCTCN2022132591-appb-000042
方案一的步骤(1)中,所述的反应操作和条件同如上所述的氧杂二氮唑类化合物和/或其互变异构体的制备方法中的反应操作和条件。
方案一的步骤(2)中,所述的溶剂可为醇类溶剂、醚类溶剂、酰胺类溶剂和卤代烃类溶剂中的一种或多种;所述的醇类溶剂可为甲醇、乙醇和异丙醇中的一种或多种;所述的卤代烃类溶剂可为二氯甲烷,所述的醚类溶剂可为四氢呋喃,所述的酰胺类溶剂可为二甲基乙酰胺DMAc和/或N-甲基吡咯烷酮NMP。例如四氢呋喃。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式20所示的咪唑啉类化合物和/或其互变异构体的体积质量比可为15mL/g至27mL/g。
所述的钯催化剂可为钯炭、氢氧化钯;例如10%钯炭(干基)。
所述的钯催化剂与所述的如式20所示的咪唑啉类化合物和/或其互变异构体的质量比可为0.02:1至0.9:1;例如0.09:1。
所述的氢气的压力可为0.3Mpa至0.5Mpa。
所述的脱苄基反应的温度可为0℃至40℃,例如10℃至20℃。
所述的脱苄基反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式20所示的咪唑啉类化合物和/或其互变异构体消失或不再反应时作为反应终点。所述脱苄基反应的时间优选10小时-30小时,例如24小时。
所述的方案一中还可包括后处理;所述的后处理可包括如下步骤:所述的脱苄基反应结束后,加入二甲基亚砜混合,过滤,滤饼用四氢呋喃洗涤,合并滤液,加入巯基硅胶和活性炭(质量比1:1), 混合,过滤,滤饼用四氢呋喃洗涤,合并滤液,浓缩,加水和乙腈(质量比1.27:1)混合,过滤,淋洗,干燥即可。所述的二甲基亚砜的用量可为所述的如式20所示的咪唑啉类化合物和/或其互变异构体的10至12倍;所述的巯基硅胶和活性炭的用量可为所述的如式20所示的咪唑啉类化合物和/或其互变异构体的0.16倍;所述的水和乙腈的用量可为所述的如式20所示的咪唑啉类化合物和/或其互变异构体的14至15倍。
所述的方案二的步骤(3)中,所述的溶剂可为卤代烃类溶剂和/或腈类溶剂;所述的卤代烃类溶剂可为二氯甲烷,所述的腈类溶剂可为乙腈。例如乙腈。所述的溶剂的用量以不影响反应即可,例如所述的溶剂与所述的如式21所示的羟胺类化合物和/或其互变异构体的体积质量比可为5mL/g至20mL/g。
所述的磺化试剂可为三氧化硫吡啶、三氧化硫三乙胺和三氧化硫三甲胺中的一种或多种。
所述的三氧化硫吡啶与所述的如式21所示的羟胺类化合物和/或其互变异构体的质量比可为1.2:1至6:1;例如1.2:1至5.97:1。
所述的吡啶与所述的如式21所示的羟胺类化合物和/或其互变异构体的质量比可为2.5:1至6.25:1。
所述的磺酸化反应的温度可为15℃至35℃,例如25℃至35℃。
所述的磺酸化反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式21所示的羟胺类化合物和/或其互变异构体消失或不再反应时作为反应终点。所述磺酸化反应的时间优选5小时-10小时,例如6小时。
所述的方案二的步骤(3)中还可包括后处理;所述的后处理可包括如下步骤:所述的磺酸化反应结束后,加入活性炭混合,过滤,滤饼用乙腈洗涤,合并滤液,即可。所述的滤液可直接用于下一步反应即可。
所述的方案三的步骤(4)中,所述的有机溶剂可为腈类溶剂;所述的腈类溶剂可为乙腈。所述的水和有机溶剂的用量以不影响反应即可,例如所述的有机溶剂与所述的如式22所示的磺酸氧类化合物和/或其互变异构体的体积质量比可为9mL/g至11mL/g。
所述的脱胺基保护基反应的温度可为18℃至40℃,例如30℃至40℃。
所述的脱胺基保护基反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式22所示的磺酸氧化合物和/或其互变异构体消失或不再反应时作为反应终点。所述脱胺基保护基反应的时间优选3小时-10小时,例如5小时。
所述的方案三的步骤(4)中,还可包括如下纯化步骤:反应结束后,降温至0℃至10℃,析出固体,过滤,滤饼10%乙腈水溶液洗涤,加入二甲基亚砜,升温至45-65℃混合,在此温度下滴加乙腈,降温至0~10℃混合,析出固体,过滤,滤饼用乙腈淋洗后,加入水,控温20~30℃混合,降温至0~10℃,混合,析出固体,过滤,滤饼用水洗涤,干燥即可。
本发明提供了一种β-内酰胺酶抑制剂的制备方法,其特征在于,其包括如下步骤:
Figure PCTCN2022132591-appb-000043
步骤一:在溶剂中,在碱和相转移催化剂存在下,将如式56所示的化合物和溴苄进行如下所示的苄酯化反应,得到所述的如式57所示的化合物;
步骤二:在溶剂中,在碱存在下,将如式57所示的化合物与苯甲酰氯进行如下所示的苯甲酰化反应,得到所述的如式58所示的化合物;
步骤三:在溶剂中,在碱、甲醛水溶液或多聚甲醛、相转移催化剂存在下,将如式58所示的化合物进行如下所示的反应,得到如式59所示的化合物,即可;
步骤四:在溶剂中,在Zn/Cu或Zn/Ag试剂存在下,将如式59所示的化合物与甲基化试剂进行如下所示的环丙基化反应,得到如式3所示的化合物;
步骤五:在溶剂中,在碱存在下,将如式3所示的化合物与三甲基碘化亚砜进行如下所示的开环反应,得到所述的化合物4;
步骤六:在溶剂中,在催化剂和配体存在下,将如式4所示的化合物进行如下所示的关环反应,得到所述的化合物5;
步骤七:在溶剂中,在碱存在下,将如式5所示的化合物与O-苯基羟胺或其盐进行席夫碱反应,得到所述的化合物6;
步骤八:(1)在溶剂中,在硫酸存在下,将如式6所示的化合物与酸进行反应,得到混合物A; (2)将还原剂加入混合物A中进行还原反应,得到如式7所示的化合物;
步骤九:将三光气和溶剂的混合物加入到如式7所示的化合物和/或其盐、碱和溶剂的混合物中,进行如下所示的酰胺化关环反应,得到如式8所示的二氮杂二环辛烷类化合物;
步骤十:在有机溶剂和水中,将碱加入到式8所示的化合物中,水解得到如式9所示的化合物;
步骤十一:在溶剂中,在碱存在下,将如式9所示的羧酸类化合物与特戊酰氯进行酰化反应,得到所述的如式24所示的酸酐类化合物;
步骤十二:在有机溶剂和水中,在碱存在下,将如式13所示的化合物与如式14所示的化合物进行如下所示的亚胺化反应,得到所述的如式15所示的胍类化合物;
步骤十三:在溶剂中,在三苯基膦、咪唑和碘存在下,将如式15所示的胍类化合物进行如下所示的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体;
步骤十四:将肼与如式16所示的氮杂环类化合物和/或其互变异构体进行如下所示的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体;
步骤十五:将如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体进行酰胺化反应,得到所述的如式18所示的酰肼类化合物和/或其互变异构体;
步骤十六:在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体;
步骤十七:在有机溶剂和水中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物;
步骤十八:在溶剂中,在钯催化剂和氢气存在下,将所述的如式20所示的咪唑啉类化合物和/或其互变异构体进行所示的脱苄基反应,得到如式21所示的羟胺类化合物和/或其互变异构体;
步骤十九:在溶剂中,在吡啶和磺化试剂存在下,将所述的如式21所示的羟胺类化合物和/或其互变异构体进行所示的磺酸化反应,得到如式22所示的磺酸氧类化合物和/或其互变异构体;
步骤二十:在水和有机溶剂中,将所述的如式22所示的磺酸氧类化合物和/或其互变异构体进行所示的脱胺基保护基反应,得到如式I所示的亚胺类化合物。
所述的制备方法中的各步反应的操作及条件可同本发明中上述任意方案中相应的反应的操作及条件。
在不违背领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:采用本发明提供的方法制备所述β-内酰胺酶抑制剂及中间体,成本低,提高了关键反应的可重复性和可放大性,相比现有技术显著提高了总收率、减少了反应步数,具有绿色安全高效简便的技术优势;适于工业化生产。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。 下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
XNW210003的合成
Figure PCTCN2022132591-appb-000044
实施例1
XNW210057的制备
Figure PCTCN2022132591-appb-000045
反应釜用氮气置换后,依次加入1000ml乙酸乙酯,100g XNW210056,66.3g K 2CO 3,10g TBAB,调节内温至20~30℃,在此温度下滴加74.6g BnBr,升温至45~55℃,在此温度下反应7小时,取样中控至反应完全,转化率99.1%。
体系降温至15~25℃,过滤,滤液中加入500ml 5%氯化钠溶液,搅拌,静置分层,控制温度低于50℃下减压浓缩有机相至没有液体滴出,加入300ml正庚烷,继续低于50℃下减压浓缩有机相至没有液体滴出,加入300ml正庚烷,继续低于50℃下减压浓缩有机相至没有液体滴出,加入300ml正庚烷,在15~25℃搅拌2小时,过滤,用100ml正庚烷洗涤滤饼。湿品在50℃真空干燥,得到128g白色固体XNW210057。纯度96.0%,ee值99.76%,含量98%,收率91%。
实施例2
XNW210058的制备
Figure PCTCN2022132591-appb-000046
反应釜用氮气置换后,依次加入250ml四氢呋喃,51g(1.0eq.)XNW210057,调节内温至-15~-5℃,在此温度下滴加23.1g(1.05eq.)苯甲酰氯,分十次加入37.6g(2.5eq.)叔丁醇钠,继续在此温度反应1小时,取样中控至反应完全。
调整体系温度至-5~5℃,加入250ml 10%柠檬酸溶液,搅拌,静置分层,减压浓缩有机相至没有 液体滴出,加入250ml乙醇,继续减压浓缩有机相至没有液体滴出,加入250ml乙醇,减压浓缩有机相至没有液体滴出,加入250ml乙醇和250ml水,在20~25℃搅拌1小时,过滤。湿品真空干燥,得到46g白色固体XNW210058。纯度92.9%,收率70%。
实施例3
XNW210059的制备(1)
Figure PCTCN2022132591-appb-000047
反应釜用氮气置换后,依次加入200ml二氯甲烷,21g XNW210058,1.5g多聚甲醛,6.9g碳酸钾和0.8g TBAI,调节内温至35~45℃,在此温度反应2小时,加入1.5g多聚甲醛和6.9g碳酸钾,继续反应2小时,加入1.5g多聚甲醛和6.9g碳酸钾,继续反应11小时,取样中控直至反应完全。
调整体系温度至20~25℃,加入150ml 5%氯化铵溶液,搅拌,静置分层,有机相用100ml水洗涤,减压浓缩有机相至没有液体滴出,得到18g油状物粗品XNW210059。纯度69.6%,含量56.1%,收率70%。
XNW210059的制备(2)
Figure PCTCN2022132591-appb-000048
反应釜用氮气置换后,依次加入5ml N,N-二甲基甲酰胺,0.5g XNW210058,0.14g甲醛水溶液,0.16g碳酸钾和0.19g四丁基氟化铵三水合物,调节内温至35~45℃,在此温度反应3小时,取样中控直至反应完全。
调整体系温度至20~25℃,加入10ml甲基叔丁基醚和10ml水,搅拌,静置分层,水相再用10ml甲基叔丁基醚萃取一次,合并有机相,减压浓缩有机相至没有液体滴出,得到0.36g油状物粗品XNW210059。纯度85%,收率80%。
实施例4
XNW210003的制备(1)
Figure PCTCN2022132591-appb-000049
反应釜用氮气置换后,依次加入30ml DMF,3g(1.0eq.)XNW210059,1.05g(2.0eq.)Zn/Cu, 2.8g(2.0eq.)二溴甲烷,调节内温至30~40℃,在此温度反应17小时,取样中控直至反应完全。
调整体系温度至25℃,加入30ml乙酸乙酯,滴加30ml 5%氯化铵溶液,搅拌,通过硅藻土过滤,静置分层,水相用30ml乙酸乙酯洗涤,合并有机相并用15ml 5%氯化钠洗涤,减压浓缩有机相至没有液体滴出,加入18ml甲醇和9ml水,搅拌,过滤得到4.8g粗湿品XNW210003。纯度82.3%,含量41.1%,收率70%。 1H NMR,CDCl 3,7.37~7.26(m,5H),5.22~5.21(m,2H),4.74~4.69(m,1H),2.56~2.49(m,1H),1.93~1.87(m,1H),1.45(s,9H),1.32~1.15(m,2H),0.80~0.72(m,2H),1.28~1.21(m,2H),1.07~0.88(m,2H),0.71(s,2H)),M/S:(m/z=713.3,2M+Na)。
XNW210003的制备(2)
Figure PCTCN2022132591-appb-000050
反应釜用氮气置换后,依次加入30ml DMF,2.96g(5.0eq.)Zn/Ag,7g(5.0eq.)二溴甲烷,调节内温至20~30℃,滴加3g(1.0eq.)XNW210059的DMF(15ml)溶液,在此温度反应6小时,取样中控直至反应完全。
通过硅藻土过滤,30ml乙酸乙酯淋洗滤饼,滴加45ml水,搅拌,静置分层,有机相用15ml水洗涤,减压浓缩有机相至没有液体滴出,加入18ml甲醇和9ml水,搅拌,过滤,湿品干燥得到2.19g XNW210003。收率70%。 1H NMR,CDCl 3,7.37~7.26(m,5H),5.22~5.21(m,2H),4.74~4.69(m,1H),2.56~2.49(m,1H),1.93~1.87(m,1H),1.45(s,9H),1.32~1.15(m,2H),0.80~0.72(m,2H),1.28~1.21(m,2H),1.07~0.88(m,2H),0.71(s,2H)),M/S:(m/z=713.3,2M+Na)。
Zn/Ag试剂制备:反应釜氮气保护,加入50ml乙酸,搅拌,加入50mg乙酸银,加热体系至回流,加入5.58g锌粉,体系降温至20~30℃,过滤,滤饼加入反应釜中,加入50ml四氢呋喃,搅拌30分钟,过滤,滤饼加入反应釜中,加入50ml四氢呋喃,搅拌30分钟,过滤,滤饼烘干得5.2g Zn/Ag试剂。
XNW210009的合成
Figure PCTCN2022132591-appb-000051
实施例5
XNW210002的制备
Figure PCTCN2022132591-appb-000052
反应釜用氮气置换后,依次加入30ml乙酸乙酯,10g(1.0eq.)XNW210001,6.3g(1.1eq.)碳酸钾,控制温度30℃以下滴加7.1g苄溴(1.0eq.),调节内温至47~58℃,搅拌24小时以上,取样中控至反应完全。
反应液降温至10~30℃,加入30g水至反应液中,搅拌,静置分层,收集有机相,得到36g XNW210002乙酸乙酯溶液,纯度97.5%,含量35.6%,收率93.4%。 1H NMR,DMSO-d 6,7.38~7.37(m,5H),5.22~5.06(m,2H),4.41~4.33(m,1H),3.36~3.28(m,1H),3.22~3.15(m,1H),2.36~2.29(m,1H),1.70~1.60(m,1H),1.39~1.28(m,9H),0.54~0.34(m,4H)),M/S:(m/z=685.3,2M+Na)。
实施例6
XNW210003的制备
Figure PCTCN2022132591-appb-000053
反应釜用氮气置换后,依次加入500ml水,0.45g(0.01eq.)一水合氧化钌,250g(1.0eq.)XNW210002乙酸乙酯溶液(含量40%),200ml乙酸乙酯,控温15~25℃分批加入177.5g(0.27eq.)高碘酸钠,继续反应30分钟,取样中控至反应完全。
加入30g硅藻土至反应液中,继续搅拌30分钟,反应液通过硅藻土过滤,并用100ml乙酸乙酯洗涤滤饼,滤液搅拌30分钟,静置分层,收集有机相,滤饼加入500ml乙酸乙酯搅拌30分钟,过滤,收集滤液,合并上述有机相和滤液,加入544.4g 10%亚硫酸钠水溶液洗涤,控温50℃以下减压浓缩有机相至1~1.5倍体积,加入400ml正庚烷,继续减压浓缩至1~1.5倍体积,加入300ml正庚烷,继续减压浓缩至2~3倍体积,在10~30℃搅拌2小时,过滤,滤饼用50ml正庚烷淋洗,湿品在50℃真空干燥,得到88.2g白色固体XWN210003,含量98.4%,纯度97%,收率83%。 1H NMR,CDCl 3,7.37~7.26(m,5H),5.22~5.21(m,2H),4.74~4.69(m,1H),2.56~2.49(m,1H),1.93~1.87(m,1H),1.45(s,9H),1.32~1.15(m,2H),0.80~0.72(m,2H),1.28~1.21(m,2H),1.07~0.88(m,2H),0.71(s,2H)),M/S:(m/z=713.3,2M+Na)。
实施例7
XNW210004的制备
Figure PCTCN2022132591-appb-000054
反应釜用氮气置换后,依次加入1000ml四氢呋喃,151g(1.2eq.)三甲基碘化亚砜,73.7g(1.15eq.)叔丁醇钾,1200ml二甲基亚砜,调节内温至20~30℃,搅拌2小时,备用。
另一个反应釜用氮气置换后,依次加入1000ml四氢呋喃,200g(1.0eq.)XNW210003,调节内温至-10~0℃,在此温度下滴加上述配置好的溶液,继续反应12小时,取样中控至反应完全。
向反应液中依次加入1000ml甲苯,控制15℃以下加入1000ml 5%氯化铵溶液,控温15~25℃搅拌30分钟,静置分层,水相用600ml甲苯洗涤,合并有机相,有机相用1000ml 5%氯化钠溶液洗涤,再用1000ml 2%氯化钠溶液洗涤,有机相用300g无水硫酸镁干燥,通过硅藻土过滤反应液,用600ml甲苯洗涤滤饼,合并滤液,控制夹套温度小于40℃减压浓缩滤液至7~9V,得到1366.5g XNW210004甲苯溶液。纯度83%,含量13.7%,收率75%。 1H NMR,CDCl 3,7.37(s,5H),6.01~5.98(m,1H),5.21~5.11(m,2H),4.42~4.15(m,2H),3.35~3.34(m,6H),2.37~2.31(m,1H),1.74~1.64(m,2H),1.43(s,9H),1.28~1.21(m,2H),1.07~0.88(m,2H),0.71(s,2H)),M/S:(m/z=438.2,M+H)。
实施例8
XNW210005的制备
Figure PCTCN2022132591-appb-000055
反应釜用氮气置换后,依次加入100ml甲苯,0.25g(0.04eq.)三苯基膦,0.25g(0.014eq.)二(三苯基膦)环戊二烯基氯化钌(II),调节内温至95~105℃,在此温度下加入42g(1.0eq.)XNW210004甲苯溶液,在此温度反应2小时,取样中控至反应完全。
调整体系温度至20~30℃,加入50ml水,搅拌,静置分层,减压浓缩有机相至没有液体滴出,加入80ml乙醇,继续减压浓缩有机相至没有液体滴出,加入80ml乙醇,继续减压浓缩有机相至没有液体滴出,得到38.5g XNW210004乙醇溶液。纯度75.7%,含量18.1%,收率85%。 1H NMR,CDCl 3,7.38~7.37(m,5H),5.30~5.10(m,2H),5.00~4.69(m,1H),4.32~4.11(m,2H),2.43~2.31(m,1H),2.04~1.98(m,1H),1.59(s,2H),1.49~1.40(m,10H),1.21~1.05(m,1H),0.85~0.56(m,2H)),M/S:(m/z=741.3,2M+Na)。
实施例9
XNW210006的制备
Figure PCTCN2022132591-appb-000056
反应釜用氮气置换后,依次加入370g乙醇,调节温度15~25℃,73.7g(1.5eq.)O-苯基羟胺盐酸盐,分批加入54.2g(2.0eq.)碳酸氢钠,在此温度下搅拌1.5小时,在此温度下滴加800g(1.0eq.)XNW210005的乙醇溶液(参照实施例8的方法制备得到),反应3小时,取样中控至反应完全。
控制夹套温度小于60℃,减压浓缩至无明显馏分,加入523g甲基叔丁基醚,335.7g水,在20~30℃下搅拌30分钟,静置分层,有机相加入678g 10%柠檬酸水溶液,搅拌,静置分层,有机相加入339g 10%柠檬酸水溶液,搅拌,静置分层,有机相取样检测至反应完全,有机相加入240g 5%碳酸氢钠溶液,搅拌,静置分层,控制夹套温度小于50℃减压浓缩有机相至没有液体滴出,加入150g乙酸乙酯,继续减压浓缩至无明显馏分,加入290g乙酸乙酯,得到477.4g XNW210006乙酸乙酯溶液。纯度78.3%,含量28.3%,收率90%。 1H NMR,DMSO-d 6,7.37~7.28(m,10H),5.30~5.10(m,2H),5.00~4.69(m,1H),4.26~4.11(m,2H),2.43~2.31(m,1H),2.04~1.98(m,1H),1.59(s,2H),1.49~1.40(m,10H),1.21~1.05(m,1H),0.85~0.56(m,2H),M/S:(m/z=487.2,M+Na)。
实施例10
XNW210007的制备
Figure PCTCN2022132591-appb-000057
反应釜用氮气置换后,依次加入684g(1eq.参照实施例6方法制备得到)XNW210006的乙酸乙酯溶液,606g乙酸乙酯,调节内温至-35~-25℃,在此温度缓慢滴加653g提前配置好的浓硫酸乙酸乙酯溶液(383g(12.eq)浓硫酸和270g乙酸乙酯),继续反应21小时,取样中控至反应完全。
调整体系温度至-70~-60℃,在此温度下分批加入49.03g(4eq.)硼氢化钠,继续反应4小时,取样中控至反应完全。
缓慢将体系温度升至0~10℃,控温0~10℃将反应液缓慢滴加至预先冷却至0~10℃的906g水中,控温5~25℃缓慢加入667g 25%氨水,静置分层,有机相控制夹套温度低于50℃浓缩至无明显馏分,加入720ml乙醇,继续浓缩至无明显馏分,加入720ml乙醇,在室温下滴加215g 4M的氯化氢乙醇溶液,继续反应6小时,室温搅拌析晶后过滤,滤饼用142ml乙醇洗涤,湿品在50℃下真空干燥12小时,得到90.1g白色固体XNW210007。纯度92.3%,含量97.7%,收率70%。 1H NMR,DMSO-d 6,9.90~9.77(m,2H),8.36(s,2H),7.43~7.28(m,10H),5.26(s,2H),4.71~4.67(m,2H),4.34(s,1H),3.51~3.45(m,1H),3.11~3.07(m,2H),2.07~2.02(m,1H),1.81~1.76(m,1H),0.70~0.62(m,2H),0.40~0.37(m,1H),0.20~0.17(m,1H)),M/S:(m/z=367.2,M-2HCl+H)。
实施例11
XNW210008的制备
Figure PCTCN2022132591-appb-000058
反应釜用氮气置换后,依次加入135g乙腈,搅拌,调节内温至10~30℃,加入15g三光气,搅拌直至三光气完全溶解,得到10%三光气乙腈溶液,备用。
准备另一个反应釜,氮气置换后,依次加入156g乙腈,51.2g(1.0eq.)XNW210007,调节内温至10~20℃,控制内温10~30℃缓慢加入88.3g(6.0eq.)DIPEA,调节体系内温至-10~0℃,在此温度下缓慢加入127.0g(0.376eq.)上述配置好的10%三光气乙腈溶液,继续反应1小时,取样中控至反应完全,(若中控不合格,根据中控结果补加三光气乙腈溶液)。调整体系温度至30~40℃,继续反应8小时,取样中控至反应完全。
调整体系温度至15~25℃,在此温度下加入250g水和370g甲基叔丁基醚,继续搅拌30分钟,静置分层,有机相加入400g 5%碳酸钠和5%氯化钠的混合水溶液,搅拌30分钟,静置分层,有机相加入250g氯化钠溶液,搅拌30分钟,静置分层,有机相控制温度不高于55℃减压浓缩至1V,加入185g甲基叔丁基醚,搅拌30分钟,静置分层,有机相控制温度不高于55℃减压浓缩至1V,加入197g丙酮,有机相控制温度不高于55℃减压浓缩至无明显液体流出,得到55.3g油状物XNW210008。纯度87.6%,含量77%,收率93%。
实施例12
XNW210009的制备
Figure PCTCN2022132591-appb-000059
方案1
反应釜用氮气置换后,依次加入442ml丙酮,55.3g(1.0eq.)XNW210008,110ml水,调节内温至-10~0℃,在此温度下缓慢加入171.65g(0.9eq.)85%氢氧化钾水溶液,继续反应2小时,取样中控直至反应完全。
控制温度在-10~10℃,加入100ml水和150ml甲基叔丁基醚,搅拌,静置分层,水相用150ml甲基叔丁基醚洗涤,水相再用150ml*2醋酸异丙酯洗涤两次。水相加入15ml 31%浓盐酸调节pH至1~2,加入250ml乙酸乙酯,搅拌,静置分层,水相再加入150ml乙酸乙酯,搅拌,静置分层,合并两次乙酸乙酯相,乙酸乙酯相在55℃以下减压浓缩有机相至1~2V,加入150ml乙酸乙酯,在55℃ 以下减压浓缩有机相至1~2V,加入200ml甲基叔丁基醚,在55℃以下减压浓缩有机相至2V,加入200ml甲基叔丁基醚,梯度降温至15~25℃,继续搅拌2小时,过滤,用25ml甲基叔丁基醚洗涤湿品,湿品在50℃下真空干燥,得到21g XNW210009。纯度97.2%,含量94.6%,收率59%。( 1H NMR,DMSO-d 6,12.87(s,1H),7.45~7.33(m,5H),4.94~4.86(m,2H),3.98~3.96(m,1H),3.01~2.92(m,2H),2.91(s,1H),2.27~2.19(m,1H),1.49~1.44(m,1H),0.57~0.52(m,1H),0.39~0.31(m,2H),0.26~0.23(m,1H)),M/S:(m/z=627.2,2M+Na)。
方案2
反应釜用氮气置换后,依次加入150ml丙酮,20g(1.0eq.)XNW210008,40ml水,调节内温至-10~0℃,在此温度下缓慢加入63.1g(1.0eq.)85%氢氧化钾水溶液,继续反应2小时,取样中控直至反应完全。
控制温度在-10~10℃,加入40ml水,用100ml甲基叔丁基醚萃取,水相再用60ml*3乙酸乙酯洗涤两次。水相加入100ml二氯甲烷,用31%浓盐酸调节pH至1~2,分层,水相用60ml二氯甲烷萃取,合并两次二氯甲烷相,有机相用60ml*2 5%氯化钠溶液洗涤,减压浓缩有机相至1~2V,加入100ml甲基叔丁基醚,减压浓缩有机相至2V,降温至15~25℃,继续搅拌20小时,过滤,用10ml甲基叔丁基醚洗涤湿品,湿品在50℃下真空干燥,得到10.63g XNW210009白色固体。纯度96%,收率69%。( 1H NMR,DMSO-d 6,12.87(s,1H),7.45~7.33(m,5H),4.94~4.86(m,2H),3.98~3.96(m,1H),3.01~2.92(m,2H),2.91(s,1H),2.27~2.19(m,1H),1.49~1.44(m,1H),0.57~0.52(m,1H),0.39~0.31(m,2H),0.26~0.23(m,1H)),M/S:(m/z=627.2,2M+Na)。
实施例13
Figure PCTCN2022132591-appb-000060
反应釜用氮气置换后,依次加入266g二氯甲烷,20g(1.0eq.)XNW210013,25.34g(1.0eq.)XNW210014,10.42g(1.3eq.)碳酸氢钾和20g水,调节内温至20~30℃,在此温度下反应16小时,取样中控至反应完全。
向体系中加入180g水,搅拌30分钟,静置30分钟分层,有机相加入100g水洗涤,控制温度低于45℃下减压浓缩有机相至2~3V,向浓缩液中加入266g二氯甲烷,得到XNW210015的二氯甲烷溶液。
氮气保护下向另一个反应釜中加入532g二氯甲烷,27.28g(1.3eq.)三苯基膦和14.16g(2.6eq.)咪唑,调节内温至-5~5℃,在此温度下分批向体系加入26.4g(1.3eq.)碘,继续搅拌1小时,将XNW210015的二氯甲烷溶液在此温度下滴加到反应体系中,继续反应1小时,取样中控至反应完全。
-5~5℃下向反应液中加入210g 5%Na 2SO 3溶液,自然升至室温,静置分层,有机相用100g水洗涤,控制温度低于45℃下减压浓缩有机相至2~3V,向浓缩液中加入286g DMF和20g正庚烷,继续浓缩至无溶剂蒸出,调整浓缩液温度至20~30℃,在此温度下滴加300g水,在此温度下搅拌2小时以上,过滤,滤饼用300gDMF/水=1:1洗涤。湿品和364g乙酸乙酯加入到反应釜中,在20~30℃搅拌2小时以上至溶清,在此温度下加入200g水,静置分层,有机相用100g水洗涤,控制温度低于50℃下减压浓缩有机相至2~3V,向浓缩液加入55g正庚烷和59g甲基叔丁基醚,室温搅拌2小时,过滤,滤液用30g甲基叔丁基醚洗涤。湿品在50℃真空干燥,得到21.1g XNW210016。纯度99.8%,ee值>99%,收率58.3%。 1H NMR,DMSO-d 6,9.00(s,1H),7.38~7.31(m,5H),5.23~5.13(m,2H),4.48~4.46(m,1H),4.02~3.76(m,2H),1.44~1.41(m,18H))。
实施例14
Figure PCTCN2022132591-appb-000061
方案1
反应釜用氮气置换后,依次加入900g(1.0eq.)XNW210016,10670g甲醇,搅拌,体系降温至-20~10℃,控制不超过5℃下滴加405g(3.0eq.)80%水合肼,然后在-5~5℃下反应1小时,控温不高于5℃滴加9000g 10%氯化铵溶液,继续在此温度下加入11880g二氯甲烷,搅拌,静置分层,收集有机相,水相用3560g二氯甲烷萃取,合并有机相,有机相用9000g水洗涤,有机相在40℃以下减压浓缩至2-4倍体积,加入11880g二氯甲烷继续减压浓缩至2-4倍体积,加入5940g二氯甲烷,得到9720g XNW210017二氯甲烷溶液,纯度95.9%,含量7.3%,收率96.3%。 1H NMR,CDCl 3,9.708(s,1H),8.098(s,1H),4.598~4.643(m,1H),3.974~4.021(t,1H),3.947~3.968(d,1H),3.895(s,2H),1.151~1.522(m,18H)),M/S:(m/z=344.1939,M+H)。
方案2
反应釜用氮气置换后,依次加入900g(1.0eq.)XNW210016,2133g甲醇和11880g二氯甲烷,搅拌,体系降温至-5~5℃,在此温度下滴加405g(3.0eq.)80%水合肼,然后在-5~5℃下反应4~6小时,取样中控至反应完全,控温-5~5℃滴加4500g 10%氯化铵溶液,搅拌,静置分层,有机相暂存,水相用3564g二氯甲烷萃取,合并两次的有机相,有机相用9000g水洗涤,有机相在40℃以下减压浓缩至2-4倍体积,加入11880g二氯甲烷继续减压浓缩至2-4倍体积,加入5940g二氯甲烷,得到9548g XNW210017二氯甲烷溶液,纯度96.1%,含量7.5%,收率97.2%。 1H NMR,CDCl 3,9.708(s,1H),8.098(s,1H),4.598~4.643(m,1H),3.974~4.021(t,1H),3.947~3.968(d,1H),3.895(s,2H),1.151~1.522(m,18H)),M/S:(m/z=344.1939,M+H)。
实施例15
Figure PCTCN2022132591-appb-000062
反应釜用氮气置换后,依次加入500g(1.0eq.)XNW210009和6600g二氯甲烷,降温至-5℃,加入260g(2.0eq.)吡啶,在-5℃以下滴加220g(1.1eq.)特戊酰氯,滴完继续在-10~0℃反应2.5小时,取样中控至反应完全,得到XMW210024二氯甲烷溶液备用。
另一反应釜氮气置换后,加入9720g(1.2eq.)XNW210017二氯甲烷溶液(含量7.3%),体系降温至-10~0℃,控制0℃以下滴加上述得到的XNW210024二氯甲烷溶液,滴完继续在-10~0℃下反应1小时,取样中控至反应完全,控制小于10℃滴加5000g水,搅拌,静置分层,收集有机相,有机相用5000g 5%碳酸氢钠溶液洗涤,控制小于45℃减压浓缩至2-4倍体积,加入4500g乙酸乙酯,继续浓缩至4倍体积,加入9000g乙酸乙酯和2500g水,搅拌,静置分层,有机相减压浓缩至4-6倍体积,在35-45℃下加入3700g甲基叔丁基醚,在此温度搅拌3小时,降温至10-20℃继续搅拌3小时,过滤,湿品用450g乙酸乙酯和370g甲基叔丁基醚混合溶液洗涤,湿品干燥,得到845g XNW210018,纯度98.8%,收率79.2%。 1H NMR,CDCl 3,9.897(s,1H),9.865(s,1H),8.966(s,1H),7.359~7.454(m,5H),4.917(s,2H),3.971~3.998(d,1H),3.944~3.964(d,1H),3.777~3.880(m,2H),3.751~3.761(s,1H),2.990~3.012(d,2H),2.094~2.151(dd,1H),1.551~1.588(d,1H),1.410~1.470(m,18H),0.556~0.580(d,1H),0.339~0.395(dd,2H),0.202~0.235(d,1H)),M/S:(m/z=628.3166,M+H)。
中间体制备筛选:
(1)使用三光气(0.47eq.)替换特戊酰氯,反应温度为-10~5℃,其他同上操作,制备得到的相应中间体的收率为60%;
(2)使用N,N'-二琥珀酰亚胺基碳酸酯(1.06~1.8eq.)替换特戊酰氯,反应温度为-10~35℃,其他同上操作,收率43%~55%。
实施例16
Figure PCTCN2022132591-appb-000063
反应釜用氮气置换后,依次加入1200g(4.63eq.)伯吉斯试剂,5670g乙酸乙酯,570g(4.1eq.)N,N-二异丙基乙胺,700g(1.0eq.)XNW210018,在25~35℃反应20小时,取样中控至反应完全,控制15~25℃下加入3500g水,搅拌,静置分层,收集有机相,用7000g 3%氯化钠水溶液洗涤有机相,有机相中加入7000g水,控制温度15~25℃下用5%柠檬酸调节体系中水相pH至6~8,升温至35~45℃,继续反应20小时,取样中控至反应完全。降温至15~25℃,滴加2390g正庚烷,继续搅拌3小时,降温至5~15℃,搅拌3小时,过滤,湿品用2800g水淋洗,湿品干燥,得到510g白色固体XNW210020, 纯度98.74%,收率77.2%。( 1H NMR,CDCl 3,9.730(s,1H),7.357~7.429(m,5H),5.400~5.433(m,1H),4.891~5.070(dd,2H),4.795~4.814(d,1H),4.074~4.096(m,2H),3.680(s,1H),2.706~2.995(d,2H),2.441~2.686(dd,1H),1.711~1.749(d,1H),1.337~1.537(m,18H),0.780~0.802(d,1H),0.542~0.566(d,1H),0.448~0.471(d,1H),0.155~0.179(d,1H)),M/S:(m/z=610.1979,M+H)。
实施例17
Figure PCTCN2022132591-appb-000064
方案1
反应釜用氮气置换后,依次加入8880g四氢呋喃,400g(1.0eq.)XNW210020和36g(0.09倍重量)10%钯炭(干基),控制10~20℃,0.3~0.5Mpa氢气压下反应24小时,取样中控至反应完全。加入4400g二甲基亚砜,升温至15~30℃搅拌60分钟,过滤,滤饼用712g四氢呋喃洗涤,合并滤液,加入32g巯基硅胶和32g活性炭,15~25℃搅拌4小时,过滤,滤饼用712g四氢呋喃洗涤,合并滤液,控制温度小于30℃减压浓缩至10-11倍体积,在10~25℃下滴加3200g水和2520g乙腈,继续搅拌3小时,过滤,湿品用1200g水淋洗,湿品干燥,得到299g XNW210021,纯度95.7%,收率87.7%。( 1H NMR,CDCl 3,9.739(s,1H),5.389~5.433(dd,1H),4.790~4.809(d,1H),4.074~4.194(m,2H),3.180~3.218(m,1H),3.096~3.125(d,1H),2.990~2.999(d,1H),2.670~2.728(dd,1H),1.791~1.829(d,1H),1.485~1.541(m,18H),0.778~0.879(m,2H),0.503~0.554(d,1H),0.330~0.367(m 1H)),M/S:(m/z=520.1554,M+H)。
方案2
反应釜用氮气置换后,依次加入3090g N-甲基吡咯烷酮,200g(1.0eq.)XNW210020和18g(0.09倍重量)10%钯炭(干基),控制10~20℃,0.8~1.2Mpa氢气压下反应10~15小时,取样中控至反应完全。过滤,滤饼用412g N-甲基吡咯烷酮洗涤,合并滤液,加入16g巯基硅胶和16g活性炭,15~25℃搅拌4小时,过滤,滤饼用412g N-甲基吡咯烷酮洗涤,合并滤液,控制温度10~25℃滴加6000g纯化水,继续在此温度下搅拌2~6小时,过滤,湿品用800g水淋洗,湿品干燥,得到161.9g XNW210021,纯度97.2%,收率95.0%。( 1H NMR,CDCl 3,9.739(s,1H),5.389~5.433(dd,1H),4.790~4.809(d,1H),4.074~4.194(m,2H),3.180~3.218(m,1H),3.096~3.125(d,1H),2.990~2.999(d,1H),2.670~2.728(dd,1H),1.791~1.829(d,1H),1.485~1.541(m,18H),0.778~0.879(m,2H),0.503~0.554(d,1H),0.330~0.367(m1H)),M/S:(m/z=520.1554,M+H)。
实施例18
Figure PCTCN2022132591-appb-000065
反应釜用氮气置换后,依次加入20g(1.0eq.)XNW210021,79g乙腈,10.66g(3.5eq.)吡啶和21.44g(3.5eq.)三氧化硫吡啶,调节温度25~35℃,反应6小时,取样中控至反应完全。降温至15~25℃,加入1.6g活性炭,在15~25℃下搅拌1小时,过滤,滤饼用30g乙腈淋洗。合并滤液,加入200g水,控温低于45℃下减压浓缩至9-11倍体积,加入79g乙腈和20g水,继续浓缩至9-11倍体积。在30~40℃反应5小时,取样中控至反应完全。反应液降温至0~10℃,搅拌3小时,过滤,滤饼用40g冷的10%乙腈水溶液洗涤,湿品干燥,得到10.8g类白色固体XNW210023,纯度98.7%,收率70%。( 1H NMR,DMSO-d 6,8.731(s,1H),8.263(s,1H),8.063(s,2H),5.434~5.472(dd,1H),4.764~4.783(d,1H),4.015~4.066(t,1H),3.862~3.901(m,1H),3.331~3.380(d,1H),3.030~3.069(dd,1H),2.846~2.876(d,1H),2.401~2.458(m,1H),1.661~1.700(d,1H),0.626~0.635(d,1H),0.579~0.606(d,1H),0.431~0.454(d,1H),0.361~0.419(d,1H)),M/S:(m/z=400.1065,M+H)。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (17)

  1. 一种β-内酰胺酶抑制剂的制备方法,其特征在于,其包括如下步骤;
    Figure PCTCN2022132591-appb-100001
    步骤一:在溶剂中,在碱和相转移催化剂存在下,将如式56所示的化合物和溴苄进行所示的苄酯化反应,得到所述的如式57所示的化合物;
    步骤二:在溶剂中,在碱存在下,将如式57所示的化合物与苯甲酰氯进行所示的苯甲酰化反应,得到所述的如式58所示的化合物;
    步骤三:在溶剂中,在碱、甲醛水溶液或多聚甲醛、相转移催化剂存在下,将如式58所示的化合物进行所示的反应,得到如式59所示的化合物,即可;
    步骤四:在溶剂中,在Zn/Cu或Zn/Ag试剂存在下,将如式59所示的化合物与甲基化试剂进行所示的环丙基化反应,得到如式3所示的化合物;
    步骤五:在溶剂中,在碱存在下,将如式3所示的化合物与三甲基碘化亚砜进行所示的开环反应,得到所述的化合物4;
    步骤六:在溶剂中,在催化剂和配体存在下,将如式4所示的化合物进行所示的关环反应,得到所述的化合物5;
    步骤七:在溶剂中,在碱存在下,将如式5所示的化合物与O-苯基羟胺或其盐进行席夫碱反应,得到所述的化合物6;
    步骤八:(1)在溶剂中,在硫酸存在下,将如式6所示的化合物与酸进行反应,得到混合物A;(2)将还原剂加入混合物A中进行还原反应,得到如式7所示的化合物;
    步骤九:将三光气和溶剂的混合物加入到如式7所示的化合物和/或其盐、碱和溶剂的混合物中,进行所示的酰胺化关环反应,得到如式8所示的二氮杂二环辛烷类化合物;
    步骤十:在有机溶剂和水中,将碱加入到式8所示的化合物中,水解得到如式9所示的化合物;
    步骤十一:在溶剂中,在碱存在下,将如式9所示的羧酸类化合物与特戊酰氯进行酰化反应,得到所述的如式24所示的酸酐类化合物;
    步骤十二:在有机溶剂和水中,在碱存在下,将如式13所示的化合物与如式14所示的化合物进行所示的亚胺化反应,得到所述的如式15所示的胍类化合物;
    步骤十三:在溶剂中,在三苯基膦、咪唑和碘存在下,将如式15所示的胍类化合物进行所示的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体;
    步骤十四:将肼与如式16所示的氮杂环类化合物和/或其互变异构体进行所示的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体;
    步骤十五:将如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体进行酰胺化反应,得到所述的如式18所示的酰肼类化合物和/或其互变异构体;
    步骤十六:在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体;
    步骤十七:在有机溶剂和水中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物;
    步骤十八:在溶剂中,在钯催化剂和氢气存在下,将所述的如式20所示的咪唑啉类化合物和/或其互变异构体进行所示的脱苄基反应,得到如式21所示的羟胺类化合物和/或其互变异构体;
    步骤十九:在溶剂中,在吡啶和磺化试剂存在下,将所述的如式21所示的羟胺类化合物和/或其互变异构体进行所示的磺酸化反应,得到如式22所示的磺酸氧类化合物和/或其互变异构体;
    步骤二十:在水和有机溶剂中,将所述的如式22所示的磺酸氧类化合物和/或其互变异构体进行所示的脱胺基保护基反应,得到如式I所示的亚胺类化合物。
  2. 如权利要求1所述的制备方法,其特征在于,
    在步骤一中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为酯类溶剂,例如乙酸乙酯;
    (2)所述的碱为碱金属碳酸盐,例如碳酸钾;
    (3)所述的相转移催化剂为四丁基溴化铵;
    在步骤二中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为酮类溶剂、腈类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种, 所述的酮类溶剂可为丙酮,所述的腈类溶剂可为乙腈,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;
    (2)所述的溶剂与所述的如式57所示的化合物的体积质量比为5mL/g-10mL/g;
    (3)所述的苯甲酰氯与所述的如式57所示的化合物的摩尔比为1.05:1至1.1:1;
    (4)所述的碱为碱金属的醇化物和/或双(三甲基硅基)胺基锂,所述的碱金属醇化物可为叔丁醇钠,叔丁醇锂和叔丁醇钾中的一种或多种;
    (5)所述的碱与所述的如式57所示的化合物的摩尔比为1.4:1至2.5:1;
    (6)所述的苯甲酰化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (7)所述的苯甲酰化反应的温度为-65℃至25℃,例如-15℃至-5℃;
    (8)所述的制备所述的如式58所示的化合物的方法,其包括如下步骤:于-15℃至-5℃,将所述的碱、苯甲酰氯依次至所述的如式57所示的化合物和所述的溶剂的混合物中进行所述的苯甲酰化反应,得到所述的如式58所示的化合物;
    在所述步骤三中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为醚类溶剂、卤代烃类溶剂、腈类溶剂、酮类溶剂、酯类溶剂和N,N-二甲基甲酰胺中的一种或多种,所述的醚类溶剂可为四氢呋喃和/或1,4-二氧六环,所述的卤代烃类溶剂可为二氯甲烷,所述的酯类溶剂可为乙酸乙酯,所述的腈类溶剂可为乙腈,所述的酮类溶剂可为丙酮;
    (2)所述的溶剂与所述的如式58所示的化合物的体积质量比为8mL/g-12mL/g;
    (3)所述的相转移催化剂为季铵盐,例如四正丁基碘化铵和/或四丁基氟化铵三水合物;
    (4)所述的相转移催化剂与所述的如式58所示的化合物的摩尔比为0.04:1~0.05:1;例如0.045:1;
    (5)所述的碱为无机碱和/或有机碱,所述的无机碱可为碱金属碳酸盐、碱金属的碳酸氢盐和碱金属醇化物中的一种或多种,所述的碱金属碳酸盐可为碳酸钾和/或碳酸铯,所述的碱金属碳酸氢盐可为碳酸氢钾和/或碳酸氢钠,所述的碱金属醇化物可为叔丁醇钾,所述的有机碱可为三乙胺和/或二异丙胺;
    (6)所述的碱与所述的如式58所示的化合物的摩尔比为2:1至3:1;
    (7)所述的甲醛水溶液里的甲醛或多聚甲醛与所述的如式58所示的化合物的摩尔比为1:1至6:1;例如3.4:1;
    (8)所述的步骤中,所述的碱与所述的甲醛水溶液或多聚甲醛分批加入,例如平均分3次加入;
    (9)所述的反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (10)所述的反应的温度为15℃至55℃,例如35℃至45℃;
    在所述步骤四中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为酰胺类溶剂,例如DMF;
    (2)所述的溶剂与所述的如式59所示的化合物的体积质量比为5mL/g-30mL/g;例如10mL/g;
    (3)所述的Zn/Cu或Zn/Ag试剂与所述的如式59所示的化合物的摩尔比为0.5:1至3:1;例如2:1;
    (4)所述的甲基化试剂为二溴甲烷和/或二碘甲烷;
    (5)所述的甲基化试剂与所述的如式59所示的化合物的摩尔比为01.5:1至3:1;例如2:1;
    (6)所述的环丙基化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (7)所述的环丙基化反应的温度为15℃至45℃,例如30℃至40℃;
    在所述步骤五中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为醚类溶剂和二甲基亚砜的混合物,所述的醚类溶剂可为四氢呋喃;
    (2)所述的醚类溶剂与二甲基亚砜的体积比为1:1.2至3:1,例如5:3;
    (3)所述的碱为碱金属的醇化物,例如叔丁醇钾;
    (4)所述的碱与所述的如式3所示的化合物的摩尔比为1:1至1.4:1;例如1.15:1至1.2:1;
    (5)所述的三甲基碘化亚砜与所述的如式3所示的化合物的摩尔比为1:1至1.4:1;例如1.15:1至1.2:1;
    (6)所述的开环反应在惰性气体下进行,所述的惰性气体可为氩气或氮气;
    (7)所述的开环反应的温度为-20~30℃;
    (8)所述的步骤为:将碱与三甲基碘化亚砜在部分醚类溶剂与二甲基亚砜中进行混合后,依次加入剩余部分的醚类溶剂及所述的如式3所示的化合物,进行所述的开环反应;所述的混合的温度可为20~30℃;所述的开环反应的温度可为-10~0℃;
    在所述步骤六中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为芳烃类溶剂、醇类溶剂、醚类溶剂、酰胺类溶剂和酯类溶剂中的一种或多种;所述的芳烃类溶剂可为甲苯,所述的醇类溶剂可为叔戊醇和/或特戊醇,所述的醚类溶剂可为环戊基甲醚和/或四氢呋喃,所述的酰胺类溶剂可为DMAc和/或DMF,所述的酯类溶剂可为醋酸异丙酯;
    (2)所述的溶剂与所述的如式4所示的化合物的体积质量比为2mL/g-3mL/g;
    (3)所述的催化剂为二(三苯基膦)环戊二烯基氯化钌(II),1,5-环辛二烯氯化铱二聚体,甲氧基(环辛二烯)合铱二聚体,醋酸铜,碘化亚铜,醋酸钯(II),反-二(乙氰)二氯化钯(II)和三氟乙酸钯中的一种或多种,例如二(三苯基膦)环戊二烯基氯化钌(II);
    (4)所述的催化剂与所述的如式4所示的化合物的摩尔比为0.01至0.1,例如0.015:1;
    (5)所述的关环反应中还加入配体,所述的配体可为三苯基膦;
    (6)所述的关环反应中还加入配体,所述的配体与所述的如式4所示的化合物的摩尔比为0.01至0.1,例如0.04:1;
    (7)所述的关环反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (8)所述的关环反应的温度为60℃至110℃,例如95℃至105℃;
    在所述步骤七中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为醇类溶剂和/或酯类溶剂;所述的醇类溶剂可为乙醇,异丙醇,叔丁醇和叔戊醇中的一种或多种,所述的酯类溶剂可为乙酸乙酯;
    (2)所述的溶剂与所述的如式5所示的化合物的体积质量比为8mL/g-12mL/g;
    (3)所述的如式5所示的化合物与O-苯基羟胺或其盐的摩尔比为1.15:1至1.5:1,例如1.5:1;
    (4)所述的O-苯基羟胺盐为其盐酸盐;
    (5)所述的碱为碱金属碳酸氢盐,例如碳酸氢钠;
    (6)所述的碱与所述的O-苯基羟胺的盐的摩尔比为2:1.5;
    (7)所述的碱与所述的如式5所示的化合物的摩尔比为1.5:1至2:1,例如2:1;
    (8)所述的席夫碱反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (9)所述的席夫碱反应的温度为15℃至45℃,例如15℃至25℃;
    (10)所述的制备所述的化合物6的方法,其包括如下步骤:在溶剂中,于15℃至25℃,将所述的碱加入所述的O-苯基羟胺或其盐和溶剂的混合物中,再加入所述的如式5所示的化合物与溶剂的混合物,进行所述的席夫碱反应,得到所述的化合物6;
    在所述步骤八中,其满足如下条件中的一种或多种:
    (1)所述步骤(1)中,所述的溶剂为酯类溶剂,例如乙酸乙酯;
    (2)所述步骤(1)中,所述的溶剂与所述的如式6所示的化合物的体积质量比为9mL/g-15mL/g,例如12mL/g;
    (3)所述步骤(1)中,所述的硫酸与所述的化合物6的摩尔比为4:1至12:1;
    (4)所述步骤(1)中,所述的硫酸以浓硫酸与所述的溶剂的溶液形式加入;所述的溶液中,浓硫酸与所述的溶剂的质量比可为1.4:1;
    (5)步骤(1)的反应温度为-45℃至-5℃,例如-35℃至-25℃;
    (6)步骤(1)的反应结束后,不经后处理直接用于步骤(2)进行所述的还原反应制备所述的化合物7;
    (7)所述步骤(2)中,所述的还原剂为硼氢化钠,硼烷甲基硫醚,三乙基硼氢化锂;例如硼氢化钠;
    (8)所述步骤(2)中,所述的还原剂与所述的如式6所示的化合物的摩尔比为4:1至6:1;例如4:1;
    (9)所述步骤(2)中,所述的还原反应的温度为-70℃至-35℃,例如-70℃至-60℃;
    在所述步骤九中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为乙腈、卤代烃类溶剂和芳烃类溶剂中的一种或多种,所述的卤代烃类溶剂例如二氯甲烷,所述的芳烃类溶剂例如甲苯;
    (2)三光气在所述的三光气和溶剂的混合物中的质量百分比为10%;
    (3)所述的如式7所示的化合物和/或其盐、碱和溶剂的混合物中,所述的溶剂与所述的如式7所示的化合物和/或其盐的体积质量比为3mL/g;
    (4)所述的如式7所示的化合物的盐为盐酸盐,例如2当量的盐酸;
    (5)所述的碱为有机碱,例如N,N-二异丙基乙胺和/或三乙胺;
    (6)所述的碱与所述的如式7所示的化合物的摩尔比为4:1;或者,所述的碱与所述的如式7所 示的化合物的盐的摩尔比为6:1;
    (7)所述的三光气与所述的如式7所示的化合物和/或其盐的摩尔比为0.35:1至0.5:1;例如0.38:1至0.4:1;
    (8)所述的所示的酰胺化关环反应的温度为-10℃至0℃;
    (9)所述的酰胺化关环反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (10)所述的制备方法为如下步骤:内温10℃至30℃下加入所述的碱至所述的如式7所示的化合物和/或其盐和溶剂的混合物中后,-10~0℃下加入10%三光气和溶剂的溶液,进行所示的酰胺化关环反应,得到如式8所示的二氮杂二环辛烷类化合物即可;
    在所述步骤十中,其满足如下条件中的一种或多种:
    (1)所述的如式8所示的二氮杂二环辛烷类化合物与碱的摩尔比为1:1至1:0.9;
    (2)所述的有机溶剂为丙酮;
    (3)所述有机溶剂和水的体积比为4:1至3:1;
    (4)所述的碱为氢氧化钾为水溶液,例如85%氢氧化钾水溶液;
    (5)所述的水解反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (6)所述水解反应的温度为-10~10℃,例如-10~0℃;
    在所述步骤十一中,其满足如下条件中的一种或多种:
    (1)所述的如式9所示的羧酸类化合物与特戊酰氯的摩尔比为1:1至1:1.6;例如1:1.1;
    (2)所述的溶剂为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种;所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;
    (3)所述的溶剂与所述的如式9所示的化合物的体积质量比为10mL/g-20mL/g;
    (4)所述的碱为有机碱,例如N,N-二异丙基乙胺、吡啶和三乙胺中的一种或多种;
    (5)所述的碱与所述的如式9所示的羧酸类化合物的摩尔比为3:1至1:1;例如2:1;
    (6)所述的酰化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (7)所述酰化反应的温度为-10~10℃,例如-10~0℃;
    (8)于-5℃以下,将所述的碱、特戊酰氯依次加入到所述的如式9所示的化合物与所述的溶剂的混合物中后,于-10~0℃进行所述的酰化反应,得到所述的如式24所示的酸酐类化合物;
    (9)所述的酰化反应结束后不经后处理直接用于所述的酰胺化反应;
    在所述的步骤十二中,其满足如下条件中的一种或多种:
    (1)所述的如式13所示的化合物与所述的如式14所示的化合物的摩尔比为1:1;
    (2)所述的有机溶剂为腈类溶剂和/或卤代烃类溶剂;所述的腈类溶剂可为乙腈,所述的卤代烃类溶剂可为二氯甲烷;
    (3)所述的有机溶剂与所述的如式14所示的化合物的体积质量比为6mL/g-15mL/g,例如8mL/g-10mL/g;
    (4)所述的亚胺化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (5)所述亚胺化反应的温度为10℃至40℃,例如20℃至30℃;
    (6)所述的碱为碱金属的碳酸盐和/或碱金属的碳酸氢盐,例如碳酸钾和/或碳酸氢钾;
    (7)所述的水与所述的碱的质量比为1.5至2.5:1,例如2:1;
    在所述的步骤十三中,其满足如下条件中的一种或多种:
    (1)所述的三苯基膦与所述的如式15所示的胍类化合物的摩尔比为1.1:1至1.3:1;
    (2)所述的咪唑与所述的如式15所示的胍类化合物的摩尔比为2.2:1至2.6:1;
    (3)所述的碘与所述的如式15所示的胍类化合物的摩尔比为1.1:1至1.3:1;
    (4)所述的溶剂为腈类溶剂和/或卤代烃类溶剂;所述的腈类溶剂可为乙腈,所述的卤代烃类溶剂可为二氯甲烷;
    (5)所述的溶剂与所述的如式15所示的化合物的体积质量比为16mL/g-40mL/g;
    (6)所述Appel反应和关环反应的温度为-10℃至10℃,例如-5℃至5℃;
    (7)所述的Appel反应和关环反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (8)所述的如式15所示的胍类化合物和所述的溶剂的混合物滴加到所述的碘、三苯基膦、咪唑和所述的溶剂的混合物中;
    (9)于-5℃至5℃,将碘分批加入到三苯基膦、咪唑和所述的溶剂的混合物中得到反应体系1后,再将所述的如式15所示的胍类化合物和所述的溶剂的混合物加入上述反应体系1中进行所述的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体;
    在所述的步骤十四中,其满足如下条件中的一种或多种:
    (1),所述的肼与如式16所示的氮杂环类化合物和/或其互变异构体的摩尔比为1.5:1至3:1;
    (2)所述的肼为水合肼,例如80%的水合肼;
    (3)所述的溶剂为醇类溶剂、芳烃类溶剂和卤代烷烃中的一种或多种;所述的醇类溶剂可为甲醇、乙醇和异丙醇中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的卤代烷烃可为二氯甲烷;
    (4)所述的溶剂与所述的如式16所示的化合物的体积质量比为10mL/g-20mL/g,例如12mL/g;
    (5)所述的酰肼化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (6)所述酰肼化反应的温度为-20~10℃,例如-10~5℃;
    (7)控制温度在5℃以下,将肼加入到所述的如式16所示的氮杂环类化合物和所述溶剂的混合物中,进行所述的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体;
    在所述的步骤十五中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;
    (2)所述的溶剂与所述的如式17所示的化合物的体积质量比为10mL/g-20mL/g;
    (3)所述的如式24所示的酸酐类化合物与所述的如式17所示的肼类化合物和/或其互变异构体 得摩尔比为1.3:1至1:1.3;例如1:1.2;
    (4)所述酰胺化反应的温度为-15℃至0℃,例如-10℃至0℃;
    (5)其为如下步骤:控制温度在-10~0℃,将所述的如式24所示的酸酐类化合物和所述溶剂的混合物加入到所述的如式17所示的化合物和所述溶剂的混合物中,进行所述的酰胺化反应,得到所述的如式18所示的酰肼类化合物和/或其互变异构体;
    (6)所述的酰胺化反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (7)所述的酰胺化反应的原料为所述的如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体以及所述的溶剂;
    在所述的步骤十六中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种;所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;
    (2)所述的溶剂与所述的如式18所示的化合物的体积质量比为6.5mL/g-10mL/g;
    (3)所述的脱水剂为伯吉斯试剂;
    (4)所述的脱水剂与所述的如式18所示的化合物的摩尔比为2:1~10:1;例如4.6:1
    (5)所述的碱为有机碱;例如N,N-二异丙基乙胺和/或三乙胺;
    (6)所述的碱与所述的如式18所示的化合物的摩尔比为4:1~6.5:1;例如4.1:1、6.2:1;
    (7)所述的关环反应在惰性气体下进行,所述的惰性气体例如氮气、氩气;
    (8)所述的关环反应的温度为10℃至45℃,例如25℃至35℃
    在所述的步骤十七中,其满足如下条件中的一种或多种:
    (1)所述的有机溶剂为芳烃类溶剂、醚类溶剂、酯类溶剂和卤代烃类溶剂中的一种或多种,所述的芳烃类溶剂可为甲苯,所述的醚类溶剂可为四氢呋喃,所述的酯类溶剂可为乙酸乙酯,所述的卤代烃类溶剂可为二氯甲烷;
    (2)所述的水与所述的有机溶剂的体积比为1.3:1至1:1;
    (3)所述的水与所述的如式19所示的化合物的质量比为5-10倍;
    (4)所述的酸性条件为pH至6~8;
    (5)所述的酸性条件为加入5%柠檬酸调节得到,所述5%柠檬酸加入温度可为15~25℃;
    在所述的步骤十八中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为醇类溶剂、醚类溶剂、酰胺类溶剂和卤代烃类溶剂中的一种或多种;所述的醇类溶剂可为甲醇、乙醇和异丙醇中的一种或多种;所述的卤代烃类溶剂可为二氯甲烷,所述的醚类溶剂可为四氢呋喃,所述的酰胺类溶剂可为二甲基乙酰胺和/或N-甲基吡咯烷酮;
    (2)所述的溶剂与所述的如式20所示的咪唑啉类化合物和/或其互变异构体的体积质量比为15mL/g至27mL/g;
    (3)所述的钯催化剂为钯炭、氢氧化钯;例如10%钯炭;
    (4)所述的钯催化剂与所述的如式20所示的咪唑啉类化合物和/或其互变异构体的质量比为0.02:1至0.9:1;例如0.09:1;
    (5)所述的氢气的压力为0.3Mpa至0.5Mpa;
    (6)所述的脱苄基反应的温度为0℃至40℃,例如10℃至20℃;
    在所述的步骤十九中,其满足如下条件中的一种或多种:
    (1)所述的溶剂为卤代烃类溶剂和/或腈类溶剂;所述的卤代烃类溶剂可为二氯甲烷,所述的腈类溶剂可为乙腈;
    (2)所述的溶剂与所述的如式21所示的羟胺类化合物和/或其互变异构体的体积质量比为5mL/g至20mL/g;
    (3)所述的磺化试剂为三氧化硫吡啶、三氧化硫三乙胺和三氧化硫三甲胺中的一种或多种;
    (4)所述的三氧化硫吡啶与所述的如式21所示的羟胺类化合物和/或其互变异构体的质量比为1.2:1至6:1;
    (5)所述的吡啶与所述的如式21所示的羟胺类化合物和/或其互变异构体的质量比为2.5:1至6.25:1;
    (6)所述的磺酸化反应的温度为15℃至35℃,例如25℃至35℃;
    在所述的步骤二十中,其满足如下条件中的一种或多种:
    (1)所述的有机溶剂为腈类溶剂;所述的腈类溶剂可为乙腈;
    (2)所述的有机溶剂与所述的如式22所示的磺酸氧类化合物和/或其互变异构体的体积质量比为9mL/g至11mL/g;
    (3)所述的脱胺基保护基反应的温度为18℃至40℃,例如30℃至40℃。
  3. 一种如式8所示的二氮杂二环辛烷类化合物的制备方法,其包括如下步骤:
    将三光气和溶剂的混合物加入到如式7所示的化合物和/或其盐、碱和溶剂的混合物中,进行如下所示的酰胺化关环反应,得到如式8所示的二氮杂二环辛烷类化合物;
    Figure PCTCN2022132591-appb-100002
    其中,所述的制备方法中的操作及条件可同如权利要求1或2中任一项所述的制备方法中制备如式8所示的化合物的方法中的操作及条件。
  4. 一种如式7所示的化合物的制备方法,其特征在于,其包括如下步骤:
    (1)在溶剂中,在硫酸存在下,将如式6所示的化合物与酸进行反应,得到混合物A;
    (2)将还原剂加入混合物A中进行还原反应,得到如式7所示的化合物;
    Figure PCTCN2022132591-appb-100003
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式7所示的化合物的方法中的操作及条件。
  5. 一种如式6所示的化合物的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在碱存在下,将如式5所示的化合物与O-苯基羟胺或其盐进行席夫碱反应,得到如式6所示的化合物;
    Figure PCTCN2022132591-appb-100004
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式6所示的化合物的方法中的操作及条件。
  6. 一种如式5所示的化合物的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在催化剂和配体存在下,将如式4所示的化合物进行如下所示的关环反应,得到如式5所示的化合物;
    Figure PCTCN2022132591-appb-100005
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式5所示的化合物的方法中的操作及条件。
  7. 一种如式3所示的化合物的制备方法,其包括如下步骤:
    在溶剂中,在Zn/Cu或Zn/Ag试剂存在下,将如式59所示的化合物与甲基化试剂进行如下所示的环丙基化反应,得到如式3所示的化合物;
    Figure PCTCN2022132591-appb-100006
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式3所示的化合物的方法中的操作及条件。
  8. 一种如式59所示的化合物的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在碱、甲醛水溶液或多聚甲醛、相转移催化剂存在下,将如式58所示的化合物进行如下所示的反应,得到如式59所示的化合物;
    Figure PCTCN2022132591-appb-100007
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式59所示的化合物的方法中的操作及条件。
  9. 一种如式58所示的化合物的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在碱存在下,将如式57所示的化合物与苯甲酰氯进行如下所示的苯甲酰化反应,得到所述的如式58所示的化合物;
    Figure PCTCN2022132591-appb-100008
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如式58所示的化合物的方法中的操作及条件。
  10. 一种氧杂二氮唑类化合物和/或其互变异构体的制备方法,其特征在于,其包括如下步骤(a)和/或步骤(b);
    步骤(a):
    在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体;
    Figure PCTCN2022132591-appb-100009
    步骤(b):在有机溶剂和水中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物;
    Figure PCTCN2022132591-appb-100010
    其中,所述的制备方法中的操作及条件可同如权利要求1至2中任一项所述的制备方法中制备如 式19和29所示的化合物的方法中的操作及条件。
  11. 一种如式5、6、58所示的化合物、如式16所示的氮杂环类化合物和/或其互变异构体、如式17所示的肼类化合物和/或其互变异构体、如式24所示的酸酐类化合物、如式18所示的酰肼类化合物和/或其互变异构体,
    Figure PCTCN2022132591-appb-100011
    Figure PCTCN2022132591-appb-100012
    Figure PCTCN2022132591-appb-100013
    Figure PCTCN2022132591-appb-100014
    Figure PCTCN2022132591-appb-100015
    Figure PCTCN2022132591-appb-100016
  12. 一种如式18所示的酰肼类化合物和/或其互变异构体的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,将如式24所示的酸酐类化合物与如式17所示的肼类化合物和/或其互变异构体进行酰胺化反应,得到如式18所示的酰肼类化合物和/或其互变异构体;
    Figure PCTCN2022132591-appb-100017
    所述的如式18所示的酰肼类化合物和/或其互变异构体的制备方法中的操作和反应条件可同权利要求1或2中所述的制备方法中制备所述的如式18所示的酰肼类化合物和/或其互变异构体的方法中的操作和反应条件。
  13. 一种如式24所示的酸酐类化合物的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在碱存在下,将如式9所示的羧酸类化合物与特戊酰氯进行酰化反应,得到所述的如式24所示的酸酐类化合物,
    Figure PCTCN2022132591-appb-100018
    所述的如式24所示的酸酐类化合物和/或其互变异构体的制备方法中的操作和反应条件可同权利要求1或2中任一项所述的制备方法中制备所述的如式24所示的酸酐类化合物和/或其互变异构体的方法中的操作和反应条件。
  14. 一种如式17所示的肼类化合物和/或其互变异构体的制备方法,其特征在于,其包括如下步骤:
    将肼与如式16所示的氮杂环类化合物和/或其互变异构体进行如下所示的酰肼化反应,得到所述的如式17所示的酰肼类化合物和/或其互变异构体,
    Figure PCTCN2022132591-appb-100019
    所述的如式17所示的肼类化合物和/或其互变异构体的制备方法中的操作和反应条件可同权利要求1或2中任一项所述的制备方法中制备所述的如式17所示的酰肼类化合物和/或其互变异构体的方法中的操作和反应条件。
  15. 一种如式16所示的所示的氮杂环类化合物和/或其互变异构体的制备方法,其特征在于,其包括如下步骤:
    在溶剂中,在三苯基膦、咪唑和碘存在下,将如式15所示的胍类化合物进行如下所示的Appel反应和关环反应,得到所述的如式16所示的氮杂环类化合物和/或其互变异构体,
    Figure PCTCN2022132591-appb-100020
    所述如式16所示的所示的氮杂环类化合物和/或其互变异构体的制备方法中的反应条件和操作可同权利要求1或2中任一项的所述的制备方法中制备所述的如式16所示的氮杂环类化合物和/或其互变异构体的方法中的操作和反应条件。
  16. 一种β-内酰胺酶抑制剂及中间体的制备方法,其特征在于,其为如下任一方案:
    方案一、如式21所示的羟胺类化合物和/或其互变异构体的制备方法,其包括如下步骤:
    步骤(1):包括如下步骤(a)和/或步骤(b),
    步骤(a):
    在溶剂中,在脱水剂和碱存在下,将如式18所示的酰肼类化合物和/或其互变异构体进行所示的关环反应,得到如式19所示的氧杂二氮唑类化合物和/或其互变异构体;
    Figure PCTCN2022132591-appb-100021
    步骤(b):在溶剂中,在酸性条件下,将如式19所示的酰肼类化合物进行所示的互变异构化反应,得到其互变异构体,如式20所示的氧杂二氮唑类化合物;
    Figure PCTCN2022132591-appb-100022
    步骤(2):在溶剂中,在钯催化剂和氢气存在下,将所述的如式20所示的咪唑啉类化合物和/或其互变异构体进行所示的脱苄基反应,得到如式21所示的羟胺类化合物和/或其互变异构体;
    Figure PCTCN2022132591-appb-100023
    方案二、如式21所示的羟胺类化合物和/或其互变异构体的制备方法,其包括如下步骤:
    步骤(1):同方案一中的步骤(1);
    步骤(2):同方案一中的步骤(2);
    步骤(3):在溶剂中,在吡啶和磺化试剂存在下,将所述的如式21所示的羟胺类化合物和/或其互变异构体进行所示的磺酸化反应,得到如式22所示的磺酸氧类化合物和/或其互变异构体;
    Figure PCTCN2022132591-appb-100024
    方案三、如式I所示的亚胺类化合物的制备方法,其包括如下步骤:
    步骤(1)至(3):同方案二中的步骤(1)至(3);
    步骤(4):在水和有机溶剂中,将所述的如式22所示的磺酸氧类化合物和/或其互变异构体进行所示的脱胺基保护基反应,得到如式I所示的亚胺类化合物;
    Figure PCTCN2022132591-appb-100025
  17. 如权利要求16所述的制备方法其特征在于,所述制备方法满足如下条件中的一种或多种:
    (1)方案一中,所述的制备方法中的反应操作和条件同权利要求1-2中任一项所述的制备方法中相应的反应操作和条件;
    (2)方案二中,所述的制备方法中的反应操作和条件同权利要求1-2中任一项所述的制备方法中相应的反应操作和条件;
    (3)方案三中,所述的制备方法中的反应操作和条件同权利要求1-2中任一项所述的制备方法中相应的反应操作和条件。
PCT/CN2022/132591 2021-11-17 2022-11-17 β-内酰胺酶抑制剂中间体及制备方法 WO2023088375A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2022393742A AU2022393742A1 (en) 2021-11-17 2022-11-17 β-LACTAMASE INHIBITOR INTERMEDIATE AND PREPARATION METHOD THEREFOR
CA3238268A CA3238268A1 (en) 2021-11-17 2022-11-17 ?-lactamase inhibitor intermediate and preparation method therefor
CN202280076434.2A CN118215665A (zh) 2021-11-17 2022-11-17 β-内酰胺酶抑制剂中间体及制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111364826.2 2021-11-17
CN202111364826 2021-11-17
CN202111364821 2021-11-17
CN202111364821.X 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023088375A1 true WO2023088375A1 (zh) 2023-05-25

Family

ID=86396282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132591 WO2023088375A1 (zh) 2021-11-17 2022-11-17 β-内酰胺酶抑制剂中间体及制备方法

Country Status (4)

Country Link
CN (1) CN118215665A (zh)
AU (1) AU2022393742A1 (zh)
CA (1) CA3238268A1 (zh)
WO (1) WO2023088375A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117720106A (zh) * 2023-12-28 2024-03-19 安徽泽升科技股份有限公司 一种二氯甲烷的纯化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201364826Y (zh) 2008-12-24 2009-12-16 比亚迪股份有限公司 紧急断电开关
WO2013030735A1 (en) 2011-08-30 2013-03-07 Wockhardt Limited 1,6- diazabicyclo [3,2,1] octan- 7 - one derivatives and their use in the treatment of bacterial infections
WO2013149121A1 (en) 2012-03-30 2013-10-03 Cubist Pharmaceuticals, Inc. 1,3,4-oxadiazole and 1,3,4-thiadiazole beta-lactamase inhibitors
WO2014141132A1 (en) 2013-03-14 2014-09-18 Naeja Pharmaceutical Inc. NEW HETEROCYCLIC COMPOUNDS AND THEIR USE AS ANTIBACTERIAL AGENTS AND β-LACTAMASE INHIBITORS
WO2015110963A1 (en) 2014-01-21 2015-07-30 Wockhardt Limited 2-(1,3,4-oxadiazol-2-yl)-7-oxo-1,6-diazabicyclo[3.2.1 ]octane derivatives and their use as antibacterial agents
WO2015150890A1 (en) 2014-03-29 2015-10-08 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-(5-(3-amino-propyl)-[1,3,4]oxadiazol-2-yl]-7-oxo-1,6-diazabicyclo [3.2.1] oct-6-yl}ester
WO2015159265A1 (en) 2014-04-18 2015-10-22 Wockhardt Limited Pharmaceutical compositions comprising antibacterial agents
WO2015173663A1 (en) 2014-05-14 2015-11-19 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-[5-(2-methylamino-ethyl)-[1,3,4]-oxadiazol-2-yl]-7-oxo-1,6-diaza-bicyclo [3.2.1]oct-6-yl} ester
WO2015173665A1 (en) 2014-05-14 2015-11-19 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-[5-(3-azetidinylamino)-methyl-[1,3,4]- oxadiazol-2-yl]-7-oxo-1,6-diazabicyclo[3.2.1] oct-6-yl} ester trifluoroacetate
WO2017055922A1 (en) 2015-10-02 2017-04-06 Legochem Biosciences, Inc. Compositions and methods for inhibiting beta-lactamase
WO2019144912A1 (zh) 2018-01-25 2019-08-01 苏州信诺维医药科技有限公司 β-内酰胺酶抑制剂及其用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201364826Y (zh) 2008-12-24 2009-12-16 比亚迪股份有限公司 紧急断电开关
WO2013030735A1 (en) 2011-08-30 2013-03-07 Wockhardt Limited 1,6- diazabicyclo [3,2,1] octan- 7 - one derivatives and their use in the treatment of bacterial infections
WO2013149121A1 (en) 2012-03-30 2013-10-03 Cubist Pharmaceuticals, Inc. 1,3,4-oxadiazole and 1,3,4-thiadiazole beta-lactamase inhibitors
US20130296290A1 (en) 2012-03-30 2013-11-07 Cubist Pharmaceuticals, Inc. 1,3,4-oxadiazole and 1,3,4-thiadiazole beta-lactamase inhibitors
WO2014141132A1 (en) 2013-03-14 2014-09-18 Naeja Pharmaceutical Inc. NEW HETEROCYCLIC COMPOUNDS AND THEIR USE AS ANTIBACTERIAL AGENTS AND β-LACTAMASE INHIBITORS
WO2015110963A1 (en) 2014-01-21 2015-07-30 Wockhardt Limited 2-(1,3,4-oxadiazol-2-yl)-7-oxo-1,6-diazabicyclo[3.2.1 ]octane derivatives and their use as antibacterial agents
WO2015150890A1 (en) 2014-03-29 2015-10-08 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-(5-(3-amino-propyl)-[1,3,4]oxadiazol-2-yl]-7-oxo-1,6-diazabicyclo [3.2.1] oct-6-yl}ester
WO2015159265A1 (en) 2014-04-18 2015-10-22 Wockhardt Limited Pharmaceutical compositions comprising antibacterial agents
WO2015173663A1 (en) 2014-05-14 2015-11-19 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-[5-(2-methylamino-ethyl)-[1,3,4]-oxadiazol-2-yl]-7-oxo-1,6-diaza-bicyclo [3.2.1]oct-6-yl} ester
WO2015173665A1 (en) 2014-05-14 2015-11-19 Wockhardt Limited A process for preparation of trans-sulfuric acid mono-{2-[5-(3-azetidinylamino)-methyl-[1,3,4]- oxadiazol-2-yl]-7-oxo-1,6-diazabicyclo[3.2.1] oct-6-yl} ester trifluoroacetate
WO2017055922A1 (en) 2015-10-02 2017-04-06 Legochem Biosciences, Inc. Compositions and methods for inhibiting beta-lactamase
WO2019144912A1 (zh) 2018-01-25 2019-08-01 苏州信诺维医药科技有限公司 β-内酰胺酶抑制剂及其用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117720106A (zh) * 2023-12-28 2024-03-19 安徽泽升科技股份有限公司 一种二氯甲烷的纯化方法

Also Published As

Publication number Publication date
AU2022393742A1 (en) 2024-06-06
CN118215665A (zh) 2024-06-18
CA3238268A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
CN105916861B (zh) 可用于合成软海绵素b类似物的方法
CN1139596C (zh) 头孢地尼的胺盐晶体
WO2023088375A1 (zh) β-内酰胺酶抑制剂中间体及制备方法
CN104703992A (zh) 噻吩并吡啶衍生物的制备方法
EP3828170A1 (en) Method for safely preparing pimavanserin and tartrate salt thereof using triphosgene
AU2004272255A1 (en) Method for the production of 4-(4-aminophenyl)-3-morpholinon
CN109503628A (zh) 一种他唑巴坦手性异构体的合成方法
CA2664052A1 (en) An improved process for the preparation of temozolomide and analogs
IT201800005874A1 (it) Processo per la preparazione di apalutamide
CN107759577B (zh) Gs5816中间体、制备方法及应用
CN105481856A (zh) 一种帕利哌酮的制备方法
WO2020088053A1 (zh) 抗生素teixobactin及其类似物的合成路线
WO2019163731A1 (ja) オキサゾリジノン化合物の製造方法
CN102911186B (zh) 一种头孢唑肟钠的制备及精制方法
CN105859747A (zh) 一种适于工业化生产的盐酸头孢吡肟的制备方法
US9434702B2 (en) Method for preparing linezolid intermediate
CN103396373A (zh) 地拉罗司的制备方法及其中间体化合物
CN108395444B (zh) 一种3-乙基头孢羟氨苄的制备方法
CN101633626B (zh) L-间氨基苯甘氨酸及其衍生物、制备方法和应用
KR20240107154A (ko) β-락타마제 억제제 중간체 및 이의 제조 방법
CN108503586B (zh) 制备托伐普坦中间体的方法
WO2012070066A1 (en) Process for the preparation of taurolidine and its intermediates thereof
CN111763222A (zh) 用于制备依度沙班游离碱的中间体及其制备方法和应用
CN108727410A (zh) 一种羟甲基头孢妥仑匹酯的制备方法
CN106146340B (zh) 一种西他列汀中间体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3238268

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022393742

Country of ref document: AU

Ref document number: AU2022393742

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020247018824

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022393742

Country of ref document: AU

Date of ref document: 20221117

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022894906

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894906

Country of ref document: EP

Effective date: 20240617