WO2023087729A1 - 一种核磁共振线圈结构及具有其的核磁共振装置 - Google Patents

一种核磁共振线圈结构及具有其的核磁共振装置 Download PDF

Info

Publication number
WO2023087729A1
WO2023087729A1 PCT/CN2022/102756 CN2022102756W WO2023087729A1 WO 2023087729 A1 WO2023087729 A1 WO 2023087729A1 CN 2022102756 W CN2022102756 W CN 2022102756W WO 2023087729 A1 WO2023087729 A1 WO 2023087729A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sample
magnetic resonance
nuclear magnetic
channel
Prior art date
Application number
PCT/CN2022/102756
Other languages
English (en)
French (fr)
Inventor
杨培强
韩芊
Original Assignee
苏州纽迈分析仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州纽迈分析仪器股份有限公司 filed Critical 苏州纽迈分析仪器股份有限公司
Publication of WO2023087729A1 publication Critical patent/WO2023087729A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present application relates to the technical field of magnetic resonance imaging, in particular to a nuclear magnetic resonance coil structure and a nuclear magnetic resonance device having the same.
  • variable temperature NMR technology has become an important analysis and testing method in the field of materials because it can provide more abundant information on the physical properties of samples.
  • the crosslink density test of rubber materials in high temperature environment the glass transition temperature test of polymer materials in low temperature environment, and the pore structure test of porous materials in low temperature environment, etc.
  • the temperature-variable nuclear magnetic resonance technology using gas as the heat transfer medium can achieve sample temperature control tests at -150°C to 300°C, and the temperature control accuracy can reach ⁇ 0.1°C.
  • the nuclear magnetic resonance coil is the core component for exciting the sample and detecting the signal; for the variable temperature nuclear magnetic resonance equipment, the nuclear magnetic resonance coil is used as a special constant temperature chamber to provide the temperature environment for the sample. Therefore, the design of the variable temperature NMR coil is very important to improve the comprehensive application level of the variable temperature NMR system.
  • the prior art discloses a nuclear magnetic resonance coil that uses gas to control the temperature of the sample.
  • the coil wire is wound on a matching cylindrical coil bobbin 8 , and the tuning matching circuit 9 of the radio frequency coil is placed on the coil bobbin 8 Next to it, it is installed in a rectangular metal shielding case together with the coil frame, the coil is electrically connected with the tuning matching circuit, the NMR test sample is placed in the coil frame 8, and then the gas with temperature is passed into the coil frame 8 to Realize the variable temperature of the sample, but when the nuclear magnetic resonance coil is used in practice, when the gas is passed into the sample cavity of the coil frame, the temperature of the gas will increase due to the poor heat preservation effect of the coil device and the relatively small heat capacity of the gas.
  • the external heat dissipation is relatively obvious, and the gas will form a temperature gradient in the gas flow direction in the sample chamber, which will make the sample heated unevenly and affect the external magnet. If the air channel diameter of the sample chamber is increased, the sample can be heated evenly, but in this way The distance between the coil and the sample is increased, which reduces the NMR sampling performance of the coil.
  • the technical problem to be solved in this application is to overcome the nuclear magnetic resonance coil in the prior art. It is relatively small, and the heat dissipation of the gas temperature is more obvious, and the gas will form a temperature gradient in the gas flow direction in the sample chamber, which will make the sample heated unevenly and affect the external magnet. If the air channel diameter of the sample chamber is increased, it can be The sample is heated evenly, but the distance between the coil and the sample is increased, and the defect of the NMR sampling performance of the coil is reduced, so as to provide an NMR coil that the sample can be heated evenly without affecting the NMR sampling function of the coil Structure and NMR apparatus with it.
  • a nuclear magnetic resonance coil structure comprising: a shell, which is a hollow tubular structure, and the hollow part is set as an accommodating cavity; a coil bobbin, which is detachably installed in the accommodating cavity, and the coil bobbin has a sample with openings at both ends a cavity for placing samples, and the bottom of the coil bobbin is suitable for passing a temperature-controlling gas into the sample cavity of the coil bobbin to control the temperature of the sample;
  • the gas passing channel is adapted to pass heat insulating gas into the gas passing channel from one side of the housing, so as to insulate the samples in the sample cavity, and the sample cavity is isolated from the gas passing channel ;
  • the inductance wire is wound on the outer peripheral surface of the coil frame.
  • a gas delivery part is also included, and the gas delivery part has a gas delivery channel;
  • the bottom end of the housing has a pipe passage, one end of the gas delivery member extends into the sample chamber along the pipe passage, and the other end is located outside the housing, and the temperature-controlling gas passes along the passage.
  • the gas delivery channel enters into the sample chamber and is transported from the sample chamber to the outside of the sample chamber.
  • the above-mentioned nuclear magnetic resonance coil structure further includes a fixing assembly, which includes a base, the base is arranged on the housing near one end of the gas transport member, and is sealed with the housing, along the The axial direction of the base is provided with the tube passing channel, and one end opening of the coil bobbin communicates with the tube passing channel.
  • a fixing assembly which includes a base, the base is arranged on the housing near one end of the gas transport member, and is sealed with the housing, along the The axial direction of the base is provided with the tube passing channel, and one end opening of the coil bobbin communicates with the tube passing channel.
  • one end of the coil bobbin is provided with a wire channel around its peripheral surface, and a ground channel is opened on the body of the gas transport member, and one end of the inductance wire passes through the channel.
  • the wire channel is fixed on the grounding channel so as to be fixed on the tube body of the gas transmission device, and the other end of the inductance wire passes through the outside of the casing to connect to the power supply.
  • the fixing assembly further includes a fixing piece, which is arranged on the housing at the other end away from the gas conveying piece, and the edge of the fixing piece is connected to the housing There is a detachable connection between them, and the end of the coil bobbin away from the gas delivery part abuts against the inner wall of the fixing part, so that the gas passage is isolated from the sample chamber.
  • At least one temperature-controlled gas outlet channel and at least one heat preservation gas outlet channel respectively communicated with the sample chamber and the gas passage are provided along the axial direction of the fixing member for The temperature-controlling gas and the heat-preserving gas are respectively output from the sample chamber and the gas-passing channel along all the temperature-controlling gas outlet channels and all the heat-preserving gas outlet channels.
  • the fixing assembly further includes a sealing member connected to the fixing member, a groove is provided on the side of the sealing member close to the sample chamber, and a At least one vent hole is opened on the body of the part, and the gas outlets of all the temperature-controlling gas outlet channels and all the heat-preserving gas outlet channels communicate with the groove, and the temperature-controlling gas and the heat-preserving gas come from the control
  • the warm air outlet channel and all the heat-preserving air outlet channels enter the groove after being output, and output to the outside of the housing through all the vent holes.
  • a fixed channel is also provided on the fixed member, and all the temperature-controlled air outlet channels are opened on the fixed member along the peripheral surface of the fixed channel;
  • It also includes a sample holder for placing samples, the diameter of the sample holder is adapted to the diameter of the fixed channel, and one end of the sample holder is suitable for extending from the fixed channel into the sample cavity The other end is adapted to extend into the groove.
  • a seal groove for insertion of the sample holder is opened on the inner wall of the sealing member, and the sample holder extends into the groove and is inserted into the seal.
  • the tank there is a sealed connection between the sample holder and the sealed tank.
  • a vacuum layer is provided on the outer peripheral surface of the housing along its axial direction.
