WO2023087577A1 - 一种纳米刀具涂层及其制备方法 - Google Patents

一种纳米刀具涂层及其制备方法 Download PDF

Info

Publication number
WO2023087577A1
WO2023087577A1 PCT/CN2022/079763 CN2022079763W WO2023087577A1 WO 2023087577 A1 WO2023087577 A1 WO 2023087577A1 CN 2022079763 W CN2022079763 W CN 2022079763W WO 2023087577 A1 WO2023087577 A1 WO 2023087577A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
layer
nano
tao
target
Prior art date
Application number
PCT/CN2022/079763
Other languages
English (en)
French (fr)
Inventor
张克栋
刘亚运
刘同舜
郭旭红
王呈栋
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023087577A1 publication Critical patent/WO2023087577A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Definitions

  • the invention relates to the technical field of coatings, in particular to a nano-tool coating and a preparation method thereof.
  • the laminated structure composed of carbon fiber reinforced resin matrix composites (CFRP) and titanium alloy materials has high specific strength and specific modulus. This structure is often made into key load-bearing components of aerospace vehicles through bolted connections. In order to improve the position accuracy and assembly quality of the assembly holes of the laminated structure, the laminated components must be clamped once and processed in one piece, which makes the high-efficiency and low-damage integrated hole-making technology of CFRP/titanium alloy laminated components become the field of aviation manufacturing. research hotspot.
  • CFRP/titanium alloy laminated components become the field of aviation manufacturing. research hotspot.
  • PVD physical vapor deposition
  • TiAlN-based coating tools are currently commonly used tools for cutting titanium alloys and CFRP.
  • CFRP/titanium alloy laminates integrate the properties of the two materials, and the coated tool undergoes a multi-component cutting process with large performance differences during processing (the low thermal conductivity and high chemical activity of titanium alloy promote the bonding of the tool; CFRP's high-strength carbon fiber aggravates tool coating wear and peeling), coupled with the inability to use cutting fluid (CFRP is very easy to absorb liquid expansion), lack of lubrication and cooling, resulting in increased coating wear, seriously affecting processing efficiency and quality. Therefore, when processing laminated components, the coating must have mechanical properties such as high bonding strength, high thermal stability, high hardness, and high toughness, as well as self-lubricating and affinity-reducing functions.
  • Nano-multilayering is to design a multi-layer structure through multi-layer growth, and use the influence of interface effects, interlayer coupling effects, and size effects to significantly improve the mechanical properties of the coating.
  • the hardness of the coating can reach up to 49.2GPa, but the film-substrate bonding force is reduced by about 21.3%.
  • Functional compounding refers to the method of compounding the mechanical layer with the functional layer or function to improve the comprehensive performance of the coating.
  • the research on the lubricity of the coating mainly uses materials with low friction coefficients such as carbon and sulfide as the functional layer to be combined with the mechanical layer, so as to improve the lubricating performance of the coating.
  • compounding the amorphous carbon layer on the surface of the TiAlTaN coating reduces the friction coefficient of the coating from 0.66 to 0.25.
  • the thermal stability of carbon-based coatings is poor, and the graphitization transformation is serious at 400 °C; in addition, the functional layers are all coated on the surface of mechanical coatings, and the wear rate is fast, which cannot achieve long-term self-lubrication and affinity reduction effects.
  • the WS 2 lubricating phase is evenly embedded in the TiAlTaN mechanical coating. Under the premise of ensuring the hardness of the coating (25GPa), the friction coefficient is reduced from 1.02 to 0.37, and the long-term self-lubricating effect is preliminarily realized.
  • this diversified functional composite coating has the problems of large internal stress and low film-base binding force.
  • the technical problem to be solved by the present invention is to overcome the problems of competition and cooperation in the prior art in the improvement of coating adhesion, hardness, toughness, thermal stability and other properties.
  • the present invention provides a nano-knife coating and a preparation method thereof.
  • the microstructure of the coating is regulated by combining the gradient diversification of the coating composition and the nano-multilayer growth method, and the microstructure of the coating is regulated through the hybrid structure design of "composition gradient + multi-layer growth + functional compounding", and the introduction of nano
  • the corrugated geometric structure enhances the bonding strength of the coating to realize the multi-index collaborative optimization of the tool coating's bonding force, hardness, toughness and other mechanical properties as well as long-term self-lubrication and affinity reduction functions.
  • the shell of Chrysomallon squamiferum shows a high degree of order through the orderly assembly of micro/nanoscale, which can meet various performance requirements in complex and extremely high-pressure environments, such as toughness, wear resistance, and peeling resistance. , Resistance to dynamic impact, etc.
  • the microstructure of the shell of C. squamiferum exhibits a three-layer composite structure of "hard (rigid)-tough (flexible)-hard (rigid)" composed of organic-inorganic nanocomposite layers. Each layer has different functions and synergistic strengthening, such as Figure 1 shows. Driven by performance requirements, there is a clear functional gradient between the layers of the shell structure of C.
  • squamiferum which can promote load transfer and stress redistribution, prevent crack propagation, and increase fracture toughness.
  • nano-corrugated geometric structures are distributed between each layer, and the corrugated connection can cause non-uniform stress distribution at the interface and energy dissipation through interface delamination to improve adhesion.
  • the multi-scale bionic structure design of tool coating is carried out in imitation of the shell microstructure of the deep-sea scale-horned gastropod snail (Chrysomallon squamiferum), that is, the micron-scale three-layer function is formed by sputtering target particle gradient growth, layer growth, and co-growth Gradient coating, and introduce a nanoscale corrugated structure between the interfaces of each layer to regulate the bonding strength between layers, so that the tool coating as a whole presents a "hard-tough-hard” three-layer composite structure, achieving mechanical properties and long-term self-lubricating, light-reducing Affinity function multi-index collaborative optimization.
  • the first object of the present invention is to provide a nano-tool coating, the coating is arranged on the surface of the tool base, the coating includes a transition layer, a support layer, an interface layer and a functional layer deposited sequentially on the surface of the tool base Top layer;
  • the transition layer is a Ti transition layer;
  • the support layer is a TiAlTaN gradient coating;
  • the interface layer is a WS 2 /TaO nanometer multilayer coating;
  • the functional top layer is a TiAlN/WS 2 /TaO composite coating ;
  • Between the support layer and the interface layer, between the interface layer and the functional top layer are connected by a nano-corrugated structure.
