WO2023087599A1 - 一种数据中心自动巡检方法、装置、设备及介质 - Google Patents

一种数据中心自动巡检方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023087599A1
WO2023087599A1 PCT/CN2022/084247 CN2022084247W WO2023087599A1 WO 2023087599 A1 WO2023087599 A1 WO 2023087599A1 CN 2022084247 W CN2022084247 W CN 2022084247W WO 2023087599 A1 WO2023087599 A1 WO 2023087599A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
uav
data
equipment
platform server
Prior art date
Application number
PCT/CN2022/084247
Other languages
English (en)
French (fr)
Inventor
廖革文
樊情魁
王玮
江永宾
李秀妮
Original Assignee
维谛技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维谛技术有限公司 filed Critical 维谛技术有限公司
Publication of WO2023087599A1 publication Critical patent/WO2023087599A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of detection, and in particular to a data center automatic inspection method, device, equipment and medium.
  • Air-conditioning outdoor units, transformers, cooling towers, etc. in the data center park are important infrastructure for maintaining the operation of the data center. Daily inspections are required to maintain safe and stable operation. In the traditional manual inspection method, maintenance personnel need to climb to the top of buildings or cooling towers. High-altitude operations and electric shock injuries have brought huge safety risks to maintenance personnel. Casualties caused by high-altitude operations or electric shocks occur every year.
  • the present disclosure provides a data center automatic inspection method, device, equipment, and medium, which realizes the automatic inspection of a data center park by a drone and reduces the safety risk of manual inspection.
  • a data center automatic inspection method which is applied to smart airport equipment, and the method includes:
  • the inspection task send a control command to the UAV device to control the UAV device to perform inspection on the target device within the inspection location range according to the inspection item during the inspection time;
  • the inspection data includes the value, picture and video of the target device;
  • the inspection data of the target device is sent to the cloud management platform server, and the inspection data is analyzed by the cloud management platform server to obtain an inspection result.
  • the sending a control instruction to the UAV device according to the inspection task includes:
  • meteorological data sensor of the meteorological detection module uses the meteorological data sensor of the meteorological detection module to monitor the meteorological index data, and at the same time receive the official meteorological data from the Internet;
  • a waiting inspection instruction is sent to the UAV device, or when the weather condition for flight is met, a control instruction is sent to the UAV device.
  • the method further includes:
  • the UAV device After the inspection of the UAV device is completed or after the UAV device detects that the power is less than the set power and returns, the UAV device is charged through the power supply and charging module.
  • the method further includes:
  • the hatch is controlled by the driving device to open, and after the UAV device enters the cabin, the UAV charging and clamping device is clamped, and the hatch is controlled by the driving device to close.
  • the sending the inspection data of the target device to the cloud management platform server, and the cloud management platform server analyzes the inspection data to obtain the inspection result including:
  • the inspection data is sent to the inspection data analysis platform server by the drone inspection management platform server;
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • a data center automatic inspection method which is applied to drone equipment, and the method includes:
  • the inspection time is controlled by the UAV flight control module, and the target equipment within the inspection location range is inspected according to the inspection items;
  • the inspection data obtained by the inspection is sent to the intelligent airport equipment, and the inspection data includes the value, pictures and videos of the target equipment.
  • the method further includes:
  • a data center automatic inspection method is provided, which is applied to a cloud management platform server, and the method includes:
  • the corresponding inspection task is generated and sent to the smart airport equipment.
  • the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection items;
  • the inspection data includes values, pictures and videos;
  • the inspection data of the target device is analyzed to determine the inspection result of the target device.
  • the parsing the inspection data of the target device to determine the inspection result of the target device includes:
  • the drone inspection management platform server receives the inspection data sent by the smart airport through the 4G DTU/wired network/wireless WIFI module, and sends it to the inspection data analysis platform server;
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the analyzing the inspection data by the inspection data analysis platform server to obtain the inspection result includes at least one of the following steps:
  • the infrared imaging area of the target device inspected by the infrared imager of the UAV equipment, the highest temperature value and the lowest temperature value in the infrared imaging area are identified through the neural network, and whether it is judged according to the highest temperature value and the lowest temperature value abnormal;
  • an automatic inspection device for a data center which includes:
  • the inspection task receiving module is used to receive the inspection task issued by the cloud management platform server through the intelligent airport equipment, and determine the inspection location range, inspection time, inspection target equipment and inspection items according to the inspection task;
  • the control instruction sending module is used to send control instructions to the UAV device through the intelligent airport device according to the inspection task, so as to control the UAV device within the inspection location range during the inspection time.
  • the target equipment is inspected according to the inspection items;
  • the inspection data acquisition module is used to obtain the inspection data of the target device sent by the drone device after the inspection is started by the intelligent airport device, and the inspection data includes the value, picture and video of the target device ;
  • the inspection result obtaining module is used to send the inspection data of the target device to the cloud management platform server through the intelligent airport equipment, and the cloud management platform server analyzes the inspection data to obtain the inspection result.
  • an automatic inspection device for a data center which includes:
  • the control instruction receiving module is used to receive the control instruction of the intelligent airport equipment through the UAV equipment;
  • the inspection control module is used to control the inspection time by the UAV flight control module according to the control instruction, and perform inspection on the target equipment within the inspection location range according to the inspection items ;
  • the inspection data sending module is used to send the inspection data obtained by the inspection to the smart airport device through the drone device, and the inspection data includes the value, picture and video of the target device.
  • an automatic inspection device for a data center comprising:
  • the inspection task delivery module is used to generate corresponding inspection tasks through the cloud management platform server according to the inspection plan and send them to the smart airport.
  • the inspection tasks include the inspection location range, inspection time, and inspection targets.
  • the inspection data acquisition module is used to obtain the inspection data of the target equipment sent by the smart airport through the inspection of the drone equipment through the cloud management platform server, and the inspection data includes values, pictures and videos;
  • the inspection result determination module is configured to analyze the inspection data of the target device through the cloud management platform server, and determine the inspection result of the target device.
  • an automatic data center inspection system the system includes:
  • the UAV device is used to receive the control instruction of the intelligent airport equipment; it is used to control the inspection time through the UAV flight control module according to the control instruction, and to control the target equipment within the inspection location range according to the inspection time.
  • the inspection items are inspected; it is used to send the inspection data obtained by the inspection to the intelligent airport equipment, and the inspection data includes the value, pictures and videos of the target equipment.
  • the intelligent airport equipment is used to receive the inspection tasks issued by the cloud management platform server, and determine the inspection location range, inspection time, inspection target equipment and inspection items according to the inspection tasks; Inspection tasks, send control instructions to the UAV device to control the UAV device to perform inspections on the target devices within the inspection location range according to the inspection items at the inspection time; used to obtain the The inspection data of the target device sent after the UAV device starts the inspection, the inspection data includes the value, picture and video of the target device; used to send the target device to the cloud management platform server For the inspection data, the cloud management platform server analyzes the inspection data to obtain an inspection result.
  • the cloud management platform server is used to generate a corresponding inspection task according to the inspection plan and send it to the smart airport equipment.
  • the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection items; It is used to obtain the inspection data of the target equipment sent by the intelligent airport equipment and obtained through the inspection of the drone equipment, and the inspection data includes values, pictures and videos; Analyzing, determining the inspection result of the target device.
  • an electronic device including: a processor; a memory for storing processor-executable instructions; wherein, the processor executes the executable instructions to realize the above-mentioned data center automatic The steps of the inspection method.
  • a computer-readable storage medium on which computer instructions are stored, and when the instructions are executed by a processor, the steps of the above-mentioned data center automatic inspection method are implemented.
  • this disclosure can automatically send inspection tasks, automatically execute inspection tasks by drones, automatically return inspection pictures and videos, and automatically analyze and obtain inspection results by the background server, realizing unmanned inspection in the data center park.
  • Machine automatic inspection reduces the safety risk of manual inspection.
  • Fig. 1 is a schematic structural diagram of a data center automatic inspection system according to an exemplary embodiment
  • Fig. 2 is a flow chart of a data center automatic inspection method applied to intelligent airport equipment according to an exemplary embodiment
  • Fig. 3 is a flow chart of a data center automatic inspection method applied to unmanned aerial vehicles according to an exemplary embodiment
  • Fig. 4 is a flow chart of a data center automatic inspection method applied to a cloud management platform server according to an exemplary embodiment
  • Fig. 5 is a flow chart showing an automatic inspection of a data center according to an exemplary embodiment
  • Fig. 6 is a schematic diagram of a module structure of an automatic inspection device for a data center according to an exemplary embodiment
  • Fig. 7 is a schematic diagram of a module structure of an automatic inspection device for a data center according to an exemplary embodiment
  • Fig. 8 is a schematic diagram of a module structure of an automatic inspection device for a data center according to an exemplary embodiment
  • Fig. 9 is a schematic diagram of an electronic device showing an automatic inspection method for a data center according to an exemplary embodiment
  • Fig. 10 is a schematic diagram of an electronic device showing an automatic inspection method for a data center according to an exemplary embodiment
  • Fig. 11 is a schematic diagram of electronic equipment showing a method for automatic inspection of a data center according to an exemplary embodiment
  • Fig. 12 is a schematic diagram of a program product of a data center automatic inspection method according to an exemplary embodiment.
  • the present disclosure provides a data center automatic inspection method, device, equipment and medium, which realizes the automatic inspection of the data center park by drones and reduces the safety risk of manual inspection.