  • a nuclear magnetic resonance imaging device comprising:
  • the nuclear magnetic resonance coil structure the above-mentioned nuclear magnetic resonance coil structure; the temperature control gas source and the heat preservation gas source are respectively connected to the gas transmission part and the gas passing channel, and the two gas sources are connected to an air pump correspondingly, so that the temperature control gas The flow rate is greater than the flow rate of the insulating gas.
  • a nuclear magnetic resonance coil structure comprising: a housing, which is a hollow tubular structure, and the hollow part is set as an accommodation chamber; a coil bobbin is detachably installed in the accommodation chamber, and the coil bobbin has A sample chamber with openings at both ends is used to place samples, and the bottom of the coil bobbin is suitable for passing a temperature-controlling gas into the sample chamber of the coil bobbin to control the temperature of the sample; the housing and the An air passage is formed between the coil skeletons, and heat preservation gas is suitable for passing into the air passage from one side of the housing to insulate the samples in the sample cavity; the inductance wire is wound around the on the outer peripheral surface of the coil bobbin.
  • the sample to be tested is placed in the sample cavity of the coil frame, the inductor wire is wound on the coil frame, and then the coil frame wrapped with the inductor wire is detachably installed in the containing cavity, and then respectively
  • the temperature control gas and heat preservation gas are fed into the sample chamber and the gas passage, and the double gas channel structure is adopted.
  • the gas direction of the temperature control gas and the heat preservation gas is transported in the sample chamber and the gas passage from bottom to top.
  • the temperature of the sample can be controlled, and the coil skeleton can be kept warm by using the heat-insulating gas to pass through the gas passage, which increases the overall airway diameter of the gas constant temperature chamber, and then achieves the effect of uniform temperature at the center, so that the sample is in the air.
  • the sample cavity is evenly heated, which overcomes the defect of temperature gradient, and at the same time does not increase the distance between the inductor wire wound on the coil frame and the sample, and thus does not affect or reduce the NMR sampling performance of the sample, and overcomes the existing technology.
  • the heat dissipation of the gas temperature is relatively obvious, and the gas will form a temperature gradient in the direction of the gas flow in the sample chamber, making the sample heated unevenly and affecting the external magnet. If the airway diameter of the sample cavity is increased, the sample can be heated evenly, but this increases the distance between the coil and the sample, which reduces the defect of the NMR sampling performance of the coil.
  • the fixing assembly further includes a fixing member, which is arranged on the housing at the other end away from the gas conveying member, and the edge of the fixing member is in contact with the housing There is a detachable connection between them, and the end of the coil bobbin away from the gas delivery part abuts against the inner wall of the fixing part, so that the gas passage is isolated from the sample chamber.
  • a fixing piece is provided on the housing at the other end far away from the gas delivery part, and the fixing piece is used to fix the coil skeleton in the accommodation cavity.
  • the gas passing channel is isolated from the sample chamber, and the effect of a layer of air flow passing through the inside and outside of the coil skeleton is realized.
  • Fig. 1 is a schematic diagram of the overall structure of the coil structure provided in the first implementation of an embodiment of the present application;
  • Fig. 2 is a schematic diagram of the shell structure
  • FIG. 3 is a schematic diagram of a coil skeleton structure
  • Fig. 4 is a top view of the coil bobbin structure in Fig. 3;
  • Fig. 5 is the structural schematic diagram of fixing member
  • Fig. 7 is a schematic structural view of the sealing member
  • Fig. 8 is a top view structural schematic diagram of the sealing member
  • FIG. 10 is a schematic diagram of a coil structure in the prior art
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • This embodiment describes a nuclear magnetic resonance coil structure, referring to Fig. 1-Fig.
  • the tubular structure the hollow part is set as the accommodation chamber 11, the coil bobbin 2 wound with the inductor wire 4 is placed in the accommodation chamber 11, wherein the coil bobbin 2 is detachably installed in the accommodation chamber 11, its There is a sample cavity 21 with openings at both ends, and the sample cavity 21 is used to place a sample.
  • the sample is located in the area where the inductance wire 4 is wound, and an air passage 3 is formed between the housing 1 and the coil frame 2.
  • the sample can be heated evenly, and the temperature-controlled gas can be passed into the sample cavity 21 of the coil frame 2 from the bottom of the coil frame 2, and the temperature of the sample can be controlled, and the gas can be passed from the bottom of the housing 1 to the gas passage 3. Insulation gas can be used to insulate the sample after temperature change in the sample chamber 21.
  • the temperature control gas and heat preservation gas can be low-temperature or high-temperature gas, and ceramic materials are used as the skeleton material, which has a low coefficient of thermal expansion, small deformation due to temperature changes, and reduces the influence of temperature changes on the properties of the coil.
  • the material can be alumina or zirconia.
  • the chamber 21 and the gas passage 3 are fed with temperature control gas and heat preservation gas.
  • the gas directions of the temperature control gas and heat preservation gas are all from the bottom.
  • the upper one is transported in the sample chamber 21 and the gas passage 3, and then the temperature of the sample can be controlled, and the coil skeleton 2 can be kept warm by using the insulating gas to pass through the gas passage 3, which increases the overall temperature of the gas constant temperature chamber.
  • the diameter of the airway and then achieve the effect of uniform temperature at the center, so that the sample is heated evenly in the sample cavity 21, which overcomes the defect of temperature gradient, and at the same time does not increase the distance between the inductor wire 4 wound on the coil frame 2 and the sample. It will not affect or reduce the NMR sampling performance of the sample, and it overcomes the problem in the prior art that due to the poor insulation effect of the coil device and the relatively small heat capacity of the gas, the temperature of the gas will dissipate heat outward, and the gas will be in the sample. A temperature gradient is formed in the gas flow direction in the chamber 21, so that the sample is heated unevenly, which affects the external magnet. If the air channel diameter of the sample chamber 21 is increased, the sample can be heated evenly, but this increases the distance between the coil and the sample. Defects that reduce the sampling performance of the coil for NMR.
  • the coil structure in order to more stably deliver the temperature-controlled gas to the sample chamber 21, the coil structure also includes a gas delivery part 5, which has a gas delivery channel 51, which is provided at the bottom of the housing 1.
  • a tube channel 12 one end of the gas delivery part 5 extends into the sample chamber 21 of the coil frame 2 along the tube channel 12, and the other end is located outside the housing 1, so that the control gas can enter along the gas delivery channel 51
  • the temperature control operation is performed on the sample, such as heating the sample or cooling the sample, and after the temperature control gas enters the sample chamber 21 along the gas delivery channel 51, it is transported from the sample chamber 21 to the sample chamber 21
  • the coil bobbin 2 is not only the air duct but also the skeleton for winding the inductor wire 4 turns, so that the overall structure is relatively compact, which is conducive to reducing the size and improving adaptability.
  • the coil structure in this embodiment also includes a fixing assembly, the fixing assembly includes a base 61, the base 61 is arranged on the end of the above-mentioned casing 1 close to the above-mentioned gas transmission part 5, and is sealed and connected with the casing 1.
  • the above-mentioned pipe passage 12 is opened, wherein, the bobbin 2 and the base 61 are abuttingly connected, so that one end opening of the coil bobbin 2 communicates with the pipe passage 12, so that the output The air part 5 protrudes into the coil frame 2 along the tube passage 12 .
  • the shell 1 can be made of a stainless steel vacuum tube, which releases low heat and can play the role of heat preservation and shielding. At the same time, it has less impact on the external low-field permanent magnet, and reduces the impact on the tuning and matching circuit outside the shell 1.