  • the nano-tool coating of the present invention faces the Ti/CFRP laminated component (composed of titanium alloy and carbon brazing fiber composite material), and the bonding between the titanium alloy and the TaO material is not easy to occur, and the WS 2 material has good lubricating properties at the same time. Therefore, WS 2 /TaO and TiAlN/WS 2 /TaO are selected for the distribution of the interface layer and the functional top layer.
  • the support layer TiAlTaN contains Ta element, which has a better match with the TaO material in the interface layer.
  • the thickness of the supporting layer, the interface layer and the functional top layer are all 1-2 ⁇ m.
  • the total thickness of the nano-knife coating is not more than 10 ⁇ m, if it is too thick, the bonding strength of the coating will be reduced.
  • the WS2 /TaO nanometer multilayer coating is a multilayer structure formed alternately by WS2 layers and TaO layers, the thickness of the WS2 layer is 55-65nm; the thickness of the TaO layer is 70-85nm , the total number of layers is 10-30 layers.
  • the nano-corrugated structure has a depth of 5-20 nm, a width of 20-150 nm, and a corrugation pitch of 150-300 nm.
  • the tool base is high speed steel, cemented carbide or ceramics.
  • the second object of the present invention is to provide a kind of preparation method of said nano-knife coating, comprising the following steps,
  • step S2 Under a nitrogen atmosphere, using a TiAl alloy target and a Ta target, deposit a TiAlTaN gradient coating on the surface of the transition layer described in step S1 by magnetron sputtering, and process a nano-ripple structure on the surface of the TiAlTaN gradient coating by using femtosecond laser technology, get the support layer;
  • step S3 Under oxygen atmosphere, use WS2 target and Ta target to deposit WS2 /TaO nanometer multilayer coating alternately and circularly on the surface of the support layer described in step S2 by magnetron sputtering, and use femtosecond laser technology to deposit WS2 /TaO
  • the nano-ripple structure is processed on the surface of the nano-multilayer coating to obtain an interface layer;
  • step S4 Under a nitrogen atmosphere, use a TiAl alloy target, a WS2 target and a TaO target to deposit a TiAlN/ WS2 /TaO composite coating on the surface of the interface layer described in step S3 by co-deposition by magnetron sputtering to obtain a functional top layer , the functional top layer forms the nano-knife coating together with the transition layer, support layer and interface layer.
  • the purity of the target material is above 99.99%.
  • the amount of target material is controlled by parameters such as target power and sputtering time, and is finally reflected in the thickness of the coating.
  • the atomic ratio of Ti and Al in the TiAl alloy target is 50:45-55.
  • the pretreatment is to grind, polish or ultrasonically clean the substrate surface;
  • the cleaning solvent is water and/or an organic solvent;
  • the organic solvent is ethanol and / or acetone.
  • step S2 the sputtering power of the TiAl alloy target remains unchanged during the deposition process, and the sputtering power of the Ta target continues to increase; the sputtering power of the TiAl alloy target is 850-950W, The power of the Ta target is 8-200W.
  • the laser pulse energy of the femtosecond laser technology is 0.5-2 ⁇ J
  • the laser frequency is 500-1000 Hz
  • the laser scanning speed is 100-1000 ⁇ m/s.
  • the heating temperature of the sample stage is 350-450° C., and the degree of vacuum is 6.0 ⁇ 10 -3 -8.0 ⁇ 10 -3 Pa; the gas for the magnetron sputtering is argon, The total air pressure is 0.4-0.6Pa.
  • the nano tool coating of the present invention adopts the TiAlTaN gradient layer with high hardness, low residual stress and high bonding strength, which can play the role of supporting interface layer and functional top layer, and can reduce radial displacement, strengthen coating
  • the overall bending/fatigue resistance of the layer the WS 2 /TaO nano-multilayer structure with high toughness, crack propagation resistance and low coating internal stress can provide inelastic energy dissipation and slow down the inelastic deformation of the support layer and the functional top layer, And deflect the direction of micro-crack propagation in the support layer and the functional top layer to consume part of the fracture energy and reduce the stress intensity factor of the crack tip;
  • the TiAlN/WS 2 /TaO composite layer with self-lubricating/affinity-reducing functions mainly plays a self-lubricating and It has the function of reducing affinity and can play a thermal protection function to reduce the thermal stress on the interface layer and support layer.
  • the TiAlTaN gradient layer contains Ta element, which
  • the nano-knife coating of the present invention utilizes the nano-ripple structure prepared by femtosecond laser between the layers, which can enhance the mechanical embedding effect between the coatings, and can improve and alleviate the difference in the performance of the chemical bonds between the layers, and increase the coating.
  • the specific surface area and surface energy of the layer surface can improve the physical bonding and chemical bonding interface between layers, improve the bonding strength of the coating, and reduce the internal stress of the coating.
  • the nano-knife coating of the present invention presents a "hard-tough-hard” three-layer composite structure as a whole, which has high thermal stability, high hardness, high toughness and other mechanical properties, as well as self-lubricating and pro-reducing properties. And functionality, it can realize multi-indicator collaborative optimization of coating mechanical/functional properties.
  • the nano-tool coating of the present invention overcomes the limitation of a single coating, and can realize high-efficiency, low-damage integrated processing of CFRP/titanium alloy laminated components.
  • Fig. 1 is a schematic diagram of the "three-layer composite structure" of the shell of the squamous gastropod snail of the present invention and its design principle.
  • Fig. 2 is a flow chart of the method of the present invention.
  • Fig. 3 is a schematic diagram of the nano-coating structure of the present invention.
  • Fig. 4 is the experimental figure of test example of the present invention.
  • (a) is TiAlN coating sample surface and section SEM figure
  • (b) is TiAlN/WS Composite coating sample surface and section SEM figure
  • (c) It is the SEM image of TiAlN/WS 2 composite coating sample with nano-corrugated structure on the surface
  • (d) is the friction coefficient between tool and chip of three different coatings at different cutting speeds.
  • the base material of the tool is WC/Co cemented carbide
  • the multi-scale bionic structure design of the tool coating is carried out in imitation of the microstructure of C. squamiferum, that is, three micron-scale layers are formed by sputtering target particle gradient growth, layer growth, and co-growth Functionally graded coatings, and introduce nanoscale corrugated structures between the interfaces of each layer to regulate the bonding strength between layers, so that the tool coating as a whole presents a "hard-tough-hard" three-layer composite structure.