  • FIG. 1 it is a schematic structural diagram of an automatic inspection system for a data center according to an exemplary embodiment.
  • the present disclosure includes at least one unmanned aerial vehicle device 10 , a smart airport device 11 and a cloud management platform server 12 .
  • the UAV device 10 is used to receive the control instruction of the intelligent airport device; it is used to control the inspection time through the UAV flight control module according to the control instruction, and to control the target equipment within the inspection location range according to the inspection time.
  • the inspection items are inspected; it is used to send the inspection data obtained by the inspection to the smart airport equipment, and the inspection data includes the value, pictures and videos of the target equipment.
  • the intelligent airport equipment 11 is used to receive the inspection task issued by the cloud management platform server, and determine the inspection location range, inspection time, inspection target equipment and inspection items according to the inspection task;
  • the inspection task is to send a control instruction to the UAV device to control the UAV device to perform inspection on the target equipment within the inspection location range according to the inspection item at the inspection time; for obtaining
  • the cloud management platform server 12 is used to generate a corresponding inspection task according to the inspection plan and send it to the smart airport equipment.
  • the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection items ; Used to obtain the inspection data of the target equipment sent by the intelligent airport equipment through the inspection of the drone equipment, the inspection data includes values, pictures and videos; used for the inspection data of the target equipment Perform analysis to determine the inspection result of the target device.
  • the following describes a data center automatic inspection method provided by the present disclosure through a specific embodiment, which is applied to smart airport equipment, as shown in FIG. 2 , including steps 201 to 204.
  • step 201 an inspection task delivered by a cloud management platform server is received, and an inspection location range, an inspection time, an inspection target device, and an inspection item are determined according to the inspection task.
  • the above inspection time may include the inspection start time and inspection duration
  • the target device of the inspection may be the device identifier of the target device
  • the inspection location range may be represented by a coordinate range, which may be the machine building where the target device is located
  • Inspection items may include whether the equipment is turned on, whether the temperature is normal, etc.
  • step 202 according to the inspection task, a control instruction is sent to the UAV device, so as to control the UAV device to control the target device within the inspection location range according to the inspection time at the inspection time. Project inspection.
  • control instruction in addition to the control instruction, it also includes a charging instruction, a waiting inspection instruction, and the like.
  • the inspection data of the target device sent by the UAV device after the inspection is started includes the value, picture and video of the target device.
  • the inspection data includes pictures and videos of the target device, results of inspection items, actual duration of inspection, and the like.
  • step 204 the inspection data of the target device is sent to the cloud management platform server, and the inspection data is analyzed by the cloud management platform server to obtain an inspection result.
  • the embodiment of the present disclosure realizes the automatic inspection of the UAV in the data center park, and reduces the safety risk of manual inspection.
  • smart airport equipment includes wireless receiving module, weather detection module, power supply and charging module, 4G DTU (The 4th Generation Mobile Communication Technology Data Transmission Unit, fourth generation mobile communication technology data transmission unit) module, driving device and Control center equipment.
  • 4G DTU The 4th Generation Mobile Communication Technology Data Transmission Unit, fourth generation mobile communication technology data transmission unit
  • the wireless receiving module is responsible for wireless communication with the UAV equipment; the meteorological detection module is responsible for monitoring real-time meteorological conditions, including temperature and humidity, wind speed, illumination and other meteorological conditions; the control center equipment is responsible for processing instructions issued by the cloud management platform server and other Module management; 4G DTU module/wired network/wireless WIFI is responsible for data communication with the cloud management platform server.
  • the drive unit is responsible for opening and closing the hatch according to the UAV equipment.
  • the embodiments of the present disclosure use the weather detection module when the inspection start time is reached and during the inspection process of the UAV device
  • the meteorological data sensor monitors the meteorological index data and receives the meteorological index data from the Internet at the same time;
  • the meteorological index data is analyzed, and when it is determined that the meteorological conditions for flight are satisfied, control instructions are sent to the unmanned aerial vehicle equipment;
  • a waiting inspection instruction is sent to the UAV device, or when the weather condition for flight is met, a control instruction is sent to the UAV device.
  • the meteorological index data includes temperature and humidity, wind speed, illuminance and the like. For example, when the inspection start time is reached, the wind speed will be monitored by the meteorological data sensor of the meteorological detection module. When the wind speed is greater than or equal to level 4, the meteorological conditions for flight are not satisfied, and an instruction to wait for the inspection is sent to the UAV device. When the wind speed is less than grade 4, the meteorological conditions for flight are met, and a control command is sent to the drone device.
  • the UAV device When the UAV device completes the inspection of the target device according to the control instruction, it obtains the inspection data of the target device sent after the UAV device starts the inspection, and sends the inspection data to the cloud management platform server. Inspection data of the target device.
  • the sending the inspection data of the target device to the cloud management platform server, and the cloud management platform server analyzes the inspection data to obtain the inspection result including:
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the 4G DTU module mainly has four core functions: internally integrated TCP/IP (Transmission Control Protocol/Internet Protocol Address, Transmission Control Protocol/Internet Protocol Address) protocol stack, with 4G dial-up Internet access and TCP/IP data communication functions; providing serial port Data two-way conversion function, can be connected with various user equipment using serial communication, and does not need to make changes to the user equipment; support automatic heartbeat, keep online permanently; support parameter configuration, permanent storage.
  • TCP/IP Transmission Control Protocol/Internet Protocol Address
  • Transmission Control Protocol/Internet Protocol Address Transmission Control Protocol/Internet Protocol Address
  • TCP/IP data communication functions providing serial port Data two-way conversion function, can be connected with various user equipment using serial communication, and does not need to make changes to the user equipment; support automatic heartbeat, keep online permanently; support parameter configuration, permanent storage.
  • it is mainly used in mountain torrent/flood discharge monitoring, construction site dust monitoring system, automatic payment query terminal, bus wireless networking, industrial control fields, etc.
  • the above-mentioned 4G DTU module communicates with the drone inspection management platform server in the cloud management platform server for data communication.
  • the UAV equipment may have insufficient power. Therefore, when interacting with the UAV device and detecting that the power of the UAV device is less than the set power during the inspection process, a charging command is sent to the UAV device to control the UAV device to return and pass Contact with the power supply charging module for charging; or after the drone equipment inspection is completed or the drone equipment detects that the power is less than the set power and returns, charge the drone equipment through the power supply charging module.
  • the power supply module includes a UAV charging clamping device, and when charging or charging is completed, the UAV device clamps the UAV charging clamping device.
  • the cabin door is controlled to open through the driving device, and the unmanned aerial vehicle charging clamping device is released, and the unmanned aerial vehicle is waited for.
  • Human-machine equipment flies out of the cabin;
  • the hatch is controlled by the driving device to open, and after the UAV device enters the cabin, the UAV charging and clamping device is clamped, and the hatch is controlled by the driving device to close.
  • the following describes a data center automatic inspection method provided by the present disclosure through a specific embodiment, which is applied to a drone device, as shown in FIG. 3 , including steps 301 to 303.
  • step 301 a control instruction of an intelligent airport device is received.
  • local or remote control instructions can be received.
  • step 302 the inspection time is controlled by the UAV flight control module according to the control instruction, and the target equipment within the inspection location range is inspected according to the inspection items.
  • the inspection UAV can arrive at the target device at the inspection time according to the GPS (Global Positioning System, Global Positioning System) navigation technology for inspection.
  • GPS Global Positioning System, Global Positioning System
  • step 303 the inspection data obtained from the inspection is sent to the smart airport device, the inspection data includes the value, picture and video of the target device.
  • UAV equipment includes UAV flight control module, controller, camera and control module, image transmission module and power and charging interface.
  • the UAV flight control module is responsible for the flight control and balance control of the UAV equipment; the controller is responsible for receiving the instructions sent by the smart airport equipment, such as control instructions, waiting for inspection instructions, etc.; the camera and control module are responsible for high-definition photography of the target equipment, Infrared photography, high-definition video and infrared video; the image transmission module is responsible for uploading the inspection data obtained from the inspection and the data of the UAV device itself to the cloud management platform server; the power and charging interface is responsible for the return of the UAV device to the smart airport device. Automatically recharge to replenish battery energy to prepare for the next inspection.
  • the commands received by the UAV equipment include waiting for inspection commands and charging commands.
  • the UAV device When receiving the control instruction, make the UAV device inspect the target equipment within the inspection location range according to the inspection items at the inspection time, for example, inspect the equipment through the carried infrared imager Obtain infrared photos and infrared videos of the target device, and obtain high-definition photos and high-definition videos of the target device through the carried high-definition camera equipment.
  • the following describes a data center automatic inspection method provided by the present disclosure through a specific embodiment, which is applied to a cloud management platform server, as shown in FIG. 4 , including steps 401 to 403.
  • a corresponding inspection task is generated according to the inspection plan and delivered to the smart airport device, the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection items.
  • the inspection plan formulated by the customer can be implemented to generate corresponding inspection tasks on a monthly basis.
  • step 402 the inspection data of the target device sent by the smart airport device and obtained through the inspection of the drone device is obtained, and the inspection data includes values, pictures and videos.
  • step 403 the inspection data of the target device is analyzed to determine the inspection result of the target device.
  • the cloud management platform server includes the drone inspection management platform server and the inspection data analysis platform server.
  • the drone inspection management platform server includes inspection planning module, picture return module, video return module, user management module and task scheduling module.
