WO2023087730A1 - 压缩机及制冷系统 - Google Patents

压缩机及制冷系统 Download PDF

Info

Publication number
WO2023087730A1
WO2023087730A1 PCT/CN2022/102761 CN2022102761W WO2023087730A1 WO 2023087730 A1 WO2023087730 A1 WO 2023087730A1 CN 2022102761 W CN2022102761 W CN 2022102761W WO 2023087730 A1 WO2023087730 A1 WO 2023087730A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotor
radial
air
axial
Prior art date
Application number
PCT/CN2022/102761
Other languages
English (en)
French (fr)
Inventor
张晓锐
张捷
王书森
邓善营
顾超
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111399390.0A external-priority patent/CN114251359B/zh
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023087730A1 publication Critical patent/WO2023087730A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners

Definitions

  • the present application relates to the technical field of compressors, for example, to a compressor and a refrigeration system.
  • the centrifugal compressor is a key component in the field of air conditioning and refrigeration.
  • the bearings of the compressor include oil-lubricated bearings and suspension bearings, and the suspension bearings include magnetic suspension bearings and air suspension bearings.
  • Compressors with air suspension bearings do not need to use lubricating oil to lubricate the bearings, which avoids the mixing of lubricating oil and refrigerant to reduce the heat exchange efficiency of the air conditioning system.
  • the air bearing has no friction loss and can operate with ultra-low noise, and has great application prospects in the field of air conditioning and refrigeration.
  • the use of air bearings will inevitably cause axial or radial offset of the rotor. Once the offset is too large, the rotor and bearing will be worn, the bearing and rotor will be damaged, and the service life of the compressor will be affected.
  • the prior art discloses a compressor that uses two non-magnetic suspension bearings as radial bearings to support the rotor, and in order to balance the axial force of the rotor, a thrust plate and a magnetic suspension axial bearing are arranged at the end of the rotor away from the compressor impeller.
  • a thrust plate and a magnetic suspension axial bearing are arranged at the end of the rotor away from the compressor impeller.
  • the embodiments of the present disclosure provide a compressor and a refrigeration system, which solve the problem of how to adjust the radial offset of the rotor.
  • the compressor includes:
  • the support assembly includes two air-bearing radial bearings; the two air-bearing radial bearings are respectively sleeved on both ends of the rotor to support the rotor;
  • the adjustment assembly includes a radial adjustment part, and the radial adjustment part includes two magnetic suspension radial bearings; the two magnetic suspension radial bearings are respectively sleeved at both ends of the rotor, and are respectively arranged according to the corresponding ends of the rotor.
  • the radial offset adjusts the electromagnetic support force to balance the rotor.
  • the two magnetic bearings are respectively located on a side of one air bearing away from the other air bearing.
  • the radial adjustment part further includes:
  • a radial monitoring device for monitoring the radial offset
  • the first controller is electrically connected to the radial monitoring device and the magnetic bearing, and is configured to adjust the electromagnetic support force of the magnetic bearing according to the radial offset.
  • the first controller processes the radial offset through a least mean square algorithm to obtain a following signal, and controls the electromagnetic support force through the following signal.
  • the adjustment assembly also includes:
  • the axial adjustment part is used to balance the rotor according to the axial offset of the rotor.
  • a thrust disc is provided on the shaft of the rotor, and the thrust disc is located between the two air-bearing radial bearings;
  • the axial adjustment part includes:
  • Two thrust bearings are sheathed on the rotor and are respectively close to two sides of the thrust plate.
  • the thrust bearing is an air bearing
  • the axial adjustment part also includes:
  • an axial monitoring device for monitoring the axial offset
  • the second controller is configured to adjust the amount of air supplied to the air-bearing axial bearing according to the axial offset, thereby adjusting the pressure of the air-bearing axial bearing.
  • the compressor also includes:
  • the air return port communicates with the air-bearing axial bearing and is used to supply the cooling medium in the motor cavity to the air-bearing axial bearing.
  • the thrust bearing is a magnetic bearing.
  • the refrigeration system includes the compressor described in any of the above embodiments.
  • the magnetic bearings at both ends of the rotor start. And the two magnetic bearing radial bearings respectively adjust their own electromagnetic support force according to the radial offset of the corresponding end of the rotor, so as to quickly balance the radial offset of the rotor.
  • Fig. 1 is a schematic structural diagram of a compressor provided by an embodiment of the present disclosure
  • Fig. 2 is an enlarged view of part A of Fig. 1;
  • Fig. 3 is an enlarged view of part B of Fig. 1;
  • Fig. 4 is a schematic structural diagram of a shaft end cover provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of the structure of the auxiliary airway provided by the embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of another compressor provided by an embodiment of the present disclosure.
  • 100 compressor; 110: rotor; 111: thrust plate; 120: stator; 130: motor cavity; 131: cooling inlet; 132: air return port;
  • 200 Maglev radial bearing
  • 201 Up-bias sensor
  • 202 Down-bias sensor
  • 300 air-bearing axial bearing; 301: forward bias sensor; 302: rear bias sensor; 303: first air supply channel;
  • 400 air-bearing radial bearing; 401: second air supply passage; 431: bearing support; 432: shaft end cover; 433: auxiliary air passage;
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear” etc. are based on the orientations or positional relationships shown in the drawings. Positional relationship. These terms are mainly used to better describe the embodiments of the present disclosure and their implementations, and are not used to limit that the indicated devices, elements or components must have a specific orientation, or be constructed and operated in a specific orientation. Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term “upper” may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in the embodiments of the present disclosure according to specific situations.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • the compressor 100 does not need lubricating oil for lubrication when the supporting components of the bearing-rotor system use air suspension bearings, which avoids mixing of lubricating oil and refrigerant in the air-conditioning system and prevents lubricating oil from depositing In the heat exchange tube wall of the evaporator or condenser, it affects the heat exchange efficiency.
  • an external air supply device is required to continuously and stably supply air to the air suspension bearing.
  • the rotor 110 will have axial movement and radial displacement due to unstable gas supply or external force, which will lead to the imbalance of the bearing-rotor system and seriously affect the service life of the compressor 100 .
  • the support assembly includes two air bearing radial bearings 400 .
  • the compressor 100 is provided with a stator 120 and is bounded by the stator 120.
  • the air bearing radial bearing 400 located in front of the stator 120 is called the front air bearing radial bearing, and the air bearing radial bearing 400 located behind the stator 120 is called the rear air bearing.
  • the end of the rotor 110 located in front of the stator 120 is called a rotor front end, and the end of the rotor 110 located behind the stator 120 is called a rotor rear end.
  • the front air bearing radial bearing is sleeved at the front end of the rotor for supporting and lubricating the front end of the rotor; the rear air bearing radial bearing is sleeved at the rear end of the rotor for supporting and lubricating the rear end of the rotor.
  • the support assembly further includes a bearing support 431 for installing the air bearing radial bearing 400 .
  • the bearing support 431 includes a front bearing support and a rear bearing support, wherein the front bearing support is used for installing the front radial air bearing, and the rear bearing support is used for installing the rear radial air bearing.
  • the front bearing support and the rear bearing support are respectively provided with a first air supply passage 303 for supplying air to the front radial air bearing and the rear radial air bearing respectively.
