WO2023088181A1 - 组合物及其制备方法及应用 - Google Patents

组合物及其制备方法及应用 Download PDF

Info

Publication number
WO2023088181A1
WO2023088181A1 PCT/CN2022/131380 CN2022131380W WO2023088181A1 WO 2023088181 A1 WO2023088181 A1 WO 2023088181A1 CN 2022131380 W CN2022131380 W CN 2022131380W WO 2023088181 A1 WO2023088181 A1 WO 2023088181A1
Authority
WO
WIPO (PCT)
Prior art keywords
kluyveromyces
inactivated
oil
cells
particle size
Prior art date
Application number
PCT/CN2022/131380
Other languages
English (en)
French (fr)
Inventor
骆滨
许昱
张改改
杨秀华
杨梦晨
吴蓉
张可欣
Original Assignee
上海昌进生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海昌进生物科技有限公司 filed Critical 上海昌进生物科技有限公司
Publication of WO2023088181A1 publication Critical patent/WO2023088181A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L31/00Edible extracts or preparations of fungi; Preparation or treatment thereof
    • A23L31/10Yeasts or derivatives thereof
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/16Fatty acid esters
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/327Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by the fatty product used, e.g. fat, fatty acid, fatty alcohol, their esters, lecithin, glycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/36Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G9/363Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing microorganisms, enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/14Yeasts or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the disclosure belongs to the field of food processing, and specifically relates to a composition, a preparation method and an application thereof.
  • Kluyveromyces is a kind of ascospore yeast, which is a food safety grade yeast, among which Kluyveromyces marxianus and Kluyveromyces lactis are widely used in industry and studied more Many yeasts, such as Kluyveromyces marx, are widely found in yogurt, fruit and kefir. Due to the high food safety, high growth rate, high biomass and high temperature resistance of this yeast, it is widely used in Fermentation, lactic acid bacteria beverage production and other fields, however, there are few studies on the nutrition and physicochemical properties of inactivated Kluyveromyces itself.
  • the emulsification process is currently the most common processing method in the food field, especially in the production of beverages and sauces.
  • it is usually necessary to use the emulsification process to mix the water phase and the oil phase evenly, and then add a certain amount of
  • the combination of one or more emulsifiers makes the different phases less repulsive between the two incompatible phases, and the same phase is not easy to aggregate, so as to ensure the long-term stability of the system and the shelf life of the product.
  • Emulsifiers can be classified as surfactants in the chemical field and as food additives in the food field.
  • emulsifiers are usually determined by the hydrophilic and lipophilic groups in their molecules.
  • a good emulsifier system must have a considerable balance between hydrophilic groups and hydrophobic groups.
  • emulsifiers are used to obtain a stable and uniform emulsification system. Strict theoretical calculations are usually required to balance the hydrophilic and hydrophobic groups in the emulsification system. Due to the diversification of food formulas, it is usually necessary to rely on Experience, or a large number of experiments, or even simple and rough excessive use of emulsifiers, can obtain a relatively stable formula system. Therefore, it is necessary to study a natural and simple food that contains both water phase and oil phase components in a long-term stable and uniform existence. The technology is an industry problem that needs to be solved urgently.
  • the problem to be solved by the present disclosure is to provide a food composition without food additives, which is stable and uniform and has high protein, dietary fiber and other nutritional components.
  • the present disclosure also provides the use of the food composition in the preparation of a food product.
  • a composition comprising the following raw materials in weight percentage: 2.5%-80% of the above-mentioned inactivated Kluyveromyces cells, 1%-50% edible oil, and 18%-96.5% water.
  • the composition and ratio of the raw materials are conducive to the formation of a stable and uniform emulsification system, wherein the inactivated Kluyveromyces cells can physically isolate the mutual contact between oil particles, without emulsifiers, stabilizers.
  • exogenous food additives such as thickeners, it can be directly applied to the emulsification process of the water phase and the oil phase, and a stable and uniform emulsification system can be obtained, which can last for at least 7 days without demulsification or delamination.
  • the weight percent content of the above-mentioned inactivated Kluyveromyces cells is 10-70%.
  • the weight percentage content of the above-mentioned edible oil is 10-40%.
  • the above-mentioned composition may include the following raw materials in weight percent: 2.5-25% inactivated Kluyveromyces cells, 1-40% edible oil and 50-96.5% water, for example may include 2.5% %, 5%, 10%, 15%, 20%, 25% inactivated Kluyveromyces cells, 1%, 2%, 4%, 8%, 12%, 16%, 20%, 25%, 30% %, 35%, 40% edible oil, the raw material composition and ratio are favorable for maintaining at least 28 days without demulsification and delamination.
  • the component frequency of particle size ⁇ 5 ⁇ m is 5-98%, for example, it can be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% , 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%.
  • the frequency of components with a particle size ⁇ 10 ⁇ m is 8-100%, for example, it can be 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% , 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%.
  • the frequency of components with a particle size ⁇ 50 ⁇ m is 38-100%, for example, it can be 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% , 95%, 100%.
  • the component frequency of particle size ⁇ 100 ⁇ m is about 100%
  • This frequency distribution helps maintain the long-term stability of the composition system.
  • the above-mentioned composition includes the following raw materials in weight percentage: 30-70% inactivated Kluyveromyces cells, 1-30% edible oil and 18-69% water, for example, may include 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% inactivated Kluyveromyces cells, 1%, 2%, 4%, 8%, 12%, 16%, 20%, 25%, 30% edible oil, the composition and ratio of the raw materials are favorable for maintaining at least 28 days without demulsification and delamination.
  • the frequency of components with a particle size ⁇ 5 ⁇ m is 54-100%, for example, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%.
  • the frequency of components with a particle size ⁇ 10 ⁇ m is 55-100%, for example, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%.
  • the frequency of components with a particle size ⁇ 50 ⁇ m is 75-100%, for example, 75%, 80%, 85%, 90%, 95%.
  • the component frequency of particle size ⁇ 100 ⁇ m is about 100%
  • the frequency distribution helps maintain the composition system for at least 28 days without demulsification and delamination.
  • the cell particle size of the inactivated Kluyveromyces cells in the above composition can be 1-7 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, so as to facilitate In oil (the proportion of water is greater than that of oil) system, it can be used as a "filler" to isolate the mutual contact between oil particles, or in a water-in-oil system (the proportion of oil is greater than that of water), through polar interaction Enriched in water to form micro-particles to isolate the contact between oil particles, thereby delaying the demulsification time of the composition system.
  • the above composition is an oil-in-water system.
  • the aforementioned inactivated Kluyveromyces cells are selected from the group consisting of Kluyveromyces marxianus, Kluyveromyces lactis, Kluyveromyces hubeiensis, Kluyveromyces kluyveromyces One or more of Kluyveromyces wickerhamii and Kluyveromyces thermotolerans cells, according to the research of the present disclosure, selecting these 5 kinds of yeast cells is more conducive to obtaining the inactivated grams of the above-mentioned particle size range. Ruwy yeast cells.
  • the aforesaid inactivated Kluyveromyces cells are Kluyveromyces marx and/or Kluyveromyces lactis cells
  • Kluyveromyces maximus is the edible strain announced by the Health and Construction Commission
  • Kluyveromyces lactis is the Health Commission announced that it can be used for health food strains.
  • the cell particle size of the inactivated Kluyveromyces cells in the above composition can be 2-5 ⁇ m, which is more conducive to the isolation of oil in the composition system where the water phase and the oil phase components coexist. The contact between particles prolongs the demulsification time.
  • the particle size may be 2-5 ⁇ m, for example, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m.
  • the particle size may be 2-7 ⁇ m, for example, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m.
  • the particle size may be 2-5 ⁇ m, for example, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the particle size may be 2-7 ⁇ m, for example, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m.
  • the particle size may be 2-7 ⁇ m, for example, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m.
  • the particle size of the edible oil in the above composition can be 1-100 ⁇ m, and the particle size of the edible oil in the composition is controlled within the range of 1-100 ⁇ m, which is more conducive to achieving a balance between processing technology and product stability . If the particle size of the edible oil in the composition is too large, it is difficult for the inactivated Kluyveromyces cells to exert an effective physical isolation effect, causing the oil particles to quickly combine into large oil droplets, which will lead to demulsification and delamination of the system, affecting the product stability.
  • the particle size of the edible oil in the above composition is 5-100 ⁇ m, further can be 5-10 ⁇ m, 5-50 ⁇ m, 10-50 ⁇ m, 10-100 ⁇ m, 50-100 ⁇ m, for example can be 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m.
  • the particle size of the edible oil in the composition is calculated by the average particle size of the composition in the system, the average particle size of the yeast cells and the frequency of the particle size of the edible oil.
  • the average particle size of the yeast cells added to the composition and the distribution ratio of each component are known.
  • the total frequency of particle size distribution of the system, the frequency of edible oil particle size the total frequency of particle size distribution of the system - the average particle size frequency of yeast cells.
  • the aforementioned inactivated Kluyveromyces cells contain 25-55% protein, 1-5% fat and 15-30% dietary fiber. It has the characteristics of high protein content, low fat (including saturated fat and trans fat) and rich in soluble dietary fiber, and can be used as a source of nutrition in food.
  • the aforementioned inactivated Kluyveromyces cells contain 30.5-52.5% protein, 2.1-4.8% fat and 15.5-29.0% dietary fiber.
  • the water content of the aforementioned inactivated Kluyveromyces cells is 6-10%, and the ash content is 2.5-10.5%.
  • the above-mentioned inactivated Kluyveromyces cells can be dry inactivated Kluyveromyces cell thalline (inactivated Kluyveromyces cell dry powder), inactivated Kluyveromyces Cell dehydrate or inactivated Kluyveromyces cell suspension.
  • the above-mentioned inactivated Kluyveromyces cells are suspensions of inactivated Kluyveromyces cells.
  • the above-mentioned inactivated Kluyveromyces cells are dry inactivated Kluyveromyces cells, and when they are dry Kluyveromyces cells, it is more convenient for the aforementioned combination Storage, transportation, safekeeping and use of goods.
  • the edible oil described in the present disclosure is selected from soybean oil, rapeseed oil, high oleic sunflower oil, medium chain triglycerides, canola oil, coconut oil, corn oil, sesame oil, One or more of tea seed oil, rice bran oil, olive oil, linseed oil, safflower oil, grape seed oil, walnut oil, palm oil, peanut oil, blended oil.
  • the edible oil described in the present disclosure is one or more selected from coconut oil, medium chain triglycerides, canola oil, high oleic sunflower oil, olive oil and rapeseed oil. Various.