  • the above-mentioned gas transmission part 5 can be set as a gas transmission pipe made of copper material. The body 1 is fixed and sealed, and at the same time, the airtightness and conductive connectivity between the gas delivery pipe and the housing 1 can be ensured.
  • one end of the above-mentioned coil bobbin 2 is provided with a wire passage 22 around its peripheral surface, and a ground passage 52 is provided on the body of the above-mentioned gas transmission part 5, and one end of the inductance wire 4 passes through the wire passage 22 and is fixed on the ground passage. 52, to be fixed on the tube body of the gas delivery part 5, and the gas delivery part 5 is used as the grounding end of the inductance wire 4, and the other end of the inductance wire 4 passes outside the housing 1 to connect to the power supply.
  • a fastener such as a bolt
  • one end of the inductance wire 4 is fixed to the bolt, so that the inductance wire 4 is connected to the housing 1, and the connection of the inductance wire 4 is realized.
  • the above-mentioned fixing assembly further includes a fixing piece 62, which is arranged on the other end of the casing 1 away from the above-mentioned air delivery piece 5, and detachably connects the edge of the fixing piece 62 to the casing 1
  • the fixing part 62 can be connected with the housing 1 by means of a buckle connection, and the end of the coil bobbin 2 away from the gas delivery part 5 is abutted against the inner wall of the fixing part 62, so that the gas passage 3 and the sample chamber 21 isolation settings to achieve the effect of further improving the temperature uniformity of the sample area.
  • the two layers of air channels inside and outside the coil frame 2 are designed to be transported independently, and the temperature control gas in the inner layer is set to high flow rate and high pressure for temperature control of the sample.
  • the insulating gas in the outer layer is set at low pressure and low flow rate to keep the sample warm.
  • all the temperature control outlet channels 621 and all the heat preservation gas outlet channels 622 respectively supply the temperature control gas and the heat preservation gas along all the temperature control outlet channels 621 and all the heat preservation gas outlets respectively
  • the channel 622 corresponds to the output sample chamber 21 and the gas passage 3 .
  • the temperature control gas and the thermal insulation gas can output the sample chamber 21 and the gas passing channel 3 stably along the corresponding channels.
  • the central axis of the circle formed by the centers of all the thermal insulation air outlet passages 622 is coaxially arranged with the central axis of the fixing member 62 .
  • the fixing assembly also includes a sealing member 63, which is connected to the fixing member 62, a groove 631 is provided on the side of the sealing member 63 close to the sample chamber 21, and at least one vent hole 632 is opened on the body of the sealing member 63,
  • the gas outlets of all the temperature-controlled air outlet channels 621 and all the heat-preserving air outlet channels 622 communicate with the groove 631 of the sealing member 63, so that the temperature-controlled gas and the heat-insulating gas can flow from all the temperature-controlled air outlet channels 621 and all the heat-preserving air outlet channels 622 After the output, it enters the groove 631 and is output from all the vent holes 632 to the outside of the housing 1.
  • the central axis of the circular surface formed by the central axis of the air hole 632 is arranged coaxially with the central axis of the sealing member 63 .
  • the sample can be placed in the sample holder 7, and the sample can be placed in the sample cavity 21 by using the sample holder 7 as a carrier, which is convenient for taking out and putting in the sample.
  • the coil bobbin 2 is installed into the casing 1, and then install the fixing piece 62 on the casing 1, and use the fixing piece 62 to stably install the bobbin 2 in the housing cavity 11 of the casing 1, in order not to remove the fixing piece 62 from the casing 1
  • the sample holder 7 is placed in the coil frame 2, and a fixing channel 64 can be arranged along the axial direction of the fixing member 62, and the diameter of the sample holder 7 is adapted to the diameter of the fixing channel 64.
  • One end of the sample holder 7 is adapted to extend into the sample chamber 21 from the fixed channel 64 , and the other end is adapted to extend into the groove 631 .
  • the above-mentioned sample container 7 is a sample tube
  • the outer diameter of the sample tube is set to 10 mm
  • the inner diameter of the coil bobbin 2 is 13.5 mm
  • the outer diameter of the sample tube is slightly smaller than the inner diameter of the coil bobbin 2
  • the temperature control gas can be passed along the
  • the gap between the sample tube and the coil bobbin 2 is output to the groove 631 from the above-mentioned thermal insulation outlet channel 622, and output to the outside of the housing 1 from the vent hole 632 on the upper wall of the groove 631.
  • the sample tube is made of glass, and the control When the temperature is high, the bottom of the sample tube is the temperature control gas, and the top is the sample.
  • the thickness of the bottom of the sample tube is set to be greater than 20mm, which is used to improve the temperature uniformity of the sample and avoid the problem caused by the thin bottom of the sample tube This leads to the difference in thermal properties between the inner and outer sides of the bottom of the sample tube, which in turn leads to a larger temperature gradient near the bottom of the sample tube.
  • a positioning step can be set on the coil bobbin 2, and the sample tube can be directly put into the inside of the coil bobbin 2 and fall on the positioning step, which is located at the position of the inductor wire.
  • a sealing groove 633 for the insertion of the above-mentioned sample holder 7 can also be opened on the inner wall of the above-mentioned fixing member 62, and the above-mentioned sample holder 7 extends to the above-mentioned groove 631 After being inserted into the sealing groove 633, the sample holder 7 and the sealing groove 633 are sealed and connected, and a sealing gasket is arranged in the sealing groove 633.
  • the sealing member 63 is made of PEEK material, and the sealing member 63 After being installed on the fixing member 62, the sample holder 7 is in contact with the gasket to prevent the temperature control gas from entering the sample holder 7, and the temperature control gas and heat preservation gas are discharged from the air outlet.
  • a vacuum layer 13 can also be arranged on the outer peripheral surface of the casing 1 along its axial direction, and a cavity is formed between the casing and the casing 1 by arranging an outer casing on the outer peripheral surface of the casing 1.
  • a vacuum tube body is set on the shell, one end of the tube body extends into the cavity, and the other end is connected to a vacuum pump, and the cavity is evacuated by the vacuum pump, and vacuum insulation is used, and the insulation effect is far superior to conventional insulation Cotton reduces heat loss and improves temperature uniformity in the sample area.
  • the assembly process of the coil structure is as follows:
  • This embodiment describes a nuclear magnetic resonance imaging device, including a nuclear magnetic resonance coil structure.
  • the temperature control gas source and the heat preservation gas source, the two gas sources are respectively connected to the air pump, and the flow rate of the temperature control gas is greater than the flow rate of the heat preservation gas through the air pump.
  • high-pressure high-speed gas is used as heat transfer and temperature control gas to change the temperature of the sample
  • the outer gas channel 3 is fed with low-pressure and low-velocity gas as an insulating gas, which can improve the temperature uniformity of the sample area, and can better test and analyze the performance of the sample, so that the nuclear magnetic resonance imaging device can obtain more accurate materials physical information.
  • the above-mentioned insulation gas source can be air or nitrogen.
  • the air passing through the air passage 3 is generally input into the air passage 3 using an air pump or an air compressor, and the nitrogen is evaporated using nitrogen in a nitrogen cylinder or a liquid nitrogen tank.
  • Nitrogen the nuclear magnetic resonance imaging device can do -150 °C ⁇ 300 °C sample temperature control test, the temperature control accuracy can reach ⁇ 0.1 °C.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种核磁共振线圈结构及具有其的核磁共振装置,涉及磁共振成像技术领域,其中核磁共振线圈结构包括:壳体(1)和线圈骨架(2),线圈骨架(2)与壳体(1)可拆卸连接,线圈骨架(2)具有两端呈开口的样品腔(21),从线圈骨架(2)的底部向样品腔(21)内通入控温气体;壳体(1)和线圈骨架(2)之间形成过气通道(3),从壳体(1)的一侧适于向过气通道(3)内通入保温气体;电感线(4),缠绕在线圈骨架(2)的外周面上。将待测样品放置到样品腔(21)内,在线圈骨架(2)上缠绕电感线(4),分别向样品腔(21)和过气通道(3)内通入控温气体和保温气体,控温气体和保温气体的气体方向均自下而上的在样品腔(21)和过气通道(3)内输送,可以对样品进行控温,以及利用保温气体在过气通道(3)通过可以对线圈骨架(2)进行保温,实现中心位置的温度均匀的效果。