  • the inspection planning module generates corresponding inspection tasks according to the customer's inspection plan, and sends the inspection tasks to the control center equipment of the smart airport equipment;
  • the picture return module and video return module receive the return from the inspection management platform server pictures and videos;
  • the user management module is responsible for managing the user's personal information;
  • the task scheduling module is responsible for managing other modules.
  • the inspection data analysis platform server is responsible for processing the inspection data, performing image recognition and video recognition on the video and photos returned by the UAV equipment inspection, analyzing the identified data, and judging whether the equipment is operating normally. Normal trigger alarm judgment.
  • the drone inspection management platform server receives the inspection data sent by the smart airport through the 4G DTU module/wired network/wireless WIFI, and sends it to the inspection data analysis platform server;
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the analyzing the inspection data by the inspection data analysis platform server to obtain the inspection result includes at least one of the following steps:
  • the infrared imaging area of the target device inspected by the infrared imager of the UAV equipment, the highest temperature value and the lowest temperature value in the infrared imaging area are identified through a neural network, and the highest temperature value is judged according to a preset threshold And whether the lowest temperature value is abnormal;
  • Fig. 5 is a flowchart of an automatic inspection of a data center according to an exemplary embodiment, as shown in Fig. 5:
  • Step 501 the cloud management platform server obtains the customer's inspection plan
  • Step 502 the cloud management platform server generates a corresponding inspection task according to the customer's inspection plan and sends it to the smart airport equipment.
  • the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection time. project;
  • Step 503 the intelligent airport equipment receives the inspection task sent by the cloud management platform server;
  • Step 504 when the inspection time is reached, use the meteorological data sensor of the weather detection module to monitor the weather index data, and receive the weather index data from the Internet at the same time to judge whether the weather conditions for the flight are met, and if so, then execute steps 505-513, if If it is not satisfied, send a waiting inspection instruction to the UAV device until the flight conditions are met;
  • Step 505 the intelligent airport equipment sends control instructions to the UAV equipment
  • Step 506 the UAV device receives the control instruction sent by the smart airport device, and controls the inspection time through the UAV flight control module according to the control instruction, and performs inspection on the target equipment within the inspection location range according to the inspection time.
  • the intelligent airport equipment also monitors the meteorological index data in real time;
  • Step 507 the UAV device sends the inspection data obtained by the inspection to the smart airport equipment, and the inspection data includes the picture and video of the target device, the result of the inspection item, the actual duration of the inspection, etc.;
  • Step 508 the intelligent airport equipment sends the inspection data to the UAV inspection management platform server in the cloud management platform server;
  • Step 509 the drone inspection management platform server sends the inspection data to the inspection data analysis platform server in the cloud management platform server;
  • Step 510 the inspection data analysis platform server analyzes the inspection data to obtain inspection results
  • Step 511 the inspection data analysis platform server returns the inspection result to the UAV inspection management platform server;
  • Step 512 the UAV inspection management platform server determines whether there is an abnormality in the target device according to the inspection result, if there is an abnormality, then there is an alarm, execute steps 513-514, if not, execute step 514;
  • Step 513 the cloud management platform server outputs an alarm list
  • step 514 the server of the cloud management platform outputs an inspection report.
  • the embodiment of the present disclosure also provides a data center automatic inspection device, since the device is the device in the method in the embodiment of the present disclosure, and the principle of solving the problem of the device is similar to the method, so For the implementation of the device, reference may be made to the implementation of the method, and repeated descriptions will not be repeated.
  • the above-mentioned device includes the following modules:
  • the inspection task receiving module 601 is used to receive the inspection task issued by the cloud management platform server through the intelligent airport equipment, and determine the inspection location range, inspection time, inspection target equipment and inspection items according to the inspection task ;
  • the control instruction sending module 602 is configured to send a control instruction to the UAV device through the intelligent airport device according to the inspection task, so as to control the UAV device to control the inspection location range during the inspection time.
  • the target equipment in the system is inspected according to the inspection items;
  • the inspection data acquisition module 603 is used to obtain the inspection data of the target device sent by the drone device after the inspection is started by the intelligent airport device, the inspection data includes the value, picture and video;
  • the inspection result obtaining module 604 is configured to send the inspection data of the target device to the cloud management platform server through the smart airport equipment, and the cloud management platform server analyzes the inspection data to obtain the inspection result.
  • control instruction sending module is used to send control instructions to the UAV device according to the inspection task, including:
  • a waiting inspection instruction is sent to the UAV device, or when the weather condition for flight is met, a control instruction is sent to the UAV device.
  • the device also includes:
  • the power detection module is used to interact with the UAV device through the intelligent airport device, and when it detects that the power of the UAV device is less than the set power during the inspection process, it sends a charging command to the UAV device to control The UAV device is returned and charged by contact with the power supply charging module; or
  • the UAV device After the inspection of the UAV device is completed or after the UAV device detects that the power is less than the set power and returns, the UAV device is charged through the power supply and charging module.
  • the device also includes:
  • the UAV exit determination module is used to determine through the intelligent airport equipment that when the UAV equipment in the cabin needs to go out, control the opening of the cabin door through the driving device, release the UAV charging clamping device, and wait for the unmanned aircraft equipment flying out of the cabin;
  • the UAV entry determination module is used to determine that the UAV equipment needs to enter the cabin through the intelligent airport equipment, control the opening of the cabin door through the driving device, clamp the UAV charging and clamping device, and wait for the UAV to enter the cabin. After the equipment enters the cabin, the cabin door is controlled to close through the driving device.
  • the inspection result obtaining module is used to send the inspection data of the target device to the cloud management platform server through the intelligent airport equipment, and the inspection data is processed by the cloud management platform server Perform analysis to obtain inspection results, including:
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the embodiment of the present disclosure also provides an automatic inspection device for a data center, as shown in FIG. 7 , the above-mentioned device includes the following modules:
  • the control instruction receiving module 701 is used to receive the control instruction of the intelligent airport equipment through the unmanned aerial vehicle equipment;
  • the inspection control module 702 is used to control the inspection time by the UAV flight control module according to the control instruction, and inspect the target equipment within the inspection location range according to the inspection items. inspection;
  • the inspection data sending module 703 is configured to send the inspection data obtained by the inspection to the smart airport device through the UAV device, and the inspection data includes the value, picture and video of the target device.
  • the device also includes:
  • the UAV charging module is used to interact with the smart airport device through the UAV device, and return to the power supply charging module for charging according to the charging instruction sent by the smart airport device; or
  • the embodiment of the present disclosure also provides a data center UAV automatic inspection device, as shown in Figure 8, the above-mentioned device includes the following modules:
  • the inspection task issuance module 801 is used to generate the corresponding inspection task according to the inspection plan through the cloud management platform server and issue it to the smart airport.
  • the inspection task includes the inspection location range, inspection time, inspection time Target equipment and inspection items;
  • the inspection data acquisition module 802 is used to obtain the inspection data of the target device sent by the smart airport through the inspection of the drone equipment through the cloud management platform server, and the inspection data includes values, pictures and videos;
  • the inspection result determination module 803 is configured to analyze the inspection data of the target device through the cloud management platform server, and determine the inspection result of the target device.
  • the inspection result determination module is configured to analyze the inspection data of the target device through the cloud management platform server, and determine the inspection result of the target device, including:
  • the drone inspection management platform server receives the inspection data sent by the smart airport through the 4G DTU module/wired network/wireless WIFI, and sends it to the inspection data analysis platform server;
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the inspection result determination module is used to analyze the inspection data by the inspection data analysis platform server through the cloud management platform server to obtain the inspection result, including at least one of the following steps :
  • the infrared imaging area of the target device inspected by the infrared imager of the UAV equipment, the highest temperature value and the lowest temperature value in the infrared imaging area are identified through the neural network, and whether it is judged according to the highest temperature value and the lowest temperature value abnormal;
  • the embodiment of the present disclosure also provides a data center automatic inspection electronic device, because the electronic device is the electronic device in the method in the embodiment of the present disclosure, and the principle of the electronic device to solve the problem It is similar to the method, so the implementation of the electronic device can refer to the implementation of the method, and the repetition will not be repeated.
  • FIG. 9 An electronic device 90 according to this embodiment of the present disclosure is described below with reference to FIG. 9 .
  • the electronic device 90 shown in FIG. 9 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 90 may be in the form of a general-purpose computing device, for example, it may be a terminal device.
  • the components of the electronic device 90 may include, but are not limited to: the above-mentioned at least one processor 91, the above-mentioned at least one memory 92 storing processor-executable instructions, a bus 93 connecting different system components (including the memory 92 and the processor 91), the
  • the processor is the processor of the smart airport equipment.
  • the processor implements the following steps by running the executable instructions:
  • the inspection task send a control command to the UAV device to control the UAV device to perform inspection on the target device within the inspection location range according to the inspection item during the inspection time;
  • the inspection data includes the value, picture and video of the target device;
  • the inspection data of the target device is sent to the cloud management platform server, and the inspection data is analyzed by the cloud management platform server to obtain an inspection result.
  • the sending of control instructions to the UAV device according to the inspection task includes:
  • a waiting inspection instruction is sent to the UAV device, or when the weather condition for flight is met, a control instruction is sent to the UAV device.
  • the processor also executes:
  • the UAV device After the inspection of the UAV device is completed or after the UAV device detects that the power is less than the set power and returns, the UAV device is charged through the power supply and charging module.