  • the aforementioned inactivated Kluyveromyces cells can be prepared by a method comprising the following steps:
  • the above-mentioned medium containing carbon sources, nitrogen sources and salts may be selected from, but not limited to, molasses, glucose, starch, dipotassium hydrogen phosphate, corn steep liquor powder, sodium hydroxide, magnesium sulfate, ammonium sulfate, ammonia water , urea, sodium chloride, yeast extract, peptone, potassium dihydrogen phosphate, potassium hydroxide, methionine, cysteine, alanine, glycine and glutamic acid, one or more carbon sources, nitrogen sources A culture medium obtained by combining with salts.
  • the above-mentioned medium containing carbon source, nitrogen source and salt may be a medium including glucose, magnesium sulfate, ammonium sulfate, yeast extract, potassium dihydrogen phosphate, specifically, each group
  • the weight percentage of the ingredients can be 3.5-4.5% of glucose, 0.2-7% of molasses, 0.1-0.3% of corn steep liquor powder, 0.02-0.15% of magnesium sulfate, 0.5-0.6% of ammonium sulfate, 0.6-0.9% of yeast extract, diphosphate Potassium hydrogen 0.4-0.6%, which can also include other inorganic salt components such as copper sulfate, ferrous sulfate, manganese sulfate, cobalt chloride, zinc sulfate, and other nutrients such as methionine, alanine, cysteine, glycine, etc. , and the balance is water.
  • the culture time of the above-mentioned Kluyveromyces species in the medium may be 15-40 h, for example, 15 h, 20 h, 25 h, 30 h, 35 h or 40 h.
  • the pH of the above medium may be 4.0-8.0, for example, 4, 4.5, 5.0, 5.5, 6, 6.5, 7, 7.5, 8.
  • the above-mentioned fermentation temperature can be 25-50°C, for example, it can be 25-30°C, 25-35°C, 25-40°C, 25-45°C, 30-35°C, 30-40°C, 30-45°C , 30-50°C, 35-40°C, 35-45°C, 35-50°C, 40-45°C, 45-50°C.
  • the above fermentation time may be 15-40h, for example, 15h, 20h, 22h, 24h, 26h, 28h, 30h, 32h, 36h, 40h.
  • the above-mentioned dried and inactivated Kluyveromyces cell body, inactivated Kluyveromyces cell dehydrate and inactivated Kluyveromyces cell suspension are prepared by the following method :
  • the treated bacteria slurry is then dried to obtain dried inactivated Kluyveromyces cell thalline, and dehydrated to obtain dehydrated inactivated Kluyveromyces cells.
  • the drying treatment is a common drying technique in the field such as freeze drying, spray drying, baking drying, etc.
  • the dehydration treatment is a common dehydration technique in the field, which is not particularly limited in the present disclosure.
  • the aforementioned heat inactivation can be performed at 100° C.; the heat inactivation time can be more than 20 min, for example, 20 min, 25 min, 30 min, 35 min, 40 min.
  • the aforementioned post-treatment process includes water cleaning, pH adjustment, alcohol precipitation, alcohol extraction, activated carbon adsorption, ozone treatment, protease treatment, cellulase treatment, hemicellulase treatment, lipase treatment, freezing treatment, pressurizing the solution
  • the post-treatment process is a common treatment process in the field, which is not particularly limited in the present disclosure.
  • the above-mentioned proteases may be endopeptidases or exopeptidases, which may be derived from microorganisms, plants or animals, such as serine proteases, cysteine proteases, aspartic proteases, proteases derived from microorganisms, plant-derived papain and bromelain, animal-derived trypsin, pepsin, cathepsin, etc.
  • the above-mentioned cellulase is an enzyme capable of degrading cellulose to generate glucose, for example, ⁇ -1,4-glucan-4-glucanohydrolase.
  • a method for preparing the aforementioned composition which includes:
  • the inactivated Kluyveromyces cells are suspensions of inactivated Kluyveromyces cells or dry powder of inactivated Kluyveromyces cells.
  • the proportion of inactivated Kluyveromyces cells in the composition of the present disclosure is not affected by the shape of the inactivated Kluyveromyces cells added in the preparation process.
  • the genus yeast cells are inactivated Kluyveromyces yeast cell dry powder, it can be added directly according to the aforementioned ratio; By calculating the number of cells, the ratio of the inactivated Kluyveromyces cells in the composition is the aforementioned ratio.
  • a food product comprising the above composition.
  • the composition when the content of inactivated Kluyveromyces cells in the composition is 2.5-25%, the composition is a beverage, and the composition beverage includes 2.5-25% inactivated Kluyveromyces Vitiligo yeast cells, 1-40% edible oil and 40-96.5% water.
  • the composition when the content of inactivated Kluyveromyces cells in the composition is 30-70%, the composition is a sauce, and the composition sauce includes 30-70% inactivated Kluyveromyces cells, 1-30% edible oil and 18%-69% water.
  • Another aspect of the present disclosure provides an application of the above composition in the preparation of food products.
  • the above composition is preferably used to prepare biscuits, bread, baked food, puffed food, freeze-dried food, ice cream, and dehydrated dry food.
  • the composition of the present disclosure has a higher protein content and can It is added to food products as a protein substitute, and at the same time, the food composition of the present disclosure has the characteristics of low fat (saturated fat, trans fat), rich in soluble dietary fiber, etc., and has good food value.
  • Fig. 1 is the scanning electron microscope measurement schematic diagram of the deactivated Kluyveromyces hubeiensis (Kluyveromyces hubeiensis) with stabilizing effect of embodiment 1.
  • Fig. 2 is the scanning electron microscope measurement schematic diagram of the inactivated Kluyveromyces wickerhamii (Kluyveromyces wickerhamii) with stabilizing effect of embodiment 1.
  • Fig. 3 is the scanning electron microscope measurement schematic diagram of the inactivated thermotolerant Kluyveromyces (Kluyveromyces thermotolerans) with stabilizing effect of embodiment 1.
  • Example 4 is a schematic diagram of the scanning electron microscope measurement of the inactivated Kluyveromyces marxlanus with a stabilizing effect in Example 1.
  • Figure 5 is a schematic diagram of scanning electron microscope measurement of the inactivated Kluyveromyces lactis described in Example 1 with a stabilizing effect.
  • Fig. 6 is a microscopic observation photo of different proportioning compositions of Example 8.
  • the term “about” or “approximately” means within plus or minus 10% of a given value or range. Where integers are required, the term means rounding up or down to the nearest whole number within plus or minus 10% of a given value or range.
  • fertilization refers to the process of using specific metabolic pathways in biological cells to convert external substrates to produce target products or bacteria required by humans under appropriate conditions.
  • shear emulsification means that under the centrifugal force generated by the high-speed and powerfully rotating rotor, the material is thrown from the radial direction into the narrow and precise gap between the stator and the rotor, and at the same time it is subjected to centrifugal extrusion, impact and other forces. And or add high-pressure homogeneous treatment in the later stage, so that the materials can be evenly dispersed, mixed and emulsified.
  • food additive refers to synthetic or natural substances added to food for the purpose of improving food quality, color, aroma, and taste, as well as meeting the needs of antisepsis, preservation, and processing technology. Food flavors, base substances in gum-based candies, and processing aids for the food industry are also included.
  • drying refers to the operation of using thermal energy to vaporize the moisture in the wet material, and using air flow or vacuum to take away the vaporized moisture, so as to obtain dry material.
  • the Kluyveromyces CJ3113 used in the examples of the present disclosure is preserved in the China Type Culture Collection Center (CCTCC for short), the preservation address is the Wuhan University Collection Center in Wuhan City, Hubei province, the preservation number CCTCC No: M20211265, and its Latin literary name is Maxke Ruyveromyces marxianus (Kluyveromyces marxianus), preservation date: October 13, 2021.
  • CTCC China Type Culture Collection Center
  • Kluyveromyces lactis was purchased from China Industrial Microorganism Culture Collection Management Center, with the preservation number CICC 32428.
  • Kluyveromyces hubeiensis, Kluyveromyces wickerhamii and Kluyveromyces thermotolerans were purchased from the General Microorganism Center of China Committee for Culture Collection of Microorganisms (CGMCC for short), The deposit numbers are CGMCC 2.4330, CGMCC 2.4309 and CGMCC 2.4072 respectively.
  • Example 1 Determination of the particle size of Kluyveromyces stabilizing effect
  • Embodiment 2 Preparation of inactivated Kluyveromyces hubeiensis (Kluyveromyces hubeiensis) cell dry powder
  • a medium containing carbon source nitrogen source and salt (4.5% glucose, 0.2% molasses, 0.2% corn steep liquor dry powder, 0.02% magnesium sulfate, 0.6% ammonium sulfate, 0.6% yeast extract, 0.6% potassium dihydrogen phosphate , 6ppm copper sulfate, 12ppm ferrous sulfate, 15ppm manganese sulfate, 6ppm cobalt chloride, 20ppm zinc sulfate, 8ppm methionine, 5ppm alanine, 2ppm cysteine, 5ppm glycine) to cultivate the Kluyveromyces species in Hubei; Adjust the pH of the medium to 4.0-5.0, ferment at 25-30°C for 40 hours, heat inactivate at 100°C for 20 minutes, and remove the supernatant by centrifugation to obtain Kluyveromyces spp; Post-treatment: After centrifugation, obtain the bacterial slurry, soak it in deionized water five times that
  • Embodiment 3 Preparation of inactivated Kluyveromyces wickerhamii (Kluyveromyces wickerhamii) cell dry powder
  • a medium containing carbon source, nitrogen source and salt (4.2% glucose, 0.5% molasses, 0.1% corn steep liquor dry powder, 0.03% magnesium sulfate, 0.5% ammonium sulfate, 0.6% yeast extract, 0.4% potassium dihydrogen phosphate , 5ppm copper sulfate, 10ppm ferrous sulfate, 10ppm manganese sulfate, 5ppm cobalt chloride, 18ppm zinc sulfate, 5ppm methionine, 6ppm alanine, 3ppm cysteine, 1ppm glycine) to cultivate Kluyveromyces wickheimii Bacterial species; adjust the pH of the medium to 4.0-5.0, ferment at 45-50°C for 15 hours, heat inactivate at 100°C for 30 minutes, and remove the supernatant by centrifugation to obtain Kluyveromyces slurries; Kluyveromyces The slurry is subjected to the following post-treatment: obtain
  • Embodiment 4 Preparation of inactivated heat-resistant Kluyveromyces (Kluyveromyces thermotolerans) cell dry powder
  • nitrogen source and salt (3.5% glucose, 0.7% molasses, 0.3% corn steep liquor dry powder, 0.02% magnesium sulfate, 0.6% ammonium sulfate, 0.7% yeast extract, 0.4% potassium dihydrogen phosphate , 1ppm copper sulfate, 3ppm ferrous sulfate, 15ppm manganese sulfate, 3ppm cobalt chloride, 10ppm zinc sulfate, 15ppm methionine, 3ppm alanine, 1ppm cysteine, 9ppm glycine).