  • Its specific preparation process steps are as follows:
  • Substrate grinding and polishing, ultrasonic cleaning Prepare metallographic samples on the surface of the tool substrate on an automatic metallographic grinding machine, then use absolute ethanol to grind with 1000# sandpaper, and then use natural fiber polishing cloth with W2.5 Diamond polishing agent for mirror polishing, and finally ultrasonic cleaning in water and ethanol for 30 minutes to clean the surface;
  • TiAlTaN gradient coating support layer: TiAl alloy target and pure Ta target with an atomic ratio of 50:50 were used to prepare the coating. The empty ratio is 60%.
  • the temperature reaches 400°C and the air pressure in the vacuum chamber reaches 7.0 ⁇ 10 -3 Pa, inject high-purity Ar gas, pre-sputter and clean the TiAl alloy target and Ta target for 5 min, then adjust the pressure of Ar gas to 0.5 Pa, and deposit 5 min of Ti transition layer.
  • Preparation of nanotexture on the surface of the WS 2 /TaO interface layer Place the sample on a high-precision three-dimensional mobile platform, and use an objective lens with a numerical aperture of 0.8 (magnification of 80 times) to linearly polarize the femtosecond Focus the laser on the surface of WS 2 /TaO nanometer multilayer coating, keep the femtosecond laser beam fixed, adjust the laser pulse energy to 1.5 ⁇ J, the frequency to 1000Hz, and the scanning speed to 500 ⁇ m/s, scan once, and induce a A nano-corrugated structure with a depth of 15nm, a width of 150nm, and a pitch of 200nm;
  • TiAlN/WS 2 /TaO composite coating (functional top layer): Co-deposition of TiAl alloy target, WS 2 target and TaO target was used to prepare the coating, the sample temperature was set at 400°C, and -120V was applied Pulse negative bias with 60% duty cycle. When the temperature reaches 400°C and the air pressure in the vacuum chamber reaches 7.0 ⁇ 10 -3 Pa, high-purity Ar gas is introduced, and the TiAl alloy target, WS 2 target and TaO target are pre-sputtered and cleaned for 5 minutes, and the Ar gas pressure is adjusted to 0.5 Pa.
  • the base material of the cutting tool is high-speed steel, and the multi-scale bionic structure design of the cutting tool coating is carried out in imitation of the microstructure of C. squamiferum, that is, a three-layer functionally graded coating at the micron scale is formed by sputtering target particle gradient growth, layer growth, and co-growth , and introduce a nanoscale corrugated structure between the interfaces of each layer to regulate the bonding strength between layers, so that the tool coating as a whole presents a "hard-tough-hard" three-layer composite structure.
  • Its specific preparation process steps are as follows:
  • Substrate grinding and polishing, ultrasonic cleaning Prepare metallographic samples on the surface of the tool substrate on an automatic metallographic grinding machine, then use absolute ethanol to grind with 1000# sandpaper, and then use natural fiber polishing cloth with W2.5 Diamond polishing agent for mirror polishing, and finally ultrasonic cleaning in water and acetone for 25 minutes to clean the surface;
  • TiAlTaN gradient coating support layer: TiAl alloy target and pure Ta target with an atomic ratio of 50:50 were used to prepare the coating. The empty ratio is 60%.
  • the temperature reaches 400°C and the air pressure in the vacuum chamber reaches 7.0 ⁇ 10 -3 Pa, inject high-purity Ar gas, pre-sputter and clean the TiAl alloy target and Ta target for 5 min, then adjust the pressure of Ar gas to 0.5 Pa, and deposit 5 min of Ti transition layer.
  • Preparation of nanotexture on the surface of the WS 2 /TaO interface layer Place the sample on a high-precision three-dimensional mobile platform, and use an objective lens with a numerical aperture of 0.8 (magnification of 80 times) to linearly polarize the femtosecond Focus the laser on the surface of WS 2 /TaO nanometer multilayer coating, keep the femtosecond laser beam fixed, adjust the laser pulse energy to 2 ⁇ J, the frequency to 800Hz, and the scanning speed to 800 ⁇ m/s, scan twice, and induce a A nano-corrugated structure with a depth of 20nm, a width of 20nm, and a pitch of 150nm;
  • TiAlN/WS 2 /TaO composite coating (functional top layer): Co-deposition of TiAl alloy target, WS 2 target and TaO target was used to prepare the coating, the sample temperature was set at 400°C, and -120V was applied Pulse negative bias with 60% duty cycle. When the temperature reaches 400°C and the air pressure in the vacuum chamber reaches 7.0 ⁇ 10 -3 Pa, high-purity Ar gas is introduced, and the TiAl alloy target, WS 2 target and TaO target are pre-sputtered and cleaned for 5 minutes, and the pressure of Ar gas is adjusted to 0.5 Pa.
  • TaO has reduced affinity properties: using inorganic thermodynamics theory and Gibbs free energy function method.
  • the base material of the tool is YG6 cemented carbide, and the cleaning process before the base is placed in the vacuum chamber is as follows: at a temperature of 65°C, spray and clean with detergent for 10 minutes; at room temperature, tap water for 3 minutes; at a temperature of 45°C , ultrasonically cleaned with alcohol and acetone for 15 minutes respectively; and dried. Then, the TiAlN single-layer coating and the TiAlN/WS 2 double-layer composite coating were coated on the surface of the substrate by magnetron sputtering, and a femtosecond laser was used to induce a deep processing on the surface of the TiAlN/WS 2 double-layer composite coating. 20nm, 100nm width, 200nm pitch nano-corrugated structure.
  • Figure 4(a) is the SEM image of the surface and cross-section of the TiAlN coating sample
  • Figure 4(b) is the SEM image of the surface and cross-section of the TiAlN/WS 2 composite coating sample
  • Figure 4(c) is the surface with nano-corrugated structure SEM image of TiAlN/WS 2 composite coating sample.
  • the dry turning test was carried out on a CA6140 ordinary lathe.
  • the workpiece material is titanium alloy, and the cutting parameters are: depth of cut 0.3mm, feed rate 0.1mm/r, cutting speed 50-200m/min, cutting time 5min.