  • an embodiment of the present disclosure provides a compressor 100 , including a rotor 110 , a support assembly and an adjustment assembly.
  • the adjustment assembly includes a radial adjustment part, and the radial adjustment part includes two magnetic suspension radial bearings 200; The displacement adjusts the electromagnetic support force to balance the rotor 110 .
  • the magnetic bearings 200 at both ends of the rotor 110 start.
  • the two magnetic bearings 200 respectively adjust their own electromagnetic support force according to the radial offset of the corresponding ends of the rotor 110 , so as to rapidly balance the radial offset of the rotor 110 .
  • the magnetic suspension radial bearing 200 located in front of the stator 120 is called a front magnetic suspension radial bearing
  • the magnetic suspension radial bearing 200 located behind the stator 120 is called a rear magnetic suspension radial bearing.
  • the front magnetic suspension radial bearing is located on the side of the front air suspension radial bearing away from the rear air suspension radial bearing
  • the rear magnetic suspension radial bearing is located on the side of the rear air suspension radial bearing away from the front air suspension radial bearing.
  • the magnetic suspension radial bearing 200 includes a plurality of independently controlled electromagnetic coils, taking four electromagnetic coils as an example.
  • the four electromagnetic coils are the upper coil, the lower coil, the left coil and the right coil respectively, and are located on the upper side, the lower side, the left side and the right side of the rotor 110 respectively. The greater the support.
  • the radial adjustment part further includes a radial monitoring device and a first controller.
  • the radial monitoring device is used to monitor the radial offset;
  • the first controller is electrically connected to the radial monitoring device and the magnetic suspension radial bearing 200, and is used to adjust the electromagnetic support of the magnetic suspension radial bearing 200 according to the radial offset force.
  • the radial deflection direction of the rotor 110 includes upward deflection, downward deflection, left deflection and right deflection, and the positions of the upper coil, lower coil, left coil and right coil of the magnetic suspension radial bearing 200 respectively correspond to four a radial offset direction.
  • the radial monitoring device includes four displacement sensors, and the four displacements are respectively arranged in the inner hole of the front bearing support corresponding to the upward deviation, downward deviation, left deviation and right deviation, as shown in FIG. 3 .
  • the displacement sensor corresponding to the upward bias is called the upward bias sensor 201, which is used to monitor the first offset of the rotor 110 in the upward bias;
  • the displacement sensor corresponding to the downward bias is called the downward bias sensor 202, which is used to monitor the rotor 110 in the downward bias.
  • the displacement sensor corresponding to the left deviation is called the left deviation sensor, which is used to monitor the third deviation of the rotor 110 in the left direction;
  • the displacement sensor corresponding to the right deviation is called the right deviation sensor, which is used to monitor the rotor 110 at the fourth offset to the right.
  • the four displacement sensors are respectively disposed in the inner hole of the rear bearing support in a circle corresponding to the upward deflection, the downward deflection, the left deflection and the right deflection.
  • the rotor 110 is rigid, and when the front end of the rotor deflects upward, the rear end of the rotor deflects downward.
  • four displacement sensors are respectively arranged on the front bearing support and the rear bearing support, which is beneficial to more accurately determine the radial offset of the rotor 110 .
  • the first offset of the front end of the rotor is marked as a, the first offset of the rear end of the rotor is marked as a'; the second offset of the front end of the rotor is marked as b, and the first offset of the rear end of the rotor is marked as b.
  • the second offset is marked as b';
  • the third offset of the front end of the rotor is marked as c, the third offset of the rear end of the rotor is marked as c';
  • the fourth offset of the front end of the rotor is marked as d, and the third offset of the rotor rear end is marked as d
  • the fourth offset is denoted as d'.
  • the offset is less than zero; when the rotor 110 is offset and the gap between the rotor 110 and the bearing becomes larger, the offset is greater than zero.
  • the first controller increases the current of the upper coil of the front magnetic bearing radial bearing and thus increases the upward deflection of the front end of the rotor. and/or, the first controller increases the current of the lower coil of the rear magnetic suspension radial bearing, thereby increasing the supporting force of the lower side of the rear end of the rotor.
  • the front end of the rotor deflects downward while the rear end of the rotor deflects upward, increasing the current of the lower coil of the front magnetic bearing radial bearing, and/or, increasing the upper coil of the rear magnetic bearing radial bearing current.
  • the front end of the rotor is deflected to the left while the rear end of the rotor is deflected to the right, increasing the current of the left coil of the front magnetic bearing radial bearing, and/or increasing the current of the right coil of the rear magnetic bearing radial bearing current.
  • the front end of the rotor is deflected to the right and the rear end of the rotor is deflected to the left, increasing the current of the right coil of the front magnetic bearing radial bearing, and/or increasing the current of the left coil of the rear magnetic bearing radial bearing current.
  • the first controller adopts the LMS algorithm (least mean square algorithm) to process the offset signal of the radial offset and obtain the follow signal; then, the first controller performs the follow signal and the offset signal Superimpose processing and obtain the expected signal; then, the first controller processes the expected signal and obtains the control signal of the electromagnetic force; finally, the first controller controls the current of multiple electromagnetic coils according to the control signal, and the current of different electromagnetic coils changes The corresponding electromagnetic support force changes synchronously. In this way, during the radial displacement of the rotor 110, the above-mentioned processing process for the displacement signal is repeated, and then the radial displacement of the rotor 110 tends to zero by continuously adjusting the electromagnetic support force of the electromagnetic coil, which effectively improves the bearing performance. - Stability of the rotor system.
  • LMS algorithm least mean square algorithm
  • the radial adjustment part further includes a plurality of auxiliary air channels 433 .
  • the two bearing supports 431 are respectively provided with a shaft end cover 432 for sealing, wherein the one arranged on the side of the front bearing support away from the stator 120 is called the front shaft end cover, and the one arranged on the rear bearing support away from the stator 120 is called the front shaft end cover. 120 on one side is called the rear axle end cover.
  • the front air bearing and front magnetic bearing are installed behind the front bearing support, and the front axle cover is installed on the front bearing support; the rear air bearing and rear magnetic bearing are installed behind the rear bearing support , the rear axle cover is installed on the rear bearing support.
  • each auxiliary air channel 433 corresponds to a radial offset direction and all auxiliary air channels 433 are connected to the rotor 110 and the air bearing radial bearing 400 gaps between.
  • the auxiliary air channel 433 corresponding to the radial offset direction is opened to supply air to the gap, so that the rotor 110 is effectively supported in the offset direction, thereby Balance the rotor 110 .
  • the auxiliary air channel 433 and the magnetic suspension radial bearing 200 can be used in cooperation.
  • the front shaft end cover and the rear shaft end cover are respectively provided with inner holes through which both ends of the rotor 110 pass through, and four auxiliary air passages 433 are respectively arranged around the inner holes, which are the upper auxiliary air passage, the lower auxiliary air passage, and the lower auxiliary air passage.
  • the four auxiliary airways 433 correspond to the upper, lower, left and right directions respectively.