Description

一种核磁共振线圈结构及具有其的核磁共振装置
本申请要求在2021年11月19日提交中国专利局、申请号为202111400528.4、发明名称为“一种核磁共振线圈结构及具有其的核磁共振装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及磁共振成像技术领域,具体涉及一种核磁共振线圈结构及具有其的核磁共振装置。
背景技术
随着低场核磁共振分析技术的发展,变温核磁共振技术由于其可以提供更丰富的样品物性信息,已经成为材料领域一项重要的分析测试手段。例如,高温环境下橡胶材料的交联密度测试,低温环境下高分子材料的玻璃态转变温度测试以及低温环境下多孔材料的孔隙结构测试等等。目前,以气体为传热介质的变温核磁共振技术可以做到-150℃~300℃的样品控温测试,控温精度可达到±0.1℃。
在核磁共振系统中,核磁共振线圈是对样品进行激发及信号探测的核心部件;而对于变温核磁共振设备,核磁共振线圈则作为一种特殊的恒温腔来为样品提供温度环境。所以,变温核磁共振线圈的设计对提升变温核磁共振系统的综合应用水平非常重要。
现有技术中公开了一种利用气体对样品进行控温的核磁共振线圈,参见图9,将线圈导线绕制在配套的圆柱型线圈骨架8上,射频线圈的调谐匹配电路9放置线圈骨架8旁边,同线圈骨架一起安装在矩形金属屏蔽外壳内,线圈与调谐匹配电路电性连接,NMR测试样品放置在该线圈骨架8内,然后向该线圈骨架8内通入带有温度的气体,以实现对样品的的变温,但是该核磁共振线圈在具体使用时,当向线圈骨架的样品腔内通入气体后,由于该线圈装置的保温效果差以及气体的热容量又相对较小,气体温度向外散热比较明显,进而气体会在样品腔内在气体流向上形成温度梯度,使得样品受热不均匀,对外部磁体造成影响,若增加样品腔的气道直径的方式可以使得样品受热均匀,但是这样又增加了线圈相对样品的距离,降低了线圈的核磁共振的采样性能。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的核磁共振线圈,在具体使用时,当向线圈骨架的样品腔内通入气体后,由于该线圈装置的保温效果差以及气体的热容量又相对较小,气体温度向外散热比较明显,进而气体会在样品腔内在气体流向上形成温度梯度,使得样品受热不均匀,对外部磁体造成影响,若增加样品腔的气道直径的方式可以使得样品受热均匀,但是这样又增加了线圈相对样品的距离,降低了线圈的核磁共振的采样性能的缺陷,从而提供一种样品能够受热均匀且不会影响线圈的核磁共振采样功能的核磁共振线圈结构及具有其的核磁共振装置。
一种核磁共振线圈结构,包括:壳体,呈中空的管状结构,中空部分设置为容纳腔;线圈骨架,可拆卸地安装在所述容纳腔内,所述线圈骨架具有两端呈开口的样品腔,用于放置 样品,从所述线圈骨架的底部适于向所述线圈骨架的样品腔内通入控温气体,以对样品进行控温;所述壳体和所述线圈骨架之间形成过气通道,从所述壳体的一侧适于向所述过气通道内通入保温气体,以对所述样品腔内的样品进行保温,所述样品腔与所述过气通道隔绝设置;电感线,缠绕在所述线圈骨架的外周面上。
可选地,上述核磁共振线圈结构中,还包括输气件,所述输气件具有输气通道;
所述壳体的底端具有过管通道,所述输气件的一端沿所述过管通道伸入到所述样品腔内,另一端位于所述壳体外,所述控温气体沿所述输气通道进入到所述样品腔,并自所述样品腔输送到所述样品腔外。
可选地,上述核磁共振线圈结构中,还包括固定组件,其包括底座,所述底座设置在所述壳体上靠近所述输气件一端,并与所述壳体之间密封连接,沿所述底座的轴向方向开设所述过管通道,所述线圈骨架的一端开口与所述过管通道连通设置。
可选地,上述核磁共振线圈结构中,所述线圈骨架的一端环绕其周面开设过线通道,在所述输气件的本体上开设接地通道,所述电感线的一端穿过所述过线通道固定在所述接地通道上,以固定在所述输气件的管体上,所述电感线的另一端穿过所述壳体外以连接电源。
可选地,上述核磁共振线圈结构中,所述固定组件还包括固定件,其设置在所述壳体上远离所述输气件的另一端,所述固定件的边缘处与所述壳体之间可拆卸连接,所述线圈骨架远离所述输气件的一端与所述固定件的内壁面抵接,以使得所述过气通道与所述样品腔隔绝设置。
可选地,上述核磁共振线圈结构中,沿所述固定件的轴向方向开设与所述样品腔和所述过气通道分别连通的至少一控温出气通道和至少一保温出气通道,以供所述控温气体和所述保温气体分别沿所有的所述控温出气通道和所有的保温出气通道输出所述样品腔和所述过气通道。
可选地,上述核磁共振线圈结构中,所述固定组件还包括封口件,其连接在所述固定件上,在所述封口件靠近所述样品腔的一侧开设凹槽,在所述封口件的本体上开设至少一个通气孔,所有的所述控温出气通道和所有的所述保温出气通道的出气口与所述凹槽连通,所述控温气体和所述保温气体从所述控温出气通道和所有的所述保温出气通道输出后进入所述凹槽并从所有的所述通气孔输出至所述壳体外。
可选地,上述核磁共振线圈结构中,在所述固定件上还设有一固定通道,所有的所述控温出气通道沿所述固定通道的周面开设在所述固定件上;
还包括样品容纳件,用于放置样品,所述样品容纳件的直径与所述固定通道的直径适配设置,所述样品容纳件的一端适于自所述固定通道伸入到所述样品腔内,另一端适于延伸到所述凹槽内。
可选地,上述核磁共振线圈结构中,在所述封口件的内壁面开设供所述样品容纳件的插入的密封槽,所述样品容纳件延伸到所述凹槽内并插入到所述密封槽内,所述样品容纳件与所述密封槽之间密封连接。
可选地,上述核磁共振线圈结构中,在所述壳体的外周面延其轴向设置真空层。
一种核磁共振成像装置,包括:
核磁共振线圈结构,如上所述的核磁共振线圈结构;与所述输气件和所述过气通道分别连接控温气源和保温气源,两气源对应连接气泵,使得所述控温气体的流速大于所述保温气体的流速。
本申请技术方案,具有如下优点:
1.本申请提供的一种核磁共振线圈结构,包括:壳体,呈中空的管状结构,中空部分设置为容纳腔;线圈骨架,可拆卸地安装在所述容纳腔内,所述线圈骨架具有两端呈开口的样品腔,用于放置样品,从所述线圈骨架的底部适于向所述线圈骨架的样品腔内通入控温气体,以对样品进行控温;所述壳体和所述线圈骨架之间形成过气通道,从所述壳体的一侧适于向所述过气通道内通入保温气体,以对所述样品腔内的样品进行保温;电感线,缠绕在所述线圈骨架的外周面上。
