WO2023087710A1 - 压缩机及压缩机的供液系统 - Google Patents

压缩机及压缩机的供液系统 Download PDF

Info

Publication number
WO2023087710A1
WO2023087710A1 PCT/CN2022/101033 CN2022101033W WO2023087710A1 WO 2023087710 A1 WO2023087710 A1 WO 2023087710A1 CN 2022101033 W CN2022101033 W CN 2022101033W WO 2023087710 A1 WO2023087710 A1 WO 2023087710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
liquid
pipeline
compressor
refrigerant
Prior art date
Application number
PCT/CN2022/101033
Other languages
English (en)
French (fr)
Inventor
杨明威
张晓锐
张捷
陶祥先
毛守博
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023087710A1 publication Critical patent/WO2023087710A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of refrigeration equipment, for example, to a compressor and a liquid supply system for the compressor.
  • the compressor rotor rotates at high speed during operation, and reliable bearings are required to support the rotor.
  • the bearings used in conventional compressor rotors mainly include rolling bearings, oil film bearings, and magnetic suspension bearings.
  • compressors that use air suspension bearings to support the rotation of the rotor Compressors using air suspension bearings mainly use gas to support the rotor, and its working principle is to use the air film automatically formed between the air suspension bearing and the rotor to support the rotor during the high-speed rotation of the rotor.
  • a compressor in the prior art, which includes a cylinder body, including a mounting cavity; a stator, fixedly arranged in the mounting cavity, including a rotor mounting hole; a rotor, rotatably mounted in the rotor mounting hole; an air suspension thrust bearing, used To carry the axial force of the rotor; the separation structure is fixedly installed in the installation cavity, and the separation structure divides the installation cavity into the motor cavity for installing the stator and the bearing cavity for installing the air suspension thrust bearing.
  • the separation structure and/or the bottom of the cylinder are set There is a communication structure connecting the motor chamber and the bearing chamber so as to pass into the bearing chamber the liquid cooling fluid at the bottom of the motor chamber; and the bearing chamber liquid level adjustment device includes a cooling fluid bypass structure in communication with the outside of the compressor and a cooling fluid with the cooling fluid The sensing device coupled with the bypass structure is used to detect the state information of the cooling fluid in the bearing cavity, and control the opening or closing of the cooling fluid bypass structure according to the state information.
  • the liquid refrigerant needs to cool the stator, it will continue to vaporize and absorb heat, and then provide gas for the bearing.
  • the supply of bearing gas is limited by factors such as the temperature and structure of the motor, resulting in unstable air supply to the bearings of the compressor.
  • Embodiments of the present disclosure provide a compressor and a liquid supply system of the compressor, so as to improve the stability of air supply to bearings of the compressor.
  • An embodiment of the present disclosure provides a compressor.
  • the compressor includes: a housing defining an accommodating cavity, a cooling pipeline and an air supply pipeline arranged in parallel, and the housing is provided with a liquid inlet; a motor located in the The accommodating chamber is connected with the liquid inlet through the cooling pipeline, and the liquid refrigerant enters the cooling pipeline through the liquid inlet to cool the motor; the bearing is located in the accommodating chamber, And communicate with the liquid inlet through the air supply pipeline, the liquid refrigerant enters the air supply pipeline through the liquid inlet, and changes from liquid to gas in the air supply pipeline to suspend the bearing.
  • the embodiment of the present disclosure also discloses a compressor liquid supply system, including: the compressor described in any one of the above embodiments; the main refrigerant circuit is provided with a liquid intake port, and the liquid intake port and the liquid inlet port Connected through the liquid pipe.
  • the liquid refrigerant After the liquid refrigerant enters the interior of the compressor from the liquid inlet, it can flow into the cooling pipeline and the gas supply pipeline at the same time.
  • the refrigerant required by the air supply pipeline can be directly obtained from the outside through the air supply pipeline, and there is no need to rely only on the liquid refrigerant in the cooling pipeline to cool the gas refrigerant generated after the motor is cooled.
  • the compressor in this embodiment can ensure the amount of refrigerant entering the bearing, so as to ensure the stability of the air supply to the bearing.
  • Fig. 1 is a schematic structural diagram of a compressor liquid supply system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of another compressor liquid supply system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of another compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of another compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic cross-sectional structural diagram of the interior of the compressor provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of an enlarged structure of part A in Fig. 5;
  • Fig. 7 is a schematic diagram of a control method for a compressor provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of another control method for a compressor provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of a control method for a compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of another control method for a compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of another control method for a compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of another control method for a compressor liquid supply system provided by an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of a cooperation structure between a first blade and a rotor provided by an embodiment of the present disclosure
  • Fig. 14 is a schematic diagram of a cooperation structure between a second blade and a rotor provided by an embodiment of the present disclosure.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear” etc. are based on the orientations or positional relationships shown in the drawings. Positional relationship. These terms are mainly used to better describe the embodiments of the present disclosure and their implementations, and are not used to limit that the indicated devices, elements or components must have a specific orientation, or be constructed and operated in a specific orientation. Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term “upper” may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in the embodiments of the present disclosure according to specific situations.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connectivity between components.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • an embodiment of the present disclosure provides a liquid supply system for a compressor.
  • the liquid supply system for a compressor includes a main refrigerant circuit, and the main refrigerant circuit includes a compressor 10 connected through a refrigerant pipeline 60 , Condenser 20 , first throttling device 50 and evaporator 40 .
  • the refrigerant pipeline 60 includes a first refrigerant pipeline, a second refrigerant pipeline and a third refrigerant pipeline.
  • the evaporator 40 transmits the low-temperature and low-pressure gas refrigerant to the compressor 10 through the first refrigerant pipeline, and the compressor 10 compresses the low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant, and then passes the high-temperature and high-pressure gas refrigerant through the second refrigerant pipeline 60.
  • the gaseous refrigerant is passed to the condenser 20 .
  • the high-temperature and high-pressure gaseous refrigerant becomes a liquid refrigerant at normal temperature and high pressure after the condenser 20 dissipates heat.
  • the normal temperature and high pressure liquid refrigerant returns to the evaporator 40 after passing through the third refrigerant pipeline and the first throttling device 50 .
  • the room-temperature and high-pressure liquid refrigerant reaches the evaporator 40 from the first throttling device 50, and the space suddenly increases and the pressure decreases, turning into a low-temperature and low-pressure liquid refrigerant.
  • the low-temperature and low-pressure liquid refrigerant will be vaporized in the evaporator 40 to become a low-temperature and low-pressure gaseous refrigerant.
  • the evaporator 40 transmits the low-temperature and low-pressure gaseous refrigerant to the compressor 10 again through the first refrigerant pipeline to complete the refrigeration cycle.
  • FIGS. 1 to 4 indicate the flow direction of the refrigerant in the liquid supply system of the compressor.
  • the compressor 10 includes a bearing 101 and a motor 102.
  • the motor 102 includes a stator 1021 and a rotor 1022.
  • the bearing 101 is supported above the rotor 1022 to support the rotation of the rotor 1022.
  • the compressor 10 includes, but is not limited to, an air-suspension compressor, a gas-liquid hybrid bearing compressor, a compressor with a shaft lifted by a gas refrigerant or a liquid refrigerant, and the like.
  • an embodiment of the present disclosure provides a compressor 10 , and the compressor 10 includes a housing 108 , a motor 102 and a bearing 101 .
  • the housing 108 defines a cooling pipeline 104 and an air supply pipeline 103 arranged in parallel, and the housing 108 is provided with a liquid inlet 110;
  • the motor 102 is located in the housing cavity 1081 and communicates with the liquid inlet 110 through the cooling pipeline 104,
  • the liquid refrigerant enters the cooling pipeline 104 through the liquid inlet 110 to cool the motor 102;
  • the bearing 101 is located in the housing cavity 1081 and communicates with the liquid inlet 110 through the gas supply pipeline 103, and the liquid refrigerant enters the motor 102 through the liquid inlet 110.
  • the air supply pipeline 103 is described, and the liquid state is changed into a gaseous state in the air supply pipeline 103 to suspend the bearing 101.
  • arrows in Fig. 5 and Fig. 6 indicate the flow direction of the refrigerant inside the compressor.
  • both the cooling pipeline 104 and the gas supply pipeline 103 can enter the liquid refrigerant from the liquid inlet 110, and the gaseous refrigerant in the gas supply pipeline 103 can be directly obtained from the outside through the gas supply pipeline 103, and it is not necessary to only
  • the gaseous refrigerant generated after cooling the motor 102 by the liquid refrigerant in the cooling pipeline 104 can ensure the gas entering the bearing 101 to ensure the stability of the gas supply to the bearing 101 .
  • the number of liquid inlets 110 can be multiple, and the plurality of liquid inlets 110 include a first liquid inlet and a second liquid inlet, the first liquid inlet is connected with the gas supply pipeline 103, and the second liquid inlet The liquid port communicates with the cooling pipeline 104 .
  • the cooling pipeline 104 and the gas supply pipeline 103 are independent of each other and do not interfere with each other, and the pressure of the liquid refrigerant in the gas supply pipeline 103 and the flow rate of the liquid refrigerant in the cooling pipeline 104 can be independently adjusted. It can not only ensure the required gaseous refrigerant for the suspension bearing 101 , but also fully cool the motor 102 , thereby ensuring the reliable operation of the compressor 10 .
  • the cooling pipeline 104 and the gas supply pipeline 103 are both connected to the liquid inlet 110, wherein, after the liquid refrigerant flows into the liquid inlet 110, a part of the liquid refrigerant enters the cooling pipe
  • the channel 104 is used to cool the motor 102 , and another part of the liquid refrigerant enters the air supply pipeline 103 , and changes from a liquid state to a gaseous state in the air supply pipeline 103 to suspend the bearing 101 .
  • the compressor 10 of this embodiment After the liquid refrigerant passes through the liquid inlet 110 , a part of the liquid refrigerant enters the cooling pipeline 104 to cool the motor 102 to ensure the normal operation of the motor 102 of the compressor 10 . Another part of the liquid refrigerant enters the air supply pipeline 103 and changes from liquid to gas in the air supply pipeline 103 to suspend the bearing 101 .
  • one liquid inlet 110 can be used to feed the suspension bearing 101 and the cooling compressor 10 at the same time, which facilitates the connection of the external liquid extraction pipeline 30 and facilitates the installation of the compressor 10 .
  • the compressor 10 further includes a throttling device 105 disposed on the air supply pipeline 103 for changing the liquid refrigerant in the air supply pipeline 103 into a gaseous refrigerant.
  • the liquid refrigerant in the air supply pipeline 103 is throttled by the throttling device 105 and becomes a gaseous refrigerant, and the gaseous refrigerant is supplied to the bearing 101 to suspend the bearing 101 .
  • the throttling device 105 is provided in the gas supply pipeline 103 , which can save the heating device, etc., and reduce the energy consumption of the compressor 10 .
  • the throttling device 105 includes a micro orifice, a capillary throttling device, and the like.
  • the principle of throttling by the throttling device 105 is: the liquid refrigerant will form a local contraction at the throttling device 105 , so that the flow rate of the liquid refrigerant increases and the static pressure decreases, so a static pressure difference is generated before and after the throttling device 105 . Furthermore, the pressure of the liquid refrigerant is reduced gradually to become a gas refrigerant, and the gas refrigerant can suspend the bearing 101 .
  • the bearing 101 will also generate heat, and the liquid refrigerant in the gas supply pipeline 103 can also flow directly to the bearing 101, and the liquid refrigerant can exchange heat with the bearing 101. After the heat exchange, the liquid refrigerant into a gaseous refrigerant.
  • Such arrangement can not only supply air to the bearing 101 , but also cool the bearing 101 to ensure the normal operation of the bearing 101 and further ensure the reliable movement of the compressor 10 .
  • the liquid refrigerant will become a gas-liquid mixed mist refrigerant after passing through the throttling device 105 , and the mist refrigerant can not only support the suspension bearing 101 , but also cool the bearing 101 .
  • the compressor 10 further includes a communication pipeline, which communicates the cooling pipeline 104 and the air supply pipeline 103 , so that the gaseous refrigerant after exchanging heat with the motor 102 flows to the bearing 101 to suspend the bearing 101 .