  • the front end of the rotor deflects downward while the rear end of the rotor deflects upward, at this time, the lower auxiliary air passage of the front axle end cover is opened, and/or the upper auxiliary air passage of the rear axle end cover is opened .
  • the auxiliary air channel 433 and the magnetic suspension radial bearing 200 are activated at the same time to quickly balance the rotor 110 and at the same time supply air to the gap between the rotor 110 and the air bearing radial bearing 400 to prevent the rotor 110 from reoccurring after the rotor 110 is balanced. offset.
  • each auxiliary air channel 433 is provided with a solenoid valve.
  • the air supply volume of the auxiliary air channel 433 is adjusted by adjusting the opening degree of the solenoid valve.
  • the auxiliary air duct 433 is used in conjunction with the magnetic suspension radial bearing 200, the pressure in the bearing-rotor system is obtained and the required air supply volume is determined, and the opening degree of the solenoid valve of the opened auxiliary air duct 433 is adjusted according to the required air supply volume. Air is precisely supplied to the gap between the rotor 110 and the air-bearing radial bearing 400 while balancing the rotor 110 .
  • the adjustment assembly further includes an axial adjustment portion.
  • the axial adjustment part is used to balance the rotor 110 according to the axial displacement of the rotor 110 . In this way, the combination of the axial adjustment part and the radial adjustment part can quickly and effectively balance the deviation of the rotor 110 in the axial direction and the radial direction, thereby improving the stability of the compressor 100 .
  • the shaft body of the rotor 110 has a thrust disc 111 .
  • the thrust plate 111 is mounted on the rear bearing support and is located between the stator 120 and the rear air bearing radial bearing. In this way, the length of the rotor 110 is shortened compared with the arrangement of the thrust disc 111 at the end of the rotor 110 , thereby increasing the critical speed of the rotor 110 .
  • the axial adjustment part includes two thrust bearings respectively arranged on the left and right sides of the thrust plate 111 .
  • the thrust bearing is an air bearing axial bearing 300 .
  • the axial adjustment part also includes an axial monitoring device and a second controller. Among them, the axial monitoring device is used to monitor the axial offset of the rotor 110; the second controller is used to adjust the air supply to the air bearing 300 according to the axial offset, thereby adjusting the air bearing 300 pressure.
  • the axial deflection direction of the rotor 110 includes a front deflection and a rear deflection
  • the front air bearing axial bearing corresponds to the front deflection
  • the rear air bearing axial bearing corresponds to the rear deflection.
  • the forward bias sensor 301 is arranged on the rear bearing support and is located on the front side of the thrust plate 111, and is used to monitor the fifth offset e of the rotor 110 in the forward direction
  • the rearward bias sensor 302 is arranged on the rear bearing support And it is located at the rear side of the thrust plate 111 and is used for monitoring the sixth offset f of the rotor 110 in the rear direction.
  • the rotor 110 is deflected forward, and the second controller controls to turn on the front air-bearing axial bearing.
  • the rotor 110 is deflected backwards, and the second controller controls to turn on the rear air-bearing axial bearing.
  • the compressor 100 further includes a motor cavity 130 , a cooling inlet 131 and an air return port 132 .
  • the cooling inlet 131 communicates with the motor chamber 130 , and an external cooling medium passes through the cooling inlet 131 into the motor chamber 130 for cooling the stator 120 in the motor chamber 130 .
  • the evaporator is connected to the cooling inlet 131.
  • the evaporator supplies low-temperature and low-pressure refrigerant to the motor cavity 130 through the cooling inlet 131.
  • the low-temperature and low-pressure refrigerant exchanges heat with the stator 120 and becomes a medium-temperature and medium-pressure gas. At this time, the temperature and pressure of the gas can meet the working requirements of the air-bearing axial bearing 300 .
  • each first air supply passage 303 is provided with an electronic expansion valve, and the second controller adjusts the air supply volume of the first air supply passage 303 by controlling the opening of the electronic expansion valve, thereby adjusting the front air bearing axial bearing and The pressure of the rear air-bearing axial bearing balances the axial deviation of different degrees.
  • the medium-temperature and medium-pressure gas is supplied to the air-bearing axial bearing 300 through the air return port 132 and the first air supply passage 303, and no external air supply device is needed to supply air to the air-bearing axial bearing 300, which makes reasonable use of the cooling medium and greatly simplifies up the structure.
  • the second controller controls the electronic expansion valve to fully open; if the absolute value of e or f is smaller than the preset offset value When the offset value is reached, the second controller controls the electromagnetic expansion valve to half open. In this way, the pressures of the front air-bearing axial bearing and the rear air-bearing axial bearing are reasonably adjusted according to the size of the axial offset.
  • the air return port 132 is also connected to the air-bearing radial bearing 400 and the auxiliary air channels 433 , so as to supply air to the air-bearing axial bearing 300 and all the auxiliary air channels 433 .
  • the air supply to the front air bearing radial bearing and the rear air bearing radial bearing are respectively connected to the air return port 132 through a second air supply passage 401 .
  • each second air supply passage 401 is provided with an electronic expansion valve, and the second controller adjusts the air supply volume of the second air supply passage 401 by controlling the opening of the electronic expansion valve, thereby adjusting the front air bearing radial bearing and Air supply pressure for the rear air bearing radial bearing.
  • Each auxiliary air passage 433 is connected to the air return port 132 through a third air supply passage, and each third air supply passage is provided with an electronic expansion valve, and the air supply of the corresponding auxiliary air passage 433 is adjusted by controlling the opening of the electronic expansion valve. quantity.
  • an external air supply device to supply air to the air-bearing radial bearing 400 and the auxiliary air channel 433, and it also ensures the consistency of the gas supplied to the gap between the rotor 110 and the air-bearing radial bearing 400, avoiding different temperatures. Heat exchange with gases of different pressures in the gap affects the stability of the gas in the gap.
  • the thrust bearing is a magnetic axial bearing 500 .
  • the front magnetic bearing axial bearing is located in front of the thrust plate 111 and close to the stator 120
  • the rear magnetic bearing axial bearing is located behind the thrust plate 111 and away from the stator 120 .
  • the axial adjustment part further includes a third controller, which is used to adjust the electromagnetic support force of the magnetic suspension axial bearing 500 according to the axial offset.
  • the third controller adopts the LMS algorithm to process the offset signal of the axial offset and obtain the following signal; then, the third controller superimposes the following signal and the offset signal to obtain the desired signal; then , the third controller processes the expected signal and obtains the control signal of the electromagnetic force; finally, the third controller controls the current change in the magnetic suspension axial bearing 500 according to the control signal, thereby adjusting the electromagnetic support force of the magnetic suspension axial bearing 500 .
  • the above-mentioned processing process of the deviation signal is repeated, and then the axial displacement of the rotor 110 tends to zero by continuously adjusting the electromagnetic support force, which effectively improves the bearing-rotor system. stability.
  • An embodiment of the present disclosure provides a refrigeration system, including the compressor 100 described in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种压缩机及制冷系统,包括:转子(110);支撑组件,包括两个气浮径向轴承(400);两个气浮径向轴承(400)分别套设于转子(110)的两端以支撑转子(110);调节组件,包括径向调节部,径向调节部包括两个磁浮径向轴承(200);两个磁浮径向轴承(200)分别套设于转子(110)的两端,且分别根据转子(110)对应端的径向偏移量调整电磁支撑力,以平衡转子(110)。当转子(110)发生径向偏移时,转子(110)两端的磁浮径向轴承(200)启动。并且两个磁浮径向轴承(200)分别根据转子(110)对应端的径向偏移量调节自身的电磁支撑力,从而快速地平衡转子(110)的径向偏移。