此结构的核磁共振线圈结构中,将待测样品放置到线圈骨架的样品腔内,在线圈骨架上缠绕电感线,然后将缠绕有电感线的线圈骨架可拆卸的安装在容纳腔内,然后分别向样品腔和过气通道内通入控温气体和保温气体,采用双气道结构的设置,控温气体和保温气体的气体方向均自下而上的在样品腔和过气通道内输送,进而可以对样品进行控温,以及利用保温气体在过气通道通过可以对线圈骨架进行保温,增大了气体恒温腔的整体的气道直径,进而实现中心位置的温度均匀的效果,使得样品在样品腔内受热均匀,克服了温度梯度的缺陷,同时不会增加线圈骨架上缠绕的电感线相对样品的距离,进而不会影响以及降低对样品的核磁共振采样性能,克服了现有技术中,由于该线圈装置的保温效果差以及气体的热容量又相对较小,气体温度向外散热比较明显,进而气体会在样品腔内在气体流向上形成温度梯度,使得样品受热不均匀,对外部磁体造成影响,若增加样品腔的气道直径的方式可以使得样品受热均匀,但是这样又增加了线圈相对样品的距离,降低了线圈的核磁共振的采样性能的缺陷。
2.本申请提供的核磁共振线圈结构,所述固定组件还包括固定件,其设置在所述壳体上远离所述输气件的另一端,所述固定件的边缘处与所述壳体之间可拆卸连接,所述线圈骨架远离所述输气件的一端与所述固定件的内壁面抵接,以使得所述过气通道与所述样品腔隔绝设置。
此结构的核磁共振线圈结构中,通过在壳体上远离输气件的另一端设置固定件,利用固定件将线圈骨架固定在容纳腔内,其线圈骨架与固定件的内壁面抵接后,使得过气通道与样品腔隔绝设置,实现了线圈骨架内外各自有一层气流通过的效果,通过控制控温气体和保温气体分别在样品腔和过气通道内的输送速度,可以提升样品的受热均匀性。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例的第一种实施方式中提供的线圈结构整体结构示意图;
图2为壳体结构示意图;
图3为线圈骨架结构示意图;
图4为图3的线圈骨架结构俯视图;
图5为固定件的结构示意图;
图6位图5中的固定件的俯视图;
图7为封口件的结构示意图;
图8为封口件的俯视结构示意图;
图9为线圈结构装配过程示意图;
图10为现有技术的线圈结构示意图;
附图标记说明:
1、壳体;11、容纳腔;12、过管通道;13、真空层;14、线圈穿线管;15、
接头固定盒;16、BNC座;
2、线圈骨架;21、样品腔;22、过线通道;23、定位台阶;
3、过气通道;
4、电感线;
5、输气件;51、输气通道;52、接地通道;
61、底座;
62、固定件;621、控温出气通道;622、保温出气通道;
63、封口件;631、凹槽;632、通气孔;633、密封槽;634、密封垫;
64、固定通道;
7、样品容纳件;
8、圆柱型线圈骨架;9、调谐匹配电路。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例记载了一种核磁共振线圈结构,参见图1-图9,该线圈结构包括壳体1、线圈骨架2以及缠绕在线圈骨架2上的电感线4,其中该壳体1为呈中空的管状结构,将该中空部分设置为容纳腔11,将该缠绕有电感线4的线圈骨架2放置在容纳腔11内,其中,该线圈骨架2可拆卸地安装在该容纳腔11内,其具有两端呈开口的样品腔21,该样品腔21用于放置样品,在具体放置时,样品位于电感线4缠绕的区域内,壳体1和线圈骨架2之间形成过气通道3,为了能够使得样品受热均匀,从线圈骨架2的底部适于向线圈骨架2的样品腔 21内通入控温气体,能够对样品进行控温,以及从壳体1的底部向过气通道3内通入保温气体,能够对样品腔21内变温后的样品进行保温。
具体的,该控温气体和保温气体可以为低温或者高温气体,使用陶瓷材料作为骨架材料,热膨胀系数低,变温形变小,降低变温对线圈性质的影响,该材料可以为氧化铝或氧化锆。
将待测样品放置到线圈骨架2的样品腔21内,在线圈骨架2上缠绕电感线4,然后将缠绕有电感线4的线圈骨架2可拆卸的安装在容纳腔11内,然后分别向样品腔21和过气通道3内通入控温气体和保温气体,通过将样品腔21和过气通道3隔绝设置,采用双气道结构的设置,控温气体和保温气体的气体方向均自下而上的在样品腔21和过气通道3内输送,进而可以对样品进行控温,以及利用保温气体在过气通道3通过可以对线圈骨架2进行保温,增大了气体恒温腔的整体的气道直径,进而实现中心位置的温度均匀的效果,使得样品在样品腔21内受热均匀,克服了温度梯度的缺陷,同时不会增加线圈骨架2上缠绕的电感线4相对样品的距离,进而不会影响以及降低对样品的核磁共振采样性能,克服了现有技术中,由于该线圈装置的保温效果差以及气体的热容量又相对较小,气体温度向外散热比较明显,进而气体会在样品腔21内在气体流向上形成温度梯度,使得样品受热不均匀,对外部磁体造成影响,若增加样品腔21的气道直径的方式可以使得样品受热均匀,但是这样又增加了线圈相对样品的距离,降低了线圈的核磁共振的采样性能的缺陷。
本实施例中,为了能够向样品腔21中更稳定的输送控温气体,该线圈结构还包括输气件5,该输气件5具有输气通道51,在上述壳体1的底部设置过管通道12,该输气件5的一端沿该过管通道12伸入到线圈骨架2的样品腔21内,另一端位于壳体1的外部,以使得控制气体能够沿该输气通道51进入到该样品腔21内,对样品进行控温操作,例如加热样品,或者冷却样品,在该控温气体沿该输气通道51进入到样品腔21内后,再自样品腔21输送到样品腔21外,此结构中,线圈骨架2既是风路管道又是绕制电感线4圈的骨架,这样整体结构比较紧凑,有利于缩减尺寸,提升适应性。
本实施例中的线圈结构还包括固定组件,该固定组件包括底座61,该底座61设置在上述壳体1上靠近上述输气件5的一端,并且与该壳体1之间密封连接,咬着该底座61的轴向方向开设上述过管通道12,其中,该线圈骨架2与底座61之间抵接连接,以使得该线圈骨架2的一端开口与该过管通道12连通,进而使得输气件5沿着过管通道12伸入到线圈骨架2内。
具体的,可以将壳体1使用不锈钢真空管制成,释放热量低,能够起到保温和屏蔽的作用,同时对外部低场永磁体的影响较小,降低对壳体1外调谐匹配电路的影响,上述输气件5可以设置为铜材料的输气管,该输气管与线圈骨架2之间连接的部分利用高温硅胶连接,输气管位于壳体1外的一端使用金属卡套式密封结构与壳体1之间进行固定和密封,同时能够保证输气管与壳体1之间的密封性和导电连通性。