  • the liquid refrigerant in the cooling pipeline 104 cools down the motor 102 and absorbs the heat of the motor 102 , it is vaporized into a gaseous refrigerant, and the pressure in the cooling pipeline 104 increases.
  • the gaseous refrigerant enters the air supply pipeline 103 through the communication pipeline, on the one hand, the pressure in the cooling pipeline 104 can be reduced, so that the liquid refrigerant can circulate normally.
  • the gas supply pipeline 103 is replenished with gaseous refrigerant through the communication pipeline, the air pressure in the gas supply pipeline 103 is increased, the bearing 101 is suspended, and the compressor 10 works normally.
  • the refrigerant can be used more rationally, the utilization rate of the gaseous refrigerant can be improved, the energy consumption of the compressor 10 can be reduced, and the use cost can be reduced.
  • the compressor 10 further includes an injection device, which is arranged on the gas supply pipeline 103, and the communication pipeline communicates with the gas supply pipeline 103 through the injection device.
  • the communication pipeline communicates with the gas supply pipeline 103 through the injection device, and in the injection device, the gaseous refrigerant provided by the communication pipeline 130 injects the liquid refrigerant in the gas supply pipeline 103, so that the liquid refrigerant in the gas supply pipeline 103 becomes High-pressure gas-liquid two-phase refrigerant.
  • the high-pressure gas-liquid two-phase refrigerant is supplied to the bearing 101 to suspend the bearing 101 and the compressor 10 operates normally.
  • the injection device and the throttling device 105 are arranged in sequence.
  • the compressor 10 further includes a pressure regulating device, which is provided in the gas supply pipeline 103 and used to adjust the pressure of the gas supply pipeline.
  • the pressure regulating device can adjust the pressure of the liquid refrigerant in the air supply pipeline 103 to ensure that the pressure of the liquid refrigerant flowing to the throttling device 105 meets the demand, and then the throttling device 105 can throttle The pressure of the refrigerant meets the suspension pressure of the bearing 101.
  • the pressure regulating device includes a first regulating valve 106, which is disposed on the gas supply pipeline 103, and the first regulating valve 106 can regulate the flow of liquid refrigerant in the gas supply pipeline 103 to adjust the pressure of the gas supply pipeline.
  • the gas supply pipeline 103 is defined by the casing 108 of the compressor 10, so the pipeline area of the gas supply pipeline 103 is fixed, and the first regulating valve 106 can adjust the flow rate of the liquid refrigerant in the gas supply pipeline 103, wherein , the flow rate of the liquid refrigerant increases, the flow rate also increases, and the pressure of the liquid refrigerant also increases. Similarly, when the flow rate of the liquid refrigerant decreases, the flow rate also decreases, and the pressure of the liquid refrigerant also decreases.
  • the compressor 10 also includes a second regulating valve 107, a first detection device and a controller; Refrigerant flow rate; the first detection device is installed in the gas supply pipeline 103 to detect the pressure of the gas supply pipeline.
  • the controller is connected to the first regulating valve 106, the first regulating valve 106 and the first detection device, and the controller can receive the pressure of the gas supply pipeline, And adjust the opening degree of the first regulating valve 106 and the opening degree of the second regulating valve 107 according to the pressure of the gas supply pipeline.
  • the pressures of the gas supply pipeline 103 and the cooling pipeline 104 are adjusted through the first regulating valve 106 and the second regulating valve 107, thereby enabling The pressure of the refrigerant flowing to the bearing 101 is adjusted to ensure that the pressure of the refrigerant flowing to the bearing 101 can suspend the bearing 101 .
  • the first detection device is a pressure sensor.
  • an embodiment of the present disclosure provides a control method for the compressor 10, including:
  • the controller acquires the pressure of the gas supply pipeline.
  • the controller adjusts the opening degree of the first regulating valve 106 and the opening degree of the second regulating valve 107 according to the pressure of the gas supply pipeline.
  • the pressures of the air supply pipeline 103 and the cooling pipeline 104 can be adjusted through the first regulating valve 106 and the second regulating valve 107, thereby adjusting The pressure of the refrigerant flowing to the bearing 101 ensures that the pressure of the refrigerant flowing to the bearing 101 can suspend the bearing 101 .
  • the controller controls the second regulating valve 107 to reduce the opening degree, and controls the first regulating valve 106 to increase the opening degree to increase the pressure of the gas supply pipeline. pressure.
  • the pressure of the liquid refrigerant in the air supply pipeline 103 is relatively small, which will cause the pressure of the refrigerant flowing to the bearing 101 to be too small to suspend the bearing 101, so Control the opening of the second regulating valve 107 to reduce the flow rate of the refrigerant in the cooling pipeline 104 .
  • the opening of the first regulating valve 106 is controlled to increase the flow rate of the air supply pipeline 103 to increase the pressure of the refrigerant in the air supply pipeline 103 to ensure that the pressure of the refrigerant flowing to the bearing 101 can suspend the bearing 101 .
  • the controller controls the second regulating valve 107 to increase the opening degree, and controls the first regulating valve 106 to decrease the opening degree to reduce the pressure of the gas supply pipeline .
  • the opening degree of the second regulating valve 107 is controlled to increase to increase the refrigerant flow rate of the cooling pipeline 104 .
  • the opening of the first regulating valve 106 is controlled to reduce the flow rate of the air supply pipeline 103, so as to reduce the pressure of the refrigerant in the air supply pipeline 103, so as to ensure that the pressure of the refrigerant flowing to the bearing 101 can not only suspend the bearing 101, but also The bearing 101 will not be damaged.
  • the first regulating valve 106 is a solenoid valve or a pressure regulating valve
  • the second regulating valve 107 is a solenoid valve or the like.
  • the controller controls the opening of the first regulating valve 106 to maintain the pressure of the gas supply pipeline; Wherein, the first preset pressure is smaller than the second preset pressure.
  • the pressure of the gas supply pipeline when the pressure of the gas supply pipeline is greater than or equal to the first preset pressure and less than or equal to the second preset pressure, the pressure of the liquid refrigerant in the gas supply pipeline 103 after flowing to the bearing 101 is higher than that of the bearing 101 Within the required pressure range, not only the bearing 101 can be suspended, but also the bearing 101 will not be damaged.
  • the controller controls the opening of the pressure regulating valve 304 to maintain the pressure of the refrigerant in the air supply pipeline 103 .
  • the first preset pressure may be the minimum critical value of the pressure required by the bearing 101
  • the second preset pressure may be the maximum critical value of the pressure required by the bearing 101
  • the minimum limit value of the pressure required by the bearing 101 is the third preset pressure
  • the maximum limit value of the pressure required by the bearing 101 is the fourth preset pressure.
  • the third preset pressure is lower than the first preset pressure
  • the fourth preset pressure is higher than the second preset pressure.
  • the third preset pressure is lower than the first preset pressure, so as to ensure that the bearing 101 will not be damaged when the adjusted liquid refrigerant flows to the bearing 101 .
  • the controller timely reduces the pressure of the liquid refrigerant in the gas supply pipeline 103 to prevent the bearing 101 from being under the required pressure.
  • the embodiment of the present disclosure also provides another control method for the compressor 10, including:
  • the controller obtains the pressure of the gas supply pipeline.
  • the controller judges whether the pressure of the gas supply pipeline is greater than or equal to a first preset pressure.
  • the controller controls the opening of the second regulating valve 107 to decrease, and controls the opening of the first regulating valve 106 to increase the pressure of the gas supply pipeline.
  • the controller determines whether the pressure of the gas supply pipeline is less than or equal to the second preset pressure.
  • the controller controls the opening of the second regulating valve 107 to increase, and controls the opening of the first regulating valve 106 to reduce the pressure of the gas supply pipeline.
  • the controller controls the opening of the first regulating valve 106 to maintain the pressure of the gas supply pipeline; wherein, The first preset pressure is smaller than the second preset pressure.
  • the pressure of the liquid refrigerant in the gas supply pipeline 103 flowing to the bearing 101 can be within the required pressure range of the bearing 101 , not only can the bearing 101 be suspended, but also the bearing 101 will not be damaged.
  • the accommodating chamber 1081 includes a motor chamber 1082, and the motor 102 is located in the motor chamber 1082.
  • the compressor 10 further includes a second detection device 1083, and the second detection device 1083 is arranged in the motor chamber 1082 for detecting Temperature: the controller is connected with the second detection device 1083 , and the controller can receive the temperature of the motor cavity 1082 .
  • the motor 102 is located in the motor cavity 1082.
  • the motor 102 includes a stator 1021 and a rotor 1022.
  • the rotor 1022 is installed in the stator 1021 and can rotate relative to the stator 1021. During the rotation of the rotor 1022, the stator 1021 and the rotor 1022 are both It will generate heat, which in turn will cause the temperature of the motor cavity 1082 to rise.
  • the second detection device 1083 detects the temperature of the motor cavity 1082 , and the controller can obtain the heating condition of the motor 102 .
  • the second detection device 1083 is a temperature sensor.
  • the controller controls the opening degree of the second regulating valve 107 according to the temperature of the motor cavity 1082 .
  • the first regulating valve 106 can be set at a time when the pressure of the gas supply pipeline is greater than or equal to the first preset pressure and less than or equal to the second preset pressure. Adjust the flow rate of the first air supply pipeline 1031 within a certain range.
  • the flow of the cooling pipeline 104 can be adjusted by adjusting the opening of the second regulating valve 107 , and then the flow of the liquid refrigerant flowing to the motor 102 can be adjusted to increase the cooling effect of the motor 102 .
  • the opening degree of the second regulating valve 107 is directly proportional to the temperature of the motor cavity 1082 .
  • the opening degree of the second regulating valve 107 decreases, and the refrigerant flow rate of the cooling pipeline 104 decreases, thereby reducing the liquid refrigerant flowing to the motor 102 and preventing the liquid refrigerant flowing to the motor 102 If it is too much, the vaporization will not be sufficient, resulting in liquid accumulation inside the compressor 10, thereby affecting the normal operation of the compressor 10.
  • the opening ratio of the second regulating valve 107 is X
  • the temperature of the motor chamber 1082 is T
  • a can be 0 or greater than 0.
  • the inner wall of the casing 108 is provided with a spiral groove, and the spiral groove and the outer peripheral surface of the stator 1021 of the motor 102 form a spiral cooling channel 111, and the inlet end of the spiral cooling channel 111 is connected with the outlet end of the cooling pipeline 104 wherein, the outlet end of the spiral cooling channel 111 and the outlet end of the bearing 101 are both in communication with the accommodating chamber 1081 .
  • the spiral cooling channel 111 increases the contact area between the liquid refrigerant and the outer peripheral surface of the stator 1021 of the motor 102 , thereby improving the cooling effect of the liquid refrigerant on the motor 102 .
  • the housing 108 also defines a return air pipeline 109, the housing 108 is provided with an exhaust port, the inlet end of the air return pipeline 109 communicates with the accommodating cavity 1081, and the outlet end of the air return pipeline 109 is connected with the exhaust port so that the gaseous refrigerant after cooling the motor 102 and the gaseous refrigerant after the suspension bearing 101 are discharged to the outside of the casing 108 through the return air pipeline 109 and the exhaust port.
  • the return air pipeline 109 enables the gaseous refrigerant in the housing chamber 1081 to flow to the outside of the housing 108, preventing the gaseous refrigerant from accumulating in the housing chamber 1081 to increase the pressure in the housing chamber 1081, causing the cooling pipeline 104 and the supply
  • the liquid refrigerant in the gas pipeline 103 cannot flow smoothly or backflow occurs.
  • the liquid inlet 110 is provided at the bottom of the housing 108
  • the exhaust port is provided at the top of the housing 108 .
  • the liquid inlet 110 is provided at the bottom of the housing 108
  • the exhaust port is provided at the top of the housing 108 .
  • the liquid inlet 110 may also be provided on the top of the housing 108 , and the exhaust port may be provided on the bottom wall of the housing 108 . This enables the liquid refrigerant flowing in from the liquid inlet 110 to flow under the action of gravity, thereby reducing the energy consumption for driving the flow of the liquid refrigerant.
  • the multiple bearings 101 include a first bearing 1011 and a second bearing 1012 , and the first bearing 1011 and the second bearing 1012 are respectively located at two ends of the rotor 1022 to support the rotor 1022 .
  • the number of air supply pipelines 103 is also multiple, and the number of air supply pipelines 103 is equal to and corresponds to the number of bearings 101 , so as to ensure the air supply of each bearing 101 .