  • the processor also executes:
  • the sending the inspection data of the target device to the cloud management platform server, and the cloud management platform server analyzes the inspection data to obtain the inspection result including:
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • Bus 93 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a processor, or a local bus using any of a variety of bus structures.
  • Memory 92 may include readable media in the form of volatile memory, such as random access memory (RAM) 921 and/or cache memory 922 , and may further include read only memory (ROM) 923 .
  • RAM random access memory
  • ROM read only memory
  • Memory 92 may also include a program/utility 925 having a set (at least one) of program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • Electronic device 90 may also communicate with one or more external devices 94 (e.g., keyboards, pointing devices, etc.), may also communicate with one or more devices that enable a user to interact with electronic device 90, and/or communicate with devices that enable electronic device 90 to Any device (eg, router, modem, etc.) capable of communicating with one or more other computing devices communicates. Such communication may occur through input/output (I/O) interface 95 .
  • the electronic device 90 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 96 . As shown, network adapter 96 communicates with other modules of electronic device 90 via bus 93 .
  • other hardware and/or software modules may be used in conjunction with electronic device 90, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • FIG. 10 An electronic device 100 according to this embodiment of the present disclosure is described below with reference to FIG. 10 .
  • the electronic device 100 shown in FIG. 10 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 100 may be in the form of a general computing device, for example, it may be a terminal device.
  • the components of the electronic device 100 may include, but are not limited to: the above-mentioned at least one processor 101, the above-mentioned at least one memory 102 storing processor-executable instructions, and the bus 103 connecting different system components (including the memory 102 and the processor 101), the
  • the processor is the processor of the drone device.
  • the processor implements the following steps by running the executable instructions:
  • the inspection time is controlled by the UAV flight control module, and the target equipment within the inspection location range is inspected according to the inspection items;
  • the inspection data obtained by the inspection is sent to the intelligent airport equipment, and the inspection data includes the value, pictures and videos of the target equipment.
  • the processor also executes:
  • Bus 103 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a processor, or a local bus using any of a variety of bus structures.
  • the memory 102 may include readable media in the form of volatile memory, such as random access memory (RAM) 1021 and/or cache memory 1022 , and may further include a read only memory (ROM) 1023 .
  • RAM random access memory
  • ROM read only memory
  • Memory 102 may also include programs/utilities 1025 having a set (at least one) of program modules 1024 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • programs/utilities 1025 having a set (at least one) of program modules 1024 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • the electronic device 100 can also communicate with one or more external devices 104 (such as keyboards, pointing devices, etc.), and can also communicate with one or more devices that enable the user to interact with the electronic device 100, and/or communicate with the electronic device 100. Any device (eg, router, modem, etc.) capable of communicating with one or more other computing devices communicates. Such communication may occur through input/output (I/O) interface 105 .
  • the electronic device 100 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 106. As shown, the network adapter 106 communicates with other modules of the electronic device 100 through the bus 103 .
  • other hardware and/or software modules may be used in conjunction with electronic device 100, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • FIG. 11 An electronic device 110 according to this embodiment of the present disclosure is described below with reference to FIG. 11 .
  • the electronic device 110 shown in FIG. 11 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 110 may be in the form of a general-purpose computing device, for example, it may be a terminal device.
  • the components of the electronic device 110 may include, but are not limited to: the above-mentioned at least one processor 111, the above-mentioned at least one memory 112 storing processor-executable instructions, and the bus 113 connecting different system components (including the memory 112 and the processor 111), the
  • the processor is a processor of the cloud management platform server.
  • the processor implements the following steps by running the executable instructions:
  • the corresponding inspection task is generated and sent to the smart airport equipment.
  • the inspection task includes the inspection location range, inspection time, inspection target equipment and inspection items;
  • the inspection data includes values, pictures and videos;
  • the inspection data of the target device is analyzed to determine the inspection result of the target device.
  • the parsing the inspection data of the target device to determine the inspection result of the target device includes:
  • the drone inspection management platform server receives the inspection data sent by the smart airport through the 4G DTU module/wired network/wireless WIFI, and sends it to the inspection data analysis platform server;
  • the inspection data analysis platform server analyzes the inspection data to obtain an inspection result, which is returned to the UAV inspection management platform server.
  • the analyzing the inspection data by the inspection data analysis platform server to obtain the inspection result includes at least one of the following steps:
  • the infrared imaging area of the target device inspected by the infrared imager of the UAV equipment, the highest temperature value and the lowest temperature value in the infrared imaging area are identified through the neural network, and whether it is judged according to the highest temperature value and the lowest temperature value abnormal;
  • Bus 113 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a processor, or a local bus using any of a variety of bus structures.
  • Memory 112 may include readable media in the form of volatile memory, such as random access memory (RAM) 1121 and/or cache memory 1122 , and may further include read only memory (ROM) 1123 .
  • RAM random access memory
  • ROM read only memory
  • Memory 112 may also include programs/utilities 1125 having a set (at least one) of program modules 1124 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • programs/utilities 1125 having a set (at least one) of program modules 1124 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which Each or some combination of the examples may include the implementation of a network environment.
  • Electronic device 110 may also communicate with one or more external devices 114 (e.g., keyboards, pointing devices, etc.), and may also communicate with one or 114 devices that allow a user to interact with electronic device 110, and/or communicate with devices that enable electronic device 110 to interact with electronic device 110. Any device (eg, router, modem, etc.) capable of communicating with one or more other computing devices communicates. Such communication may occur through input/output (I/O) interface 115 . Moreover, the electronic device 110 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 116 .
  • networks such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet
  • network adapter 116 communicates with other modules of electronic device 110 via bus 113 .
  • other hardware and/or software modules may be used in conjunction with electronic device 110, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code.
  • the program code is used to make the terminal device execute the above-mentioned
  • the steps of each module in the data center automatic inspection device described in the "Exemplary Method" section according to various exemplary embodiments of the present disclosure, for example, receive the inspection task issued by the cloud management platform server, and according to the inspection The task determines the inspection location range, inspection time, inspection target equipment and inspection items; according to the inspection task, send control instructions to the UAV device to control the UAV device during the inspection Time, inspect the target equipment within the scope of the inspection location according to the inspection items; obtain the inspection data of the target equipment sent by the drone device after the inspection is started, and the inspection data includes all The value, picture and video of the target device; send the inspection data of the target device to the cloud management platform server, and the cloud management platform server analyzes the inspection data to obtain the inspection result and other operations.
  • a program product may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • a readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a program product 120 for automatic inspection of a data center according to an embodiment of the present disclosure is described, which can adopt a portable compact disk read-only memory (CD-ROM) and include program codes, and can be used on a terminal devices, such as personal computers.
  • CD-ROM portable compact disk read-only memory
  • the program product of the present disclosure is not limited thereto.
  • a readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus or device.
  • a readable signal medium may include a data signal carrying readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including - but not limited to - electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any appropriate medium, including - but not limited to - wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming Language - such as "C" or similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or, alternatively, may be connected to an external computing device (e.g., using an Internet service Provider via Internet connection).