Description

压缩机及制冷系统
本申请基于申请号为202111399390.0、申请日为2021年11月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及压缩机技术领域,例如涉及一种压缩机及制冷系统。
背景技术
离心式压缩机是空调制冷领域的关键构件,压缩机的轴承包括油润滑轴承和悬浮轴承,悬浮轴承又包括磁悬浮轴承和气悬浮轴承。采用气悬浮轴承的压缩机无需使用润滑油润滑轴承,避免了润滑油和冷媒混合降低空调系统的换热效率。并且气浮轴承没有摩擦损失、可以超低噪音运行,在空调制冷领域具有重大应用前景。但是,采用气浮轴承不可避免地会出现转子发生轴向偏移或径向偏移,一旦偏移量过大会导致转子和轴承发生磨损,损坏轴承和转子,影响压缩机的使用寿命。
现有技术公开了一种压缩机,采用两个非磁悬浮轴承作为径向轴承支撑转子,并且为了平衡转子的轴向力,在转子远离压缩机叶轮的一端设置推力盘和磁悬浮轴向轴承。当转子受到轴向力时,开启磁悬浮轴向轴承,此时通过磁悬浮轴向轴承和止推盘之间的磁性作用力抵消轴向力。
在实现本公开实施例的过程中,发现上述相关技术中至少存在如下问题:对于采用气浮轴承作为支撑转子的径向轴承系统,转子在径向方向极易出现震动并发生径向偏移。上述相关技术仅通过磁悬浮轴向轴承改善了转子的轴向偏移,径向偏移未得到调整。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种压缩机及制冷系统,解决了怎样调整转子发生的径向偏移的问题。
在一些实施例中,所述压缩机包括:
转子;
支撑组件,包括两个气浮径向轴承;两个所述气浮径向轴承分别套设于所述转子的两端以支撑所述转子;
调节组件,包括径向调节部,所述径向调节部包括两个磁浮径向轴承;两个所述磁浮径向轴承分别套设于所述转子的两端,且分别根据所述转子对应端的径向偏移量调整电磁支撑力,以平衡所述转子。
可选地,两个所述磁浮径向轴承分别位于一个所述气浮径向轴承远离另一个所述气浮径向轴承的一侧。
可选地,所述径向调节部还包括:
径向监测装置,用以监测所述径向偏移量;
第一控制器,电连接于所述径向监测装置和所述磁浮径向轴承,用以根据所述径向偏移量调节所述磁浮径向轴承的电磁支撑力。
可选地,所述第一控制器通过最小均方算法处理所述径向偏移量并得到跟随信号,并通过所述跟随信号控制电磁支撑力。
可选地,所述调节组件还包括:
轴向调节部,用以根据所述转子的轴向偏移量平衡所述转子。
可选地,所述转子的轴身上设有推力盘,且所述推力盘位于两个所述气浮径向轴承之间;
所述轴向调节部包括:
两个推力轴承,套设于所述转子且分别靠近所述推力盘的两侧。
可选地,所述推力轴承为气浮轴向轴承;
所述轴向调节部还包括:
轴向监测装置,用以监测所述轴向偏移量;
第二控制器,用以根据所述轴向偏移量调节向所述气浮轴向轴承的供气量,从而调节所述气浮轴向轴承的压力。
可选地,所述压缩机还包括:
电机腔;
回气口,连通于所述气浮轴向轴承,用以将所述电机腔内的冷却介质供给至所述气浮轴向轴承。
可选地,所述推力轴承为磁浮轴向轴承。
在一些实施例中,所述制冷系统包括上述任一实施例中所述的压缩机。
本公开实施例提供的压缩机及制冷系统,可以实现以下技术效果:
当转子发生径向偏移时,转子两端的磁浮径向轴承启动。并且两个磁浮径向轴承分别根据转子对应端的径向偏移量调节自身的电磁支撑力,从而快速地平衡转子的径向偏移。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的压缩机的结构示意图;
图2是图1的A部放大图;
图3是图1的B部放大图;
图4是本公开实施例提供的轴端盖结构示意图;
图5是本公开实施例提供的辅助气道结构示意图;
图6是本公开实施例提供的另一压缩机的结构示意图。
附图标记:
100:压缩机;110:转子;111:推力盘;120:定子;130:电机腔;131:冷却入口;132:回气口;
200:磁浮径向轴承;201:上偏传感器;202:下偏传感器;
300:气浮轴向轴承;301:前偏传感器;302:后偏传感器;303:第一供气通路;
400:气浮径向轴承;401:第二供气通路;431:轴承支座;432:轴端盖;433:辅助气道;
500:磁浮轴向轴承。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用 于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
压缩机100作为制冷系统中的关键构件,在轴承-转子系统的支撑组件在采用气悬浮轴承的情况下无需采用润滑油进行润滑,避免了润滑油和空调系统中的冷媒混合,防止润滑油沉积于蒸发器或冷凝器的换热管管壁,影响换热效率。为了保证压缩机100的稳定运行,需要外置的供气装置持续稳定地向气悬浮轴承供气。同时转子110会由于供气不稳定或者外力作用等原因发生轴向窜动和径向偏移,进而导致轴承-转子系统失衡严重影响压缩机100的使用寿命。
在一些实施例中,支撑组件包括两个气浮径向轴承400。压缩机100内设有定子120且以定子120为界限,位于定子120前方的气浮径向轴承400称为前气浮径向轴承,位于定子120后方的气浮径向轴承400称为后气浮径向轴承。位于定子120前方的转子110的 端部称为转子前端,位于定子120后方的转子110的端部称为转子后端。前气浮径向轴承套设于转子前端,用于支撑和润滑转子前端;后气浮径向轴承套设于转子后端,用于支撑和润滑转子后端。