  • the liquid inlet 110 communicates with both the first gas supply pipeline 1031 and the second gas supply pipeline 1032, wherein the first regulating valve 106 includes a first sub-regulating valve 1061 and a second sub-regulating valve 1062, the first The sub-regulating valve 1061 is arranged in the first air supply pipeline 1031 , and the second sub-regulating valve 1062 is arranged in the second air supply pipeline 1032 .
  • the number of throttling devices 105 is the same as the number of air supply pipelines 103 and corresponds one by one.
  • the throttling device 105 includes a second throttling device 1051 and a third throttling device 1052.
  • the second throttling device 1051 is located in the first air supply pipeline.
  • the third throttling device 1052 is located in the second air supply pipeline 1032 .
  • the controller obtains the distances between the liquid inlet 110 and the first bearing 1011 and the second bearing 1012 respectively, and controls the first sub-regulating valve 1061 and the The opening of the second sub-valve 1062 is adjusted so that the pressure of the refrigerant suspending the first bearing 1011 is the same as the pressure of the refrigerant suspending the second bearing 1012 .
  • the controller can control the opening of the first sub-regulating valve 1061 to be greater than the opening of the second sub-regulating valve 1062,
  • the pressure of the refrigerant flowing into the first bearing 1011 is the same as that of the refrigerant flowing into the second bearing 1012 , so that both ends of the rotor 1022 are balanced to ensure the smooth operation of the rotor 1022 .
  • the compressor 10 further includes a third detection device, the third detection device is located at the bottom of the motor cavity 1082 , and the third detection device can detect the content of the liquid refrigerant at the bottom of the motor cavity 1082 .
  • the controller is connected with the third detection device, and the controller can control the opening degree of the second regulating valve 107 according to the content of the liquid refrigerant at the bottom of the motor cavity 1082 .
  • the controller can control the second regulating valve according to the content of the liquid refrigerant at the bottom of the motor chamber 1082. 107 openings to prevent liquid refrigerant from accumulating in the motor chamber 1082.
  • the controller controls the second regulating valve 107 to reduce the opening to reduce the refrigerant flow rate of the cooling pipeline 104, thereby preventing the liquid refrigerant from continuing to store in the motor chamber 1082. product.
  • the preset content is the content of the liquid refrigerant that can evaporate by itself at the existing temperature in the motor cavity 1082 .
  • the controller may continue to control the opening of the second regulating valve 107 according to the temperature of the motor chamber 1082 .
  • the third detection device may be a liquid level sensor, a water sensitive sensor or a water immersion sensor, etc.
  • the compressor 10 also includes blades disposed on the rotor 1022 ; when the rotor 1022 rotates, the rotor 1022 can drive the blades to rotate, and the blades can then drive the liquid refrigerant in the motor cavity 1082 to cool the motor 102 .
  • the liquid refrigerant enters the motor chamber 1082 through the liquid inlet 110 and contacts the blades.
  • the rotor 1022 rotates, and the rotor 1022 drives the blades to rotate.
  • the blade After the blade is in contact with the liquid refrigerant, it will drive the liquid refrigerant to flow, accelerate the flow speed of the liquid refrigerant, and then accelerate the evaporative cooling of the liquid refrigerant.
  • the blades not only the temperature of the liquid refrigerant is reduced, but also the contact area between the liquid refrigerant and the motor 102 is increased, thereby improving the cooling effect of the liquid refrigerant on the motor 102 and realizing cooling of the compressor 10 under all working conditions.
  • the housing 108 and the motor 102 jointly define a refrigerant flow channel, the inlet end of the refrigerant flow channel is connected to the liquid inlet 110, and when the rotor 1022 drives the blades to rotate, the blades can drive the liquid refrigerant to flow in the refrigerant flow channel;
  • the refrigerant channels include a first refrigerant channel extending axially along the rotor 1022 and a second refrigerant channel extending radially of the rotor 1022 .
  • the rotor 1022 can not only drive the liquid refrigerant to accelerate the flow speed, but also drive the liquid refrigerant to flow in the refrigerant channel.
  • the first refrigerant flow path extends along the axial direction of the rotor 1022 to sufficiently cool the stator 1021
  • the second refrigerant flow path extends along the radial direction of the rotor 1022 to sufficiently cool the rotor 1022 .
  • a channel extending axially along the rotor 1022 is provided in the stator winding, the first refrigerant flow channel includes a channel, and the liquid refrigerant can cool the stator winding when entering the channel.
  • the first refrigerant flow channel includes a channel passing through the stator winding, and the blade drives the liquid refrigerant to enter the stator winding through the channel, and can directly contact the coil of the stator winding, and the refrigerant passes through the stator winding
  • the coil can evaporate and take away the heat of the coil, and then cool the stator winding.
  • the first refrigerant flow path also includes a spiral cooling flow path 111 to increase the circulation area of the refrigerant, thereby increasing the contact area between the refrigerant and the stator 1021 and the rotor 1022, and further increasing the flow of the refrigerant between the motor chamber 1082 and the motor 102. cooling effect.
  • the multiple blades include a plurality of first blades 801, and the plurality of first blades 801 are sequentially arranged at intervals along the circumferential direction of the rotor 1022 on the first end of the rotor.
  • the outer peripheral surface, the first end of the first blade is connected to the outer peripheral surface of the first end of the rotor 1022, along the direction from the stator winding 1023 to the first end of the rotor, the first end of the first blade is inclined towards the first direction, the second One direction is the direction in which the rotor 1022 rotates; wherein, when the rotor 1022 rotates, the first blade 801 can drive the liquid refrigerant to flow in the first liquid refrigerant channel, so that the liquid refrigerant passes through the first refrigerant channel from the first end of the rotor After reaching the second end of the rotor.
  • the first vane 801 is obliquely arranged on the outer peripheral surface of the first end of the rotor. When the first vane 801 rotates with the rotor 1022 , it can drive the liquid refrigerant to flow along the first refrigerant channel. Such arrangement can not only increase the flow velocity of the liquid refrigerant, but also increase the contact area between the liquid refrigerant and the stator 1021 , so as to increase the cooling effect of the liquid refrigerant on the motor 102 .
  • a plurality of first blades 801 are sequentially and evenly spaced along the outer peripheral surface of the first end of the rotor.
  • a plurality of first blades 801 are evenly arranged, so that the liquid refrigerant in the first refrigerant channel can flow evenly, so that the liquid refrigerant can evenly dissipate heat to the motor 102 .
  • the plurality of blades includes a plurality of second blades 802, and the plurality of second blades 802 are sequentially arranged at intervals on the outer peripheral surface of the second end of the rotor along the circumferential direction of the rotor 1022, and the second blades 802 It is arranged parallel to the axis of the rotor 1022; wherein, when the rotor 1022 rotates, the second blade 802 can drive the liquid refrigerant to flow in the second refrigerant channel, and the second blade 802 can drive the liquid refrigerant flowing in the axial direction to turn into the radial direction. into the extended second refrigerant channel to discharge the compressor 10.
  • the second blade 802 After the first blade 801 drives the liquid refrigerant to flow to the second end of the rotor along the first refrigerant channel, the second blade 802 is arranged parallel to the axis of the rotor 1022. When the rotor 1022 rotates, the second blade 802 drives the liquid refrigerant to turn from the rotor One side of the second end flows to the other side of the second end of the rotor, so that the liquid refrigerant can cool the second end of the rotor, the second sealed cavity and the second bearing 1012 .
  • a plurality of second vanes 802 are evenly arranged in sequence along the outer peripheral surface of the second end of the rotor.
  • a plurality of second blades 802 are evenly arranged, so that the liquid refrigerant in the second refrigerant channel 804 can flow evenly, so that the liquid refrigerant can evenly dissipate heat to the motor 102 .
  • the second blade 802 is arc-shaped, and the arc-shaped opening faces a first direction, wherein the first direction is the rotation direction of the rotor 1022 .
  • the second vane 802 is arranged in an arc shape, which increases the contact area between the second vane 802 and the liquid refrigerant, so that when the second vane 802 rotates with the rotor 1022, it can drive more liquid refrigerant to flow.
  • the flow rate of the liquid refrigerant in the second refrigerant flow channel is increased to improve the cooling effect of the second refrigerant flow channel on the motor 102 .
  • An embodiment of the present disclosure also provides a liquid supply system for a compressor.
  • the liquid supply system for a compressor includes the compressor 10 in any one of the above embodiments and a main refrigerant circuit.
  • the main refrigerant circuit is provided with a liquid intake port, and the liquid intake port It communicates with the liquid inlet 110 through the liquid extraction pipeline 30 .
  • the liquid supply system of the compressor in the embodiments of the present disclosure includes the compressor 10 in any one of the above-mentioned embodiments, so it has all the beneficial effects of the compressor 10 in any one of the above-mentioned embodiments, and will not be repeated here.
  • the liquid intake port is arranged in the condenser 20, and the liquid refrigerant in the condenser 20 can flow into the liquid intake pipeline 30 through the liquid intake port, and then enter the interior of the compressor 10 through the liquid intake port 110, and the liquid refrigerant in the compressor 10
  • the interior can be turned into a gaseous refrigerant to suspend the bearing 101 and cool the motor 102 .
  • the liquid refrigerant is directly taken from the condenser 20 and directly supplied to the interior of the compressor 10, which saves components such as an air supply tank and a heating device for supplying air outside the compressor 10, and saves energy. Consumption, optimize the system.
  • the liquid refrigerant flowing in through the liquid inlet 110 is a high-pressure liquid refrigerant, and the pressure of the high-pressure liquid refrigerant can meet the pressure required for the bearing 101 to suspend, so as to reduce the pressure adjustment of the liquid refrigerant entering the compressor 10 .
  • the liquid extraction pipeline 30 includes a first liquid extraction pipeline 301, and the first liquid extraction pipeline 301 is communicated between the liquid inlet 110 and the liquid extraction port, and the liquid refrigerant in the condenser 20 can flow in the condenser 20 Under the action of the pressure difference with the compressor 10 , it flows into the compressor 10 autonomously through the first liquid extraction pipeline 301 .
  • the liquid refrigerant is directly taken from the condenser 20 and enters the compressor 10.
  • the pressure in the condenser 20 is greater than the compression
  • the liquid refrigerant can flow into the compressor 10 autonomously from the first liquid extraction pipeline 301 under the action of the pressure difference between the condenser 20 and the compressor 10 .
  • Such setting saves the setting of the driving device of the liquid-taking pipeline 30, optimizes the system, and saves energy consumption.
  • the liquid refrigerant in the condenser 20 can flow into the liquid independently through the liquid inlet and the first liquid inlet pipeline 301. Port 110, and then enter the interior of the compressor 10, without a driving device, saving energy consumption.
  • the pressure at the liquid inlet 110 is greater than or equal to the pressure at the bearing 101, so the pressure of the liquid refrigerant in the condenser is greater than the pressure at the liquid inlet 110 of the compressor 10
  • the pressure of the liquid refrigerant in the condenser 20 is also greater than or equal to the pressure of the bearing 101 .
  • the liquid refrigerant in the condenser 20 can flow in autonomously through the liquid inlet and the first liquid inlet 301 Inlet 110, and then flow to the bearing 101.
  • the liquid extraction pipeline 30 also includes a second liquid extraction pipeline 302 and a pressurizing device 3022, the second liquid extraction pipeline 302 is arranged in parallel with the first liquid extraction pipeline 301; the pressurizing device 3022 is arranged on the second The liquid intake line 302 and the pressurizing device 3022 can pressurize the liquid refrigerant flowing out through the liquid intake port, and drive the pressurized liquid refrigerant to flow into the liquid inlet 110 through the second liquid intake line 302 and then enter the compressor 10 internal.
  • the pressure in the condenser 20 when the pressure in the condenser 20 is low, such as when the compressor 10 is started up or the temperature of the cooling water is low, the pressure in the condenser 20 is low, causing the condenser 20 to The liquid refrigerant in the condenser cannot directly flow into the compressor 10 or the pressure of the liquid refrigerant in the condenser 20 does not meet the pressure required by the bearing 101 .
  • the pressurizing device 3022 of the second liquid extraction pipeline 302 can pressurize the liquid refrigerant flowing out of the condenser 20 and then send it into the compressor 10 to ensure that the pressure of the liquid refrigerant meets the pressure required by the bearing 101, thereby ensuring that the compressor 10 for normal operation.
  • the pressurizing device 3022 may be a refrigerant pump, a gear pump, etc., capable of pressurizing the liquid refrigerant and driving the liquid refrigerant to flow in the first liquid extraction pipeline 301 .
  • the liquid supply system of the compressor further includes a first solenoid valve 3011, a second solenoid valve 3021, a fourth detection device and a controller.