  • LAN local area network
  • WAN wide area network
  • an external computing device e.g., using an Internet service Provider via Internet connection.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising an instruction device, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

一种数据中心自动巡检方法、装置、电子设备(90,100,110)及介质,方法包括:接收云管理平台服务器下发的巡检任务,根据巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目(201);根据巡检任务,向无人机设备发送控制指令,以控制无人机设备在巡检时间,对巡检位置范围内的目标设备按照巡检项目进行巡检(202);获得无人机设备启动巡检后发送的目标设备的巡检数据,巡检数据包括目标设备的数值、图片和视频(203);向云管理平台服务器发送目标设备的巡检数据,由云管理平台服务器对巡检数据进行解析得到巡检结果(204)。实现了数据中心园区的无人机自动巡检,降低了人工巡检的安全风险。

Description

一种数据中心自动巡检方法、装置、设备及介质
本申请要求于2021年11月18日提交中国专利局、申请号为202111366952.1、发明名称为“一种数据中心自动巡检方法、装置、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及检测技术领域,尤其涉及一种数据中心自动巡检方法、装置、设备及介质。
背景技术
数据中心园区空调室外机、变压器、冷却塔等,是维持数据中心运行的重要基础设施,需要每天巡检以保持安全稳定运行。传统的人工巡检方式,维护人员需要爬到楼顶或冷却塔顶部,高空作业、电击伤害等给维护人员带来了巨大的安全风险,每年都有因高空作业或电击造成的人员伤亡事故。
因此,为了维护人员的生命安全,采用自动化的工具进行日常巡检已经逐渐成为一个必然的发展方向。
发明内容
本公开提供一种数据中心自动巡检方法、装置、设备及介质,实现了数据中心园区的无人机自动巡检,降低了人工巡检的安全风险。
根据本公开实施例的第一方面,提供一种数据中心自动巡检方法,应用于智能机场设备,该方法包括:
接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
在一种可能的实现方式中,所述根据所述巡检任务,向无人机设备发送控制指令,包括:
利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的官方气象数据;
对所述气象指标数据进行解析,确定满足飞行的气象条件时,向所述无人机设备发送控制指令;
确定不满足飞行的气息条件时,向所述无人机设备发送等待巡检指令,或者等待至满足飞行的气象条件时,向所述无人机设备发送控制指令。
在一种可能的实现方式中,所述方法还包括:
与所述无人机设备交互,检测到所述无人机设备巡检过程中电量小于设定电量时,向所述无人机设备发送充电指令,控制所述无人机设备返回并通过与供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或所述无人机设备检测到电量小于设定电量返回后,通过供电充电模块向所述无人机设备充电。
在一种可能的实现方式中,所述方法还包括:
确定机舱内的无人机设备需要出舱时,通过驱动装置控制舱门打开,松开无人机充电夹紧装置,待所述无人机设备飞出机舱;
确定所述无人机设备需要进舱时,通过驱动装置控制舱门打开,待所述无人机设备进入机舱后,夹紧无人机充电夹紧装置,通过驱动装置控制舱门关闭。
在一种可能的实现方式中,所述向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果,包括:
通过4G DTU模块/有线网络/无线WIFI向无人机巡检管理平台服务器发送所述目标设备的巡检数据;
由所述无人机巡检管理平台服务器将所述巡检数据发送给巡检数据 分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
根据本公开实施例的第二方面,提供一种数据中心自动巡检方法,应用于无人机设备,该方法包括:
接收智能机场设备的控制指令;
根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
在一种可能的实现方式中,所述方法还包括:
与所述智能机场设备交互,根据所述智能机场设备发送的充电指令,返回于供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或检测到电量小于设定电量后,返回于供电充电模块接触进行充电。
根据本公开实施例的第三方面,提供一种数据中心自动巡检方法,应用于云管理平台服务器,该方法包括:
根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
在一种可能的实现方式中,所述对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果,包括:
由无人机巡检管理平台服务器通过4G DTU/有线网络/无线WIFI模块接收智能机场发送的巡检数据,并发送到巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
在一种可能的实现方式中,所述由所述巡检数据分析平台服务器对 所述巡检数据进行解析得到巡检结果,包括如下至少一个步骤:
通过无人机设备的红外成像仪巡检的目标设备的红外成像区域,通过神经网络识别所述红外成像区域中的最高温度值及最低温度值,根据所述最高温度值及最低温度值判断是否异常;
通过无人机设备拍摄目标设备显著物理特征的图片或者视频,解析所述目标设备的物理状态,根据所述目标设备的物理状态判断是否异常。
根据本公开实施例的第四方面,提供一种数据中心自动巡检装置,该装置包括:
巡检任务接收模块,用于通过智能机场设备接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
控制指令发送模块,用于通过智能机场设备根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
巡检数据获得模块,用于通过智能机场设备获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
巡检结果获得模块,用于通过智能机场设备向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
根据本公开实施例的第五方面,提供一种数据中心自动巡检装置,该装置包括:
控制指令接收模块,用于通过无人机设备接收智能机场设备的控制指令;
巡检控制模块,用于通过无人机设备根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
巡检数据发送模块,用于通过无人机设备将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
根据本公开实施例的第六方面,提供一种数据中心自动巡检装置, 该装置包括:
巡检任务下发模块,用于通过云管理平台服务器根据巡检计划生成对应的巡检任务并下发给智能机场,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
巡检数据获得模块,用于通过云管理平台服务器获得智能机场发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
巡检结果确定模块,用于通过云管理平台服务器对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
根据本公开实施例的第七方面,提供一种数据中心自动巡检系统,该系统包括:
无人机设备,用于接收智能机场设备的控制指令;用于根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
智能机场设备,用于接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;用于向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
云管理平台服务器,用于根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;用于对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
根据本公开实施例的第八方面,提供一种电子设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器通过运行所述可执行指令以实现上述数据中心自动巡检方法的步骤。
根据本公开实施例的第九方面,提供一种计算机可读存储介质,其 上存储有计算机指令,该指令被处理器执行时实现上述数据中心自动巡检方法的步骤。
另外,第四方面至第九方面中任一种实现方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,或参见第二方面中不同实现方式所带来的技术效果,或参见第三方面中不同实现方式所带来的技术效果,此处不再赘述。
本公开的实施例提供的技术方案至少带来以下有益效果:
在数据中心园区内,本公开能够自动发送巡检任务、无人机自动执行巡检任务、巡检图片和视频自动回传、后台服务器自动分析获得巡检结果,实现了数据中心园区的无人机自动巡检,降低了人工巡检的安全风险。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的一种数据中心自动巡检系统的结构示意图;
图2是根据一示例性实施例示出的一种应用于智能机场设备的数据中心自动巡检方法的流程图;
图3是根据一示例性实施例示出的一种应用于无人机设备的数据中心自动巡检方法的流程图;
图4是根据一示例性实施例示出的一种应用于云管理平台服务器的数据中心自动巡检方法的流程图;
图5是根据一示例性实施例示出的一种数据中心自动巡检的流程图;
图6是根据一示例性实施例示出的一种数据中心自动巡检装置的模块结构示意图;
图7是根据一示例性实施例示出的一种数据中心自动巡检装置的模块结构示意图;
图8是根据一示例性实施例示出的一种数据中心自动巡检装置的模块结构示意图;
图9是根据一示例性实施例示出的一种数据中心自动巡检方法的电子设备示意图;
图10是根据一示例性实施例示出的一种数据中心自动巡检方法的电子设备示意图;
图11是根据一示例性实施例示出的一种数据中心自动巡检方法的电子设备示意图;
图12是根据一示例性实施例示出的一种数据中心自动巡检方法的程序产品示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
下面对文中出现的一些词语进行解释:
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例描述的应用场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着新应用场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。其中,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
现有技术中的巡检方法存在的问题如下:
维护人员需要每天巡检数据中心园区空调室外机、变压器、冷却塔等以保持安全稳定运行,维护人员需要爬到楼顶或冷却塔顶部进行巡检,高空作业、电击伤害等给维护人员带来了巨大的安全风险。
为了解决上述问题,本公开提供了一种数据中心自动巡检方法、装置、设备及介质,实现了数据中心园区的无人机自动巡检,降低人工巡检的安全风险。
实施例1
本公开实施例提供一种数据中心自动巡检系统,参考图1,其为根据一示例性实施例示出的一种数据中心自动巡检系统的结构示意图。本公开包括至少一个无人机设备10、智能机场设备11和云管理平台服务器12。
无人机设备10,用于接收智能机场设备的控制指令;用于根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
智能机场设备11,用于接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;用于向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
云管理平台服务器12,用于根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;用于对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
实施例2
下面通过具体的实施例对本公开提供的一种数据中心自动巡检方法进行说明,应用于智能机场设备,如图2所示,包括步骤201至步骤204。
在步骤201中,接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目。
具体的,上述巡检时间可以包括巡检开始时间、巡检时长,巡检的 目标设备可以为目标设备的设备标识,巡检位置范围可以用坐标范围表示,可以是目标设备所在的机楼,巡检项目可以包括设备是否开机、温度是否正常等。
在步骤202中,根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检。
具体的,除了所述控制指令外,还包括充电指令、等待巡检指令等。
在步骤203中,获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频。
具体的,所述巡检数据包括所述目标设备的图片和视频、巡检项目结果、巡检实际时长等。
在步骤204中,向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
本公开实施例实现了数据中心园区的无人机自动巡检,降低了人工巡检的安全风险。
如图1所示,智能机场设备包括无线接收模块、气象检测模块、供电充电模块、4G DTU(The 4th Generation Mobile Communication Technology Data Transmission Unit,第四代移动通信技术数据传输单元)模块、驱动装置和控制中心设备。
无线接收模块负责与无人机设备进行无线通信;气象检测模块负责监测实时气象条件,包括温湿度、风速、照度等气象条件;控制中心设备负责对云管理平台服务器下发指令的处理和对其他模块的管理;4G DTU模块/有线网络/无线WIFI负责与云管理平台服务器进行数据通讯。驱动装置负责根据无人机设备开关舱门。