可选地,支撑组件还包括用于安装气浮径向轴承400的轴承支座431。轴承支座431包括前轴承支座和后轴承支座,其中前轴承支座用于安装前径向气浮轴承,后轴承支座用于安装后径向气浮轴承。并且,前轴承支座和后轴承支座上分别开设有第一供气通路303,用以分别向前径向气浮轴承和后径向气浮轴承供气。
结合图1-6所示,本公开实施例提供了一种压缩机100,包括转子110、支撑组件和调节组件。其中,调节组件包括径向调节部,径向调节部包括两个磁浮径向轴承200;两个磁浮径向轴承200分别套设于转子110的两端,且分别根据转子110对应端的径向偏移量调整电磁支撑力,以平衡转子110。
采用本公开实施例提供的压缩机100,当转子110发生径向偏移时,转子110两端的磁浮径向轴承200启动。并且两个磁浮径向轴承200分别根据转子110对应端的径向偏移量调节自身的电磁支撑力,从而快速地平衡转子110的径向偏移。
可选地,以压缩机100的定子120为界限,位于定子120前方的磁浮径向轴承200称为前磁浮径向轴承,位于定子120后方的磁浮径向轴承200称为后磁浮径向轴承。前磁浮径向轴承位于前气浮径向轴承远离后气浮径向轴承的一侧,后磁浮径向轴承位于后气浮径向轴承远离前气浮径向轴承的一侧。转子110在发生径向偏移的情况下,转子110两端的径向偏移量最大。因此采用上述布设方式,有利于快速平衡转子110的径向偏移。
可选地,磁浮径向轴承200包括多个独立控制的电磁线圈,以四个电磁线圈为例。四个电磁线圈分别为上线圈、下线圈、左线圈和右线圈,并且分别位于转子110的上侧、下侧、左侧和右侧,当电磁线圈通电时产生电磁支撑力且电流越大电磁支撑力越大。
可选地,径向调节部还包括径向监测装置和第一控制器。其中,径向监测装置用以监测径向偏移量;第一控制器电连接于径向监测装置和磁浮径向轴承200,用以根据径向偏移量调节磁浮径向轴承200的电磁支撑力。
进一步地,可选地,转子110的径向偏移方向包括上偏向、下偏向、左偏向和右偏向,磁浮径向轴承200的上线圈、下线圈、左线圈和右线圈的位置分别对应四个径向偏移方向。径向监测装置包括四个位移传感器,且四个位移分别对应上偏向、下偏向、左偏向和右偏向环绕设置于前轴承支座的内孔中,如图3所示。其中,上偏向对应的位移传感器称为上偏传感器201,用于监测转子110在上偏向的第一偏移量;下偏向对应的位移传感器称为下偏传感器202,用于监测转子110在下偏向的第二偏移量;左偏向对应的位移传感器称 为左偏传感器,用于监测转子110在左偏向的第三偏移量;右偏向对应的位移传感器称为右偏传感器,用于监测转子110在右偏向的第四偏移量。
更进一步地,可选地,四个位移传感器分别对应上偏向、下偏向、左偏向和右偏向环绕设置于后轴承支座的内孔中。转子110为刚性,当转子前端发生上偏向时转子后端发生下偏向。这样前轴承支座和后轴承支座分别设置四个位移传感器,有利于更精确地确定转子110的径向偏移量。
为了说明径向调节部的工作过程,转子前端的第一偏移量记为a,转子后端的第一偏移量记为a’;转子前端的第二偏移量记为b,转子后端的第二偏移量记为b’;转子前端的第三偏移量记为c,转子后端的第三偏移量记为c’;转子前端的第四偏移量记为d,转子后端的第四偏移量记为d’。在轴承-转子系统稳定的情况下,将此时的a记为0,同理a=a’=0,b=b’=0,c=c’=0,d=d’=0,该状态下不启动磁浮径向轴承200。当转子110发生偏移且转子110与轴承之间的间隙变小时,偏移量小于零;当转子110发生偏移且转子110与轴承之间的间隙变大时,偏移量大于零。
在轴承-转子系统发生径向偏移的情况下:
若a<0且a’>0时,转子前端发生上偏向同时转子后端下偏向,此时第一控制器增大前磁浮径向轴承的上线圈的电流且,从而增大转子前端的上侧的支撑力;和/或,第一控制器增大后磁浮径向轴承的下线圈的电流,从而增大转子后端的下侧的支撑力。同样的,
若b<0且b’>0时,转子前端发生下偏向同时转子后端上偏向,增大前磁浮径向轴承的下线圈的电流,和/或,增大后磁浮径向轴承的上线圈的电流。
若c<0且c’>0时,转子前端发生左偏向同时转子后端右偏向,增大前磁浮径向轴承的左线圈的电流,和/或,增大后磁浮径向轴承的右线圈的电流。
若d<0且d’>0时,转子前端发生右偏向同时转子后端左偏向,增大前磁浮径向轴承的右线圈的电流,和/或,增大后磁浮径向轴承的左线圈的电流。
在一些实施例中,第一控制器采用LMS算法(最小均方算法)对径向偏移量的偏移信号进行处理并得到跟随信号;然后,第一控制器将跟随信号和偏移信号进行叠加处理并得到期望信号;接着,第一控制器对期望信号进行处理并得到电磁力的控制信号;最后,第一控制器根据控制信号控制多个电磁线圈的电流,不同电磁线圈的电流发生变化时其对应的电磁支撑力同步变化。这样在转子110发生径向偏移的过程中,重复上述对偏移信号的处理过程,进而通过不断调整电磁线圈的电磁支撑力使转子110的径向偏移量趋于零,有效提高了轴承-转子系统的稳定性。