  • the first electromagnetic valve 3011 is arranged in the first liquid-taking pipeline 301 and can control the on-off of the first liquid-taking pipeline 301 .
  • the second electromagnetic valve 3021 is arranged in the second liquid-taking pipeline 302 and can control the on-off of the second liquid-taking pipeline 302 .
  • the fourth detection device is arranged in the condenser 20, and is used to detect the pressure of the liquid refrigerant in the condenser; the controller is connected with the first solenoid valve 3011, the second solenoid valve 3021 and the fourth detection device, and the controller can receive the condenser 20, and can control the opening and closing of the first electromagnetic valve 3011 and the second electromagnetic valve 3021 according to the pressure of the condenser 20, so as to control the on-off of the first liquid extraction pipeline 301 and the second liquid extraction pipeline 302.
  • the controller can control the opening and closing of the first solenoid valve 3011 and the second solenoid valve 3021 according to the pressure of the liquid refrigerant in the condenser 20, and then control the first liquid extraction pipeline 301 and On-off of the second liquid-taking pipeline 302.
  • the opening and closing of the first solenoid valve 3011 and the second solenoid valve 3021 can be adjusted as required to ensure that the pressure of the liquid refrigerant entering the compressor 10 meets the demand, increasing the flexibility of liquid refrigerant supply and fully ensuring that the compressor 10 can normal operation.
  • the fourth detection device is a pressure sensor installed inside the condenser 20 .
  • an embodiment of the present disclosure provides a control method for a liquid supply system of a compressor, including:
  • the controller obtains the pressure of the liquid refrigerant in the condenser.
  • the controller controls the opening and closing of the first solenoid valve 3011 and the second solenoid valve 3021 according to the pressure of the liquid refrigerant in the condenser.
  • the controller can control the opening and closing of the first electromagnetic valve 3011 and the second electromagnetic valve 3021 according to the pressure of the liquid refrigerant in the condenser 20, and then control the first liquid extraction pipeline 301 and the second liquid extraction pipeline 302 on and off.
  • the opening and closing of the first solenoid valve 3011 and the second solenoid valve 3021 can be adjusted as required to ensure that the pressure of the liquid refrigerant entering the compressor 10 meets the demand, increasing the flexibility of liquid refrigerant supply and fully ensuring that the compressor 10 can normal operation.
  • the controller is configured to: when the pressure of the liquid refrigerant in the condenser is greater than or equal to the fifth preset pressure, control the first solenoid valve 3011 to open and the second solenoid valve 3021 to close, so that the first The liquid pipeline 301 is connected and the second liquid extraction pipeline 302 is disconnected; wherein, the fifth preset pressure is greater than the pressure of the liquid inlet 110, so that the liquid refrigerant in the condenser 20 can flow between the condenser 20 and the compressor 10 Under the action of the pressure difference, the liquid flows into the compressor 10 through the first liquid extraction pipeline 301 .
  • the liquid refrigerant in the condenser 20 can be autonomously controlled by the pressure difference between the condenser 20 and the compressor 10. into the compressor 10.
  • the controller controls the first liquid extraction pipeline 301 to be connected to the second liquid extraction pipeline 302 to disconnect, so that the pressurizing device 3022 does not need to work, which saves the energy consumption of the liquid supply system of the compressor.
  • the minimum pressure required by the bearing 101 is the seventh preset pressure, and the fifth preset pressure is greater than the seventh preset pressure, so that the bearing can be guaranteed after the liquid refrigerant enters the interior of the compressor 10. 101 suspension.
  • the pressure of the liquid refrigerant flowing from the liquid intake port to the bearing 101 will be lost, and the pressure loss value from the liquid intake port to the bearing 101 is the eighth preset pressure.
  • the fifth preset pressure is greater than or equal to the sum of the seventh preset pressure and the eighth preset pressure, so as to avoid the loss of liquid refrigerant in the liquid extraction pipeline 30 and cause the pressure flowing into the bearing 101 to be lower than the seventh preset pressure, so as to ensure The pressure of the liquid refrigerant flowing into the bearing 101 is within the pressure range required by the bearing 101.
  • the pressure of the liquid refrigerant in the condenser is greater than or equal to the fifth preset pressure, not only the liquid refrigerant in the condenser 20 can flow into the compressor 10 independently under the action of the pressure difference, but also can ensure that it enters the bearing 101
  • the pressure of the refrigerant is higher than the minimum pressure required by the bearing 101 and the seventh preset pressure.
  • the pressurizing device 3022 is connected to the controller, and the controller can control the operation of the pressurizing device 3022 according to the pressure of the condenser 20; when the pressure of the liquid refrigerant in the condenser is less than the fifth preset pressure, the controller controls The first electromagnetic valve 3011 is closed and the second electromagnetic valve 3021 is opened, so that the first liquid extraction pipeline 301 is disconnected and the second liquid extraction pipeline 302 is turned on, and the pressurizing device 3022 is controlled to work for the second liquid extraction.
  • the liquid refrigerant in the pipeline 302 is pressurized.
  • the pressure of the liquid refrigerant in the condenser is lower than the pressure of the liquid intake port or the pressure of the liquid refrigerant in the condenser 20 when it flows into the bearing 101 through the first liquid extraction pipeline 301 is lower than the seventh predetermined pressure.
  • the controller controls the conduction of the second liquid-taking pipeline 302 and controls the pressurizing device 3022 to work.
  • This setting can ensure that the liquid refrigerant in the condenser 20 can flow into the compressor 10; It is ensured that the pressure of the liquid refrigerant flowing into the bearing 101 from the condenser 20 is within the required pressure range of the bearing 101 .
  • an embodiment of the present disclosure provides another method for controlling a liquid supply system of a compressor, including:
  • the controller obtains the pressure of the liquid refrigerant in the condenser.
  • the controller judges whether the pressure of the liquid refrigerant in the condenser is greater than or equal to the fifth preset pressure
  • the controller controls the first solenoid valve 3011 to open and the second solenoid valve 3021 to close.
  • the controller controls the first solenoid valve 3011 to close and the second solenoid valve 3021 to open, and controls the pressurizing device 3022 to work.
  • Adopting the control method for the liquid supply system of the compressor in this embodiment can not only ensure that the liquid refrigerant in the condenser 20 can flow into the interior of the compressor 10;
  • the pressure is lower than the third preset pressure, so as to ensure that the pressure of the liquid refrigerant flowing from the condenser 20 into the bearing 101 is within the required pressure range of the bearing 101 .
  • the liquid supply system of the compressor further includes a pressure regulating valve 304, a fifth detection device 306 and a controller.
  • the pressure regulating valve 304 is arranged in the liquid extraction pipeline 30, and is used to adjust the pressure of the liquid refrigerant in the liquid extraction pipeline 30;
  • the fifth detection device 306 is along the flow direction of the liquid refrigerant in the liquid extraction pipeline 30, and the pressure regulating valve 304 and the second Five detection devices 306 are sequentially arranged on the liquid-taking pipeline 30, and the fifth detection device 306 is used to detect the pressure of the liquid-taking pipeline behind the pressure regulating valve;
  • the controller is connected with the fifth detecting device 306 and the pressure regulating valve 304, The controller can receive the pressure of the liquid-taking pipeline 30 behind the pressure regulating valve 304, and control the pressure regulating valve 304 to work according to the pressure of the liquid-taking pipeline behind the pressure regulating valve.
  • the pressure regulating valve 304 can readjust the liquid refrigerant in the liquid intake pipeline 30 to avoid excessive pressure of the liquid refrigerant entering the compressor 10 and damage the bearing 101 and/or or motor 102 .
  • the fifth detection device 306 is a pressure sensor.
  • an embodiment of the present disclosure provides another control method for a liquid supply system of a compressor, including:
  • the controller acquires the pressure of the liquid-taking pipeline behind the pressure regulating valve.
  • the controller regulates the operation of the pressure regulating valve 304 according to the pressure of the liquid taking pipeline behind the pressure regulating valve.
  • the pressure regulating valve 304 can readjust the liquid refrigerant in the liquid intake pipeline 30 to prevent the pressure of the liquid refrigerant entering the compressor 10 from being too high to damage the bearing 101 and/or the motor 102 .
  • the controller controls the pressure regulating valve 304 to work to reduce the pressure of the liquid-taking pipeline 30 behind the pressure regulating valve 304. pressure; wherein, the sixth preset pressure is greater than the fifth preset pressure.
  • the controller controls the operation of the pressure regulating valve 304 to reduce the pressure of the liquid extraction pipeline 30, so that the pressure of the liquid refrigerant entering the compressor 10 is within the required range.
  • an embodiment of the present disclosure provides another method for controlling a liquid supply system of a compressor, including:
  • the controller obtains the pressure of the liquid-taking pipeline behind the pressure regulating valve.
  • the controller controls the pressure regulating valve 304 to work to reduce the pressure of the liquid-taking pipeline behind the pressure regulating valve; wherein, the first The sixth preset pressure is greater than the fifth preset pressure.
  • the pressure of the liquid-taking pipeline 30 behind the pressure regulating valve 304 is greater than the sixth preset pressure, the pressure of the liquid refrigerant in the liquid-taking pipeline 30 is too high, which may easily damage the bearing 101 and/or the motor 102, and the controller controls the pressure regulating valve 304 works to reduce the pressure of the liquid extraction pipeline 30, so that the pressure of the liquid refrigerant entering the compressor 10 is within the required range.
  • the maximum pressure required by the bearing 101 is the tenth preset pressure.
  • the pressure loss of the liquid refrigerant flowing from the pressure regulating valve 304 to the bearing 101 is the ninth preset pressure, and the sixth preset pressure is less than The sum of the tenth preset pressure and the ninth preset pressure ensures that the pressure of the liquid refrigerant flowing into the bearing 101 is within the pressure range required by the bearing 101 .
  • the sixth preset pressure can also be lower than the tenth preset pressure, which can fully ensure the flow into the bearing 101.
  • the pressure of the liquid refrigerant will not exceed the tenth preset pressure.
  • the liquid supply system of the compressor also includes a filter 303 and a check valve 305, the filter 303 is arranged on the liquid extraction pipeline 30, and the check valve 305 is arranged on the liquid extraction pipeline 30; According to the flow direction of the liquid refrigerant in the passage 30, a filter 303, a pressure regulating valve 304 and a check valve 305 are arranged in sequence.
  • the filter 303 can filter impurities in the liquid refrigerant to prevent impurities from entering the compressor 10 and damaging the compressor 10 .
  • the check valve 305 can prevent the liquid refrigerant from flowing back and ensure the one-way flow of the liquid refrigerant in the liquid extraction pipeline 30 .
  • a filter 303, a pressure regulating valve 304 and a check valve 305 are arranged in sequence.
  • the filter 303 can protect the pressure regulating valve 304, and the proximity of the check valve 305 to the compressor 10 can effectively avoid
  • the fifth detection device 306 may be provided on the check valve 305 to detect the pressure of the liquid-taking pipeline 30 behind the pressure regulating valve 304 .
  • the installation of the fifth detection device 306 is facilitated, and at the same time, the accuracy of the pressure detection of the liquid-taking pipeline 30 by the fifth detection device 306 is increased.
  • the filter 303 may be a dry filter.
  • the condenser 20 includes a liquid bag 201 , and the liquid intake port is arranged on the liquid bag 201 .
  • the condenser 20 is the highest pressure point of the liquid refrigerant in the main refrigerant circuit
  • the liquid bladder 201 is the highest pressure point of the liquid refrigerant in the condenser 20, so the liquid bladder 201 is the highest pressure point in the main refrigerant circuit.
  • the liquid intake port can also be set at the evaporator 40 , and the liquid drawn from the evaporator 40 flows into the liquid inlet 110 through the liquid intake pipeline 30 . Since the pressure of the liquid refrigerant in the evaporator 40 is relatively low, the liquid-taking pipeline 30 is provided with a pressurizing member to pressurize the liquid refrigerant in the liquid-taking pipeline 30 before flowing into the compressor 10 .
  • the liquid supply system of the compressor also includes an exhaust pipeline 701, and the exhaust pipeline 701 communicates between the exhaust port of the compressor 10 and the evaporator 40, so as to discharge the gaseous refrigerant in the compressor 10 after operation. , forming a pressure difference to ensure that the liquid refrigerant can enter the compressor 10 smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种压缩机(10)及其供液系统,包括:壳体(108),限定出容纳腔(1081)、并联设置的冷却管路(104)和供气管路(103),所述壳体(108)设有进液口(110);电机(102),位于所述容纳腔(1081)内,并与所述进液口(110)通过所述冷却管路(104)相连通,液态冷媒通过所述进液口(110)进入所述冷却管路(104)后以冷却所述电机(102);轴承(101),位于所述容纳腔(1081)内,并与所述进液口(110)通过所述供气管路(103)相连通,液态冷媒通过所述进液口(110)进入所述供气管路(103),并在所述供气管路(103)内由液态变为气态以悬浮所述轴承(101)。该压缩机(10)能够保证进入轴承(101)的冷媒,以保证轴承(101)供气的稳定性。