向无人机设备发送控制指令,下面将对各种发送指令的情况进行阐述:
1)无人机设备在开始飞行时或者飞行过程中,通常会遇到不满足飞行的气象条件,本公开实施例在到达巡检开始时间时和无人机设备巡检过程中利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的气象指标数据;
对所述气象指标数据进行解析,确定满足飞行的气象条件时,向所 述无人机设备发送控制指令;
确定不满足飞行的气息条件时,向所述无人机设备发送等待巡检指令,或者等待至满足飞行的气象条件时,向所述无人机设备发送控制指令。
所述气象指标数据包括温湿度、风速、照度等。例如,到达巡检开始时间时,会通过气象检测模块的气象数据传感器监测风速,当风速大于或等于4级时,不满足飞行的气象条件,向所述无人机设备发送等待巡检指令。当风速小于4级时,满足飞行的气象条件,向所述无人机设备发送控制指令。
当无人机设备根据所述控制指令对所述目标设备完成巡检,获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,并向云管理平台服务器发送所述目标设备的巡检数据。
作为一种可选的实施方式,所述向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果,包括:
通过4G DTU模块/有线网络/无线WIFI向无人机巡检管理平台服务器发送所述目标设备的巡检数据;
由所述无人机巡检管理平台服务器将所述巡检数据发送给巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
4G DTU模块主要有四大核心功能:内部集成TCP/IP(Transmission Control Protocol/Internet Protocol Address,传输控制协议/互联网协议地址)协议栈,具备4G拨号上网以及TCP/IP数据通信的功能;提供串口数据双向转换功能,可以和各种使用串口通信的用户设备进行连接,且不需要对用户设备作改动;支持自动心跳,保持永久在线;支持参数配置,永久保存。目前主要应用在山洪/泄洪监控、工地扬尘监测系统、自动缴费查询终端,公交无线组网、工业控制领域等。
上述4G DTU模块与云管理平台服务器中的无人机巡检管理平台服务器进行数据通讯。
2)无人机设备在巡检过程中或巡检结束或在智能机场等待中,可能会出现电量不足的情况。因此与所述无人机设备交互,检测到所述无人机 设备巡检过程中电量小于设定电量时,向所述无人机设备发送充电指令,控制所述无人机设备返回并通过与供电充电模块接触进行充电;或者待所述无人机设备巡检结束后或所述无人机设备检测到电量小于设定电量返回后,通过供电充电模块向所述无人机设备充电。供电模块中包括无人机充电夹紧装置,在充电或充电完成时,无人机设备夹紧无人机充电夹紧装置。
无人机设备从智能机场设备出舱或进舱时,确定机舱内的无人机设备需要出舱时,通过驱动装置控制舱门打开,松开无人机充电夹紧装置,待所述无人机设备飞出机舱;
确定所述无人机设备需要进舱时,通过驱动装置控制舱门打开,待所述无人机设备进入机舱后,夹紧无人机充电夹紧装置,通过驱动装置控制舱门关闭。
下面通过具体的实施例对本公开提供的一种数据中心自动巡检方法进行说明,应用于无人机设备,如图3所示,包括步骤301至步骤303。
在步骤301中,接收智能机场设备的控制指令。
其中,可以接收本地或远程的控制指令。
在步骤302中,根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检。
具体的,巡检无人机可以根据GPS(Global Positioning System,全球定位系统)导航技术,在所述巡检时间到达目标设备进行巡检。
在步骤303中,将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
如图1所示,无人机设备包括无人机飞控模块、控制器、相机及控制模块、图传模块和动力及充电接口。
无人机飞控模块负责无人机设备飞行控制及平衡控制;控制器负责接收智能机场设备发送的指令,例如控制指令、等待巡检指令等;相机及控制模块负责对目标设备进行高清拍照、红外拍照、高清视频和红外视频;图传模块负责将巡检得到的巡检数据及无人机设备本身数据上传到云管理平台服务器;动力及充电接口负责无人机设备返回到智能机场设备后自动充电,补充电池能量以为下一次巡检准备。
无人机设备接收的指令除了控制指令还包括等待巡检指令、充电指 令。
当接收到控制指令时,使所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检,例如通过所携带红外成像仪巡检设备得到所述目标设备的红外拍照和红外视频,通过所携带的高清摄像设备得到所述目标设备的高清拍照和高清视频等。
当接收到等待巡检指令时,在智能机场设备内或数据中心园区内等待,直到接收到控制指令或充电指令时,才可巡检或返回。
当接收到充电指令时,与所述智能机场设备交互,根据所述智能机场设备发送的充电指令,返回于供电充电模块接触进行充电;或者待所述无人机设备巡检结束后或检测到电量小于设定电量后,返回于供电充电模块接触进行充电。
下面通过具体的实施例对本公开提供的一种数据中心自动巡检方法进行说明,应用于云管理平台服务器,如图4所示,包括步骤401至步骤403。
在步骤401中,根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目。
具体的,可以按月将客户实现制定的巡检计划生成对应的巡检任务。
在步骤402中,获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频。
在步骤403中,对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
如图1所示,云管理平台服务器包括无人机巡检管理平台服务器和巡检数据分析平台服务器。
无人机巡检管理平台服务器包括巡检规划模块、图片回传模块、视频回传模块、用户管理模块和任务调度模块。巡检规划模块根据客户的巡检计划生成对应的巡检任务,并将巡检任务下发给智能机场设备的控制中心设备;图片回传模块和视频回传模块接收巡检管理平台服务器回传的图片和视频;用户管理模块负责管理用户的个人信息;任务调度模块负责管理其他模块。
巡检数据分析平台服务器负责对巡检数据进行处理,对无人机设备 巡检回传的视频和照片进行图像识别和视频识别,将识别出的数据进行分析,判断设备运行是否正常,如果不正常触发告警判断。
由无人机巡检管理平台服务器通过4G DTU模块/有线网络/无线WIFI接收智能机场发送的巡检数据,并发送到巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
作为一种可选的实施方式,所述由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,包括如下至少一个步骤:
通过无人机设备的红外成像仪巡检的目标设备的红外成像区域,通过神经网络识别所述红外成像区域中的最高温度值及最低温度值,根据预先设定的阈值判断所述最高温度值及最低温度值是否异常;
通过无人机设备拍摄目标设备显著物理特征的图片或者视频,如冷却塔风机叶片转动特征,解析所述目标设备的物理状态,如上述通过叶片转动特征解析叶片风速,根据设备物理状态判断是否异常。
上述最高温度值及最低温度值和目标设备状态任意一个存在异常,则触发告警。
图5是根据一示例性实施例示出的一种数据中心自动巡检的流程图,如图5所示:
步骤501,云管理平台服务器获得客户的巡检计划;
步骤502,云管理平台服务器根据客户的巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
步骤503,智能机场设备接收云管理平台服务器发送的巡检任务;
步骤504,当到达巡检时间时,利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的气象指标数据,判断是否满足飞行的气象条件,若满足,则执行步骤505-513,若不满足,则向无人机设备发送等待巡检指令,直到满足飞行条件为止;
步骤505,智能机场设备向无人机设备发送控制指令;
步骤506,无人机设备接收智能机场设备发送的控制指令,并根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置 范围内的目标设备按照巡检项目进行巡检,在巡检过程中智能机场设备也实时监测气象指标数据;
步骤507,无人机设备向智能机场设备发送巡检得到的巡检数据,所述巡检数据包括所述目标设备的图片和视频、巡检项目结果、巡检实际时长等;
步骤508,智能机场设备向云管理平台服务器中的无人机巡检管理平台服务器发送所述巡检数据;
步骤509,无人机巡检管理平台服务器向云管理平台服务器中的巡检数据分析平台服务器发送所述巡检数据;
步骤510,巡检数据分析平台服务器对所述巡检数据进行解析,得到巡检结果;
步骤511,巡检数据分析平台服务器向无人机巡检管理平台服务器返回所述巡检结果;
步骤512,无人机巡检管理平台服务器根据所述巡检结果,确定所述目标设备是否存在异常,若存在异常,则存在告警,执行步骤513-514,若不存在,执行步骤514;
步骤513,云管理平台服务器输出报警清单;
步骤514,云管理平台服务器输出巡检报表。
实施例3
基于相同的发明构思,本公开实施例还提供一种数据中心自动巡检装置,由于该装置即是本公开实施例中的方法中的装置,并且该装置解决问题的原理与该方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图6所示,上述装置包括以下模块:
巡检任务接收模块601,用于通过智能机场设备接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
控制指令发送模块602,用于通过智能机场设备根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
巡检数据获得模块603,用于通过智能机场设备获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
巡检结果获得模块604,用于通过智能机场设备向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
作为一种可选的实施方式,所述控制指令发送模块用于根据所述巡检任务,向无人机设备发送控制指令,包括:
利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的气象指标数据;
对所述气象指标数据进行解析,确定满足飞行的气象条件时,向所述无人机设备发送控制指令;
确定不满足飞行的气息条件时,向所述无人机设备发送等待巡检指令,或者等待至满足飞行的气象条件时,向所述无人机设备发送控制指令。
作为一种可选的实施方式,所述装置还包括:
电量检测模块,用于通过智能机场设备与所述无人机设备交互,检测到所述无人机设备巡检过程中电量小于设定电量时,向所述无人机设备发送充电指令,控制所述无人机设备返回并通过与供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或所述无人机设备检测到电量小于设定电量返回后,通过供电充电模块向所述无人机设备充电。
作为一种可选的实施方式,所述装置还包括:
无人机出舱确定模块,用于通过智能机场设备确定机舱内的无人机设备需要出舱时,通过驱动装置控制舱门打开,松开无人机充电夹紧装置,待所述无人机设备飞出机舱;
无人机进舱确定模块,用于通过智能机场设备确定所述无人机设备需要进舱时,通过驱动装置控制舱门打开,夹紧无人机充电夹紧装置,待所述无人机设备进入机舱后,通过驱动装置控制舱门关闭。
作为一种可选的实施方式,所述巡检结果获得模块用于通过智能机场设备向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果,包括:
通过4G DTU模块/有线网络/无线WIFI向无人机巡检管理平台服务器发送所述目标设备的巡检数据;
由所述无人机巡检管理平台服务器将所述巡检数据发送给巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
本公开实施例还提供一种数据中心自动巡检装置,如图7所示,上述装置包括以下模块:
控制指令接收模块701,用于通过无人机设备接收智能机场设备的控制指令;
巡检控制模块702,用于通过无人机设备根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
巡检数据发送模块703,用于通过无人机设备将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
作为一种可选的实施方式,所述装置还包括:
无人机充电模块,用于通过无人机设备与所述智能机场设备交互,根据所述智能机场设备发送的充电指令,返回于供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或检测到电量小于设定电量后,返回于供电充电模块接触进行充电。
本公开实施例还提供一种数据中心无人机自动巡检装置,如图8所示,上述装置包括以下模块:
巡检任务下发模块801,用于通过云管理平台服务器根据巡检计划生成对应的巡检任务并下发给智能机场,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
巡检数据获得模块802,用于通过云管理平台服务器获得智能机场发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
巡检结果确定模块803,用于通过云管理平台服务器对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
作为一种可选的实施方式,所述巡检结果确定模块用于通过云管理平台服务器对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果,包括:
由无人机巡检管理平台服务器通过4G DTU模块/有线网络/无线WIFI接收智能机场发送的巡检数据,并发送到巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
作为一种可选的实施方式,所述巡检结果确定模块用于通过云管理平台服务器由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,包括如下至少一个步骤:
通过无人机设备的红外成像仪巡检的目标设备的红外成像区域,通过神经网络识别所述红外成像区域中的最高温度值及最低温度值,根据所述最高温度值及最低温度值判断是否异常;