在一些实施例中,如图4和图5所示,径向调节部还包括多条辅助气道433。两个轴 承支座431分别设置有一个用于封盖的轴端盖432,其中设置于前轴承支座的远离定子120的一侧的称为前轴端盖,设置于后轴承支座远离定子120的一侧的称为后轴端盖。前气浮径向轴承和前磁浮径向轴承安装于前轴承支座后,前轴端盖安装于前轴承支座;后气浮径向轴承和后磁浮径向轴承安装于后轴承支座后,后轴端盖安装于后轴承支座。并且,前轴端盖和后轴端盖分别设置有多条辅助气道433,每一辅助气道433对应一个径向偏移方向且所有辅助气道433均连通于转子110和气浮径向轴承400之间的间隙。当转子110在某一径向偏移方向发生偏移时,开启该径向偏移方向对应的辅助气道433向间隙内供气,使转子110在该偏移方向上得到有效承托,从而平衡转子110。辅助气道433和磁浮径向轴承200可以配合使用。
示例性的,前轴端盖和后轴端盖分别设有供转子110两端穿出的内孔,并且分别环绕内孔设置有四条辅助气道433,分别为上辅助气道、下辅助气道、左辅助气道和右辅助气道,并且该四条辅助气道433分别对应上偏向、下偏向、左偏向和右偏向。
若a<0且a’>0时,转子前端发生上偏向同时转子后端下偏向,此时开启前轴端盖的上辅助气道,和/或,开启后轴端盖的下辅助气道。
若b<0且b’>0时,转子前端发生下偏向同时转子后端上偏向,此时开启前轴端盖的下辅助气道,和/或,开启后轴端盖的上辅助气道。
若c<0且c’>0时,转子前端发生左偏向同时转子后端右偏向,此时开启前轴端盖的左辅助气道,和/或,开启后轴端盖的右辅助气道。
若d<0且d’>0时,转子前端发生右偏向同时转子后端左偏向,此时开启前轴端盖的右辅助气道,和/或,开启后轴端盖的左辅助气道。
在转子110由于轴承-转子系统内供气不足造成偏移的情况下,通过磁浮径向轴承200快速平衡转子110的径向偏移,当转子110平衡后磁浮径向轴承转为关闭状态。但是由于轴承-转子系统供气不足,转子110会再次发生偏移。在这种情况下,辅助气道433和磁浮径向轴承200同时配合启用,快速平衡转子110的同时又向转子110和气浮径向轴承400之间的间隙补充气体,防止转子110平衡后再次发生偏移。
可选地,每一辅助气道433设置有一个电磁阀。通过调节电磁阀的开度调节辅助气道433的供气量。在辅助气道433和磁浮径向轴承200配合使用的情况下,获取轴承-转子系统内的压力并确定需求补气量,根据需求补气量调节开启的辅助气道433的电磁阀的开度,在平衡转子110的同时精确地向转子110和气浮径向轴承400之间的间隙补气。
在一些实施例中,调节组件还包括轴向调节部。轴向调节部用以根据转子110的轴向偏移量平衡转子110。这样轴向调节部和径向调节部相结合,能够快速有效地平衡转子110 在轴向方向和径向方向发生的偏移,从而提高压缩机100的稳定性。
可选地,转子110的轴身具有推力盘111。推力盘111安装于后轴承支座,且位于定子120和后气浮径向轴承之间。这样相较于在转子110的端部设置推力盘111缩短了转子110的长度,从而提高转子110的临界速度。轴向调节部包括两个分别设置在推力盘111左右两侧的推力轴承。
进一步地,可选地,推力轴承为气浮轴向轴承300。以推力盘111为界限,位于推力盘111前方且靠近定子120的为前气浮轴向轴承,位于推力盘111后方且远离定子120的为后气浮轴向轴承。轴向调节部还包括轴向监测装置和第二控制器。其中,轴向监测装置用以监测转子110的轴向偏移量;第二控制器用以根据轴向偏移量调节向气浮轴向轴承300的供气量,从而调节气浮轴向轴承300的压力。
更进一步地,可选地,转子110的轴向偏移方向包括前偏向和后偏向,且前气浮轴向轴承对应前偏向,后气浮轴向轴承对应后偏向。如图2所示,前偏传感器301设置于后轴承支座且位于推力盘111前侧,用于监测转子110在前偏向的第五偏移量e;后偏传感器302设置于后轴承支座且位于推力盘111后侧,用于监测转子110在后偏向的第六偏移量f。在轴承-转子系统稳定的情况下,将此时的e和f记为0,该状态下不启动气浮轴向轴承300。当转子110发生偏移且推力盘111与轴承支座431之间的间隙变小时,偏移量小于零;当推力盘111与轴承支座431之间的间隙变大时,偏移量大于零。
若e<0且f>0时,转子110发生前偏向,此时第二控制器控制开启前气浮轴向轴承。
若e>0且f<0时,转子110发生后偏向,此时第二控制器控制开启后气浮轴向轴承。
在一些实施例中,如图1所示,压缩机100还包括电机腔130、冷却入口131和回气口132。其中冷却入口131连通于电机腔130,外部冷却介质通过冷却入口131通入电机腔130,用于冷却电机腔130内的定子120。在制冷系统中蒸发器连通于冷却入口131,蒸发器通过冷却入口131向电机腔130供给低温低压的冷媒,低温低压的冷媒和定子120热交换后变为中温中压的气体。此时气体的温度和压力能够满足气浮轴向轴承300的工作需求。
可选地,前气浮轴向轴承和后气浮轴向轴承分别通过一条第一供气通路303连通于回气口132。并且,每一第一供气通路303上设有一电子膨胀阀,第二控制器通过控制电子膨胀阀的开度调节第一供气通路303的供气量,从而调节前气浮轴向轴承和后气浮轴向轴承的压力,进而平衡不同程度的轴向偏移。这样通过回气口132和第一供气通路303将中温中压的气体供给至气浮轴向轴承300,无需外接供气装置向气浮轴向轴承300供气,合理利用了冷却介质且大幅简化了结构。