Description

压缩机及压缩机的供液系统
本申请基于申请号为202111385094.5、申请日为2021年11月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及制冷设备技术领域,例如涉及一种压缩机及压缩机的供液系统。
背景技术
目前,高速度型压缩机中,压缩机转子在工作中高速旋转,需要可靠的轴承对转子进行支撑。常规压缩机转子使用的轴承主要有滚动轴承、油膜轴承、磁悬浮轴承。相关技术中,已经有采用气悬浮轴承支撑转子转动的压缩机。采用气悬浮轴承的压缩机主要使用气体支撑转子,其工作原理是利用转子在高速旋转过程中,气悬浮轴承与转子之间自动形成气膜对转子进行支撑。
现有技术中公开一种压缩机,包括筒体,包括安装腔;定子,固定设置于安装腔内,包括转子安装孔;转子,可转动的安装于转子安装孔内;气悬浮推力轴承,用于承载转子的轴向力;分隔结构,固定设置于安装腔内,分隔结构将安装腔分隔为安装定子的电机腔和安装气悬浮推力轴承的轴承腔,分隔结构和/或筒体的底部设置有连通电机腔和轴承腔以向轴承腔通入电机腔底部的液态冷却流体的连通结构;和轴承腔液位调节装置,包括与压缩机外部具有连通状态的冷却流体旁通结构和与冷却流体旁通结构耦合的传感装置,传感装置用于检测轴承腔内的冷却流体的状态信息,并根据状态信息控制冷却流体旁通结构打开或关闭。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
液态冷媒需冷却定子之后,不断汽化吸热后再为轴承提供气体。轴承气体的供给受限于电机的温度、结构等因素,导致压缩机的轴承供气不稳定。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种压缩机及压缩机的供液系统,以提高压缩机的轴承供气的稳定性。
本公开实施例提供一种压缩机,所述压缩机包括:壳体,限定出容纳腔、并联设置的冷却管路和供气管路,所述壳体设有进液口;电机,位于所述容纳腔内,并与所述进液口通过所述冷却管路相连通,液态冷媒通过所述进液口进入所述冷却管路后以冷却所述电机;轴承,位于所述容纳腔内,并与所述进液口通过所述供气管路相连通,液态冷媒通过所述进液口进入所述供气管路,并在所述供气管路内由液态变为气态以悬浮所述轴承。
本公开实施例还公开一种压缩机的供液系统,包括:如上述实施例中任一项所述的压缩机;主冷媒回路,设有取液口,所述取液口与进液口通过取液管路相连通。
本公开实施例提供的压缩机及压缩机的供液系统,可以实现以下技术效果:
液态冷媒从进液口进入压缩机内部后,能够同时流入冷却管路和供气管路。其中,供气管路所需的冷媒能够通过供气管路从外界直接获得,不需要仅依赖于冷却管路的液态冷媒冷却电机后产生的气态冷媒。本实施例中的压缩机,能够保证进入轴承的冷媒的量,以保证轴承供气的稳定性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个压缩机供液系统的结构示意图;
图2是本公开实施例提供的另一个压缩机供液系统的结构示意图;
图3是本公开实施例提供的另一个压缩机供液系统的结构示意图;
图4是本公开实施例提供的另一个压缩机供液系统的结构示意图;
图5是本公开实施例提供的压缩机内部的截面结构示意图;
图6是图5中A部分的放大结构示意图;
图7是本公开实施例提供的一个用于压缩机的控制方法的示意图;
图8是本公开实施例提供的另一个用于压缩机的控制方法的示意图;
图9是本公开实施例提供的一个用于压缩机供液系统的控制方法的示意图;
图10是本公开实施例提供的另一个用于压缩机供液系统的控制方法的示意图;
图11是本公开实施例提供的另一个用于压缩机供液系统的控制方法的示意图;
图12是本公开实施例提供的另一个用于压缩机供液系统的控制方法的示意图;
图13是本公开实施例提供的一个第一叶片和转子的配合结构示意图;
图14是本公开实施例提供的一个第二叶片和转子的配合结构示意图。
附图标记:
10、压缩机;101、轴承;1011、第一轴承;1012、第二轴承;102、电机;1021、定子;1022、转子;103、供气管路;1031、第一供气管路;1032、第二供气管路;104、冷却管路;105、节流装置;1051、第二节流装置;1052、第三节流装置;106、第一调节阀;1061、第一子调节阀;1062、第二子调节阀;107、第二调节阀;108、壳体;1081、容纳腔;1082、电机腔;1083、第二检测装置;109、回气管路;110、进液口;111、螺旋冷却流道;20、冷凝器;201、液囊;30、取液管路;301、第一取液管路;3011、第一电磁阀;302、第二取液管路;3021、第二电磁阀;3022、加压装置;303、过滤器;304、压力调节阀;305、止回阀;306、第五检测装置;40、蒸发器;50、第一节流装置;60、冷媒管路;701、排气管路;801、第一叶片;802、第二叶片。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中 的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
如图1至图4所示,本公开实施例提供一种压缩机的供液系统,压缩机的供液系统包括主冷媒回路,主冷媒回路包括通过冷媒管路60相连通的压缩机10、冷凝器20、第一节流装置50和蒸发器40。冷媒管路60包括第一冷媒管路、第二冷媒管路和第三冷媒管路。
蒸发器40通过第一冷媒管路将低温低压的气态冷媒传递给压缩机10,压缩机10将低温低压的气态冷媒压缩为高温高压的气态冷媒,然后通过第二冷媒管路60将高温高压的气态冷媒传递给冷凝器20。高温高压的气态冷媒在冷凝器20散热后成为常温高压的液态冷媒。
常温高压的液态冷媒经过第三冷媒管路和第一节流装置50后再次回到蒸发器40内。其中,常温高压的液态冷媒从第一节流装置50到达蒸发器40后空间突然增大,压力减小,变为低温低压的液态冷媒。低温低压的液态冷媒在蒸发器40内会发生汽化,变成低温低压的气态冷媒。之后蒸发器40再次通过第一冷媒管路将低温低压的气态冷媒传递给压缩机10,完成制冷循环。
图1至图4中箭头表示压缩机的供液系统内冷媒的流动方向。
压缩机10包括轴承101和电机102,电机102包括定子1021和转子1022,轴承101支撑在转子1022上方,以支撑转子1022转动。
可选地,压缩机10包括但不限于气悬浮压缩机、气液混合轴承压机、气态冷媒或液态冷媒抬轴的压缩机等。
如图5和图6所示,本公开实施例提供一种压缩机10,压缩机10包括壳体108、电机102和轴承101。壳体108限定出并联设置的冷却管路104和供气管路103,壳体108设有进液口110;电机102位于容纳腔1081内,并与进液口110通过冷却管路104相连通,液态冷媒通过进液口110进入冷却管路104后以冷却电机102;轴承101位于容纳腔1081 内,并与进液口110通过供气管路103的相连通,液态冷媒通过进液口110进入所述供气管路103,并在供气管路103内由液态变为气态以悬浮轴承101。
图5和图6中箭头表示压缩机内部冷媒的流动方向。
采用本实施例的压缩机10,冷却管路104和供气管路103均能够从进液口110进液态冷媒,供气管路103的气态冷媒能够通过供气管路103从外界直接获得,不需要仅依赖于冷却管路104的液态冷媒冷却电机102后产生的气态冷媒,进而能够保证进入轴承101的气体,以保证轴承101供气的稳定性。
可选地,进液口110的数量可以为多个,多个进液口110包括第一进液口和第二进液口,第一进液口与供气管路103相连通,第二进液口与冷却管路104相连通。
本实施例中,冷却管路104和供气管路103相互独立,互不干涉,可以独立调节供气管路103的液态冷媒的压力以及冷却管路104的液态冷媒的流量。既能保证悬浮轴承101的所需的气态冷媒,也能充分冷却电机102,进而保证压缩机10的可靠运行。
可选地,进液口110的数量为一个时,冷却管路104和供气管路103均与该进液口110相连通,其中,液态冷媒流入进液口110后,一部分液态冷媒进入冷却管路104用于冷却电机102,另一部分液态冷媒进入供气管路103,并在供气管路103内由液态变为气态以悬浮轴承101。
采用本实施例的压缩机10,液态冷媒经进液口110后,一部分液态冷媒进入冷却管路104用于冷却电机102,以保证压缩机10的电机102的正常工作。另一部分液态冷媒进入供气管路103并在供气管路103由液态变为气态,以悬浮轴承101。本公开实施例的压缩机10,利用一个进液口110进液可以同时满足悬浮轴承101和冷却压缩机10,便于外界取液管路30的连接,便于压缩机10的安装。
可选地,压缩机10还包括节流装置105,节流装置105设于供气管路103,用于将供气管路103的液态冷媒变为气态冷媒。
本公开实施例中,供气管路103内的液态冷媒经过节流装置105节流后变为气态冷媒,气态冷媒供给轴承101,以使轴承101悬浮。在供气管路103内设置节流装置105,可省去加热装置等,减少压缩机10的能耗。
可选地,节流装置105包括微型节流孔、毛细节流装置等。
节流装置105节流的原理为:液态冷媒将在节流装置105处形成局部收缩,从而使流速液态冷媒增加,静压力降低,于是在节流装置105前后产生了静压力差。进而使得液态冷媒逐渐降压变为气态冷媒,气态冷媒可以悬浮轴承101。
在实际应用中,由于压缩机10工作中,轴承101也会存在发热现象,供气管路103 的液态冷媒也可以直接流至轴承101处,液态冷媒能够与轴承101换热,换热后液态冷媒变为气态冷媒。这样设置,不仅能够为轴承101供气,还能够冷却轴承101,保证轴承101的正常运转,进而保证压缩机10的可靠运动。
在一些情况下,液态冷媒经过节流装置105后会变成气液混合的雾状冷媒,雾状冷媒不仅可以支撑悬浮轴承101,还可以冷却轴承101。
可选地,压缩机10还包括连通管路,连通管路连通冷却管路104与供气管路103,以使与电机102换热后的气态冷媒流至轴承101处,以悬浮轴承101。
冷却管路104内的液态冷媒在给电机102降温吸收电机102的热量后,气化为气态冷媒,冷却管路104内的压力增加。气态冷媒通过连通管路进入供气管路103,一方面可减少冷却管路104内的压力,使液态冷媒正常流通。另一方面通过连通管路向供气管路103补充气态冷媒,增加供气管路103内的气压,使轴承101悬浮,压缩机10正常工作。
采用该可选实施例,可更加合理的利用冷媒,提高气态冷媒的利用率,减少压缩机10的运行能耗,降低使用成本。
可选地,压缩机10还包括引射装置,引射装置设于供气管路103,连通管路通过引射装置与供气管路103连通。
连通管路通过引射装置与供气管路103连通,在引射装置内,连通管路130提供的气态冷媒引射供气管路103内的液态冷媒,使供气管路103内的液态冷媒变为高压的气液两相冷媒。高压的气液两相冷媒供给轴承101,使轴承101悬浮,压缩机10正常运行。
可选地,沿供气管路103内冷媒的流动方向,引射装置与节流装置105依次设置。
可选地,压缩机10还包括压力调节装置,压力调节装置设于供气管路103,用于调节供气管路的压力。
本公开实施例中,压力调节装置可以对供气管路103内的液态冷媒的压力进行调节,以保证流至节流装置105处的液态冷媒的压力满足需求,进而使经节流装置105节流的冷媒的压力满足轴承101悬浮的压力。
可选地,压力调节装置包括第一调节阀106,第一调节阀106设于供气管路103,第一调节阀106能够调节供气管路103的液态冷媒的流量以调节供气管路的压力。
本实施例中,供气管路103由压缩机10的壳体108限定,所以供气管路103的管路面积是固定的,第一调节阀106能够调节供气管路103的液态冷媒的流量,其中,液态冷媒的流量增加,流速也增加,液态冷媒的压力也增加。同理,液态冷媒的流量减少,流速也减小,液态冷媒的压力也减小。
可选地,如图6所示,压缩机10还包括第二调节阀107、第一检测装置和控制器; 第二调节阀107设于冷却管路104,用于调节冷却管路104的液态冷媒流量;第一检测装置设于供气管路103,以检测供气管路的压力。
可选地,在进液口110的数量为一个的情况下,控制器与第一调节阀106、第一调节阀106和第一检测装置均相连接,控制器能够接收供气管路的压力,并根据供气管路的压力调节第一调节阀106的开度和第二调节阀107的开度。
本实施例中,在经进液口110流入的液态冷媒的量不变的情况下,通过第一调节阀106和第二调节阀107调节供气管路103和冷却管路104的压力,进而能够调节流至轴承101的冷媒的压力,以保证流至轴承101的冷媒的压力能够悬浮轴承101。
第一检测装置为压力传感器。
结合图7所示,本公开实施例提供一种用于压缩机10的控制方法,包括:
S701、控制器获取供气管路的压力。
S702、控制器根据供气管路的压力调节第一调节阀106的开度和第二调节阀107的开度。
本实施例中,经进液口110流入的液态冷媒的量不变的情况下,通过第一调节阀106和第二调节阀107调节供气管路103和冷却管路104的压力,进而能够调节流至轴承101的冷媒的压力,以保证流至轴承101的冷媒的压力能够悬浮轴承101。
可选地,在供气管路的压力小于第一预设压力的情况下,控制器控制第二调节阀107减小开度,并控制第一调节阀106增大开度以增加供气管路的压力。
本实施例中,供气管路103小于第一预设压力的情况下,供气管路103内液态冷媒的压力较小,会导致流至轴承101的冷媒压力较小,不足以悬浮轴承101,所以控制第二调节阀107减小开度,减小冷却管路104的冷媒流量。同时控制第一调节阀106增大开度,增加供气管路103的流量,以增加供气管路103的冷媒的压力,以保证流至轴承101的冷媒的压力能够悬浮轴承101。
可选地,在供气管路的压力大于第二预设压力的情况下,控制器控制第二调节阀107增加开度,并控制第一调节阀106减小开度以降低供气管路的压力。
本实施例中,供气管路103大于第二预设压力的情况下,供气管路103内液态冷媒的压力较大,会导致流至轴承101的冷媒压力较高,对轴承101造成损坏。所以控制第二调节阀107增加开度,增加冷却管路104的冷媒流量。同时控制第一调节阀106减小开度,减小供气管路103的流量,以减小供气管路103的冷媒的压力,以保证流至轴承101的冷媒的压力不仅能够悬浮轴承101,还不会损坏轴承101。
可选地,第一调节阀106为电磁阀或压力调节阀等,第二调节阀107为电磁阀等。
可选地,在供气管路的压力大于或等于第一预设压力并小于或等于第二预设压力的情况下,控制器控制第一调节阀106保持开度以保持供气管路的压力;其中,第一预设压力小于第二预设压力。
本实施例中,在供气管路的压力大于或等于第一预设压力并小于或等于第二预设压力的情况下,供气管路103内的液态冷媒流至轴承101后的压力在轴承101所需的压力范围内,不仅能够悬浮轴承101,还不会损坏轴承101。控制器控制压力调节阀304保持开度,以保持供气管路103的冷媒压力。
可选地,第一预设压力可以为轴承101所需压力的最小临界值,第二预设压力为轴承101所需压力的最大临界值。轴承101所需的压力的最小极限值为第三预设压力,轴承101所需的压力的最大极限值为第四预设压力。其中,第三预设压力小于第一预设压力,第四预设压力大于第二预设压力。