  • the Kistler9275 piezoelectric crystal dynamometer was used to measure the three-way cutting force generated during the cutting process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种纳米刀具涂层及其制备方法,本发明所述的纳米刀具涂层包括刀具基体以及依次在所述刀具基体表面沉积的过渡层、支撑层、界面层和功能顶层;所述过渡层为Ti过渡层;所述支撑层为TiAlTaN梯度涂层;所述界面层为WS2/TaO纳米多层涂层;所述功能顶层为TiAlN/WS2/TaO复合涂层,并在各层界面间通过飞秒激光技术引入纳米尺度的波纹结构调控层间结合强度,使刀具涂层整体呈现"硬-韧-硬"三层复合结构,实现力学性能与长效自润滑、减亲和功能多指标协同优化。

Description

一种纳米刀具涂层及其制备方法 技术领域
本发明涉及涂层技术领域,尤其涉及一种纳米刀具涂层及其制备方法。
背景技术
由碳纤维增强树脂基复合材料(CFRP)和钛合金材料组成的叠层结构具有很高的比强度和比模量,该结构常通过螺栓连接方式制成航空航天飞行器关键承重构件。为提高叠层结构装配孔的位置精度和装配质量,叠层构件须一次装夹、一体加工,这使得CFRP/钛合金叠层构件高效率、低损伤的一体化制孔技术成为了航空制造领域研究的热点。
由于具有硬度高、抗高温氧化等性能,物理气相沉积(PVD)TiAlN基涂层刀具是目前切削钛合金、CFRP常用刀具。然而,CFRP/钛合金叠层构件将两种材料性能融于一体,加工时涂层刀具经历性能差异大的多组分切削过程(钛合金的低导热率和高化学活性促进刀具的粘结;CFRP的高强度碳纤维加重刀具涂层磨损、剥落),再加上无法使用切削液(CFRP极易吸收液体膨胀),缺少润滑、冷却作用,导致涂层磨损加剧,严重影响加工效率和质量。因此,加工叠层构件时,涂层须同时具有高结合强度、高热稳定性、高硬度、高韧性等力学性能,还要兼具自润滑、减亲和功能性。
目前,研究者主要通过多元化和多层化方法进行涂层结构设计,提高刀具涂层的综合性能。多元化是指在现有涂层中添加其他组元提高涂层性能的方法。在TiAlN涂层中添加高熔点的Ta元素,通过分别诱发TaN相和抑制A1N相的生成提高涂层的硬度(39.5±1.0GPa)及热稳定性(1100℃)。在TiN涂层中添加Si,通过形成非晶(Si 3N 4)包裹纳米晶(TiN)的复合结构,晶粒尺寸得到明显细化,使涂层硬度提高到36GPa,热稳定温度提高到1100℃。但是,多元化方法在提高硬度和热稳定性的同时,涂层内部不具有发生裂纹偏转的路径,因 此会导致韧性和结合力降低。纳米多层化是通过多层生长的方式设计多层结构,利用界面效应、层间耦合效应、尺寸效应等的影响,使涂层的力学性能得到显著提高。在TiAlN/TiAIZrN多层涂层中,通过控制调制周期比,涂层的硬度最高可达49.2GPa,但是膜基结合力降低约21.3%。在AlCrN/TiSiN多层涂层中,通过控制偏压,涂层硬度提高3%(33GPa),韧性却降低10%。研究者也通过多元化和多层化的结构设计方法实现涂层润滑性和减亲和性的功能复合。功能复合是指将力学层与功能层或功能相复合提高涂层综合性能的方法。涂层润滑性的研究主要采用碳类、硫化物等低摩擦系数的材料作为功能层与力学层复合,从而提高涂层的润滑性能。比如,将TiAlTaN涂层表面复合非晶碳层,使涂层的摩擦系数从0.66降低到0.25。然而,碳类涂层的热稳定性差,在400℃时石墨化转变严重;另外,功能层都是涂覆在力学涂层表面,磨损速度快,无法实现长效自润滑与减亲和效果。利用多元化的方法,将WS 2润滑相均匀嵌入到TiAlTaN力学涂层中,在保证涂层硬度的前提下(25GPa),摩擦系数由1.02下降到0.37,初步实现了长效自润滑效果。但是这种多元化的功能复合涂层存在内应力大,膜基结合力低的问题。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中涂层结合力、硬度、韧性、热稳定性等性能的提升存在竞争与配合的问题。
为解决上述技术问题,本发明提供了一种纳米刀具涂层及其制备方法。将涂层成分梯度多元化、纳米多层化生长方式相结合调控涂层微结构,通过“成分梯度+多层生长+功能复合”混合式结构设计调控涂层微结构,并在层界面引入纳米波纹几何结构增强涂层结合强度,以实现刀具涂层结合力、硬度、韧性等力学性能与长效自润滑和减亲和功能多指标协同优化。
深海鳞角腹足蜗牛(Chrysomallon squamiferum)外壳,通过微/纳米尺度的有序组装整体显示出高度有序性,可满足复杂极端高压环境下的各种性能要求,如强韧耐磨、抗剥落、抗动力冲击等。C.squamiferum外壳微观结构表现出由有 机-无机纳米复合材料层组成的“硬(刚)-韧(柔)-硬(刚)”三层复合结构,每层具有不同功能作用且协同强化,如图1所示。在性能要求的驱动下,C.squamiferum外壳结构的层间存在明显功能梯度,可促进荷载传递和应力重分布,阻止裂纹扩展,增加断裂韧性。另外,每层间分布着纳米波纹状几何结构,该波纹连接可引起界面非均匀应力分布和通过界面分层的能量耗散,提高附着力。
本发明仿照深海鳞角腹足蜗牛(Chrysomallon squamiferum)外壳显微组织结构进行刀具涂层多尺度仿生结构设计,即通过溅射靶材粒子梯度生长、层生长、共生长形成微米尺度的三层功能梯度涂层,并在各层界面间引入纳米尺度的波纹结构调控层间结合强度,使刀具涂层整体呈现“硬-韧-硬”三层复合结构,实现力学性能与长效自润滑、减亲和功能多指标协同优化。
本发明的第一个目的是提供一种纳米刀具涂层,所述涂层设置于刀具基体表面,所述涂层包括在所述刀具基体表面依次沉积的过渡层、支撑层、界面层和功能顶层;所述过渡层为Ti过渡层;所述支撑层为TiAlTaN梯度涂层;所述界面层为WS 2/TaO纳米多层涂层;所述功能顶层为TiAlN/WS 2/TaO复合涂层;所述支撑层与所述界面层之间、所述界面层和所述功能顶层之间通过纳米波纹结构连接。
本发明所述的纳米刀具涂层面向Ti/CFRP叠层构件(由钛合金与碳钎维复合材料组成),钛合金与TaO材料间不易发生粘结,同时WS 2材料具有良好的润滑性能,所以界面层和功能顶层分布选择了WS 2/TaO和TiAlN/WS 2/TaO,支撑层TiAlTaN中含Ta元素,与界面层中TaO材料间具有更好的匹配性。
在本发明的一个实施例中,所述支撑层、界面层和功能顶层的厚度均为1-2μm。纳米刀具涂层的总厚度在不超过10μm,如太厚,涂层的结合强度会降低。
在本发明的一个实施例中,所述WS 2/TaO纳米多层涂层为WS 2层和TaO层交替形成的多层结构,WS 2层厚度为55-65nm;TaO层厚度为70-85nm,总层数 为10-30层。