示例性地,当转子110发生前偏向或后偏向时,若e或f的绝对值大于预设偏移值时第二控制器控制电子膨胀阀全开,若e或f的绝对值小于预设偏移值时第二控制器控制电磁膨胀阀半开。这样,根据轴向偏移量的大小合理调整前气浮轴向轴承和后气浮轴向轴承的压力。
进一步地,可选地,回气口132还连通于气浮径向轴承400和辅助气道433,用以分别向气浮轴向轴承300和所有辅助气道433供气。前气浮径向轴承和后气浮径向轴承供气分别通过一条第二供气通路401连通于回气口132。并且,每一第二供气通路401上设有一电子膨胀阀,第二控制器通过控制电子膨胀阀的开度调节第二供气通路401的供气量,从而调节前气浮径向轴承和后气浮径向轴承的供气压力。每一辅助气道433通过一条第三供气通路连通于回气口132,每一第三供气通路设有一电子膨胀阀,通过控制电子膨胀阀的开度调节对应的辅助气道433的供气量。这样既无需外接供气装置向气浮径向轴承400供气和辅助气道433供气,又保证了供给至转子110和气浮径向轴承400之间的间隙的气体的一致性,避免不同温度和不同压力的气体在间隙内热交换,影响间隙内气体的稳定性。
在一些实施例中,如图6所示,推力轴承为磁浮轴向轴承500。以推力盘111为界限,位于推力盘111前方且靠近定子120的为前磁浮轴向轴承,位于推力盘111后方且远离定子120的为后磁浮轴向轴承。轴向调节部还包括第三控制器,第三控制器用以根据轴向偏移量调节磁浮轴向轴承500的电磁支撑力。
可选地,第三控制器采用LMS算法对轴向偏移量的偏移信号进行处理并得到跟随信号;然后,第三控制器将跟随信号和偏移信号进行叠加处理并得到期望信号;接着,第三控制器对期望信号进行处理并得到电磁力的控制信号;最后,第三控制器根据控制信号控制磁浮轴向轴承500内的电流变化,从而调节磁浮轴向轴承500的电磁支撑力。这样在转子110发生轴向偏移的过程中,重复上述对偏移信号的处理过程,进而通过不断调整电磁支撑力使转子110的轴向偏移量趋于零,有效提高了轴承-转子系统的稳定性。
本公开实施例提供了一种制冷系统,包括上述任一实施例所描述的压缩机100。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种压缩机,其特征在于,包括:
    转子(110);
    支撑组件,包括两个气浮径向轴承(400);两个所述气浮径向轴承(400)分别套设于所述转子(110)的两端以支撑所述转子(110);
    调节组件,包括径向调节部,所述径向调节部包括两个磁浮径向轴承(200);两个所述磁浮径向轴承(200)分别套设于所述转子(110)的两端,且分别根据所述转子(110)对应端的径向偏移量调整电磁支撑力,以平衡所述转子(110)。
  2. 根据权利要求1所述的压缩机,其特征在于,两个所述磁浮径向轴承(200)分别位于一个所述气浮径向轴承(400)远离另一个所述气浮径向轴承(400)的一侧。
  3. 根据权利要求1或2所述的压缩机,其特征在于,所述径向调节部还包括:
    径向监测装置,用以监测所述径向偏移量;
    第一控制器,电连接于所述径向监测装置和所述磁浮径向轴承(200),用以根据所述径向偏移量调节所述磁浮径向轴承(200)的电磁支撑力。
  4. 根据权利要求3所述的压缩机,其特征在于,所述第一控制器通过最小均方算法处理所述径向偏移量并得到跟随信号,并通过所述跟随信号控制电磁支撑力。
  5. 根据权利要求1或2所述的压缩机,其特征在于,所述调节组件还包括:
    轴向调节部,用以根据所述转子(110)的轴向偏移量平衡所述转子(110)。
  6. 根据权利要求5所述的压缩机,其特征在于,所述转子(110)的轴身上设有推力盘(111),且所述推力盘(111)位于两个所述气浮径向轴承(400)之间;
    所述轴向调节部包括:
    两个推力轴承,套设于所述转子(110)且分别靠近所述推力盘(111)的两侧。
  7. 根据权利要求6所述的压缩机,其特征在于,所述推力轴承为气浮轴向轴承(300);
    所述轴向调节部还包括:
    轴向监测装置,用以监测所述轴向偏移量;
    第二控制器,用以根据所述轴向偏移量调节向所述气浮轴向轴承(300)的供气量,从而调节所述气浮轴向轴承(300)的压力。
  8. 根据权利要求7所述的压缩机,其特征在于,还包括:
    电机腔(130);
    回气口(132),连通于所述气浮轴向轴承(300),用以将所述电机腔(130)内的冷却介 质供给至所述气浮轴向轴承(300)。
  9. 根据权利要求6所述的压缩机,其特征在于,所述推力轴承为磁浮轴向轴承(500)。
  10. 一种制冷系统,其特征在于,包括如权利要求1至9任一项所述的压缩机。
PCT/CN2022/102761 2021-11-19 2022-06-30 压缩机及制冷系统 WO2023087730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111399390.0A CN114251359B (zh) 2021-11-19 压缩机及制冷系统
CN202111399390.0 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087730A1 true WO2023087730A1 (zh) 2023-05-25