本实施例中,考虑到供气管路103的液态冷媒调节压力后流至轴承101需要时间,特别是压缩机10启动阶段,轴承101处没有气态冷媒,为了避免轴承101处的气态冷媒压力不足,第三预设压力小于第一预设压力,以保证调节后的液态冷媒流至轴承101的过程中,轴承101不会损坏。同样的,为了避免轴承101处气态冷媒的压力过高,在供气管路的压力达到第二预设压力,控制器及时调小供气管路103的液态冷媒压力,避免轴承101处于所需压力的最大极限值,以对轴承101造成损坏。
结合图8所示,本公开实施例还提供另一种用于压缩机10的控制方法,包括:
S801、控制器获取供气管路的压力。
S802、控制器判断供气管路的压力是否大于或等于第一预设压力。
S803、在供气管路的压力小于第一预设压力的情况下,控制器控制第二调节阀107减小开度,并控制第一调节阀106增大开度以增加供气管路的压力。
S804、在供气管路的压力小于第大于或等于第一预设压力的情况下,控制器判断供气管路的压力是否小于或等于第二预设压力。
S805、在供气管路的压力大于第二预设压力的情况下,控制器控制第二调节阀107增加开度,并控制第一调节阀106减小开度以降低供气管路的压力。
S806、在供气管路的压力大于或等于第一预设压力并小于或等于第二预设压力的情况下,控制器控制第一调节阀106保持开度以保持供气管路的压力;其中,第一预设压力小于第二预设压力。
本实施例中,可以使供气管路103内的液态冷媒流至轴承101后的压力在轴承101所需的压力范围内,不仅能够悬浮轴承101,还不会损坏轴承101。
可选地,容纳腔1081包括电机腔1082,电机102位于电机腔1082内,压缩机10还包括第二检测装置1083,第二检测装置1083设于电机腔1082内,用于检测电机腔1082的温度;控制器与第二检测装置1083相连接,控制器能够接收电机腔1082的温度。
本实施例中,电机102位于电机腔1082内,电机102包括定子1021和转子1022,转子1022安装在定子1021内并能够相对于定子1021转动,在转子1022转动过程中,定子1021和转子1022均会发热,进而会导致电机腔1082的温度升高。第二检测装置1083通过检测电机腔1082的温度,控制器可以获得电机102的发热情况。
第二检测装置1083为温度传感器。
可选地,在供气管路的压力大于或等于第一预设压力并小于或等于第二预设压力的情况下,控制器根据电机腔1082的温度控制第二调节阀107的开度。
本实施例中,在保证供气管路103的液态冷媒的压力的情况下,第一调节阀106可以在供气管路的压力大于或等于第一预设压力并小于或等于第二预设压力的范围内调节第一供气管路1031的流量。在这种前提下,可以通过调节第二调节阀107的开度来调节冷却管路104的流量,进而调节流至电机102的液态冷媒的流量,以增加电机102的冷却效果。
可选地,第二调节阀107的开度与电机腔1082的温度成正比。
本实施例中,电机腔1082的温度越高,第二调节阀107的开度越大,冷却管路104的冷媒流量增加,冷却管路104能够释放较多的液态冷媒至电机102处,以增加电机102的冷却效果。电机腔1082的温度较低时,第二调节阀107的开度减小,冷却管路104的冷媒流量减小,进而减少流至电机102处的液态冷媒,放置流至电机102处的液态冷媒太多,汽化不充分,造成压缩机10内部积液,进而影响压缩机10的正常运行。
可选地,第二调节阀的107的开度的比例为X,电机腔1082的温度为T,关系为:X=k*T+a,其中,k>0,a≥0。其中,a可以为0,也可以大于0。
可选地,壳体108的内壁面设有螺旋槽,螺旋槽与电机102的定子1021的外周面形成螺旋冷却流道111,螺旋冷却流道111的入口端与冷却管路104的出口端相连通,其中,螺旋冷却流道111的出口端和轴承101的出口端均与容纳腔1081相连通。
本实施例中,螺旋冷却流道111增加了液态冷媒与电机102的定子1021的外周面的接触面积,进而能够提高液态冷媒对电机102的冷却效果。
可选地,壳体108还限定出回气管路109,壳体108设有排气口,回气管路109的入口端与容纳腔1081相连通,回气管路109的出口端与排气口相连通,以使冷却电机102后的气态冷媒和悬浮轴承101后的气态冷媒经过回气管路109和排气口排出至壳体108外 部。
本实施例中,回气管路109使得容纳腔1081内的气态冷媒能够流至壳体108外部,避免气态冷媒在容纳腔1081内聚集使得容纳腔1081内的压力增加,导致冷却管路104和供气管路103的液态冷媒无法顺利流动或者出现倒流的现象。
可选地,进液口110设于壳体108的底部,排气口设于壳体108的顶部。以便于气态冷媒的顺利排出,进而保证容纳腔1081内的压力稳定。
可选地,进液口110也可以设于壳体108的顶部,排气口设于壳体108的底壁。以使从进液口110流入的液态冷媒能够在重力作用下流动,减少驱动液态冷媒流动的能耗。
轴承101的数量为多个,多个轴承101包括第一轴承1011和第二轴承1012,第一轴承1011和第二轴承1012分别位于转子1022的两端,以支撑转子1022。
可选地,供气管路103的数量也为多个,供气管路103的数量与轴承101的数量相等并一一对应,以保证每个轴承101的供气。
可选地,进液口110与第一供气管路1031和第二供气管路1032均相连通,其中,第一调节阀106包括第一子调节阀1061和第二子调节阀1062,第一子调节阀1061设于第一供气管路1031,第二子调节阀1062设于第二供气管路1032。
节流装置105的数量与供气管路103的数量相同并一一对应,节流装置105包括第二节流装置1051和第三节流装置1052,第二节流装置1051位于第一供气管路1031内,第三节流装置1052位于第二供气管路1032内。
可选地,控制器分别获取进液口110与第一轴承1011和第二轴承1012的距离,根据进液口110与第一轴承1011和第二轴承1012的距离控制第一子调节阀1061和第二子调节阀1062的开度,以使悬浮第一轴承1011的冷媒压力与悬浮第二轴承1012的冷媒压力相同。
比如,进液口110与第一轴承1011的距离小于进液口110与第二轴承1012的距离,控制器可以控制第一子调节阀1061的开度大于第二子调节阀1062的开度,以使流入第一轴承1011的冷媒的压力与流入第二轴承1012的冷媒的压力相同,进而使转子1022两端平衡,保证转子1022的平稳运行。
可选地,压缩机10还包括第三检测装置,第三检测装置位于电机腔1082的底部,第三检测装置可以检测电机腔1082底部的液态冷媒的含量。控制器与第三检测装置相连接,控制器能够根据电机腔1082底部的液态冷媒的含量控制第二调节阀107开度。
本实施例中,电机腔1082内如果有液态冷媒存积,会影响电机102的正常工作,为了保证压缩机10正常运行,控制器可以根据电机腔1082底部的液态冷媒的含量控制第二 调节阀107开度,以避免液态冷媒在电机腔1082内存积。
具体的,电机腔1082底部的液态冷媒含量大于预设含量时,控制器控制第二调节阀107减小开度,以减少冷却管路104的冷媒流量,进而避免液态冷媒继续在电机腔1082内存积。
其中,预设含量为在电机腔1082内现有的温度下,能够自行蒸发的液态冷媒的含量。
可选地,电机腔1082底部的液态冷媒含量小于预设含量时,控制器可以根据电机腔1082的温度继续控制第二调节阀107的开度。
可选地,第三检测装置可以为液位传感器、水敏传感器或水浸传感器等。
压缩机10还包括叶片,叶片设于转子1022;其中,转子1022转动时,转子1022能够带动叶片转动,叶片进而带动电机腔1082的液态冷媒流动,以冷却电机102。
本实施例中,液态冷媒经进液口110进入电机腔1082后,与叶片接触。电机102工作时,转子1022转动,转子1022带动叶片转动。叶片与液态冷媒接触后,会带动液态冷媒流动,加快了液态冷媒的流动速度,进而加速了液态冷媒的蒸发冷却。通过叶片的带动,不仅降低了液态冷媒的温度,也增加了液态冷媒与电机102的接触面积,进而提高了液态冷媒对电机102的冷却效果,实现了压缩机10的全工况冷却。
可选地,壳体108和电机102共同限定出冷媒流道,冷媒流道的入口端与进液口110相连通,转子1022带动叶片转动时,叶片能够带动液态冷媒在冷媒流道内流动;其中,冷媒流道包括沿转子1022轴向延伸的第一冷媒流道和沿转子1022的径向延伸的第二冷媒流道。
转子1022不仅能带动液态冷媒加快流动速度,还能够带动液态冷媒在冷媒流道内流动。第一冷媒流道沿转子1022的轴向延伸,能够对定子1021进行充分的冷却,第二冷媒流道沿转子1022的径向延伸能够对转子1022进行充分的冷却。通过冷媒流道和叶片的设置,使得冷媒能够与转子1022和定子1021充分接触,以增加电机102的冷却效果。
可选地,定子绕组内设有沿转子1022轴向延伸的通道,第一冷媒流道包括通道,液态冷媒进入通道时能够对定子绕组进行冷却。
采用本实施例的用于压缩机的散热结构,第一冷媒流道包括穿过定子绕组的通道,叶片带动液态冷媒通过通道进入定子绕组内,能够与定子绕组的线圈直接接触,冷媒经过定子绕组的线圈能够蒸发带走线圈的热量,进而对定子绕组进行冷却。
可选地,第一冷媒流道还包括螺旋冷却流道111,以增加了冷媒的流通面积,进而增加了冷媒与定子1021和转子1022的接触面积,进一步增加了冷媒在电机腔1082对电机102的冷却效果。
可选地,如图13所示,叶片的数量为多个,多个叶片包括多个第一叶片801,多个第一叶片801沿转子1022的周向依次间隔设置于转子的第一端的外周面,第一叶片的第一端与转子1022的的第一端的外周面相连接,沿定子绕组1023到转子的第一端的方向,第一叶片的第一端朝向第一方向倾斜,第一方向为转子1022转动的方向;其中,转子1022转动时,第一叶片801能够驱动液态冷媒在第一液态冷媒流道内流动,以使液态冷媒从转子的第一端穿过第一冷媒流道后到达转子的第二端。
第一叶片801倾斜设置在转子的第一端的外周面,第一叶片801随转子1022转动时,能够带动液态冷媒沿第一冷媒流道流动。这样设置,不仅能增加液态冷媒的流动速度,还能够增加液态冷媒与定子1021的接触面积,以增加液态冷媒对电机102的冷却效果。
可选地,多个第一叶片801沿转子的第一端的外周面依次均匀间隔设置。
本实施例中,多个第一叶片801均匀设置,能够使第一冷媒流道内的液态冷媒均匀流动,以使液态冷媒能够均匀地对电机102进行散热。
可选地,如图14所示,多个叶片包括多个第二叶片802,多个第二叶片802沿转子1022的周向依次间隔设置于转子的第二端的外周面,且第二叶片802与转子1022的轴线平行设置;其中,转子1022转动时,第二叶片802能够驱动液态冷媒在第二冷媒流道内流动,第二叶片802能够驱动沿轴向流过来的液态冷媒转向进入沿径向延伸的第二冷媒流道内,以排出压缩机10。
第一叶片801驱动液态冷媒沿第一冷媒流道流至转子的第二端后,第二叶片802与转子1022的轴线平行设置,转子1022转动时,第二叶片802驱动液态冷媒转向从转子的第二端的一侧流向转子的第二端的另一侧,以使液态冷媒能够对转子的第二端、第二密封腔和第二轴承1012进行冷却。
可选地,多个第二叶片802沿转子的第二端的外周面依次均匀设置。
本实施例中,多个第二叶片802均匀设置,能够使第二冷媒流道804内的液态冷媒均匀流动,以使液态冷媒能够均匀地对电机102进行散热。
可选地,如图13所示,第二叶片802呈弧形,弧形的开口朝向第一方向,其中,第一方向为转子1022的转动方向。
本实施例中,第二叶片802呈弧形设置,增加了第二叶片802与液态冷媒的接触面积,以使第二叶片802随转子1022转动时,能够驱动更多的液态冷媒进行流动,进而增加第二冷媒流道内液态冷媒的流通量,提高第二冷媒流道对电机102的冷却效果。
本公开实施例还提供一种压缩机的供液系统,压缩机的供液系统包括上述实施例中任一项的压缩机10和主冷媒回路,主冷媒回路设有取液口,取液口与进液口110通过取液 管路30相连通。
本公开实施例的压缩机的供液系统,因包括上述实施例中任一项的压缩机10,因而具有上述实施例中任一项的压缩机10的全部有益效果,在此不再赘述。
可选地,取液口设于冷凝器20,冷凝器20内的液态冷媒能够通过取液口流入取液管路30后,经进液口110进入压缩机10内部,液态冷媒在压缩机10内部能够变为气态冷媒,以悬浮轴承101并冷却电机102。
采用本实施例的压缩机的供液系统,从冷凝器20直接取液态冷媒直接供入压缩机10内部,节省了在压缩机10外部供气的供气罐、加热装置等部件,节省了能耗,优化了系统。
可选地,经进液口110流入的液态冷媒为高压液态冷媒,且高压液态冷媒的压力能够满足轴承101悬浮所需的压力,以减少液态冷媒进入压缩机10内部的压力调整。
可选地,取液管路30包括第一取液管路301,第一取液管路301连通在进液口110和取液口之间,冷凝器20内的液态冷媒能够在冷凝器20和压缩机10的压力差的作用下,经过第一取液管路301自主流入压缩机10内。
采用本实施例的压缩机的供液系统,由于冷凝器20是主冷媒回路中液态冷媒压力最高位置,所以从冷凝器20直接取液态冷媒进入压缩机10内部,当冷凝器20内压力大于压缩机10内部压力时,液态冷媒可以在冷凝器20和压缩机10的压力差作用下由第一取液管路301内自主流入压缩机10内部。这样设置,节省了取液管路30驱动装置的设置,优化了系统,节省了能耗。
可选地,在冷凝器内液态冷媒的压力大于压缩机10的进液口110的压力的情况下,冷凝器20的液态冷媒可以通过取液口和第一取液管路301自主流入进液口110,进而进入压缩机10内部,无需驱动装置,节省了能耗。
由于进液口110和轴承101相连通,所述进液口110处的压力大于或等于轴承101处的压力,所以冷凝器内液态冷媒的压力大于压缩机10的进液口110的压力的情况下,冷凝器20液态冷媒的压力也大于或等于轴承101的压力。本实施例中,在冷凝器内液态冷媒的压力大于压缩机10的进液口110的压力的情况下,冷凝器20内的液态冷媒可以通过取液口和第一取液管路301自主流入进液口110,然后流至轴承101处。
可选地,取液管路30还包括第二取液管路302和加压装置3022,第二取液管路302与第一取液管路301并联设置;加压装置3022设于第二取液管路302,加压装置3022能够对经取液口流出的液态冷媒进行加压,并驱动加压后的液态冷媒经第二取液管路302流入进液口110后进入压缩机10内部。
采用本实施例的压缩机的供液系统,当冷凝器20内的压力较低,比如在压缩机10启动阶段或者冷却水温度较低时,冷凝器20内的压力较低,导致冷凝器20内的液态冷媒不能直接流入压缩机10内部或者冷凝器20的液态冷媒的压力不满足轴承101所需的压力。第二取液管路302的加压装置3022能够对冷凝器20流出的液态冷媒进行加压后再送入压缩机10内部,以保证液态冷媒的压力满足轴承101所需的压力,进而保证压缩机10的正常运行。
可选地,加压装置3022可以为冷媒泵、齿轮泵等装置,能够对液态冷媒加压并驱动液态冷媒在第一取液管路301流动。
可选地,压缩机的供液系统还包括第一电磁阀3011、第二电磁阀3021、第四检测装置和控制器。