其中,上述线圈骨架2的一端环绕其周面开设过线通道22,在上述输气件5的本体上开设接地通道52,将电感线4的一端穿过该过线通道22固定在该接地通道52上,以固定在输气件5的管体上,利用输气件5作为电感线4的接地端,该电感线4的另一端穿过壳体1外以连接电源。
具体为,在壳体1的接通通道上设置紧固件,例如螺栓,然后将电感线4的一端固定到螺栓上,以使得电感线4与壳体1导通,实现了电感线4的接地,将电感线4的另一端向上部缠绕在线圈骨架2上并通过线圈穿线管引出至接头固定盒内,并焊接在BNC座上,再连 接到外部的调谐匹配电路。
本实施例中,上述固定组件还包括固定件62,该固定件62设置在壳体1上远离上述输气件5的另一端,将固定件62的边缘处与壳体1之间可拆卸连接,例如可以采用卡扣连接方式将固定件62与壳体1进行连接,将线圈骨架2远离上述输气件5的一端与固定件62的内壁面抵接,以使得过气通道3与样品腔21隔绝设置,实现进一步提升样品区域的温度均匀性的效果,线圈骨架2内外的两层气道设计为独立输运,内层的控温气体设置为高流速高压力用于对样品控温,外层的保温气体设置为低压力低流速,用于对样品保温。
为了能够更好的使得控温气体和变温气体在样品腔21和过气通道3内持续的输送,沿着上述固定件62的轴向方向开设与样品腔21和过气通道3分别连通的至少一控温出气通道621和至少一保温出气通道622,所有的控温出气通道621和所有的保温出气通道622分别供控温气体和保温气体分别沿所有的控温出气通道621和所有的保温出气通道622对应输出样品腔21和过气通道3。
具体的,参考图6,以控温输出通道和保温出气通道622的数量均设置八个为例,控温气体和保温气体能够稳定的沿着对应的通道输出样品腔21和过气通道3,所有的保温出气通道622的中心构成的圆的中心轴与固定件62的中心轴同轴设置。
上述固定组件还包括封口件63,其连接在上述固定件62上,在该封口件63靠近样品腔21的一侧开设凹槽631,在该封口件63的本体上开设至少一个通气孔632,所有的控温出气通道621和所有的保温出气通道622的出气口与封口件63的凹槽631连通,使得控温气体和保温气体能够从所有的控温出气通道621和所有的保温出气通道622输出后进入到该凹槽631并从所有的通气孔632输出至壳体1外,参见图8,以通气孔632为八个为例,均开设在封口件63的上壁面上,八个通气孔632的中心轴构成的圆面的中心轴与封口件63的中心轴同轴设置。
在具体应用时,可以将样品放置在样品容纳件7中,利用样品容纳件7作为载体,将样品放置在样品腔21内,便于对样品进行取出和放入,具体的,将线圈骨架2安装到壳体1内,然后将固定件62安装到壳体1上,利用固定件62将线圈骨架2稳定安装在壳体1的容纳腔11内,为了在不将固定件62从壳体1上拆除的基础上将样品容纳件7放置到线圈骨架2内,可以沿着固定件62的轴向方向设置一个固定通道64,该样品容纳件7的直径与该固定通道64的直径适配设置,该样品容纳件7的一端适于自固定通道64伸入到样品腔21内,另一端适于延伸到凹槽631内。
具体的,上述样品容纳件7为样品管,该样品管的外径设置为10mm,线圈骨架2的内径为13.5mm,样品管的外径略小于线圈骨架2的内径,控温气体能够沿着样品管和线圈骨架2之间的缝隙从上述保温出气通道622输出到凹槽631内,并从凹槽631上壁面的通气孔632输出到壳体1外,该样品管由玻璃制成,控温时,样品管的管底的下方为控温气体,上方为样品,将样品管的管底的厚度设置大于20mm,用于提升样品的温度均匀性,可以避免由于样品管的管底比较薄而导致样品管底部内外两侧热学性能的差异进而导致靠近样品管底位置的较大的温度梯度的现象。
为了将样品管放入到线圈骨架2内的样品腔21内,可以在线圈骨架2上设置定位台阶,样品管可直接放入线圈骨架2内部,落在定位台阶上,该定位台阶位于电感线4缠绕在线圈骨架2后电感线4的下方,将定位呈十字分布的长方体凸起设置在线圈骨架2的样品腔21内,一方面用于样品管定位,一方面不影响正常通气。
为了将上述样品容纳件7的顶部进行良好的密封,还可以在上述固定件62的内壁面开设供上述样品容纳件7的插入的密封槽633,上述样品容纳件7在延伸到上述凹槽631内后能够再插入到该密封槽633内,将样品容纳件7与该密封槽633之间密封连接,在密封槽633内设置密封垫,该封口件63采用PEEK材料制成,将封口件63安装到固定件62上之后,样品容纳件7与密封垫接触,防止控温气体进入到样品容纳件7内,且控温气体和保温气体由出气孔排出。
本实施例中,为了提高保温性能,还可以在壳体1的外周面延其轴向方向设置真空层13,通过在壳体1外周面设置外壳,该外壳与壳体1之间形成空腔,在该外壳上开设抽真空的管体,该管体的一端伸入空腔内,另一端连接抽真空泵,利用抽真空泵将空腔抽为真空,使用了真空保温,保温效果远超常规保温棉,减少热量损失,提升样品区域温度均匀性。
本实施例中,线圈结构装配过程如下:
1、定制加工好的壳体1、线圈骨架2、输气管、固定件62、样品容纳件7和封口件63,使用硅胶将线圈骨架2与输气管粘接起来;
2、将制作好的电感线4绕制在线圈骨架2上,使用铜螺丝将电感线4的接地端固定在输气管的接地通道52上;
3、将绕制好电感线4的线圈骨架2和输气件5整体从上至下放入壳体1的容纳腔11中,注意将电感线4的另一端从线圈穿线管中穿出至接线固定盒中;
4、安装封口件63,旋紧卡套式密封结构,将线圈骨架2在壳体1上稳定固定;
5、将接线固定盒中的电感线4引线焊接在BNC座上;
6、将样品管放入到线圈骨架2内,安装封口件63。
实施例2:
本实施例记载了一种核磁共振成像装置,包括核磁共振线圈结构,该核磁共振线圈结构为实施例1中记载的核磁共振线圈结构,还包括与输气件5和过气通道3分别连接的控温气源和保温气源,两个气源分别对应连接气泵,通过气泵使得控温气体的流速大于保温气体的流速,例如,高压高速气体作为传热控温气体,用于对样品进行变温,外层过气通道3通入低压低速气体作为保温气体,这样可以提升样品区域的温度均匀性,能够对样品的性能进行更好的测试与分析,使得核磁共振成像装置能够获得更准确的材料物性信息。
本实施例中,上述保温气源可以为空气或者是氮气,通过过气通道3的空气一般是使用气泵或空压机输入到过气通道3内,氮气使用氮气钢瓶的氮气或液氮罐蒸发的氮气,该核磁共振成像装置可以做到-150℃~300℃的样品控温测试,控温精度可以达到±0.1℃。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (11)