  • Embodiment 5 Preparation of inactivated Kluyveromyces marxianus (Kluyveromyces marxianus) dry cell powder
  • a medium containing carbon source nitrogen source and salt (4.5% glucose, 0.2% molasses, 0.2% corn steep liquor dry powder, 0.05% magnesium sulfate, 0.5% ammonium sulfate, 0.8% yeast extract, 0.6% potassium dihydrogen phosphate , 10ppm copper sulfate, 5ppm ferrous sulfate, 15ppm manganese sulfate, 7ppm cobalt chloride, 2ppm zinc sulfate, 3ppm methionine, 1ppm alanine, 6ppm cysteine, 3ppm glycine) to cultivate Kluyveromyces maximus strain; Adjust the pH of the culture medium to 5.5-6.5, ferment at 25-30°C for 24 hours, heat inactivate at 100°C for 30 minutes, and remove the supernatant by centrifugation to obtain Kluyveromyces spp; Post-treatment: After centrifugation, the bacteria slurry was obtained, soaked in deionized water five times that of
  • Embodiment 6 Preparation of inactivated Kluyveromyces lactis (Kluyveromyces lactis) cell dry powder
  • nitrogen source and salt (4.2% glucose, 0.5% molasses, 0.1% corn steep liquor dry powder, 0.15% magnesium sulfate, 0.6% ammonium sulfate, 0.9% yeast extract, 0.5% potassium dihydrogen phosphate , 5ppm copper sulfate, 10ppm ferrous sulfate, 10ppm manganese sulfate, 5ppm cobalt chloride, 18ppm zinc sulfate, 5ppm methionine, 6ppm alanine, 3ppm cysteine, 1ppm glycine) to cultivate Kluyveromyces lactis species; Adjust the pH of the medium to 4.0-5.0, ferment at 40-45°C for 28 hours, heat inactivate at 100°C for 20 minutes, and remove the supernatant by centrifugation to obtain Kluyveromyces spp; Post-treatment: After centrifugation, obtain the bacterial slurry, soak it in deionized water five times that of
  • Example 7 Determination of nutritional components of Kluyveromyces yeast cell dry powder prepared in Example 2-6
  • the content of protein, fat, dietary fiber, moisture, ash, and total nitrogen in the dry cell powder of Kluyveromyces prepared in Examples 2-6 were analyzed.
  • Moisture content is measured by atmospheric dry weight method (105°C, 3 hours)
  • total nitrogen content is measured by Kjeldahl method
  • ash content is measured by muffle furnace direct ashing method
  • dietary fiber content is determined by AOAC 991.43 standard
  • the protein content is measured by the AOAC 979.09 standard
  • the fat content is measured by the AOAC 996.06 standard
  • the moisture content is measured by the AOAC 925.09 method
  • the ash content is measured by the AOAC 942.05 method.
  • Table 2 The analysis results are shown in Table 2:
  • Example 2-6 prepares the nutrient composition table of Kluyveromyces yeast cell dry powder
  • Embodiment 8 Composition stable system experiment
  • the dry cell powder of inactivated Kluyveromyces prepared in Example 5 is used as a food raw material for food formulation development, and can partially or completely replace emulsifiers, thickeners, and stabilizers in food.
  • Fig. 6 show four different types of inactivated Kluyveromyces marxianus (Kluyveromyces marxianus, KM) in two different systems (oil-in-water emulsion system and water-in-oil emulsion system) observed under a 400-fold microscope field of view.
  • the food composition made of inactivated Kluyveromyces yeast cells has stable and uniform product properties (no delamination, no demulsification) without using exogenously added emulsifiers, thickeners, and stabilizers. Specifically, it can be divided into three kinds of property analysis (no demulsification at all and no delamination is defined as A; slight demulsification occurs, and a small amount of delamination on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state. is defined as C):
  • an oil-in-water emulsification system will be formed. Since the inactivated and unbroken Kluyvern cells in the water phase have a particle size range of 2-5 ⁇ m, enrichment It acts as a "filler". After the composition system is emulsified, the particle size of the oil is in the range of 1-100 ⁇ m. Due to the caulking effect of the small inactivated and unbroken Kluyveromyces cells, the mutual contact between the oil particles is physically isolated, Thus delaying the demulsification time.
  • composition system As the proportion of oil increases, a water-in-oil system is formed. In the water-in-oil system, the size of the oil particles increases, and the inactivated unbroken Kluyvern cells due to polarity, the inactivated Kluyveromyces cells in the oil particles tend to be enriched in the water phase, Finally, microparticles with a particle size range of 10-100 ⁇ m are formed in the water phase, and these microparticles physically isolate the mutual contact between oil particles, thereby delaying the demulsification time.
  • composition system no water is added at all, and the system is composed of pure olive oil and inactivated unbroken Kluyvern cells.
  • the inactivated Kluyvern cells are dispersed in the oil system, forming a solution system in which the center is a cell mass with a particle size of 50-100 ⁇ m and the outer layer is oil-wrapped.
  • the solution system will be demulsified and separated after being left for 7 days.
  • the composition system Poor stability (group 5 in Table 3, graph e in Figure 6).
  • the balance is water.
  • Example 9 Preparation of a beverage containing inactivated Kluyveromyces cells and rapeseed oil
  • the dry cell powder of inactivated Kluyveromyces obtained in Examples 2-6, together with rapeseed oil and water in a certain weight percentage, is prepared through an emulsification process into a food drink with a desired particle size distribution.
  • the specific operation steps are as follows:
  • Kluyveromyces yeast cell dry powder is mixed with water, and stirred until it spreads evenly;
  • inactivated Kluyveromyces yeast cell dry powder, rapeseed oil and water weight percentage content, composition particle size distribution and stability test result are respectively as follows Table 4, Table 5, Table 6, Table 7, Table 8 (completely without Demulsification without delamination is defined as A; slight demulsification occurs, and a small amount of delamination on the top of the product is defined as B; demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 10 Preparation of sauce containing inactivated Kluyveromyces cells and rapeseed oil
  • the dry cell powder of inactivated Kluyveromyces obtained in Examples 2-6, together with rapeseed oil and water in a certain weight percentage content, is prepared through an emulsification process into a food sauce with a desired particle size distribution.
  • the specific operation steps are as follows:
  • Kluyveromyces yeast cell dry powder is mixed with water, and stirred until it spreads evenly;
  • inactivated Kluyveromyces yeast cell dry powder, rapeseed oil and water weight percent content, composition particle size and stability test result are respectively as follows Table 9, Table 10, Table 11, Table 12, Table 13 (completely non-destructive Demulsification without delamination is defined as A; slight demulsification occurs, and a small amount of delamination on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 11 Preparation of beverages containing inactivated Kluyveromyces marx cells and coconut oil
  • the dry cell powder of inactivated Kluyveromyces obtained in Example 5, together with coconut oil and water in a certain weight percentage content, is prepared through an emulsification process into a food drink with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyverme yeast cell dry powder the weight percent content of coconut oil and water, the particle size distribution of the composition and the stability test results are respectively as follows in Table 14 (completely no demulsification and no delamination are defined as A; slight demulsification occurs Milk, a small amount of stratification on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 12 Preparation of a sauce containing inactivated K. marx cells and coconut oil
  • the inactivated Kluyveromyces cell dry powder obtained in Example 5, together with coconut oil and water in a certain weight percent content, is prepared through an emulsification process into a food sauce with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyverme yeast cell dry powder the weight percent content of coconut oil and water, the particle size distribution of the composition and the stability test results are respectively as follows in Table 15 (completely no demulsification and no delamination are defined as A; slight demulsification occurs Milk, a small amount of stratification on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 13 Preparation of beverages containing inactivated Kluyveromyces marx cells and high oleic sunflower oil
  • the dry cell powder of inactivated Kluyveromyces obtained in Example 5, together with high oleic sunflower oil and water in a certain weight percentage content is prepared through an emulsification process into a food drink with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyveromyces yeast cell dry powder the weight percent content of high oleic sunflower oil and water, composition particle size distribution and stability test result are respectively as follows table 16 (completely without demulsification phenomenon and without delamination is defined as A ; Slight demulsification, a small amount of stratification on the top of the product is defined as B; obvious demulsification, and the product presents a complete oil-water separation state is defined as C):
  • Example 14 Preparation of a sauce containing inactivated K. marxista cells and high oleic sunflower oil
  • the dry cell powder of inactivated Kluyveromyces obtained in Example 5, high oleic sunflower oil, and water are prepared by an emulsification process according to a certain weight percentage to prepare a food sauce with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyveromyces yeast cell dry powder, high oleic sunflower oil and water weight percent content, composition particle size distribution and stability test results are respectively as follows Table 17 (no demulsification phenomenon and no delamination are defined as A ; Slight demulsification, a small amount of stratification on the top of the product is defined as B; obvious demulsification, and the product presents a complete oil-water separation state is defined as C):
  • Example 15 Preparation of beverages containing inactivated Kluyveromyces marx cells and canola oil
  • the dry cell powder of the inactivated Kluyveromyces obtained in Example 5, together with canola oil and water in a certain weight percentage, is prepared through an emulsification process into a food drink with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyveromyces yeast cell dry powder the weight percentage content of canola oil and water, composition particle size distribution and stability test result are respectively as follows table 18 (completely without demulsification phenomenon and no delamination is defined as A; slight occurrence Demulsification, a small amount of stratification on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 16 Preparation of a sauce containing inactivated K. marx cells and canola oil
  • the inactivated Kluyveromyces cell dry powder obtained in Example 5, together with canola oil and water in a certain weight percent content, is prepared through an emulsification process into a food sauce with a desired particle size distribution.
  • the specific operation steps are as follows:
  • inactivated Kluyveromyces yeast cell dry powder the weight percent content of canola oil and water, composition particle size distribution and stability test result are respectively as follows table 19 (completely without demulsification and no delamination is defined as A; slight occurrence Demulsification, a small amount of stratification on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C):
  • Example 17 Preparation of beverages containing inactivated Kluyveromyces marx cells and medium chain triglycerides
  • the inactivated Kluyveromyces cell dry powder obtained in Example 5, medium-chain triglycerides, and water are prepared by an emulsification process at a certain weight percentage to prepare food and drink with a desired particle size distribution.
  • the specific operation steps are as follows:
  • Example 18 Preparation of a sauce containing inactivated Kluyveromyces marx cells and medium chain triglycerides
  • the inactivated Kluyveromyces cell dry powder obtained in Example 5, together with medium-chain triglycerides and water in a certain weight percentage content, is prepared through an emulsification process into a food sauce with a desired particle size distribution.