通过无人机设备拍摄目标设备显著物理特征的图片或者视频,解析所述目标设备的物理状态,根据所述目标设备的物理状态判断是否异常。
实施例4
基于相同的发明构思,本公开实施例中还提供了一种数据中心自动巡检电子设备,由于该电子设备即是本公开实施例中的方法中的电子设备,并且该电子设备解决问题的原理与该方法相似,因此该电子设备的实施可以参见方法的实施,重复之处不再赘述。
下面参照图9来描述根据本公开的这种实施方式的电子设备90。图9显示的电子设备90仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图9所示,电子设备90可以以通用计算设备的形式表现,例如其可以为终端设备。电子设备90的组件可以包括但不限于:上述至少一个处理器91、上述至少一个存储处理器可执行指令的存储器92、连接不同系统组件(包括存储器92和处理器91)的总线93,所述处理器是智能机场设备的处理器。
所述处理器通过运行所述可执行指令以实现如下步骤:
接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
作为一种可选的实施方式,所述根据所述巡检任务,向无人机设备发送控制指令,包括:
利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的气象指标数据;
对所述气象指标数据进行解析,确定满足飞行的气象条件时,向所述无人机设备发送控制指令;
确定不满足飞行的气息条件时,向所述无人机设备发送等待巡检指令,或者等待至满足飞行的气象条件时,向所述无人机设备发送控制指令。
作为一种可选的实施方式,所述处理器还执行:
与所述无人机设备交互,检测到所述无人机设备巡检过程中电量小于设定电量时,向所述无人机设备发送充电指令,控制所述无人机设备返回并通过与供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或所述无人机设备检测到电量小于设定电量返回后,通过供电充电模块向所述无人机设备充电。
作为一种可选的实施方式,所述处理器还执行:
确定机舱内的无人机设备需要出舱时,通过驱动装置控制舱门打开,松开无人机充电夹紧装置,待所述无人机设备飞出机舱;
确定所述无人机设备需要进舱时,夹紧无人机充电夹紧装置,通过驱动装置控制舱门打开,待所述无人机设备进入机舱后,通过驱动装置控制舱门关闭。
作为一种可选的实施方式,所述向云管理平台服务器发送所述目标 设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果,包括:
通过4G DTU模块/有线网络/无线WIFI向无人机巡检管理平台服务器发送所述目标设备的巡检数据;
由所述无人机巡检管理平台服务器将所述巡检数据发送给巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
总线93表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器92可以包括易失性存储器形式的可读介质,例如随机存取存储器(RAM)921和/或高速缓存存储器922,还可以进一步包括只读存储器(ROM)923。
存储器92还可以包括具有一组(至少一个)程序模块924的程序/实用工具925,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
电子设备90也可以与一个或多个外部设备94(例如键盘、指向设备等)通信,还可与一个或者多个使得用户能与电子设备90交互的设备通信,和/或与使得电子设备90能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口95进行。并且,电子设备90还可以通过网络适配器96与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器96通过总线93与电子设备90的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备90使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
下面参照图10来描述根据本公开的这种实施方式的电子设备100。图10显示的电子设备100仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图10所示,电子设备100可以以通用计算设备的形式表现,例如其可以为终端设备。电子设备100的组件可以包括但不限于:上述至少一个处理器101、上述至少一个存储处理器可执行指令的存储器102、连接不同系统组件(包括存储器102和处理器101)的总线103,所述处理器是无人机设备的处理器。
所述处理器通过运行所述可执行指令以实现如下步骤:
接收智能机场设备的控制指令;
根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
作为一种可选的实施方式,所述处理器还执行:
与所述智能机场设备交互,根据所述智能机场设备发送的充电指令,返回于供电充电模块接触进行充电;或者
待所述无人机设备巡检结束后或检测到电量小于设定电量后,返回于供电充电模块接触进行充电。
总线103表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器102可以包括易失性存储器形式的可读介质,例如随机存取存储器(RAM)1021和/或高速缓存存储器1022,还可以进一步包括只读存储器(ROM)1023。
存储器102还可以包括具有一组(至少一个)程序模块1024的程序/实用工具1025,这样的程序模块1024包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
电子设备100也可以与一个或多个外部设备104(例如键盘、指向设备等)通信,还可与一个或者多个使得用户能与电子设备100交互的设备通信,和/或与使得电子设备100能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口105进行。并且,电子设备100还可以通过网络适 配器106与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器106通过总线103与电子设备100的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备100使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
下面参照图11来描述根据本公开的这种实施方式的电子设备110。图11显示的电子设备110仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图11所示,电子设备110可以以通用计算设备的形式表现,例如其可以为终端设备。电子设备110的组件可以包括但不限于:上述至少一个处理器111、上述至少一个存储处理器可执行指令的存储器112、连接不同系统组件(包括存储器112和处理器111)的总线113,所述处理器是云管理平台服务器的处理器。
所述处理器通过运行所述可执行指令以实现如下步骤:
根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
作为一种可选的实施方式,所述对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果,包括:
由无人机巡检管理平台服务器通过4G DTU模块/有线网络/无线WIFI接收智能机场发送的巡检数据,并发送到巡检数据分析平台服务器;
由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
作为一种可选的实施方式,所述由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,包括如下至少一个步骤:
通过无人机设备的红外成像仪巡检的目标设备的红外成像区域,通过神经网络识别所述红外成像区域中的最高温度值及最低温度值,根据所 述最高温度值及最低温度值判断是否异常;
通过无人机设备拍摄目标设备显著物理特征的图片或者视频,解析所述目标设备的物理状态,根据所述目标设备的物理状态判断是否异常。
总线113表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器112可以包括易失性存储器形式的可读介质,例如随机存取存储器(RAM)1121和/或高速缓存存储器1122,还可以进一步包括只读存储器(ROM)1123。
存储器112还可以包括具有一组(至少一个)程序模块1124的程序/实用工具1125,这样的程序模块1124包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
电子设备110也可以与一个或多个外部设备114(例如键盘、指向设备等)通信,还可与一个或者114个使得用户能与电子设备110交互的设备通信,和/或与使得电子设备110能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口115进行。并且,电子设备110还可以通过网络适配器116与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器116通过总线113与电子设备110的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备110使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
实施例5
在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的数据中心自动巡检装置中各模块的步骤,例如,接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对 所述巡检位置范围内的目标设备按照巡检项目进行巡检;获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果等操作。
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
如图12所示,描述了根据本公开的实施方式的用于数据中心自动巡检的程序产品120,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。 在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了系统的若干模块或子模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块的特征和功能可以在一个模块中具体化。反之,上文描述的一个模块的特征和功能可以进一步划分为由多个模块来具体化。
此外,尽管在附图中以特定顺序描述了本公开系统各模块的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些操作,将多个操作合并为一个操作执行,和/或将一个操作分解为多个操作执行。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的设备。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令设备的制造品,该指令设备实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种数据中心自动巡检方法,其特征在于,应用于智能机场设备,该方法包括:
    接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
    根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
    获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
    向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述巡检任务,向无人机设备发送控制指令,包括:
    利用气象检测模块的气象数据传感器监测气象指标数据,同时接收互联网的气象指标数据;
    对所述气象指标数据进行解析,确定满足飞行的气象条件时,向所述无人机设备发送控制指令;
    确定不满足飞行的气息条件时,向所述无人机设备发送等待巡检指令,或者等待至满足飞行的气象条件时,向所述无人机设备发送控制指令。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    与所述无人机设备交互,检测到所述无人机设备巡检过程中电量小于设定电量时,向所述无人机设备发送充电指令,控制所述无人机设备返回并通过与供电充电模块接触进行充电;或者
    待所述无人机设备巡检结束后或所述无人机设备检测到电量小于设定电量返回后,通过供电充电模块向所述无人机设备充电。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定机舱内的无人机设备需要出舱时,通过驱动装置控制舱门打开,松开无人机充电夹紧装置,待所述无人机设备飞出机舱;
    确定所述无人机设备需要进舱时,通过驱动装置控制舱门打开,待所述无人机设备进入机舱后,夹紧无人机充电夹紧装置,通过驱动装置控制舱门关闭。
  5. 根据权利要求1所述的方法,其特征在于,所述向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果,包括:
    通过4G DTU模块/有线网络/无线WIFI向无人机巡检管理平台服务器发送所述目标设备的巡检数据;
    由所述无人机巡检管理平台服务器将所述巡检数据发送给巡检数据分析平台服务器;
    由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
  6. 一种数据中心自动巡检方法,其特征在于,应用于无人机设备,该方法包括:
    接收智能机场设备的控制指令;
    根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
    将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    与所述智能机场设备交互,根据所述智能机场设备发送的充电指令,返回于供电充电模块接触进行充电;或者
    待所述无人机设备巡检结束后或检测到电量小于设定电量后,返回于供电充电模块接触进行充电。