  1. 一种核磁共振线圈结构,其特征在于,包括:
    壳体(1),呈中空的管状结构,中空部分设置为容纳腔(11);
    线圈骨架(2),可拆卸地安装在所述容纳腔(11)内,所述线圈骨架(2)具有两端呈开口的样品腔(21),用于放置样品,从所述线圈骨架(2)的底部适于向所述线圈骨架(2)的样品腔(21)内通入控温气体,以对样品进行控温;
    所述壳体(1)和所述线圈骨架(2)之间形成过气通道(3),从所述壳体(1)的一侧适于向所述过气通道(3)内通入保温气体,以对所述样品腔(21)内的样品进行保温;
    电感线(4),缠绕在所述线圈骨架(2)的外周面上。
  2. 根据权利要求1所述的核磁共振线圈结构,其特征在于,还包括输气件(5),所述输气件(5)具有输气通道(51);
    所述壳体(1)的底端具有过管通道(12),所述输气件(5)的一端沿所述过管通道(12)伸入到所述样品腔(21)内,另一端位于所述壳体(1)外,所述控温气体沿所述输气通道(51)进入到所述样品腔(21),并自所述样品腔(21)输送到所述样品腔(21)外。
  3. 根据权利要求2所述的核磁共振线圈结构,其特征在于,还包括固定组件,其包括底座(61),所述底座(61)设置在所述壳体(1)上靠近所述输气件(5)一端,并与所述壳体(1)之间密封连接,沿所述底座(61)的轴向方向开设所述过管通道(12),所述线圈骨架(2)的一端开口与所述过管通道(12)连通设置。
  4. 根据权利要求3所述的核磁共振线圈结构,其特征在于,所述线圈骨架(2)的一端环绕其周面开设过线通道(22),在所述输气件(5)的本体上开设接地通道(52),所述电感线(4)的一端穿过所述过线通道(22)固定在所述接地通道(52)上,以固定在所述输气件(5)的管体上,所述电感线(4)的另一端穿过所述壳体(1)外以连接电源。
  5. 根据权利要求3或4所述的核磁共振线圈结构,其特征在于,所述固定组件还包括固定件(62),其设置在所述壳体(1)上远离所述输气件(5)的另一端,所述固定件(62)的边缘处与所述壳体(1)之间可拆卸连接,所述线圈骨架(2)远离所述输气件(5)的一端与所述固定件(62)的内壁面抵接,以使得所述过气通道与所述样品腔(21)隔绝设置。
  6. 根据权利要求5所述的核磁共振线圈结构,其特征在于,沿所述固定件(62)的轴向方向开设与所述样品腔(21)和所述过气通道(3)分别连通的至少一控温出气通道(621)和至少一保温出气通道(622),以供所述控温气体和所述保温气体分别沿所有的所述控温出气通道(621)和所有的保温出气通道(622)输出所述样品腔(21)和所述过气通道(3)。
  7. 根据权利要求6所述的核磁共振线圈结构,其特征在于,所述固定组件还包括封口件(63),其连接在所述固定件(62)上,在所述封口件(63)靠近所述样品腔(21)的一侧开设凹槽(631),在所述封口件(63)的本体上开设至少一个通气孔(632),所有的所述控温出气通道(621)和所有的所述保温出气通道(622)的出气口与所述凹槽(631)连通,所述控温气体和所述保温气体从所述控温出气通道(621)和所有的所 述保温出气通道(622)输出后进入所述凹槽(631)并从所有的所述通气孔(632)输出至所述壳体(1)外。
  8. 根据权利要求7所述的核磁共振线圈结构,其特征在于,在所述固定件(62)上还设有一固定通道(64),所有的所述控温出气通道(621)沿所述固定通道(64)的周面开设在所述固定件(62)上;
    还包括样品容纳件(7),用于放置样品,所述样品容纳件(7)的直径与所述固定通道(64)的直径适配设置,所述样品容纳件(7)的一端适于自所述固定通道(64)伸入到所述样品腔(21)内,另一端适于延伸到所述凹槽(631)内。
  9. 根据权利要求8所述的核磁共振线圈结构,其特征在于,在所述封口件(63)的内壁面开设供所述样品容纳件(7)的插入的密封槽(633),所述样品容纳件(7)延伸到所述凹槽(631)内并插入到所述密封槽(633)内,所述样品容纳件(7)与所述密封槽(633)之间密封连接。
  10. 根据权利要求8所述的核磁共振线圈结构,其特征在于,在所述壳体(1)的外周面延其轴向设置真空层(13)。
  11. 一种核磁共振成像装置,其特征在于,包括:
    核磁共振线圈结构,如权利要求1-10中任一项所述的核磁共振线圈结构;
    与所述输气件(5)和所述过气通道(3)分别连接控温气源和保温气源,两气源对应连接气泵,使得所述控温气体的流速大于所述保温气体的流速。
PCT/CN2022/102756 2021-11-19 2022-06-30 一种核磁共振线圈结构及具有其的核磁共振装置 WO2023087729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111400528.4 2021-11-19
CN202111400528.4A CN116148300A (zh) 2021-11-19 2021-11-19 一种核磁共振线圈结构及具有其的核磁共振装置