在本发明的一个实施例中,所述纳米波纹结构的深度为5-20nm,宽度为20-150nm,波纹间距为150-300nm。
在本发明的一个实施例中,所述刀具基体为高速钢、硬质合金或陶瓷。
本发明的第二个目的是提供一种所述的纳米刀具涂层的制备方法,包括以下步骤,
S1、通过TiAl合金靶在预处理后的基体表面通过磁控溅射沉积Ti,得到过渡层;
S2、氮气气氛下,使用TiAl合金靶和Ta靶,通过磁控溅射在S1步骤所述过渡层表面沉积TiAlTaN梯度涂层,采用飞秒激光技术在TiAlTaN梯度涂层表面加工出纳米波纹结构,得到支撑层;
S3、氧气气氛下,使用WS 2靶和Ta靶,通过磁控溅射在S2步骤所述支撑层表面交替循环沉积WS 2/TaO纳米多层涂层,采用飞秒激光技术在WS 2/TaO纳米多层涂层表面加工出纳米波纹结构,得到界面层;
S4、氮气气氛下,使用TiAl合金靶、WS 2靶和TaO靶,通过磁控溅射在S3步骤所述界面层表面以共沉积的方式沉积TiAlN/WS 2/TaO复合涂层,得到功能顶层,所述功能顶层与所述过渡层、支撑层和界面层共同形成所述纳米刀具涂层。
在本发明的一个实施例中,靶材的纯度为99.99%以上。靶材的用量通过靶功率、溅射时间等参数来控制,最终体现在涂层的厚度上。
在本发明的一个实施例中,TiAl合金靶中Ti、Al原子比为50:45-55。
在本发明的一个实施例中,在S1步骤中,所述预处理是对基体表面进行研磨、抛光或超声波清洗;所述清洗的溶剂为水和/或有机溶剂;所述有机溶剂为乙醇和/或丙酮。
在本发明的一个实施例中,在S2步骤中,所述沉积过程中TiAl合金靶的溅射功率保持不变,Ta靶溅射功率持续增强;TiAl合金靶的溅射功率为850-950W, Ta靶的功率为8-200W。
在本发明的一个实施例中,在S2和S3步骤中,所述飞秒激光技术的激光脉冲能量为0.5-2μJ,激光频率为500-1000Hz,激光扫描速度为100-1000μm/s。
在本发明的一个实施例中,沉积过程中样品台加热温度为350-450℃,真空度为6.0×10 -3-8.0×10 -3Pa;所述磁控溅射的气体为氩气,总气压为0.4-0.6Pa。
本发明的技术方案相比现有技术具有以下优点:
(1)本发明所述的纳米刀具涂层采用具有高硬度、低残余应力和高结合强度的TiAlTaN梯度层可起到支撑界面层和功能顶层的作用,并可减小径向位移,增强涂层整体的抗弯曲/疲劳性能;具有高韧性、抗裂纹扩展和低涂层内应力的WS 2/TaO纳米多层结构可以提供非弹性能量耗散,减缓支撑层和功能顶层的非弹性变形,并使支撑层和功能顶层中微裂纹扩展方向发生偏转消耗部分断裂能并降低裂纹尖端的应力强度因子;具有自润滑/减亲和功能的TiAlN/WS 2/TaO复合层主要起到自润滑和减亲和功能,并可起到热保护功能,减少界面层和支撑层受到的热应力。TiAlTaN梯度层中含Ta元素,与界面层中TaO材料间具有更好的匹配性。
(2)本发明所述的纳米刀具涂层在各层间利用飞秒激光制备的纳米波纹结构,可增强涂层间机械嵌接作用,同时可改善缓解各层间化学键性能的差别、增加涂层表面比表面积和表面能,进而改善各层间物理结合和化学键合界面,提高涂层结合强度,减小涂层内应力。
(3)本发明所述的纳米刀具涂层整体呈现“硬-韧-硬”三层复合结构,具有高热稳定性、高硬度、高韧性等力学性能的同时,还兼具自润滑、减亲和功能性,可实现涂层力学/功能性能多指标协同优化。
(4)本发明所述的纳米刀具涂层克服了单一涂层的局限性,可实现CFRP/钛合金叠层构件的高效率、低损伤的一体化加工。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施例 并结合附图,对本发明作进一步详细的说明,其中:
图1为本发明鳞角腹足蜗牛外壳“三层复合结构”及其设计原理示意图。
图2为本发明的方法流程图。
图3为本发明纳米涂层结构示意图。
图4为本发明测试例的实验图;其中,(a)为TiAlN涂层试样表面和截面SEM图;(b)为TiAlN/WS 2复合涂层试样表面和截面SEM图;(c)为表面具有纳米波纹结构的TiAlN/WS 2复合涂层试样SEM图;(d)为不同切削速度下,三种不同涂层刀具刀-屑间摩擦系数。
附图标记说明:1-基体、2-过渡层、3-支撑层、4-界面层、5-功能顶层、6-纳米波纹结构。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
参照图2所示,一种纳米刀具涂层及其制备方法,具体步骤如下:
刀具基体材料选用WC/Co硬质合金,仿照C.squamiferum显微组织结构进行刀具涂层多尺度仿生结构设计,即通过溅射靶材粒子梯度生长、层生长、共生长形成微米尺度的三层功能梯度涂层,并在各层界面间引入纳米尺度的波纹结构调控层间结合强度,使刀具涂层整体呈现“硬-韧-硬”三层复合结构。其具体制备工艺步骤如下:
(1)基体研磨抛光、超声波清洗:将刀具基体表面在自动金相磨样机上制备金相试样,随后用无水乙醇进行1000#砂纸磨制,然后采用天然纤维抛光布配W2.5的金刚石抛光剂进行镜面抛光,最后分别在水和乙醇中超声清洗30min,进行表面清洁处理;
(2)TiAlTaN梯度涂层(支撑层)的制备:使用原子比50:50的TiAl合金靶和纯Ta靶制备涂层,样品温度设定为400℃,施加-120V的脉冲负偏压, 占空比为60%。待温度达到400℃,真空室内气压达到7.0×10 -3Pa,通入高纯Ar气,对TiAl合金靶和Ta靶预溅射清洗5min,然后调节Ar气的压强到0.5Pa,沉积5min的Ti过渡层。然后通入高纯N 2,调节P N2/(P Ar+P N2)=30%,保持总气压为0.5Pa沉积TiAlTaN涂层,TiAl合金靶的溅射功率900W保持不变,控制Ta靶功率以8W/min功率增加到200W,制备出Ta含量呈梯度分布的TiAlTaN梯度涂层;
(3)TiAlTaN支撑层表面纳米波纹结构的制备:将试样放置在高精度三维移动平台上,利用数值孔径为0.8的物镜(放大倍数为80倍)将800nm波长的线性偏振飞秒激光聚焦到TiAlTaN表面,飞秒激光束保持固定,调节激光脉冲能量为2μJ,频率为800Hz,扫描速度为800μm/s,扫描一遍,在整个涂层表面诱导出深度10nm,宽度100nm,间距300nm的纳米波纹结构;
(4)WS 2/TaO纳米多层涂层(界面层)的制备:对样品台进行加热,温度设定为400℃。待温度达到400℃,真空室内气压达到7.0×10 -3Pa,通入高纯Ar气,对WS 2靶和Ta靶预溅射清洗5min;然后在靶功率为900W的条件下,采用WS 2靶和通入高纯O 2下的Ta靶交替沉积WS 2层和TaO层。控制WS 2层每层沉积2min,厚度为55nm;控制TaO层每层沉积3min,厚度为70nm,总层数为16层,制备出调制周期为125nm的WS 2/TaO纳米多层涂层;