第一电磁阀3011设于第一取液管路301,并能够控制第一取液管路301的通断。第二电磁阀3021设于第二取液管路302,并能够控制第二取液管路302的通断。第四检测装置设于冷凝器20,用于检测冷凝器内液态冷媒的压力;控制器与第一电磁阀3011、第二电磁阀3021和第四检测装置均相连接,控制器能够接收冷凝器20的压力,并能够根据冷凝器20的压力控制第一电磁阀3011和第二电磁阀3021的开闭,以控制第一取液管路301和第二取液管路302的通断。
采用本实施例的压缩机的供液系统,控制器可以根据冷凝器20内的液态冷媒的压力控制第一电磁阀3011和第二电磁阀3021开闭,进而控制第一取液管路301和第二取液管路302的通断。使用时可以根据需要调整第一电磁阀3011和第二电磁阀3021的开闭,保证进入压缩机10内部的液态冷媒的压力满足需求,增加了液态冷媒供应的灵活性,充分保证压缩机10能够正常运行。
第四检测装置为压力传感器,安装在冷凝器20内部。
如图9所示,本公开实施例提供一种用于压缩机的供液系统的控制方法,包括:
S901、控制器获取冷凝器内液态冷媒的压力。
S902、控制器根据冷凝器内液态冷媒的压力控制第一电磁阀3011和第二电磁阀3021的开闭。
本实施例中,控制器可以根据冷凝器20内的液态冷媒的压力控制第一电磁阀3011和第二电磁阀3021开闭,进而控制第一取液管路301和第二取液管路302的通断。使用时可以根据需要调整第一电磁阀3011和第二电磁阀3021的开闭,保证进入压缩机10内部的液态冷媒的压力满足需求,增加了液态冷媒供应的灵活性,充分保证压缩机10能够正常运行。
可选地,控制器被配置为:在冷凝器内液态冷媒的压力大于或等于第五预设压力的情况下,控制第一电磁阀3011开启且第二电磁阀3021关闭,以使第一取液管路301导通且第二取液管路302断开;其中,第五预设压力大于进液口110的压力,以使冷凝器20的液态冷媒能够在冷凝器20和压缩机10的压力差的作用下,经第一取液管路301流入压缩机10内。
采用本实施例的压缩机的供液系统,冷凝器内液态冷媒的压力大于或等于第五预设压力时,冷凝器20的液态冷媒能够在冷凝器20和压缩机10的压力差作用下自主流入压缩机10内部。控制器控制第一取液管路301连通第二取液管路302断开,无需加压装置3022工作,节省了压缩机的供液系统的能耗。
可选地,压缩机10正常工作时,轴承101所需的最小压力为第七预设压力,第五预设压力大于第七预设压力,以使液态冷媒进入压缩机10内部后能够保证轴承101的悬浮。
可选地,在实际应用中,液态冷媒从取液口流至轴承101的压力会有损耗,从取液口流至轴承101压力损耗值为第八预设压力。第五预设压力大于或等于第七预设压力和第八预设压力之和,避免液态冷媒在取液管路30损耗导致流入轴承101的压力小于第七预设压力,以保证从冷凝器20流入轴承101的液态冷媒的压力在轴承101所需的压力范围内。
因此,冷凝器内液态冷媒的压力大于或等于第五预设压力的情况下,不仅能是冷凝器20内的液态冷媒能够在压力差作用下自主流入压缩机10内部,还能够保证进入轴承101的冷媒的压力大于轴承101所需的最小压力第七预设压力。
可选地,加压装置3022与控制器相连接,控制器能够根据冷凝器20压力控制加压装置3022工作;在冷凝器内液态冷媒的压力小于第五预设压力的情况下,控制器控制第一电磁阀3011关闭且第二电磁阀3021开启,以使第一取液管路301断开且第二取液管路302导通,并控制加压装置3022工作,以对第二取液管路302内的液态冷媒加压。
采用本实施例的压缩机的供液系统,在冷凝器内液态冷媒的压力小于取液口的压力或者冷凝器20液态冷媒经第一取液管路301流入轴承101时的压力小于第七预设压力的情况下,控制器控制第二取液管路302导通并控制加压装置3022工作。这样设置,一方面,可以保证冷凝器20的液态冷媒能够流入压缩机10内部;另一方面,能够避免液态冷媒在取液管路30损耗导致流入轴承101的压力小于第七预设压力,以保证从冷凝器20流入轴承101的液态冷媒的压力在轴承101所需的压力范围内。
如图10所示,本公开实施例提供另一种用于压缩机的供液系统的控制方法,包括:
S1001、控制器获取冷凝器内液态冷媒的压力。
S1002、控制器判断冷凝器内液态冷媒的压力是否大于或等于第五预设压力;
S1003、在冷凝器内液态冷媒的压力大于或等于第五预设压力的情况下,控制器控制控制第一电磁阀3011开启且第二电磁阀3021关闭。
S1004、在冷凝器内液态冷媒的压力小于第五预设压力的情况下,控制器控制控制第一电磁阀3011关闭且第二电磁阀3021开启,并控制加压装置3022工作。
采用本实施例的用于压缩机的供液系统的控制方法,不仅可以保证冷凝器20的液态冷媒能够流入压缩机10内部;还能够避免液态冷媒在取液管路30损耗导致流入轴承101的压力小于第三预设压力,以保证从冷凝器20流入轴承101的液态冷媒的压力在轴承101所需的压力范围内。
可选地,压缩机的供液系统还包括压力调节阀304、第五检测装置306和控制器。
压力调节阀304设于取液管路30,用于调节取液管路30内液态冷媒的压力;第五检测装置306沿取液管路30内液态冷媒的流动方向,压力调节阀304与第五检测装置306依次设于取液管路30,第五检测装置306用于检测压力调节阀后取液管路的压力;控制器,与第五检测装置306、压力调节阀304均相连接,控制器能够接收压力调节阀304后的取液管路30的压力,并根据压力调节阀后取液管路的压力控制压力调节阀304工作。
采用本实施例的压缩机的供液系统,压力调节阀304可以对取液管路30的液态冷媒进行再次调节,避免进入压缩机10内部的液态冷媒的压力过高,以损坏轴承101和/或电机102。
第五检测装置306为压力传感器。
如图11所示,本公开实施例提供另一种用于压缩机的供液系统的控制方法,包括:
S1101、控制器获取压力调节阀后取液管路的压力。
S1102、控制器根据压力调节阀后取液管路的压力调节压力调节阀304工作。
压力调节阀304可以对取液管路30的液态冷媒进行再次调节,避免进入压缩机10内部的液态冷媒的压力过高,以损坏轴承101和/或电机102。
可选地,压力调节阀304后的取液管路30的压力大于第六预设压力的情况下,控制器控制压力调节阀304工作,以降低压力调节阀304后的取液管路30的压力;其中,第六预设压力大于第五预设压力。
采用本实施例的压缩机的供液系统,压力调节阀304后的取液管路30的压力大于第六预设压力时,取液管路30内液态冷媒的压力过高,容易损坏轴承101和/或电机102,控制器控制压力调节阀304工作,以降低取液管路30的压力,进而使进入压缩机10的液态冷媒的压力在需求的范围内。
如图12所示,本公开实施例提供另一种用于压缩机的供液系统的控制方法,包括:
S1201、控制器获取压力调节阀后的取液管路的压力。
S1202、在压力调节阀后的取液管路的压力大于第六预设压力的情况下,控制器控制压力调节阀304工作,以降低压力调节阀后的取液管路的压力;其中,第六预设压力大于第五预设压力。
压力调节阀304后的取液管路30的压力大于第六预设压力时,取液管路30内液态冷媒的压力过高,容易损坏轴承101和/或电机102,控制器控制压力调节阀304工作,以降低取液管路30的压力,进而使进入压缩机10的液态冷媒的压力在需求的范围内。
压缩机10正常工作时,轴承101所需的最大压力为第十预设压力。
可选地,在液态冷媒从压力调节阀304流至轴承101存在压力损耗的情况下,液态冷媒从压力调节阀304流至轴承101的压力损耗为第九预设压力,第六预设压力小于第十预设压力和第九预设压力之和,以保证流入轴承101的液态冷媒的压力在轴承101所需的压力范围内。
可选地,在液态冷媒从压力调节阀304流至轴承101不存在压力损耗或者压力损耗几乎可以不考虑时,第六预设压力也可以小于第十预设压力,能够充分保证流入轴承101的液态冷媒的压力不会超过第十预设压力。
可选地,压缩机的供液系统还包括过滤器303和止回阀305,过滤器303设于取液管路30,止回阀305设于取液管路30;其中,沿取液管路30内液态冷媒的流动方向,过滤器303、压力调节阀304和止回阀305依次设置。
采用本实施例的压缩机的供液系统,过滤器303可以过滤液态冷媒中的杂质,避免杂质进入压缩机10内部,损坏压缩机10。止回阀305可以避免液态冷媒回流,保证取液管路30内液态冷媒流动的单向性。沿取液管路30内液态冷媒的流动方向,过滤器303、压力调节阀304和止回阀305依次设置,过滤器303能够保护压力调节阀304,止回阀305靠近压缩机10能够有效避免液态冷媒回流,以保护压力调节阀304等装置。
可选地,第五检测装置306可以设于止回阀305上,以检测压力调节阀304后的取液管路30的压力。本实施例中,便于第五检测装置306的安装,同时增加了第五检测装置306对取液管路30的压力检测的准确性。
过滤器303可以为干燥过滤器。
可选地,冷凝器20包括液囊201,取液口设于液囊201。
本实施例中,冷凝器20是主冷媒回路中液态冷媒压力最高点,而液囊201是冷凝器20中液态冷媒压力最高点,因此液囊201是主冷媒回路中压力最高点。从液囊201中取液态冷媒,能够最大程度的保证液态冷媒的压力,一方面保证液态冷媒在第一取液管路301 的流动,另一方面,节省加压装置3022的能耗,进而减少整个压缩机的供液系统的能耗。
由于主冷媒回路正常运行时,液囊201处的液态冷媒的压力较高,大大减少了第二取液管路302的导通次数,也就减少了加压装置3022的开启次数和时间,大大优化了管路设计。
可选地,取液口也可以设于蒸发器40,从蒸发器40取液经取液管路30流入进液口110。由于蒸发器40液态冷媒压力较低,取液管路30设有加压件,以为取液管路30内的液态冷媒加压后再流入压缩机10内部。
可选地,压缩机的供液系统还包括排气管路701、排气管路701连通压缩机10的排气口和蒸发器40之间,以将压缩机10内的工作后气态冷媒排出,形成压力差,以保证液态冷媒能够顺利进入压缩机10内部。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种压缩机,其特征在于,包括:
    壳体(108),限定出容纳腔(1081)、并联设置的冷却管路(104)和供气管路(103),所述壳体(108)设有进液口(110);
    电机(102),位于所述容纳腔(1081)内,并与所述进液口(110)通过所述冷却管路(104)相连通,液态冷媒通过所述进液口(110)进入所述冷却管路(104)后以冷却所述电机(102);
    轴承(101),位于所述容纳腔(1081)内,并与所述进液口(110)通过所述供气管路(103)相连通,液态冷媒通过所述进液口(110)进入所述供气管路(103),并在所述供气管路(103)内由液态变为气态以悬浮所述轴承(101)。
  2. 根据权利要求1所述的压缩机,其特征在于,还包括:
    节流装置(105),设于所述供气管路(103),用于将所述供气管路(103)的液态冷媒变为气态冷媒。
  3. 根据权利要求1所述的压缩机,其特征在于,
    所述进液口(110)的数量为一个或多个,所述进液口(110)的数量为一个时,所述冷却管路(104)和所述供气管路(103)均与所述进液口(110)相连通,以使液态冷媒流入所述进液口(110)后,一部分液态冷媒流入所述冷却管路(104),另一部分液态冷媒流入所述供气管路(103)。
  4. 根据权利要求3所述的压缩机,其特征在于,还包括:
    压力调节装置,设于所述供气管路(103),用于调节所述供气管路(103)的压力。
  5. 根据权利要求4所述的压缩机,其特征在于,所述压力调节装置包括:
    第一调节阀(106),设于所述供气管路(103),所述第一调节阀(106)能够调节所述供气管路(103)的液态冷媒的流量以调节所述供气管路(103)的压力;
    所述压缩机(10)还包括:
    第二调节阀(107),设于所述冷却管路(104),用于调节所述冷却管路(104)的液态冷媒流量;
    第一检测装置,设于所述供气管路(103),以检测供气管路的压力;
    控制器,与所述第一调节阀(106)、所述第二调节阀(107)和所述第一检测装置均相连接,所述控制器能够接收所述供气管路的压力,并根据所述供气管路的压力调节所述第一调节阀(106)的开度和所述第二调节阀(107)的开度。
  6. 根据权利要求5所述的压缩机,其特征在于,
    所述控制器被配置为:
    在所述供气管路的压力小于第一预设压力的情况下,所述控制器控制所述第二调节阀(107)减小开度,并控制所述第一调节阀(106)增大开度以增加所述供气管路的压力;
    在所述供气管路的压力大于第二预设压力的情况下,所述控制器控制所述第二调节阀(107)增加开度,并控制所述第一调节阀(106)减小开度以降低所述供气管路的压力;
    在所述供气管路的压力大于或等于所述第一预设压力并小于或等于所述第二预设压力的情况下,所述控制器控制所述第一调节阀(106)保持开度以保持所述供气管路的压力;
    其中,所述第一预设压力小于所述第二预设压力。
  7. 根据权利要求6所述的压缩机,其特征在于,所述容纳腔(1081)包括电机腔(1082),所述电机(102)位于所述电机腔(1082)内,所述压缩机还包括:
    第二检测装置(1083),设于所述电机腔(1082)内,用于检测所述电机腔(1082)的温度;
    所述控制器与所述第二检测装置(1083)相连接,所述控制器能够接收所述电机腔(1082)的温度;
    所述控制器被配置为:
    在所述供气管路(103)的压力大于或等于所述第一预设压力并小于或等于所述第二预设压力的情况下,所述控制器根据所述电机腔(1082)的温度控制所述第二调节阀(107)的开度。
  8. 根据权利要求7所述的压缩机,其特征在于,
    所述控制器被配置为:
    所述第二调节阀(107)的开度与所述电机腔(1082)的温度成正比。
  9. 根据权利要求1至8中任一项所述的压缩机,其特征在于,
    所述壳体(108)的内壁面设有螺旋槽,所述螺旋槽与所述电机(102)的定子(1021)的外周面形成螺旋冷却流道(111),所述螺旋冷却流道(111)的入口端与所述冷却管路(104)的出口端相连通,其中,所述螺旋冷却流道(111)的出口端和所述轴承(101)的出口端均与所述容纳腔(1081)相连通;
    所述壳体(108)还限定出回气管路(109),所述壳体(108)设有排气口,所述 回气管路(109)的入口端与所述容纳腔(1081)相连通,所述回气管路(109)的出口端与所述排气口相连通,以使冷却所述电机(102)后的气态冷媒和悬浮所述轴承(101)后的气态冷媒经过所述回气管路(109)和所述排气口排出至所述壳体(108)外部。
  10. 一种压缩机的供液系统,包括:
    如权利要求1至9中任一项所述的压缩机;
    主冷媒回路,设有取液口,所述取液口与进液口(110)通过取液管路(30)相连通。
PCT/CN2022/101033 2021-11-22 2022-06-24 压缩机及压缩机的供液系统 WO2023087710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385094.5 2021-11-22
CN202111385094.5A CN114198944B (zh) 2021-11-22 2021-11-22 压缩机及压缩机的供液系统