  • the specific operation steps are as follows:
  • the dry cell powder of inactivated Kluyveromyces yeast the weight percentage content of medium chain triglyceride oil and water, the particle size distribution of the composition and the stability test results are shown in Table 21 (completely without demulsification and without delamination is defined as A ; Slight demulsification, a small amount of stratification on the top of the product is defined as B; obvious demulsification, and the product presents a complete oil-water separation state is defined as C):
  • the above-mentioned edible oils are commonly used in the food industry with a market price of 10-300 yuan/L (canola oil 10 yuan/L, high oleic sunflower oil 16 yuan/L, coconut oil 50 yuan/L, medium chain Triglycerides (300 yuan/L) have edible oils with different sources and nutritional components, and the raw materials of the food composition described in the present disclosure are cheap and relatively low in cost.
  • Examples 11-18 are exemplary embodiments, and the other four inactivated Kluyveromyces cells (Kluyveromyces hubei, Kluyveromyces Kluyveromyces kluyveromyces, Kluyveromyces thermotolerant, Kluyveromyces lactis) and other edible oils except rapeseed oil are prepared into food, beverage or sauce according to the ratio described in the present disclosure, also have Same or similar shelf-life stability.
  • Kluyveromyces hubei Kluyveromyces Kluyveromyces kluyveromyces, Kluyveromyces thermotolerant, Kluyveromyces lactis
  • other edible oils except rapeseed oil are prepared into food, beverage or sauce according to the ratio described in the present disclosure, also have Same or similar shelf-life stability.
  • Example 19 Stability experiment of food products prepared from food compositions containing inactivated Kluyveromyces marx cells
  • the dry cell powder of the inactivated Kluyveromyces marxis prepared in Example 5 was prepared by a shear emulsification method to obtain the Kluyvern beverage, and the food composition was replaced with pea protein and sucrose fatty acid ester (obtained Plant-based beverages and emulsifier beverages, the beverage composition composition is shown in Table 22, and the delamination and demulsification of the above three beverages were recorded on the 1st, 3rd, 7th, 14th and 28th days after the beverage preparation was completed (no demulsification at all No delamination phenomenon is defined as A; slight demulsification occurs, and a small amount of delamination on the top of the product is defined as B; obvious demulsification occurs, and the product presents a complete oil-water separation state is defined as C).
  • the observation results are shown in Table 23.
  • the Kluyver beverage formulated without exogenous food additives completely maintains a stable, uniform and non-layered suspension state within the 28-day shelf life observation period without any demulsification; it is formulated without exogenous food additives
  • the resulting herbal drink had obvious stratification and demulsification on the 7th day during the 28-day shelf-life observation period; During the observation period, a small amount of delamination and slight demulsification occurred on the 7th day, and obvious delamination and demulsification occurred on the 28th day. It can be seen that Kluyver beverage has the value of developing microbial beverage and microbial food raw materials.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Inorganic Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种组合物及其制备方法与应用,所述组合物包括以下重量百分比原料:2.5%-80%灭活克鲁维属酵母细胞、1%-50%食用油以及18%-96.5%水。该组合物稳定均一,且具有较高的蛋白质和膳食纤维等营养成分,可用于饮料和食品中。

Description

组合物及其制备方法及应用 技术领域
本公开属于食品加工领域,具体涉及一种组合物及其制备方法及应用。
背景技术
克鲁维酵母(Kluyreromyces)是一种子囊孢子酵母,是食品安全级酵母,其中的马克斯克鲁维酵母(Kluyveromyces marxianus)和乳酸克鲁维酵母(Kluyveromyces lactis)是工业上广泛使用和被研究较多的酵母,例如马克斯克鲁维酵母广泛存在于酸奶、水果与酸乳酒中,由于该酵母表现出的高食品安全性、高成长速率、高生物量以及耐高温等特征,被广泛应用于发酵、乳酸菌饮料生产等领域,然而对灭活克鲁维酵母本身的营养以及物理化学性质研究较少。
乳化工艺是目前食品领域,尤其饮料、酱料生产过程中最为常见的加工方式,为了获得均一稳定不分层的产品,通常需要利用乳化工艺将水相与油相混合均匀,再加入一定量的一种或多种乳化剂组合,使得互不相容的两相之间,异相不太相斥,同相不易聚集,从而确保体系的长期稳定性,进而保证产品的货架期。乳化剂在化学领域可归类为表面活性剂,在食品领域被归类为食品添加剂。饮料、酱料加工中常用的乳化剂有离子型、非离子型和两性电解质三种类型,这三种类型乳化剂的特性和功能通常是由其分子中亲水基的亲水性和亲油基的憎水性的相对强弱决定的,良好的乳化剂体系在亲水基和疏水基之间必须有相当的平衡。现有食品加工技术中采用乳化剂来获得稳定而均一的乳化体系,通常需要严格的理论计算来平衡乳化体系中的亲水基和疏水基,由于食品配方的多元化,理论之外通常需要凭借经验,或者大量实验,甚至是简单粗暴的过量使用乳化剂,才能获得较为稳定的配方体系,因此,研究一种天然的、简单的使得同时含有水相和油相组分的食品长期稳定均一存在的工艺是亟待解决的行业问题。
发明概述
本公开所要解决的问题在于提供一种不含食品添加剂的食物组合物,该食物组合物稳定均一且具有较高的蛋白质和膳食纤维等营养成分。
本公开还提供该食物组合物在制备食物产品方面的应用。
为了实现上述目的,本公开提供以下解决方案:
在本公开的一方面,提供一种组合物,包括以下重量百分比的原料:2.5%-80%上述灭活克鲁维属酵母细胞、1%-50%食用油、18%-96.5%水。根据本公开的研究,该原料组成与配比利于形成稳定均一的乳化体系,其中,灭活克鲁维属酵母细胞可从物理上隔绝油粒间的相互接触,在无乳化剂、稳定剂、增稠剂等外源食品添加剂的情况下,可直接应用于水相与油相的乳化工艺,并得到稳定均一的乳化体系,其可维持至少7天不破乳不分层。
在本公开的一实施方式中,上述灭活克鲁维属酵母细胞重量百分比含量为10-70%。
在本公开的一实施方式中,上述食用油重量百分比含量为10-40%。
在本公开的一实施方式中,上述组合物可以包括以下重量百分比原料:2.5-25%灭活克鲁维属酵母细胞、1-40%食用油以及50-96.5%水,例如可以是包括2.5%、5%、10%、15%、20%、25%灭活克鲁维属酵母细胞,1%、2%、4%、8%、12%、16%、20%、25%、30%、35%、40%食用油,该原料组成与配比利于其可维持至少28天不破乳不分层。
在本公开的实施过程中,当灭活克鲁维属酵母细胞的含量为2.5-25%时:
粒径≤5μm的组分频度为5-98%,例如可以为5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%。
粒径≤10μm的组分频度为8-100%,例如可以为5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%。
粒径≤50μm的组分频度为38-100%,例如可以为40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%。
粒径≤100μm的组分频度约100%,
该频度分布帮助保持该组合物体系的长期稳定性。
在本公开的一优选的实施方式中,上述组合物包括以下重量百分比原料:30-70%灭活克鲁维属酵母细胞、1-30%食用油以及18-69%水,例如可以是包括30%、35%、40%、45%、50%、55%、60%、65%、70%灭活克鲁维属酵母细胞,1%、2%、4%、8%、12%、16%、20%、25%、30%食用油,该原料组成与配比利于其可维持至少28天不破乳不分层。
在本公开的实施过程中,当灭活克鲁维属酵母细胞的含量为30-70%时:
粒径≤5μm的组分频度为54-100%,例如可以为55%、60%、65%、70%、75%、80%、85%、90%、95%。
粒径≤10μm的组分频度为55-100%,例如可以为55%、60%、65%、70%、75%、80%、85%、90%、95%。
粒径≤50μm的组分频度为75-100%,例如可以为75%、80%、85%、90%、95%。
粒径≤100μm的组分频度约100%,
该频度分布帮助维持该组合物体系至少28天不破乳不分层。
根据本公开的研究,上述组合物中灭活克鲁维属酵母细胞的细胞粒径可以为1-7μm,例如可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm,以利于在水包油(水的比例大于油的比例)体系中以“填缝剂”的形式隔绝油粒间的相互接触,或在油包水(油的比例大于水的比例)的体系中,通过极性作用富集于水中形成微颗粒隔绝油粒间的相互接触,从而延缓组合物体系的破乳时间。
在本公开一优选的实施方式中,上述组合物为水包油体系。