(5)WS 2/TaO界面层表面纳织构的制备:将试样放置在高精度三维移动平台上,利用数值孔径为0.8的物镜(放大倍数为80倍)将800nm波长的线性偏振飞秒激光聚焦到WS 2/TaO纳米多层涂层表面,飞秒激光束保持固定,调节激光脉冲能量为1.5μJ,频率为1000Hz,扫描速度为500μm/s,扫描一遍,在整个涂层表面诱导出深度15nm,宽度150nm,间距200nm的纳米波纹结构;
(6)TiAlN/WS 2/TaO复合涂层(功能顶层)的制备:使用TiAl合金靶、WS 2靶和TaO靶共沉积的方式制备涂层,样品温度设定为400℃,施加-120V的脉冲负偏压,占空比为60%。待温度达到400℃,真空室内气压达到7.0×10 -3Pa,通入高纯Ar气,对TiAl合金靶、WS 2靶和TaO靶预溅射清洗5min,调节Ar 气的压强到0.5Pa。然后通入高纯N 2,调节P N2/(P Ar+P N2)=30%,保持总气压为0.5Pa沉积TiAlN/WS 2/TaO复合涂层,沉积TiAlN/WS 2/TaO复合涂层30min,得到如图3所示的纳米刀具涂层。
实施例2
参照图2所示,一种纳米刀具涂层及其制备方法,具体步骤如下:
刀具基体材料选用高速钢,仿照C.squamiferum显微组织结构进行刀具涂层多尺度仿生结构设计,即通过溅射靶材粒子梯度生长、层生长、共生长形成微米尺度的三层功能梯度涂层,并在各层界面间引入纳米尺度的波纹结构调控层间结合强度,使刀具涂层整体呈现“硬-韧-硬”三层复合结构。其具体制备工艺步骤如下:
(1)基体研磨抛光、超声波清洗:将刀具基体表面在自动金相磨样机上制备金相试样,随后用无水乙醇进行1000#砂纸磨制,然后采用天然纤维抛光布配W2.5的金刚石抛光剂进行镜面抛光,最后分别在水和丙酮中超声清洗25min,进行表面清洁处理;
(2)TiAlTaN梯度涂层(支撑层)的制备:使用原子比50:50的TiAl合金靶和纯Ta靶制备涂层,样品温度设定为400℃,施加-120V的脉冲负偏压,占空比为60%。待温度达到400℃,真空室内气压达到7.0×10 -3Pa,通入高纯Ar气,对TiAl合金靶和Ta靶预溅射清洗5min,然后调节Ar气的压强到0.5Pa,沉积5min的Ti过渡层。然后通入高纯N 2,调节P N2/(P Ar+P N2)=30%,保持总气压为0.5Pa沉积TiAlTaN涂层,TiAl合金靶的溅射功率900W保持不变,控制Ta靶功率以10W/min功率增加到200W,制备出Ta含量呈梯度分布的TiAlTaN梯度涂层;
(3)TiAlTaN支撑层表面纳米波纹结构的制备:将试样放置在高精度三维移动平台上,利用数值孔径为0.8的物镜(放大倍数为80倍)将800nm波长的线性偏振飞秒激光聚焦到TiAlTaN表面,飞秒激光束保持固定,调节激光脉冲能量为1μJ,频率为500Hz,扫描速度为1000μm/s,扫描一遍,在整个涂层表面 诱导出深度5nm,宽度80nm,间距200nm的纳米波纹结构;
(4)WS 2/TaO纳米多层涂层(界面层)的制备:对样品台进行加热,温度设定为400℃。待温度和真空度达到要求后,通入高纯Ar气,对WS 2靶和Ta靶预溅射清洗5min;然后在靶功率为900W的条件下,采用WS 2靶和通入高纯O 2下的Ta靶交替沉积WS 2层和TaO层。控制WS 2层每层沉积3min,厚度为65nm;控制TaO层每层沉积5min,厚度为85nm,总层数为16层,制备出调制周期为150nm的WS 2/TaO纳米多层涂层;
(5)WS 2/TaO界面层表面纳织构的制备:将试样放置在高精度三维移动平台上,利用数值孔径为0.8的物镜(放大倍数为80倍)将800nm波长的线性偏振飞秒激光聚焦到WS 2/TaO纳米多层涂层表面,飞秒激光束保持固定,调节激光脉冲能量为2μJ,频率为800Hz,扫描速度为800μm/s,扫描两遍,在整个涂层表面诱导出深度20nm,宽度20nm,间距150nm的纳米波纹结构;
(6)TiAlN/WS 2/TaO复合涂层(功能顶层)的制备:使用TiAl合金靶、WS 2靶和TaO靶共沉积的方式制备涂层,样品温度设定为400℃,施加-120V的脉冲负偏压,占空比为60%。待温度达到400℃,真空室内气压达到7.0×10 -3Pa,通入高纯Ar气,对TiAl合金靶、WS 2靶和TaO靶预溅射清洗5min,调节Ar气的压强到0.5Pa。然后通入高纯N 2,调节P N2/(P Ar+P N2)=30%,保持总气压为0.5Pa沉积TiAlN/WS 2/TaO复合涂层,沉积TiAlN/WS 2/TaO复合涂层25min,得到如图3所示的纳米刀具涂层。
测试例1
对本发明实施例1制备的纳米刀具涂层的减亲和性能进行测试。
TaO具有减亲和性能的理论:利用无机热力学理论、Gibbs自由能函数法。
TaO与Ti发生的反应为:2TaO+Ti=TiO 2+2Ta。根据应用物质自由洽函数法求化学平衡的结论式:
Figure PCTCN2022079763-appb-000001
其中
Figure PCTCN2022079763-appb-000002
(标准反应的焓变)、ΔΦ T(反应自由焓)可通过热力学手册查表得到。
Figure PCTCN2022079763-appb-000003
越负,反应向指定方向进行的可能性越大,为零时表明为可逆反应,为正值表明不反应。在刀具使用温度T=1000K 下,计算TaO与Ti反应前后Gibbs自由能的变化,得到TaO层与Ti之间的反应结合能为正值523656J.mol -1,表明钛合金与TaO材料间不易发生粘结。
测试例2
对TiAlN涂层、TiAlN/WS 2涂层、表面具有纳米波纹结构的TiAlN/WS 2涂层进行表征和干车削试验。
刀具基体材料选择YG6硬质合金,基体放置在真空室前的清洗工艺流程为:在温度为65℃条件下,去污剂喷洒清洗10min;室温条件下自来水清洗3min;在温度为45℃条件下,分别用酒精和丙酮各超声清洗15min;进行干燥处理。然后在基体表面利用磁控溅射的方法分别涂附TiAlN单层涂层和TiAlN/WS 2双层复合涂层,并利用飞秒激光在TiAlN/WS 2双层复合涂层表面诱导加工出深度为20nm,宽度为100nm,间距为200nm的纳米波纹结构。图4(a)为TiAlN涂层试样表面和截面SEM图;图4(b)为TiAlN/WS 2复合涂层试样表面和截面SEM图;图4(c)为表面具有纳米波纹结构的TiAlN/WS 2复合涂层试样SEM图。