Publications (1)

Publication Number Publication Date
WO2023087729A1 true WO2023087729A1 (zh) 2023-05-25

Family

ID=86339448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102756 WO2023087729A1 (zh) 2021-11-19 2022-06-30 一种核磁共振线圈结构及具有其的核磁共振装置

Country Status (2)

Country Link
CN (1) CN116148300A (zh)
WO (1) WO2023087729A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085373A1 (en) * 2010-06-28 2013-04-04 Hong Kong Applied Science And Technology Research Institute Co., Ltd. High temperature superconductor receiver coil magnetic resonance imaging systems and methods compatible with an infant incubator
CN104807848A (zh) * 2015-05-15 2015-07-29 中国科学院武汉物理与数学研究所 一种用于低场磁共振系统的定位进样装置和方法
CN105501679A (zh) * 2014-09-18 2016-04-20 布鲁克碧奥斯平有限公司 冷却头的自动隔热
CN106772160A (zh) * 2017-03-13 2017-05-31 上海纽迈电子科技有限公司 具有降温结构的高温射频线圈
CN112834547A (zh) * 2020-12-30 2021-05-25 苏州纽迈分析仪器股份有限公司 一种核磁共振装置
CN113640721A (zh) * 2021-08-20 2021-11-12 武汉光谷航天三江激光产业技术研究院有限公司 一种用于低场核磁共振谱仪的样品双向传送装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085373A1 (en) * 2010-06-28 2013-04-04 Hong Kong Applied Science And Technology Research Institute Co., Ltd. High temperature superconductor receiver coil magnetic resonance imaging systems and methods compatible with an infant incubator
CN105501679A (zh) * 2014-09-18 2016-04-20 布鲁克碧奥斯平有限公司 冷却头的自动隔热
CN104807848A (zh) * 2015-05-15 2015-07-29 中国科学院武汉物理与数学研究所 一种用于低场磁共振系统的定位进样装置和方法
CN106772160A (zh) * 2017-03-13 2017-05-31 上海纽迈电子科技有限公司 具有降温结构的高温射频线圈
CN112834547A (zh) * 2020-12-30 2021-05-25 苏州纽迈分析仪器股份有限公司 一种核磁共振装置
CN113640721A (zh) * 2021-08-20 2021-11-12 武汉光谷航天三江激光产业技术研究院有限公司 一种用于低场核磁共振谱仪的样品双向传送装置及方法

Also Published As

Publication number Publication date
CN116148300A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
US5508613A (en) Apparatus for cooling NMR coils
JP5942699B2 (ja) 磁気共鳴信号検出モジュール
JP6528041B2 (ja) Nmrプローブ
JP5942700B2 (ja) 磁気共鳴信号検出用プローブ
JP2005214976A (ja) 磁場生成組立体
US20080150536A1 (en) Cold normal metal and hts nmr probe coils with electric field shields
JP2014518709A (ja) 極低温冷却型全身用rfコイルアレイ及びそれを有するmriシステム
JP4839292B2 (ja) 冷却式磁気共鳴プローブヘッド用の真空容器
WO2023087729A1 (zh) 一种核磁共振线圈结构及具有其的核磁共振装置
US20050202976A1 (en) Apparatus for use in nmr system
Scott et al. A versatile custom cryostat for dynamic nuclear polarization supports multiple cryogenic magic angle spinning transmission line probes
CN216978896U (zh) 一种核磁共振线圈结构及具有其的核磁共振装置
US7358735B2 (en) NMR probe head with heated housing
JP6267820B1 (ja) 磁石およびクライオスタット装置、ならびに受動シミング方法
CN116027112B (zh) 一种超导接头无背场测试装置及其测试方法
CN110031785B (zh) 一种用于核磁共振检测的可变温便携式探头
CN106772160B (zh) 具有降温结构的高温射频线圈
US11709214B2 (en) Temperature-control system for MR apparatuses with a permanent magnet arrangement
CN117554155B (zh) 一种用于电子自旋共振的顶部装卸型低温设备
JP4313333B2 (ja) 核磁気共鳴計測装置
KR20090020281A (ko) 초전도 특성 측정장치
CN219320340U (zh) 一种低温磁场探针台样品腔结构
JP2019117189A (ja) 交換可能なステータを有するmas・nmr試料ヘッド構造
US7482808B2 (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
CN109212442A (zh) 具有多件式的下部插入件的nmr探头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894272

Country of ref document: EP

Kind code of ref document: A1