Publications (1)

Publication Number Publication Date
WO2023087710A1 true WO2023087710A1 (zh) 2023-05-25

Family

ID=80648321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101033 WO2023087710A1 (zh) 2021-11-22 2022-06-24 压缩机及压缩机的供液系统

Country Status (2)

Country Link
CN (1) CN114198944B (zh)
WO (1) WO2023087710A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198944B (zh) * 2021-11-22 2023-03-28 青岛海尔空调电子有限公司 压缩机及压缩机的供液系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050248221A1 (en) * 2004-05-07 2005-11-10 Werner Bosen Turbomachine for low-temperature applications
CN209340163U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 用于优化内部空间的压缩机
CN111780443A (zh) * 2020-07-06 2020-10-16 珠海格力电器股份有限公司 气悬浮轴承供气系统、供气方法及离心式冷水机组
CN212431402U (zh) * 2020-05-29 2021-01-29 青岛海尔智能技术研发有限公司 气悬浮压缩机的电机冷却系统和制冷系统
US20210095682A1 (en) * 2019-09-30 2021-04-01 Trane International Inc. Cooling of a compressor shaft gas bearing
CN113090554A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机和冷媒循环系统
CN113090588A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机、制冷系统和压缩机的轴承腔液位调节方法
CN114198944A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机及压缩机的供液系统
CN114198950A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机的供液系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050248221A1 (en) * 2004-05-07 2005-11-10 Werner Bosen Turbomachine for low-temperature applications
CN209340163U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 用于优化内部空间的压缩机
US20210095682A1 (en) * 2019-09-30 2021-04-01 Trane International Inc. Cooling of a compressor shaft gas bearing
CN113090554A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机和冷媒循环系统
CN113090588A (zh) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 压缩机、制冷系统和压缩机的轴承腔液位调节方法
CN212431402U (zh) * 2020-05-29 2021-01-29 青岛海尔智能技术研发有限公司 气悬浮压缩机的电机冷却系统和制冷系统
CN111780443A (zh) * 2020-07-06 2020-10-16 珠海格力电器股份有限公司 气悬浮轴承供气系统、供气方法及离心式冷水机组
CN114198944A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机及压缩机的供液系统
CN114198950A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 压缩机的供液系统

Also Published As

Publication number Publication date
CN114198944B (zh) 2023-03-28
CN114198944A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
EP3469215B1 (en) Centrifugal compressor assembly and method of operation with an air conditioner
KR100321094B1 (ko) 컴프레서
CN111780443B (zh) 气悬浮轴承供气系统、供气方法及离心式冷水机组
CN111928504B (zh) 冷媒循环系统及控制方法
WO2022048175A1 (zh) 压缩机用气体轴承的供气系统、操作方法及制冷系统
ES2646516T3 (es) Compresores centrífugos de vapor de refrigerante
JP5749316B2 (ja) ロータの冷却方法及びシステム
US10480831B2 (en) Compressor bearing cooling
WO2023087710A1 (zh) 压缩机及压缩机的供液系统
JP2001050598A (ja) 自立調整弁及びこれを有する圧縮式冷凍機
CN212299520U (zh) 气悬浮轴承供气系统及离心式冷水机组
WO2023087786A1 (zh) 用于压缩机的散热结构及压缩机
CN114198828B (zh) 气悬浮机组系统和控制方法
WO2023087731A1 (zh) 压缩机及制冷系统
CN114198950B (zh) 压缩机的供液系统
JP2011196223A (ja) シングルスクリュー圧縮機
CN111365874A (zh) 冷媒循环系统
CN212318358U (zh) 压缩机用气体轴承的供气系统及制冷系统
JP2010060202A (ja) 冷凍機用電動機における冷却構造
CN212431383U (zh) 冷水机组
CN216814660U (zh) 用于气悬浮压缩机的供气系统和冷媒循环系统
CN114198925B (zh) 压缩机的气液供给系统
CN114198922B (zh) 压缩机的供液系统
JP2009186031A (ja) ターボ冷凍機
CN114198919B (zh) 气悬浮机组系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894253

Country of ref document: EP

Kind code of ref document: A1