具体地,前述灭活克鲁维属酵母细胞选自马克斯克鲁维酵母(Kluyveromyces marxianus)、乳酸克鲁维酵母(Kluyveromyces lactis)、湖北克鲁维酵母(Kluyveromyces hubeiensis)、威克海姆克鲁维酵母(Kluyveromyces wickerhamii)、耐热克鲁维酵母(Kluyveromyces thermotolerans)细胞中的一种或多种,根据本公开的研究,选用该5种酵母细胞更利于得到上述粒径范围的的灭活克鲁维属酵母细胞。
优选地,前述灭活克鲁维属酵母细胞为马克斯克鲁维酵母和/或乳酸克鲁维酵母细胞,马克斯克鲁维酵母为卫建委公布的可食用菌种,乳酸克鲁维酵母为卫健委公布的可用于保健食品菌种。
在本公开一优选的实施方式中,上述组合物中灭活克鲁维属酵母细胞的细胞粒径可以为2-5μm,更利于在水相和油相组分共存的组合物体系中隔绝油粒间的相互接触,延长破乳时间。
根据本公开的进一步研究,上述灭活克鲁维属酵母细胞为湖北克鲁维酵母细胞时,其粒径可以为2-5μm,例如可以为2μm、3μm、4μm、5μm。
上述灭活克鲁维属酵母细胞为威克海姆克鲁维酵母细胞时,其粒径可以为2-7μm,例如可以为2μm、3μm、4μm、5μm、6μm、7μm。
上述灭活克鲁维属酵母细胞为耐热克鲁维酵母细胞时,其粒径可以为2-5μm,例如可以为2μm、3μm、4μm、5μm。
上述灭活克鲁维属酵母细胞为马克斯克鲁维酵母细胞时,其粒径可以为2-7μm,例如可以为2μm、3μm、4μm、5μm、6μm、7μm。
上述灭活克鲁维属酵母细胞为乳酸克鲁维酵母细胞时,其粒径可以为2-7μm,例如可以为2μm、3μm、4μm、5μm、6μm、7μm。
根据本公开的研究,上述组合物中食用油的粒径可以为1-100μm,将该组合物中食用油的粒径控制在1-100μm范围内,更利于实现加工工艺与产品稳定性的平衡。若该组合物中食用油粒径过大,灭活克鲁维属酵母细胞难以在其中发挥有效的物理隔绝作用,使得油粒快速结合成大油滴,进而导致体系破乳分层,影响产品稳定性。
在本公开的一具体实施方式中,上述组合物中食用油的粒径为5-100μm,进一步可以为5-10μm、5-50μm、10-50μm、10-100μm、50-100μm,例如可以为5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm。
该组合物中食用油粒径为通过体系中组合物平均粒径、酵母细胞平均粒径与食用油粒径频度计算得到,已知加入组合物中酵母细胞的平均粒径、各组分配比、体系粒径分布总频度,食用油粒径频度=体系粒径分布总频度-酵母细胞平均粒径频度。
具体地,前述灭活克鲁维属酵母细胞包含25-55%蛋白质、1-5%脂肪以及15-30%膳食纤维。其具有高蛋白含量、低脂肪(包括饱和脂肪和反式脂肪)以及富含可溶性膳食纤维的特性,可作为营养来源应用于食品。
在本公开一优选的实施方式中,前述灭活克鲁维属酵母细胞包含30.5-52.5%蛋白质、2.1-4.8%脂肪以及15.5-29.0%膳食纤维。
具体地,前述灭活克鲁维属酵母细胞水分含量为6-10%,灰分含量为2.5-10.5%。
在本公开的一实施方式中,上述灭活克鲁维属酵母细胞可以为干燥灭活克鲁维属酵母细胞菌体(灭活克鲁维属酵母细胞干粉)、灭活克鲁维属酵母细胞脱水物或灭活克鲁维属酵母细胞菌体悬浮液。
在本公开一优选的实施方式中,上述灭活克鲁维属酵母细胞为灭活克鲁维属酵母细胞菌体悬浮液。
在本公开一优选的实施方式中,上述灭活克鲁维属酵母细胞为干燥灭活克鲁维属酵母细胞菌体,当其为干燥克鲁维属酵母细胞菌体时,更便于前述组合物的保存、运输、保管及使用。
在本公开的一实施方式中,本公开所述食用油为选自大豆油、菜籽油、高油酸葵花籽油、中链甘油三酯、芥花油、椰子油、玉米油、芝麻油、茶籽油、米糠油、橄榄油、亚麻籽油、红花籽油、葡萄籽油、核桃油、棕榈油、花生油、调和油中的一种或多种。
在本公开一优选的实施方式中,本公开所述食用油为选自椰子油、中链甘油三酯、芥花油、高油酸葵花籽油、橄榄油以及菜籽油中的一种或多种。
前述灭活克鲁维属酵母细胞可通过包括以下步骤的方法制备得到:
(1)选用含碳源、氮源及盐类的培养基培养克鲁维属酵母菌种15-40小时;
(2)调控培养基pH为4.0-8.0,经25-50℃发酵后加热灭活得到所述灭活克鲁维属酵母细胞。
具体地,上述含碳源、氮源及盐类的培养基可以为包括但不限于选自糖蜜、葡萄糖、淀粉、磷酸氢二钾、玉米浆干粉、氢氧化钠、硫酸镁、硫酸铵、氨水、尿素、氯化钠、酵母提取物、蛋白胨、磷酸二氢钾、氢氧化钾、蛋氨酸、半胱氨酸、丙氨酸、甘氨酸以及谷氨酸中的一种或多种碳源、氮源及盐类进行组合得到的培养基。
在本公开的一实施方式中,上述含碳源、氮源及盐类的培养基可以为包括葡萄糖、硫酸镁、硫酸铵、酵母提取物、磷酸二氢钾培养基,具体地,其中各组分的重量百分比可以为葡萄糖3.5-4.5%、糖蜜0.2-7%、玉米浆干粉0.1-0.3%、硫酸镁0.02-0.15%、硫酸铵0.5-0.6%、酵母提取物0.6-0.9%、磷酸二氢钾0.4-0.6%,其还可以包括硫酸铜、硫酸亚铁、硫酸锰、氯化钴、硫酸锌等其他无机盐组分以及蛋氨酸、丙氨酸、半胱氨酸、甘氨酸等其他营养成分,余量为水。
具体地,上述克鲁维属酵母菌种在培养基中的培养时间可以为15-40h,例如可以为15h、20h、25h、30h、35h或40h。
具体地,上述培养基的pH可以为4.0-8.0,例如可以为4、4.5、5.0、5.5、6、6.5、7、7.5、8。
具体地,上述发酵温度可以为25-50℃,例如可以为25-30℃、25-35℃、25-40℃、25-45℃、30-35℃、30-40℃、30-45℃、30-50℃、35-40℃、35-45℃、35-50℃、40-45℃、45-50℃。
具体地,上述发酵时间可以为15-40h,例如可以为15h、20h、22h、24h、26h、28h、30h、32h、36h、40h。
在本公开的一实施方式中,上述干燥灭活克鲁维属酵母细胞菌体、灭活克鲁维属酵母细胞脱水物和灭活克鲁维属酵母细胞菌体悬浮液通过以下方法制备得到:
选用含碳源、氮源及盐类的培养基培养克鲁维属酵母菌种15-40小时;调控培养基pH为4.0-8.0,经25-50℃发酵15-40h后加热灭活,经过离心除去上清液得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行后处理得到经处理菌浆,该经处理菌浆即为灭活克鲁维属酵母细胞菌体悬浮液。
再对该经处理菌浆进行干燥处理得到干燥灭活克鲁维属酵母细胞菌体,进行脱水处理得到灭活克鲁维属酵母细胞脱水物。
在本公开的实施过程中,所述干燥处理为冷冻干燥、喷雾干燥、烘培干燥等本领域常用干燥技术,所述脱水处理为本领域常用脱水技术,本公开对此不做特别限定。
具体地,前述加热灭活可以在100℃条件下进行;加热灭活时间可以为20min以上,例如可以为20min、25min、30min、35min、40min。
前述后处理工艺包括选自水清洗、pH调节、酒精沉淀、酒精提取、活性炭吸附、臭氧处理、蛋白酶处理、纤维素酶处理、半纤维素酶处理、脂肪酶处理、冷冻处理、对溶液加压处理以及加热处理中的一种或多种,所述后处理工艺为本领域常用处理工艺,本公开对此不做特别限定。
上述蛋白酶可以为内肽酶或外肽酶类,其可以源自微生物、植物或动物,例如可以为丝氨酸蛋白酶、半胱氨酸蛋白酶、天冬氨酸蛋白酶、源自微生物的蛋白酶、源自植物的木瓜蛋白酶和菠萝蛋白酶、源自动物的胰蛋白酶、胃蛋白酶、组织蛋白酶等。上述纤维素酶是能降解纤维素生成葡萄糖的酶,例如指β-1,4-葡聚糖-4-葡聚糖水解酶。
本公开的再一方面,提供一种前述组合物的制备方法,其包括:
(1)将灭活克鲁维属酵母细胞与水混合,制成细胞悬浊液;
(2)在剪切乳化上述悬浊液的过程中加入食用油,持续剪切乳化至食用油粒径为1-100μm。
在本公开的一实施方式中,所述灭活克鲁维属酵母细胞为灭活克鲁维属酵母细胞菌体悬浮液或灭活克鲁维属酵母细胞干粉。
本公开所述组合物中灭活克鲁维属酵母细胞的比例,不受制备过程中所加入灭活克鲁维属酵母细胞菌体形态的影响,可以理解地,当所用灭活克鲁维属酵母细胞为灭活克鲁维属酵母细胞干粉时,其可以按照前述比例直接进行添加,当所用灭活克鲁维属酵母细胞为灭活克鲁维属酵母细胞菌体悬浮液时,可以通过计算细胞数量使得组合物中的灭活克鲁维属酵母细胞比例为前述配比。
本公开的又一方面,提供一种包含上述组合物的食物产品。
在本公开的一实施方式中,当组合物中灭活克鲁维属酵母细胞含量为2.5-25%时,所述组合物为饮料,所述组合物饮料包括2.5-25%灭活克鲁维属酵母细胞、1-40%食用油以及40-96.5%水。
在本公开的一实施方式中,当组合物中灭活克鲁维属酵母细胞含量为30-70%时,所述组合物为酱料,所述组合物酱料包括30-70%灭活克鲁维属酵母细胞、1-30%食用油以及18%-69%水。
本公开的又一方面,提供一种上述组合物在制备食物产品中的应用。
在本公开的一实施方式中,上述组合物优选用于制备饼干、面包、烘焙食品、膨化食品、冻干食品、冰淇淋、脱水干燥食品,本公开所述组合物具有较高的蛋白质含量,可作为蛋白替代物添加于食物产品中,同时,本公开所述食物组合物具有低脂肪(饱和脂肪、反式脂肪)、富含可溶性膳食纤维等特性,具有较好的食品价值。
在本公开的实施过程中,当上述食物组合物饮料用于制备食物产品时,其添加量大于10%,当上述食物组合物酱料用于制备食物产品时,其添加量大于3%。
附图说明
图1为实施例1的具有稳定效果的灭活湖北克鲁维酵母(Kluyveromyces hubeiensis)扫描电子显微镜测量示意图。
图2为实施例1的具有稳定效果的灭活威克海姆克鲁维酵母(Kluyveromyces wickerhamii)扫描电子显微镜测量示意图。
图3为实施例1的具有稳定效果的灭活耐热克鲁维酵母(Kluyveromyces thermotolerans)扫描电子显微镜测量示意 图。
图4为实施例1的具有稳定效果的灭活马克斯克鲁维酵母(Kluyveromyces marxlanus)扫描电子显微镜测量示意图。
图5为实施例1所述具有稳定效果的灭活乳酸克鲁维酵母(Kluyveromyces lactis)扫描电子显微镜测量示意图。
图6为实施例8的不同配比组合物的显微镜观察照片。
具体实施方式
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一种实施方式,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的实施方式。
I.定义
在本公开中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的蛋白质和核酸化学、分子生物学、细胞和组织培养、微生物学、化学相关术语和实验室操作步骤均为相应领域内广泛使用的术语和常规步骤。同时,为了更好地理解本公开,下面提供相关术语的定义和解释。
为了达到清楚和简洁描述的目的,本文中作为相同的或分开的一些实施方案的一部分来描述特征,然而,将要理解的是,本公开的范围可包括具有所描述的所有或一些特征的组合的一些实施方案。
如本文使用的和除非另作说明,术语“约”或“大约”是指在给定值或范围的加或减10%之内。在需要整数的情况下,该术语是指在给定值或范围的加或减10%之内、向上或向下舍入到最接近的整数。
如本文使用的和除非另作说明,术语“包含”,“包括”,“具有”,“含有”,包括其语法上的等同形式,通常应当理解为开放式且非限制性的,例如,不排除其他未列举的要素或步骤。
如本文所用,术语“发酵”是指,在合适的条件下,利用生物细胞内特定的代谢途径转变外界底物,生成人类所需目标产物或菌体的过程。
术语“剪切乳化”是指,利用高速、强劲旋转的转子产生的离心力作用下,将物料从径向甩入定、转子之间狭窄精密的间隙中,同时受到离心挤压、撞击等作用力,以及或在后期再加入高压均质处理,使物料得到均匀分散、混合、乳化。
术语“食品添加剂”是指,为改善食品品质和色、香、味,以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。食品用香料、胶基糖果中基础剂物质、食品工业用加工助剂也包括在内。
术语“干燥”是指利用热能使湿物料中的湿分气化,并利用气流或真空带走气化了的湿分,从而获得干燥物料的操作。
II.具体实施方式
本公开实施例所用的克鲁维酵母CJ3113保藏于中国典型培养物保藏中心(简称CCTCC),保藏地址为湖北省武汉市武汉大学保藏中心,保藏编号CCTCC No:M20211265,其拉丁文学名为马克斯克鲁维酵母(Kluyveromyces marxianus),保藏日期2021年10月13日。
乳酸克鲁维酵母(Kluyveromyces lactis)购自中国工业微生物菌种保藏管理中心,保藏号CICC 32428。
湖北克鲁维酵母(Kluyveromyces hubeiensis)、威克海姆克鲁维酵母(Kluyveromyces wickerhamii)以及耐热克鲁维酵母(Kluyveromyces thermotolerans)购自中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC),保藏号分别为CGMCC 2.4330、CGMCC 2.4309和CGMCC 2.4072。
实施例
实施例1:克鲁维酵母有稳定效果的粒径的确定
经扫描电子显微镜观察(ZEISS GeminiSEM500,场发射)并测量,得有稳定效果的灭活马克斯克鲁维酵母(Kluyveromyces marxianus)、灭活乳酸克鲁维酵母(Kluyveromyces lactis)、灭活湖北克鲁维酵母(Kluyveromyces hubeiensis)、灭活威克海姆克鲁维酵母(Kluyveromyces wickerhamii)以及灭活耐热克鲁维酵母(Kluyveromyces thermotolerans)的最小粒径(μm)和最大粒径(μm),具体见表1,其扫描电子显微镜测量示意图见图1-5。