  8. 一种数据中心自动巡检方法,其特征在于,应用于云管理平台服务器,该方法包括:
    根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
    获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
    对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
  9. 根据权利要求8所述的方法,其特征在于,所述对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果,包括:
    由无人机巡检管理平台服务器通过4G DTU模块/有线网络/无线WIFI接收智能机场发送的巡检数据,并发送到巡检数据分析平台服务器;
    由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,返回所述无人机巡检管理平台服务器。
  10. 根据权利要求9所述的方法,其特征在于,所述由所述巡检数据分析平台服务器对所述巡检数据进行解析得到巡检结果,包括如下至少一个步骤:
    通过无人机设备的红外成像仪巡检的目标设备的红外成像区域,通过神经网络识别所述红外成像区域中的最高温度值及最低温度值,根据所述最高温度值及最低温度值判断是否异常;
    通过无人机设备拍摄目标设备显著物理特征的图片或者视频,解析所 述目标设备的物理状态,根据所述目标设备的物理状态判断是否异常。
  11. 一种数据中心自动巡检装置,其特征在于,所述装置包括:
    巡检任务接收模块,用于通过智能机场设备接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
    控制指令发送模块,用于通过智能机场设备根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
    巡检数据获得模块,用于通过智能机场设备获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;
    巡检结果获得模块,用于通过智能机场设备向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果。
  12. 一种数据中心自动巡检装置,其特征在于,所述装置包括:
    控制指令接收模块,用于通过无人机设备接收智能机场设备的控制指令;
    巡检控制模块,用于通过无人机设备根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;
    巡检数据发送模块,用于通过无人机设备将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频。
  13. 一种数据中心自动巡检装置,其特征在于,所述装置包括:
    巡检任务下发模块,用于通过云管理平台服务器根据巡检计划生成对 应的巡检任务并下发给智能机场,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;
    巡检数据获得模块,用于通过云管理平台服务器获得智能机场发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;
    巡检结果确定模块,用于通过云管理平台服务器对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
  14. 一种数据中心自动巡检系统,其特征在于,所述系统包括:
    无人机设备,用于接收智能机场设备的控制指令;用于根据所述控制指令通过无人机飞控模块控制在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于将巡检得到的巡检数据,发送给所述智能机场设备,所述巡检数据包括所述目标设备的数值、图片和视频;
    智能机场设备,用于接收云管理平台服务器下发的巡检任务,根据所述巡检任务确定巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于根据所述巡检任务,向无人机设备发送控制指令,以控制所述无人机设备在所述巡检时间,对所述巡检位置范围内的目标设备按照巡检项目进行巡检;用于获得所述无人机设备启动巡检后发送的所述目标设备的巡检数据,所述巡检数据包括所述目标设备的数值、图片和视频;用于向云管理平台服务器发送所述目标设备的巡检数据,由所述云管理平台服务器对所述巡检数据进行解析得到巡检结果;
    云管理平台服务器,用于根据巡检计划生成对应的巡检任务并下发给智能机场设备,所述巡检任务包括巡检位置范围、巡检时间、巡检的目标设备及巡检项目;用于获得智能机场设备发送的通过无人机设备巡检获得的所述目标设备的巡检数据,所述巡检数据包括数值、图片和视频;用于对所述目标设备的巡检数据进行解析,确定所述目标设备的巡检结果。
  15. 一种电子设备,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器通过运行所述可执行指令以实现权利要求1至5任一项所述方法的步骤,或实现权利要求6至7任一项所述方法的步骤,或实现权利要求8至10任一项所述方法的步骤。
  16. 一种计算机可读写存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1至5任一项所述方法的步骤,或实现权利要求6至7任一项所述方法的步骤,或实现权利要求8至10任一项所述方法的步骤。
PCT/CN2022/084247 2021-11-18 2022-03-31 一种数据中心自动巡检方法、装置、设备及介质 WO2023087599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111366952.1 2021-11-18
CN202111366952.1A CN116136613A (zh) 2021-11-18 2021-11-18 一种数据中心自动巡检方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023087599A1 true WO2023087599A1 (zh) 2023-05-25

Family

ID=86334171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084247 WO2023087599A1 (zh) 2021-11-18 2022-03-31 一种数据中心自动巡检方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN116136613A (zh)
WO (1) WO2023087599A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116700357A (zh) * 2023-08-07 2023-09-05 国网安徽省电力有限公司合肥供电公司 一种架空输电线路无人机编队智能巡检方法
CN117010601A (zh) * 2023-09-28 2023-11-07 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117284526A (zh) * 2023-11-25 2023-12-26 陕西德鑫智能科技有限公司 一种基于电池检测的无人装置自动换电管理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504362A (zh) * 2016-10-18 2017-03-15 国网湖北省电力公司检修公司 基于无人机的输变电系统巡检方法
CN109840600A (zh) * 2018-12-29 2019-06-04 天津大学 Bim辅助的供水渠道无人机在线协同巡检系统
US20190212741A1 (en) * 2016-09-21 2019-07-11 Korea Electric Power Corporation Transmission line electromagnetic field and instantaneous inspection image acquisition device and method
CN211628088U (zh) * 2020-01-22 2020-10-02 中铝智能(杭州)安全科学研究院有限公司 库区自动巡检无人机系统
CN112230680A (zh) * 2020-10-29 2021-01-15 国网河南省电力公司济源供电公司 一种无人机电力线路巡检控制方法
CN113077561A (zh) * 2021-03-29 2021-07-06 北京智盟信通科技有限公司 一种无人机智能巡检系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190212741A1 (en) * 2016-09-21 2019-07-11 Korea Electric Power Corporation Transmission line electromagnetic field and instantaneous inspection image acquisition device and method
CN106504362A (zh) * 2016-10-18 2017-03-15 国网湖北省电力公司检修公司 基于无人机的输变电系统巡检方法
CN109840600A (zh) * 2018-12-29 2019-06-04 天津大学 Bim辅助的供水渠道无人机在线协同巡检系统
CN211628088U (zh) * 2020-01-22 2020-10-02 中铝智能(杭州)安全科学研究院有限公司 库区自动巡检无人机系统
CN112230680A (zh) * 2020-10-29 2021-01-15 国网河南省电力公司济源供电公司 一种无人机电力线路巡检控制方法
CN113077561A (zh) * 2021-03-29 2021-07-06 北京智盟信通科技有限公司 一种无人机智能巡检系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116700357A (zh) * 2023-08-07 2023-09-05 国网安徽省电力有限公司合肥供电公司 一种架空输电线路无人机编队智能巡检方法
CN116700357B (zh) * 2023-08-07 2023-12-22 国网安徽省电力有限公司合肥供电公司 一种架空输电线路无人机编队智能巡检方法
CN117010601A (zh) * 2023-09-28 2023-11-07 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117010601B (zh) * 2023-09-28 2024-01-19 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117284526A (zh) * 2023-11-25 2023-12-26 陕西德鑫智能科技有限公司 一种基于电池检测的无人装置自动换电管理方法及装置
CN117284526B (zh) * 2023-11-25 2024-03-22 陕西德鑫智能科技有限公司 一种基于电池检测的无人装置自动换电管理方法及装置

Also Published As

Publication number Publication date
CN116136613A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2023087599A1 (zh) 一种数据中心自动巡检方法、装置、设备及介质
CN105511495B (zh) 电力线路无人机智能巡检控制方法和系统
US11275376B2 (en) Large scale unmanned monitoring device assessment of utility system components
US10909859B1 (en) Optimized deployment of remotely operated aerial vehicle resources from a fleet to satisfy requests for remotely operated aerial vehicle resources
CN108510183A (zh) 一种基于无人机的电力巡检系统
CN112506214B (zh) 一种无人机自主风机巡检系统的作业流程
CN109426206A (zh) 一种实验室环境管理系统、设备和方法
CN112346476B (zh) 一种无人机自动巡检系统及方法
CN110880209A (zh) 一种小区待办事项推送的方法及计算机存储介质
CN208207896U (zh) 一种用于充电站的智能运维系统
CN112184944A (zh) 一种基于bim模型定位与无人机航拍的工地安全检查系统
CN115442532A (zh) 风机不停机巡检的方法、系统、设备及存储介质
CN111935445A (zh) 一种信息化机场管理平台用视频监控系统及其使用方法
CN109470712A (zh) 一种风电叶片检测系统
CN112947576A (zh) 无人机巡查方法、装置、系统及计算机可读存储介质
CN204740446U (zh) 智能楼宇联动监控装置
CN113687661B (zh) 无人值守变电站数据自动分析管理方法、装置及系统
CN116931596A (zh) 一种飞行程序自动编排的无人机飞行系统
CN114610050A (zh) 电力系统的巡检方法、装置、电子设备及存储介质
WO2023045084A1 (zh) 地铁站设备控制方法、装置、电子设备及存储介质
CN115016541A (zh) 一种巡视路径优化方法、装置、电子设备及存储介质
CN114020007A (zh) 无人机与无人车组队巡逻方法、系统、装置及存储介质
CN207458275U (zh) 一种基于光纤传输的架空输电线路山火监测预报警系统
CN112769913A (zh) 微环境就地监控系统及电气箱柜微环境监控系统
CN109523219A (zh) 一种利用无人机在施工项目中的材料管理优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894145

Country of ref document: EP

Kind code of ref document: A1