干车削试验在CA6140普通车床上进行,刀具主要几何参数为:前角γ 0=-5°,后角α 0=5°,刃倾角λ 0=0°,主偏角K r=45°,工件材料为钛合金,切削参数为:切深0.3mm,进给速度0.1mm/r,切削速度50-200m/min,切削时间5min。切削试验过程中利用Kistler9275型压电晶体测力仪测量切削过程产生的三向切削力,根据刀-屑间平均摩擦系数计算公式:
Figure PCTCN2022079763-appb-000004
其中γ 0为切削前角,F y为切削径向力,F z为主切削力,计算获得三种不同涂层刀具在干切削条件下刀-屑间平均摩擦系数随切削速度变化曲线,如图4(d)所示。可见,随着切削速度的增加,三种刀具的刀-屑间平均摩擦系数均呈现先增加后降低的趋势。具有WS 2的刀具刀-屑间平均摩擦系数相比无WS 2刀具显著降低,其中具有纳米波纹结构的WS 2/TiAlN刀具前刀面摩擦系数降低最明显。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限 定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种纳米刀具涂层,所述涂层设置于刀具基体表面,其特征在于,所述涂层包括在所述刀具基体表面依次沉积的过渡层、支撑层、界面层和功能顶层;所述过渡层为Ti过渡层;所述支撑层为TiAlTaN梯度涂层;所述界面层为WS 2/TaO纳米多层涂层;所述功能顶层为TiAlN/WS 2/TaO复合涂层;所述支撑层与所述界面层之间、所述界面层和所述功能顶层之间通过纳米波纹结构连接。
  2. 根据权利要求1所述的纳米刀具涂层,其特征在于,所述支撑层、界面层和功能顶层的厚度均为1-2μm。
  3. 根据权利要求1所述的纳米刀具涂层,其特征在于,所述WS 2/TaO纳米多层涂层为WS 2层和TaO层交替形成的多层结构,WS 2层厚度为55-65nm;TaO层厚度为70-85nm,总层数为10-30层。
  4. 根据权利要求1所述的纳米刀具涂层,其特征在于,所述纳米波纹结构的深度为5-20nm,宽度为20-150nm,波纹间距为150-300nm。
  5. 根据权利要求1所述的纳米刀具涂层,其特征在于,所述刀具基体为高速钢、硬质合金或陶瓷。
  6. 权利要求1-5任一项所述的纳米刀具涂层的制备方法,其特征在于,包括以下步骤,
    S1、通过TiAl合金靶在预处理后的基体表面通过磁控溅射沉积Ti,得到过渡层;
    S2、氮气气氛下,使用TiAl合金靶和Ta靶,通过磁控溅射在S1步骤所述过渡层表面沉积TiAlTaN梯度涂层,采用飞秒激光技术在TiAlTaN梯度涂层表面加工出纳米波纹结构,得到支撑层;
    S3、氧气气氛下,使用WS 2靶和Ta靶,通过磁控溅射在S2步骤所述支撑层表面交替循环沉积WS 2/TaO纳米多层涂层,采用飞秒激光技术在WS 2/TaO纳米多层涂层表面加工出纳米波纹结构,得到界面层;
    S4、氮气气氛下,使用TiAl合金靶、WS 2靶和TaO靶,通过磁控溅射在S3步骤所述界面层表面以共沉积的方式沉积TiAlN/WS 2/TaO复合涂层,得到功能顶层,所述功能顶层与所述过渡层、支撑层和界面层共同形成所述纳米刀具涂层。
  7. 根据权利要求6所述的纳米刀具涂层的制备方法,其特征在于,在S1步骤中,所述预处理是对基体表面进行研磨、抛光或超声波清洗;所述清洗的溶剂为水和/或有机溶剂;所述有机溶剂为乙醇和/或丙酮。
  8. 根据权利要求6所述的纳米刀具涂层的制备方法,其特征在于,在S2步骤中,所述沉积过程中TiAl合金靶的溅射功率保持不变,Ta靶溅射功率持续增强;TiAl合金靶的溅射功率为850-950W,Ta靶的功率为8-200W。
  9. 根据权利要求6所述的纳米刀具涂层的制备方法,其特征在于,在S2和S3步骤中,所述飞秒激光技术的激光脉冲能量为0.5-2μJ,激光频率为500-1000Hz,激光扫描速度为100-1000μm/s。
  10. 根据权利要求6所述的纳米刀具涂层的制备方法,其特征在于,沉积过程中样品台加热温度为350-450℃,真空度为6.0×10 -3-8.0×10 -3Pa;所述磁控溅射的气体为氩气,总气压为0.4-0.6Pa。
PCT/CN2022/079763 2021-11-22 2022-03-08 一种纳米刀具涂层及其制备方法 WO2023087577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111403641.8 2021-11-22
CN202111403641.8A CN114150282B (zh) 2021-11-22 2021-11-22 一种纳米刀具涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2023087577A1 true WO2023087577A1 (zh) 2023-05-25

Family

ID=80457571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079763 WO2023087577A1 (zh) 2021-11-22 2022-03-08 一种纳米刀具涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN114150282B (zh)
WO (1) WO2023087577A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628822A1 (en) * 2012-02-15 2013-08-21 Hauzer Techno Coating BV Current insulated bearing components and bearings
CN105734505A (zh) * 2016-03-18 2016-07-06 东北大学 一种钛合金切削用复合功能刀具涂层及其制备方法
CN106191765A (zh) * 2016-07-06 2016-12-07 山东大学 织构化软硬复合涂层刀具及其制备方法
CN106884148A (zh) * 2015-12-15 2017-06-23 哈尔滨爱坦科技有限公司 齿轮加工中用于干切削的纳米涂层刀具的涂覆方法
CN107201499A (zh) * 2017-05-26 2017-09-26 东北大学 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT8346U1 (de) * 2005-04-29 2006-06-15 Ceratitzit Austria Ges M B H Beschichtetes werkzeug