表1 克鲁维酵母有稳定效果的最小粒径和有稳定效果的最大粒径
菌种名称 有稳定效果的最小粒径(μm) 有稳定效果的最大粒径(μm)
湖北克鲁维酵母 2 5
威克海姆克鲁维酵母 2 7
耐热克鲁维酵母 2 5
马克斯克鲁维酵母 2 7
乳酸克鲁维酵母 2 7
实施例2:灭活湖北克鲁维酵母(Kluyveromyces hubeiensis)细胞干粉的制备
在含碳源、氮源及盐类的培养基(4.5%葡萄糖、0.2%糖蜜、0.2%玉米浆干粉、0.02%硫酸镁、0.6%硫酸铵、0.6%酵母提取物、0.6%磷酸二氢钾、6ppm硫酸铜,12ppm硫酸亚铁,15ppm硫酸锰,6ppm氯化钴,20ppm硫酸锌、8ppm蛋氨酸、5ppm丙氨酸、2ppm半胱氨酸、5ppm甘氨酸)中培养湖北克鲁维酵母菌种;调控培养基pH为4.0-5.0,经25-30℃发酵40h后100℃加热灭活20min,经过离心除去上清液,得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行以下后处理:离心后获得菌浆,用五倍于菌浆的去离子水浸泡30分钟,利用食品级乳酸调节pH至5.0,加入菌浆重量0.01%的酸性蛋白酶和0.01%的木瓜蛋白酶于50℃反应12小时,利用激光粒径分析仪检测粒径,利用食品级碳酸氢钠调节pH至6.6-6.8,加入菌浆重量0.02%的β-葡聚糖酶和0.01%碱性蛋白酶于55℃反应36小时,利用激光粒径分析仪检测粒径,经活性炭吸附脱色,得到灭活克鲁维属酵母细胞菌体悬浮液,将悬浮液-20℃冷冻1小时降温处理,用三倍于菌浆重量的85%乙醇溶液浸泡灭菌60分钟,回收乙醇后兑一倍于菌浆重量的去离子水,溶液中通入臭氧1小时进行灭菌,经巴氏灭菌或压力灭菌后喷雾干燥,获得灭活湖北克鲁维酵母细胞干粉。
实施例3:灭活威克海姆克鲁维酵母(Kluyveromyces wickerhamii)细胞干粉的制备
在含碳源、氮源及盐类的培养基(4.2%葡萄糖、0.5%糖蜜、0.1%玉米浆干粉、0.03%硫酸镁、0.5%硫酸铵、0.6%酵母提取物、0.4%磷酸二氢钾、5ppm硫酸铜,10ppm硫酸亚铁,10ppm硫酸锰,5ppm氯化钴,18ppm硫酸锌、5ppm蛋氨酸、6ppm丙氨酸、3ppm半胱氨酸、1ppm甘氨酸)中培养威克海姆克鲁维酵母菌种;调控培养基pH为4.0-5.0,经45-50℃发酵15h后100℃加热灭活30min,经过离心除去上清液,得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行以下后处理:离心后获得菌浆,用五倍于菌浆的去离子水浸泡60分钟,利用食品级乳酸调节pH至5.0,加入菌浆重量0.02%的酸性蛋白酶和0.015%的木瓜蛋白酶于50℃反应6小时,利用激光粒径分析仪检测粒径,利用食品级碳酸氢钠调节pH至6.6-6.8,加入菌浆重量0.015%的β-葡聚糖酶和0.015%碱性蛋白酶于55℃反应24小时,利用激光粒径分析仪检测粒径,经活性炭吸附脱色,得到灭活克鲁维属酵母细胞菌体悬浮液,将悬浮液-20℃冷冻1小时降温处理,用三倍于菌浆重量的85%乙醇溶液浸泡灭菌60分钟,回收乙醇后兑一倍于菌浆重量的去离子水,溶液中通入臭氧1小时进行灭菌,经巴氏灭菌或压力灭菌后喷雾干燥,获得灭活威克海姆克鲁维酵母细胞干粉。
实施例4:灭活耐热克鲁维酵母(Kluyveromyces thermotolerans)细胞干粉的制备
在含碳源、氮源及盐类的培养基(3.5%葡萄糖、0.7%糖蜜、0.3%玉米浆干粉、0.02%硫酸镁、0.6%硫酸铵、0.7%酵母提取物、0.4%磷酸二氢钾、1ppm硫酸铜,3ppm硫酸亚铁,15ppm硫酸锰,3ppm氯化钴,10ppm硫酸锌、15ppm蛋氨酸、3ppm丙氨酸、1ppm半胱氨酸、9ppm甘氨酸)中培养耐热克鲁维酵母菌种;调控培养基pH为7.5-8.0,经30-35℃发酵30h后100℃加热灭活25min,经过离心除去上清液,得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行以下后处理:离心后获得菌浆,用五倍于菌浆的去离子水浸泡30分钟,利用食品级乳酸调节pH至5.0,加入菌浆重量0.01%的酸性蛋白酶和0.01%的木瓜蛋白酶于50℃反应12小时,利用激光粒径分析仪检测粒径,利用食品级碳酸氢钠调节pH至6.6-6.8,加入菌浆重量0.02%的β-葡聚糖酶和0.01%碱性蛋白酶于55℃反应30小时,利用激光粒径分析仪检测粒径,经活性炭吸附脱色,得到灭活克鲁维属酵母细胞菌体悬浮液,将悬浮液-20℃冷冻1小时降温处理,用三倍于菌浆重量的85%乙醇溶液浸泡灭菌60分钟,回收乙醇后兑一倍于菌浆重量的去离子水,溶液中通入臭氧1小时进行灭菌,经巴氏灭菌或压力灭菌后喷雾干燥,获得灭活耐热克鲁维酵母细胞干粉。
实施例5:灭活马克斯克鲁维酵母(Kluyveromyces marxianus)细胞干粉的制备
在含碳源、氮源及盐类的培养基(4.5%葡萄糖、0.2%糖蜜、0.2%玉米浆干粉、0.05%硫酸镁、0.5%硫酸铵、0.8%酵母提取物、0.6%磷酸二氢钾、10ppm硫酸铜,5ppm硫酸亚铁,15ppm硫酸锰,7ppm氯化钴,2ppm硫酸锌、3ppm蛋氨酸、1ppm丙氨酸、6ppm半胱氨酸、3ppm甘氨酸)中培养马克斯克鲁维酵母菌种;调控培养基pH为5.5-6.5,经25-30℃发酵24h后100℃加热灭活30min,经过离心除去上清液,得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行以下后处理:离心后获得菌浆,用五倍于菌浆的去离子水浸泡30分钟,利用食品级乳酸调节pH至5.0,加入菌浆重量0.015%的酸性蛋白酶和0.015%的木瓜蛋白酶于50℃反应6小时,利用激光粒径分析仪检测粒径,利用食品级碳酸氢钠调节pH至6.6-6.8,加入菌浆重量0.01%的β-葡聚糖酶和0.02%碱性蛋白酶于55℃反应24小时,利用激光粒径分析仪检测粒径,经活性炭吸附脱色,得到灭活克鲁维属酵母细胞菌体悬浮液,将悬浮液-20℃冷冻1小时降温处理,用三倍于菌浆重量的85%乙醇溶液浸泡灭菌60分钟,回收乙醇后兑一倍于菌浆重量的去离子水,溶液中通入臭氧1小时进行灭菌,经巴氏灭菌或压力灭菌后喷雾干燥,获得灭活马克斯克鲁维酵母细胞干粉。
实施例6:灭活乳酸克鲁维酵母(Kluyveromyces lactis)细胞干粉的制备
在含碳源、氮源及盐类的培养基(4.2%葡萄糖、0.5%糖蜜、0.1%玉米浆干粉、0.15%硫酸镁、0.6%硫酸铵、0.9%酵母提取物、0.5%磷酸二氢钾、5ppm硫酸铜,10ppm硫酸亚铁,10ppm硫酸锰,5ppm氯化钴,18ppm硫酸锌、5ppm蛋氨酸、6ppm丙氨酸、3ppm半胱氨酸、1ppm甘氨酸)中培养乳酸克鲁维酵母菌种;调控培养基pH为4.0-5.0,经40-45℃发酵28h后100℃加热灭活20min,经过离心除去上清液,得到克鲁维属酵母菌浆;将克鲁维属酵母菌浆进行以下后处理:离心后获得菌浆,用五倍于菌浆的去离子水浸泡60分钟,利用食品级乳酸调节pH至5.0,加入菌浆重量0.02%的酸性蛋白酶和0.02%的木瓜蛋白酶于50℃反应6小时,利用激光粒径分析仪检测粒径,利用食品 级碳酸氢钠调节pH至6.6-6.8,加入菌浆重量0.01%的β-葡聚糖酶和0.015%碱性蛋白酶于55℃反应36小时,利用激光粒径分析仪检测粒径,经活性炭吸附脱色,得到灭活克鲁维属酵母细胞菌体悬浮液,将悬浮液-20℃冷冻1小时降温处理,用三倍于菌浆重量的85%乙醇溶液浸泡灭菌60分钟,回收乙醇后兑一倍于菌浆重量的去离子水,溶液中通入臭氧1小时进行灭菌,经巴氏灭菌或压力灭菌后喷雾干燥,获得灭活乳酸克鲁维酵母细胞干粉。
实施例7:实施例2-6制备得到克鲁维属酵母细胞干粉的营养成分测定
对实施例2-6制备得到的克鲁维属酵母细胞干粉中的蛋白质、脂肪、膳食纤维含量以及水分、灰分、总氮量进行成分分析。水分含量通过常压干燥重量法(105℃、3小时)进行测定,总氮量利用凯氏定氮法进行测定,灰分利用马弗炉直接灰化法进行测定,膳食纤维含量利用AOAC 991.43标准规定进行测定,蛋白质含量利用AOAC 979.09标准规定进行测定,脂肪含量利用AOAC 996.06标准规定进行测定,水分含量利用AOAC 925.09方法进行测定,灰分含量通过AOAC 942.05方法进行测定。分析结果见表2:
表2 实施例2-6制备得到克鲁维属酵母细胞干粉的营养成分表
Figure PCTCN2022131380-appb-000001
实施例8:组合物稳定体系实验
将实施例5制备的灭活克鲁维属酵母细胞干粉作为食品原料用于食品配方开发,可部分或者全部替代食品中的乳化剂、增稠剂、稳定剂(的作用)。
图6中a-h图示出了400倍显微镜视野下观察灭活马克斯克鲁维酵母(Kluyveromyces marxianus,KM)在两种不同体系(水包油的乳化体系和油包水的乳化体系)四种不同性状(纯水(图6中a图)、水包油(图6中b-d图)、纯油(图6中e图)、油包水(图6中f-h图))下的溶液体系的稳定情况,图6中i、j图任选地示出了两种不同配比下以及状态下组合物体系的照片,图i为放置7天无任何分层和破乳但放置14天出现水油分层的组合物体系示例性照片,图j为一直放置14天无任何分层和破乳的稳定组合物体系照片。
由包含灭活克鲁维属酵母细胞制作的食物组合物,不使用外源添加的乳化剂、增稠剂、稳定剂的情况下,产品性状稳定均一(不分层,不破乳)。具体可分为三种性状分析(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
1.在组合物体系中如果水的比例大于油的比例,则形成水包油的乳化体系,由于灭活未破壁克鲁维属细胞在水相中粒径范围是2-5μm,富集起到“填缝”作用。该组合物体系经乳化后,油的粒径范围是1-100μm,由于较小的灭活未破壁克鲁维属酵母细胞的填缝作用,从物理上隔绝了油粒间的相互接触,进而延缓了破乳时间。
2.在组合物体系中,随着油的占比提高,形成了油包水的体系。在油包水体系中,油粒径增大,灭活未破壁克鲁维属细胞由于极性作用,在油粒中的灭活克鲁维属酵母细胞倾向于往水相中富集,并最终在水相中形成粒径范围是10-100μm微颗粒,这些微颗粒从物理上隔绝了油粒间的相互接触,进而延缓了破乳时间。
3.在组合物体系中,完全不加水,由纯橄榄油和灭活未破壁克鲁维属细胞组成体系。灭活克鲁维属细胞分散在油体系中,形成了中心是粒径为50-100μm的细胞团外层是油包裹的溶液体系,该溶液体系放置7天便破乳分层,组合物体系稳定性较差(表3第5组,图6中e图)。
基于固定酵母添加量寻找合适的水油比例的方法,推测本公开所述组合物中灭活克鲁维属酵母细胞、油和水的含量如下时,达到理论稳态:
灭活克鲁维属酵母细胞10-70%
食用油10-40%
余量为水。
表3 实验配比
Figure PCTCN2022131380-appb-000002
Figure PCTCN2022131380-appb-000003
实施例9:含灭活克鲁维属酵母细胞和菜籽油的饮料的制备
将实施例2-6所得的灭活克鲁维属酵母细胞干粉,与菜籽油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物饮料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉与水混合,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入菜籽油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物饮料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、菜籽油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表4、表5、表6、表7、表8(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表4 含实施例2灭活克鲁维属酵母细胞的饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000004
Figure PCTCN2022131380-appb-000005
表5 含实施例3灭活克鲁维属酵母细胞的饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000006
Figure PCTCN2022131380-appb-000007
表6 含实施例4灭活克鲁维属酵母细胞的饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000008
Figure PCTCN2022131380-appb-000009
表7 含实施例5灭活克鲁维属酵母细胞的饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000010
Figure PCTCN2022131380-appb-000011
表8 含实施例6灭活克鲁维属酵母细胞的饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000012
Figure PCTCN2022131380-appb-000013
由表4-表8可见,当灭活克鲁维属酵母细胞菌粉比例为2.5-25%、食用油比例为1%-40%、水比例为40%-96.5%,经过剪切乳化工艺至悬浊液中各组分粒径均小于等于100μm(≤100μm粒径频度为100%)后,在常温下均能保持7天稳定均一不分层的状态;当灭活克鲁维属酵母细胞菌粉比例为2.5-25%、食用油比例为1%-30%,同样剪切至各组分粒径小于等于100μm时,其甚至能保持28天稳定均一不分层的状态。
实施例10:含灭活克鲁维属酵母细胞和菜籽油的酱料的制备
将实施例2-6所得的灭活克鲁维属酵母细胞干粉,与菜籽油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物酱料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉与水混合,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入菜籽油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物酱料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、菜籽油与水的重量百分比含量、组合物粒径以及稳定性实验结果分别如下表9、表10、表11、表12、表13(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表9 含实施例2灭活克鲁维属酵母细胞的酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000014
Figure PCTCN2022131380-appb-000015
Figure PCTCN2022131380-appb-000016
表10 含实施例3灭活克鲁维属酵母细胞的酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000017
Figure PCTCN2022131380-appb-000018
表11 含实施例4灭活克鲁维属酵母细胞的酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000019
Figure PCTCN2022131380-appb-000020
表12 含实施例5灭活克鲁维属酵母细胞的酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000021
Figure PCTCN2022131380-appb-000022
表13 含实施例6灭活克鲁维属酵母细胞的酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000023
Figure PCTCN2022131380-appb-000024
由表9-表13可见,当灭活克鲁维属酵母细胞菌粉比例为30-70%、食用油比例为1%-30%、水比例为18%-69%,经过剪切乳化工艺至悬浊液中各组分粒径均小于等于100μm后(≤100μm粒径频度为100%),其在常温下均能保持28天稳定均一不分层的状态。
实施例11:含灭活马克斯克鲁维酵母细胞和椰子油的饮料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与椰子油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物饮料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入椰子油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物饮料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、椰子油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表14(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表14 饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000025
Figure PCTCN2022131380-appb-000026
实施例12:含灭活马克斯克鲁维酵母细胞和椰子油的酱料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与椰子油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物酱料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入椰子油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含含灭活克鲁维属酵母细胞的食物组合物酱料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、椰子油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表15(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表15 酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000027
Figure PCTCN2022131380-appb-000028
实施例13:含灭活马克斯克鲁维酵母细胞和高油酸葵花籽油的饮料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与高油酸葵花籽油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物饮料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入高油酸葵花籽油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物饮料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、高油酸葵花籽油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表16(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表16 饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000029
Figure PCTCN2022131380-appb-000030
实施例14:含灭活马克斯克鲁维酵母细胞和高油酸葵花籽油的酱料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与高油酸葵花籽油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物酱料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入高油酸葵花籽油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含含灭活克鲁维属酵母细胞的食物组合物酱料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、高油酸葵花籽油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表17(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表17 酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000031
Figure PCTCN2022131380-appb-000032
实施例15:含灭活马克斯克鲁维酵母细胞和芥花油的饮料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与芥花油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物饮料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入芥花油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物饮料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、芥花油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表18(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表18 饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000033
Figure PCTCN2022131380-appb-000034
实施例16:含灭活马克斯克鲁维酵母细胞和芥花油的酱料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与芥花油、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物酱料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入芥花油,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含含灭活克鲁维属酵母细胞的食物组合物酱料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、芥花油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表19(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表19 酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000035
Figure PCTCN2022131380-appb-000036
实施例17:含灭活马克斯克鲁维酵母细胞和中链甘油三酯的饮料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与中链甘油三酯、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物饮料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入中链甘油三酯,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含灭活克鲁维属酵母细胞的食物组合物饮料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、中链甘油三酯与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表20(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表20 饮料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000037
Figure PCTCN2022131380-appb-000038
实施例18:含灭活马克斯克鲁维酵母细胞和中链甘油三酯的酱料的制备
将实施例5所得的灭活克鲁维属酵母细胞干粉,与中链甘油三酯、水按一定的重量百分比含量经乳化工艺制备成具有所需粒径分布的食物酱料。具体操作步骤如下:
(1)将克鲁维属酵母细胞干粉加入水中定容至相应浓度,搅拌至扩散均匀;
(2)利用乳化机开始剪切乳化,剪切过程中缓慢加入中链甘油三酯,继续维持乳化,每2分钟取样利用激光粒径分析仪检测样品的粒径分布,进一步乳化至所需粒径分布后停止,得到含含灭活克鲁维属酵母细胞的食物组合物酱料,于25℃条件下观察产品的稳定性。
其中灭活克鲁维属酵母细胞干粉、中链甘油三酯油与水的重量百分比含量、组合物粒径分布以及稳定性实验结果分别如下表21(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C):
表21 酱料中组合物组成、粒径分布与稳定性实验结果
Figure PCTCN2022131380-appb-000039
Figure PCTCN2022131380-appb-000040
由表7、14、16、18、20的实验结果可见,灭活马克斯克鲁维酵母细胞(Kluyveromyces marxianus)分别与菜籽油、椰子油、高油酸葵花籽油、芥花油、中链甘油三酯等根据本发公开所述配比制备形成本公开所述食物饮料后,经验证,其经过剪切乳化工艺至悬浊液中各组分粒径范围分布均小于等于100μm(≤100μm粒径频度为100%)后,在常温下均能至少保持7天稳定均一不分层的状态,在本公开前述饮料优选的配比下(灭活克鲁维属酵母细胞菌粉2.5-25%、食用油1%-30%),其甚至能保持28天稳定均一不分层的状态;
由表9、15、17、19、21的实验结果可见,灭活马克斯克鲁维酵母细胞(Kluyveromyces marxianus)分别与菜籽油、椰子油、高油酸葵花籽油、芥花油、中链甘油三酯等根据本发公开所述配比制备形成本公开所述食物酱料后,经验证,其经过剪切乳化工艺至悬浊液中各组分粒径范围分布均小于等于100μm(≤100μm粒径频度为100%)后,在常温下能保持28天稳定均一不分层的状态。
特别地,上述食用油均为食品工业常用的市售价格在10-300/升(芥花油10元/L、高油酸葵花籽油16元/L、椰子油50元/L、中链甘油三酯300元/L)的具有不同来源和营养成分的食用油,本公开所述食物组合物原料价格便宜,成本相对较低。
可以理解地,实施例11-18为示例性实施例,本公开所述除灭活马克斯克鲁维酵母细胞之外的其他四种灭活克鲁维属酵母细胞(湖北克鲁维酵母、威克海姆克鲁维酵母、耐热克鲁维酵母、乳酸克鲁维酵母)与除菜籽油之外的其他食用油按本公开所述配比制备成食物饮料或酱料之后,也具有相同或相似的货架期稳定性。
实施例19:用含灭活马克斯克鲁维酵母细胞的食品组合物制备得到食物产品的稳定性实验
实施例5制备得到的灭活马克斯克鲁维酵母细胞干粉通过剪切乳化方法制备得到克鲁维饮料,同样的方法与配比下将该食物组合物替换为豌豆蛋白、蔗糖脂肪酸酯(得到植物基饮料和乳化剂饮料,饮料组合物组成见表22,分别在饮料制备完成的第1、3、7、14以及28天记录上述三种饮料的分层及破乳现象(完全无破乳现象无分层定义为A;出现轻微破乳,产品最上方有少量分层情况定义为B;出现明显破乳,产品呈现完全的油水分离状态则定义为C),观察结果如下表23。
表22 饮料组合物组成
Figure PCTCN2022131380-appb-000041
表23 稳定性实验结果
Figure PCTCN2022131380-appb-000042
由表23可见,无外源食品添加剂配制而成的克鲁维饮料在28天货架期观察时间内完全保持稳定均一不分层的悬浊液状态,无任何破乳;无外源食品添加剂配制而成的植物饮料在28天货架期观察时间内,于第7天出现明显的分层情况和破乳现象;由乳化型食品添加剂蔗糖脂肪酸酯配制而成的乳化剂饮料在28天货架期观察时间内,于第7天出现少量分层情况和轻微破乳现象,于第28天出现明显分层情况和破乳现象。由此可见,克鲁维饮料具备开发微生物饮料和微生物食品原料的价值。
前述对本公开的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本公开限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本公开的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本公开的各种不同的示例性实施方案以及各种不同的选择和改变。本公开的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种组合物,其特征在于,包括以下重量百分比原料:2.5-80%灭活克鲁维属酵母细胞、1-50%食用油以及18-96.5%水。
  2. 根据权利要求1所述的组合物,其特征在于,所述灭活克鲁维属酵母细胞的粒径为1-7μm;
    优选地,所述灭活克鲁维属酵母细胞的粒径为2-5μm。
  3. 根据权利要求1或2所述的组合物,其特征在于,所述灭活克鲁维属酵母细胞包含30-55%蛋白质、1-5%脂肪以及15-30%膳食纤维。
  4. 根据前述任一项权利要求所述的组合物,其特征在于,所述灭活克鲁维属酵母细胞选自马克斯克鲁维酵母(Kluyveromyces marxianus)、乳酸克鲁维酵母(Kluyveromyces lactis)、湖北克鲁维酵母(Kluyveromyces hubeiensis)、威克海姆克鲁维酵母(Kluyveromyces wickerhamii)以及耐热克鲁维酵母(Kluyveromyces thermotolerans)细胞中的一种或多种;
    优选地,所述灭活克鲁维属酵母细胞为马克斯克鲁维酵母和/或乳酸克鲁维酵母细胞。
  5. 根据前述任一项权利要求所述的组合物,其特征在于,其中食用油粒径为1-100μm。
  6. 根据前述任一项权利要求所述的组合物,其特征在于,所述灭活克鲁维属酵母细胞为干燥灭活克鲁维属酵母细胞菌体、灭活克鲁维属酵母细胞脱水物或灭活克鲁维属酵母细胞菌体悬浮液;
    优选地,所述灭活克鲁维属酵母细胞为干燥灭活克鲁维属酵母细胞菌体或灭活克鲁维属酵母细胞菌体悬浮液;
    优选地,所述食用油为选自大豆油、菜籽油、高油酸葵花籽油、中链甘油三酯、芥花油、椰子油、玉米油、芝麻油、茶籽油、米糠油、橄榄油、亚麻籽油、红花籽油、葡萄籽油、核桃油、棕榈油、花生油、调和油中的一种或多种。
  7. 根据前述任一项权利要求所述的组合物,其特征在于,所述灭活克鲁维属酵母细胞通过包括以下步骤的方法制备得到:选用含碳源、氮源及盐类的培养基培养克鲁维属酵母菌种15-40小时;调控培养基pH为4.0-8.0,经25-50℃发酵后加热灭活得到所述灭活克鲁维属酵母细胞。
  8. 前述任一项权利要求所述的组合物的制备方法,其特征在于,包括:将灭活克鲁维属酵母细胞与水混合形成细胞悬浊液;在剪切乳化上述细胞悬浊液的过程中加入食用油,持续剪切乳化至食用油粒径为1-100μm。
  9. 一种包含权利要求1-7任一项所述组合物的食物产品;
    优选地,所述食物产品为饮料时,其中所述组合物包括以下重量百分比原料:2.5-25%灭活克鲁维属酵母细胞、1-40%食用油以及40-96.5%水;
    优选地,所述食物产品为酱料时,其中所述组合物包括以下重量百分比原料:30-70%灭活克鲁维属酵母细胞、1-30%食用油以及18%-69%水。
  10. 权利要求1-7任一项所述组合物在制备食物产品中的应用;
    优选地,在制备饼干、面包、烘焙食品、膨化食品、冻干食品、冰淇淋、脱水干燥食品中的应用。
PCT/CN2022/131380 2021-11-16 2022-11-11 组合物及其制备方法及应用 WO2023088181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111359573.XA CN114009751B (zh) 2021-11-16 2021-11-16 组合物及其制备方法及应用
CN202111359573.X 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023088181A1 true WO2023088181A1 (zh) 2023-05-25

Family

ID=80064679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131380 WO2023088181A1 (zh) 2021-11-16 2022-11-11 组合物及其制备方法及应用

Country Status (2)

Country Link
CN (2) CN114009751B (zh)
WO (1) WO2023088181A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114009751B (zh) * 2021-11-16 2024-03-26 上海昌进生物科技有限公司 组合物及其制备方法及应用
CN117562931B (zh) * 2024-01-15 2024-04-30 上海昌进生物科技有限公司 含有马克斯克鲁维酵母菌体的组合物、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367841A (zh) * 1999-05-21 2002-09-04 卡吉尔道有限责任公司 合成有机产物的方法和材料
CN1917946A (zh) * 2003-12-18 2007-02-21 Gat制剂有限公司 改善生物活性成分的稳定性和贮存期的连续多重微囊包封方法
US20140044832A1 (en) * 2012-08-10 2014-02-13 Danstar Ferment Ag Methods for the improvement of organoleptic properties of must, non-fermented and fermented beverages
CN105002102A (zh) * 2015-08-25 2015-10-28 光明乳业股份有限公司 一种马克思克鲁维酵母及其培养方法和应用
CN114009751A (zh) * 2021-11-16 2022-02-08 上海昌进生物科技有限公司 组合物及其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790316A3 (en) * 1996-02-16 1999-02-10 Quest International B.V. Emulsifier from yeast
JP5877537B2 (ja) * 2011-05-02 2016-03-08 興人ライフサイエンス株式会社 天然乳化剤
WO2020214685A1 (en) * 2019-04-16 2020-10-22 Locus Ip Company, Llc Microbe-based emulsifying food additives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367841A (zh) * 1999-05-21 2002-09-04 卡吉尔道有限责任公司 合成有机产物的方法和材料
CN1917946A (zh) * 2003-12-18 2007-02-21 Gat制剂有限公司 改善生物活性成分的稳定性和贮存期的连续多重微囊包封方法
US20140044832A1 (en) * 2012-08-10 2014-02-13 Danstar Ferment Ag Methods for the improvement of organoleptic properties of must, non-fermented and fermented beverages
CN105002102A (zh) * 2015-08-25 2015-10-28 光明乳业股份有限公司 一种马克思克鲁维酵母及其培养方法和应用
CN114009751A (zh) * 2021-11-16 2022-02-08 上海昌进生物科技有限公司 组合物及其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, HONGXIA ET AL.: "Recent Progress in Interface Engineering of Emulsion Colloidal Particles", FOOD SCIENCE, vol. 41, no. 05, 31 May 2020 (2020-05-31), XP009546594 *

Also Published As

Publication number Publication date
CN114009751A (zh) 2022-02-08
CN114009751B (zh) 2024-03-26
CN118020921A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2023088181A1 (zh) 组合物及其制备方法及应用
Zheng et al. Tofu products: A review of their raw materials, processing conditions, and packaging
Barsotti et al. Food processing by pulsed electric fields. II. Biological aspects
US11089806B2 (en) Flavor improvement method for yeast cells and food quality improving agent
JP6022463B2 (ja) 呈味改善剤
CN110115347B (zh) 一种酶解协同发酵改性制备高起泡性蛋清粉的方法
JP2009529902A (ja) 発酵食品
CN109295146B (zh) 酶法鲍鱼酶法提取物及其制备方法
JP2005312438A (ja) γ−アミノ酪酸高含有食品素材及びその製造方法
Özer et al. Whey beverages
CN114945286A (zh) 包含荚膜甲基球菌蛋白分离物的食品组合物
WO2018049853A1 (zh) 一种植物乳杆菌增殖剂、添加该增殖剂的发酵产品及制备方法
CN112220029A (zh) 利用辣椒盐坯制备辣椒酱的方法
US20220151267A1 (en) Microbe-Based Emulsifying Food Additives
TW202226956A (zh) 蛋白質方法和組成物
BRPI0718080B1 (pt) Matriz simbiótica pré-fermentada, processo de obtenção da referida matriz e sua utilização
CN109452607B (zh) 包含鲍鱼酶法提取物的调味汁及其制备方法
CN115553428A (zh) 一种高黏度豌豆发酵乳及其制备方法
Marino et al. Main technological challenges associated with the incorporation of probiotic cultures into foods
JP2007020414A (ja) みりん粕乳酸発酵飲食品とその製造方法
CN102334667B (zh) 一种发酵型奶味香料及其制备方法
JP6006946B2 (ja) 風味改善剤
Malik et al. Potential of high-pressure homogenization (HPH) in the development of functional foods
KR20100091397A (ko) 호상의 마늘 발효물 제조방법
CN114698847B (zh) 一种含益生菌的冻干皮克林乳剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894717

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894717

Country of ref document: EP

Effective date: 20240617