Family

ID=80793093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102761 WO2023087730A1 (zh) 2021-11-19 2022-06-30 压缩机及制冷系统

Country Status (1)

Country Link
WO (1) WO2023087730A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087197A1 (de) * 1982-02-22 1983-08-31 BBC Aktiengesellschaft Brown, Boveri & Cie. Antrieb und Lagerung eines Turboverdichters
US5923559A (en) * 1995-08-31 1999-07-13 Seiko Seiki Kabushiki Kaisha Magnetic bearing apparatus
US6288465B1 (en) * 1997-04-28 2001-09-11 Ntn Corporation Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
CN105703520A (zh) * 2014-11-24 2016-06-22 雷虹桥 带空气轴承辅助的磁悬浮轴承高速电机
CN205559548U (zh) * 2016-02-18 2016-09-07 福建雪人股份有限公司 一种用于离心压缩机的轴承系统及离心压缩机
JP2017158325A (ja) * 2016-03-02 2017-09-07 セイコー化工機株式会社 磁気浮上式電動機とそれを備えた磁気浮上式ポンプ
CN108868892A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN109477487A (zh) * 2016-07-25 2019-03-15 大金应用美国股份有限公司 离心压缩机和用于离心压缩机的磁轴承备用系统
CN209354405U (zh) * 2019-01-11 2019-09-06 河南迪诺环保科技股份有限公司 一种大功率磁悬浮式鼓风机
CN113090656A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机转子组件及其控制方法、压缩机及空调设备
CN114251359A (zh) * 2021-11-19 2022-03-29 青岛海尔空调电子有限公司 压缩机及制冷系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087197A1 (de) * 1982-02-22 1983-08-31 BBC Aktiengesellschaft Brown, Boveri & Cie. Antrieb und Lagerung eines Turboverdichters
US5923559A (en) * 1995-08-31 1999-07-13 Seiko Seiki Kabushiki Kaisha Magnetic bearing apparatus
US6288465B1 (en) * 1997-04-28 2001-09-11 Ntn Corporation Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
CN105703520A (zh) * 2014-11-24 2016-06-22 雷虹桥 带空气轴承辅助的磁悬浮轴承高速电机
CN205559548U (zh) * 2016-02-18 2016-09-07 福建雪人股份有限公司 一种用于离心压缩机的轴承系统及离心压缩机
JP2017158325A (ja) * 2016-03-02 2017-09-07 セイコー化工機株式会社 磁気浮上式電動機とそれを備えた磁気浮上式ポンプ
CN109477487A (zh) * 2016-07-25 2019-03-15 大金应用美国股份有限公司 离心压缩机和用于离心压缩机的磁轴承备用系统
CN108868892A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN209354405U (zh) * 2019-01-11 2019-09-06 河南迪诺环保科技股份有限公司 一种大功率磁悬浮式鼓风机
CN113090656A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机转子组件及其控制方法、压缩机及空调设备
CN114251359A (zh) * 2021-11-19 2022-03-29 青岛海尔空调电子有限公司 压缩机及制冷系统

Also Published As

Publication number Publication date
CN114251359A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023087731A1 (zh) 压缩机及制冷系统
US10724546B2 (en) Centrifugal compressor having a casing with an adjustable clearance and connections for a variable flow rate cooling medium, impeller clearance control apparatus for centrifugal compressor, and impeller clearance control method for centrifugal compressor
CN111928504B (zh) 冷媒循环系统及控制方法
KR100321094B1 (ko) 컴프레서
US20080199326A1 (en) Two-stage vapor cycle compressor
CN103109090B (zh) 用于控制螺杆式压缩机的压缩机元件的方法
CN103649546A (zh) 压缩机间隙控制
WO2023087709A1 (zh) 压缩机及用于压缩机轴承-转子系统的控制方法
CN111486110A (zh) 离心压缩机、热泵系统
WO2023087730A1 (zh) 压缩机及制冷系统
CN114198828B (zh) 气悬浮机组系统和控制方法
CN114251359B (zh) 压缩机及制冷系统
CN212318358U (zh) 压缩机用气体轴承的供气系统及制冷系统
WO2023087786A1 (zh) 用于压缩机的散热结构及压缩机
CN101126389A (zh) 制冷机用磁悬浮涡轮增压装置
WO2023087710A1 (zh) 压缩机及压缩机的供液系统
EP4206477A1 (en) Method and system for controlling differential pressure for an externally pressurized gas bearing apparatus
CN114198950B (zh) 压缩机的供液系统
CN111486103B (zh) 一种离心式压缩机和热泵系统
CN212429281U (zh) 气悬浮压缩机的供气系统和制冷系统
CN114198925A (zh) 压缩机的气液供给系统
CN106705299A (zh) 一种地铁站深井冷却直膨空调机及其控制方法
KR101997441B1 (ko) 팽창밸브 및 이를 포함하는 칠러시스템
CN111486105B (zh) 一种离心式压缩机和热泵系统
CN116357592B (zh) 一种磁悬浮空气压缩系统及工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894273

Country of ref document: EP

Kind code of ref document: A1