EP1980645A1 (de) * 2007-04-13 2008-10-15 Ralf Stein Verfahren zum Aufbringen einer mehrlagigen Beschichtung auf Werkstücke und/oder Werkstoffe
DE102012017731A1 (de) * 2012-09-08 2014-03-13 Oerlikon Trading Ag, Trübbach Ti-Al-Ta-basierte Beschichtung mit einer verbesserten Temperaturbeständigkeit
JP6759536B2 (ja) * 2015-07-27 2020-09-23 株式会社タンガロイ 被覆切削工具
CN112662996A (zh) * 2020-11-30 2021-04-16 宁波革创新材料科技有限公司 稳定负载型纳米复合刀具涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628822A1 (en) * 2012-02-15 2013-08-21 Hauzer Techno Coating BV Current insulated bearing components and bearings
CN106884148A (zh) * 2015-12-15 2017-06-23 哈尔滨爱坦科技有限公司 齿轮加工中用于干切削的纳米涂层刀具的涂覆方法
CN105734505A (zh) * 2016-03-18 2016-07-06 东北大学 一种钛合金切削用复合功能刀具涂层及其制备方法
CN106191765A (zh) * 2016-07-06 2016-12-07 山东大学 织构化软硬复合涂层刀具及其制备方法
CN107201499A (zh) * 2017-05-26 2017-09-26 东北大学 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法

Also Published As

Publication number Publication date
CN114150282B (zh) 2022-08-09
CN114150282A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Vereshchaka et al. Nano-scale multilayered-composite coatings for the cutting tools
Vereschaka et al. Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions
Sampath Kumar et al. Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications
CN101879794B (zh) CrTiAlSiN纳米复合涂层、沉积有该涂层的刀具及其制备方法
CN104928637B (zh) 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
CN109295425B (zh) Cr/CrN/CrAlSiN/CrAlTiSiN纳米多层梯度膜及其制备方法
CN104131250A (zh) 一种梯度成分设计的纳米复合刀具涂层及其制备方法
CN103334082B (zh) 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法
JP2006028600A (ja) 耐摩耗性と耐熱性に優れた積層皮膜
Su et al. Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool
CN103789726A (zh) 与工具表面结合牢固的AlTiCrN/MoN纳米多层涂层及其制备方法
CN101798679B (zh) 一种用于气浮轴承的复合涂层制备方法
Ariharan et al. A comprehensive review of vapour deposited coatings for cutting tools: properties and recent advances
Zhang et al. Effect of scale and sequence of surface textures on the anti-adhesive wear performance of PVD coated tool in dry machining SLM-produced stainless steel
CN103938157B (zh) 一种ZrNbAlN超晶格涂层及制备方法
Liu et al. Advances in deposition of diamond films on cemented carbide and progress of diamond coated cutting tools
WO2023087577A1 (zh) 一种纳米刀具涂层及其制备方法
KR20040060819A (ko) 밀착성이 우수한 경질 피막 및 그 제조 방법
CN204820499U (zh) 一种用于工模具的多层复合硬质膜
Sui et al. Improved surface quality of layered architecture TiAlTaN/Ta coatings for high precision micromachining
Wang et al. Friction and wear performances of Si3N4 ceramic matrix composites: A review from the perspectives of doped phase, layered structure design, and laser surface texturing
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control
Kovalev et al. Features of self‐organization in nanostructuring PVD coatings on a base of polyvalent metal nitrides under severe tribological conditions
Li Synthesis of ZrAlN coatings with thermal stability at high temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE