WO2023087471A1 - 一种异形网纹滚花的数控车削方法 - Google Patents

一种异形网纹滚花的数控车削方法 Download PDF

Info

Publication number
WO2023087471A1
WO2023087471A1 PCT/CN2021/139285 CN2021139285W WO2023087471A1 WO 2023087471 A1 WO2023087471 A1 WO 2023087471A1 CN 2021139285 W CN2021139285 W CN 2021139285W WO 2023087471 A1 WO2023087471 A1 WO 2023087471A1
Authority
WO
WIPO (PCT)
Prior art keywords
knurling
program
special
helix
numerical control
Prior art date
Application number
PCT/CN2021/139285
Other languages
English (en)
French (fr)
Inventor
曹宏
王博洋
郭佳贺
樊恒岩
Original Assignee
航天精工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天精工股份有限公司 filed Critical 航天精工股份有限公司
Publication of WO2023087471A1 publication Critical patent/WO2023087471A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor

Definitions

  • the invention belongs to the field of mechanical processing, and in particular relates to a numerically controlled turning method for special-shaped knurling.
  • Reticulate knurling is a mechanical processing technology that rolls a reticulated pattern on the handle of metal products or other working surfaces, mainly for anti-slip function. With the progress of the times, technology develops rapidly. In modern industrial production, CNC machining occupies a dominant position. With the support of CNC machining technology, the processing of parts is diversified, and parts can obtain higher precision and surface quality. Since the knurling process is to roll the metal layer on the surface to be processed by the roller to produce a certain plastic deformation to form the pattern, so the radial pressure generated during knurling is very large. The X-axis and spindle of the CNC lathe will bear a large load, which will affect the accuracy of the CNC machine tool in the long run. It can be seen that the traditional knurling process is not suitable for use on the current CNC lathe. There is an urgent need for a processing method suitable for the current CNC lathe.
  • the present invention aims at proposing a CNC turning method for special-shaped knurl knurling, which makes the machine tool load less, flexible and convenient.
  • a numerically controlled turning method for profiled knurling comprising the steps of:
  • S4 Tool installation, tool setting, and knurling processing under the control of S3 CNC program.
  • the corresponding external thread blade material and coating grade are selected according to the material of the workpiece to be processed, and the workpiece is divided into five categories according to the ISO standard: P, M, K, N, and S, and selected according to the material of the blade.
  • the diameter of the outer circle is less than 50mm.
  • step S4 requires that the difference between the height of the tool tip and the center of rotation of the workpiece is not greater than 0.2 mm.
  • the formula for confirming the spindle speed in the step S2 is: V max /Ph;
  • the V max is the maximum feed speed allowed by the machine tool, in mm/min;
  • Said Ph is the thread lead, the unit is mm.
  • the numerical control program in described step S3 comprises the steps:
  • step B3 Determine whether the feed value in the radial direction is ⁇ the final depth of cut value, if it is greater, proceed to step B4, and if it is less, proceed to step B10;
  • B5 Determine whether the starting angle of the helix is ⁇ the starting angle of the last helix, if it is greater, then go to B6, if it is smaller, go to step B8;
  • B6 Feed in the diameter direction, set the starting angle of the helix, and turn the helix clockwise and counterclockwise along the arc contour;
  • B7 The starting angle of the helix increases, and then returns to B5;
  • the increment of the starting angle of the helix is 0, and the increment of the feed in the diameter direction is 0.15.
  • Cycle 1 runs program number 29 and subsequent programs——(program number 13-15)
  • the numerical control system reads the corresponding data and calculation formulas in the program, Calculate the corresponding value——(program number 16) Cycle 2
  • the CNC system judges whether the starting angle of the helix is less than or equal to the starting angle of the last helix, if it is less than or equal to the starting angle of the last helix, the program continues to run downwards, run Go to program number 26 and then return to program number 16, and judge again until the start angle of the helix is greater than the start angle of the last helix, and the program ends cycle 2 to run program number 27 and subsequent programs——(program number 17, 18) Advance in the direction of the tool diameter, and quickly move to Z10.——(program number 19-23)
  • G32 feeds the tool in a straight line at a given angle; Tool, G32 linear thread feed, G02 clockwise from left to right, turning the helix along the arc contour.
  • the invention creates the CNC turning method of a special-shaped knurling with the following advantages:
  • the reticulate pattern is processed by turning multi-thread thread.
  • the main force of the CNC machine tool is the cutting force along the feed direction, and the cutting force can be controlled by controlling the cutting depth, which completely avoids the traditional reticulated knurling process.
  • the present invention is flexible and convenient to use in actual production. It is only necessary to change the data value in the numerical control program to process the texture of different modulus, and there is no need to purchase or replace the roller of the corresponding modulus. Significantly reduce production preparation time and save production costs.
  • the present invention only needs to change the tool path in the numerical control program, and can process the texture on the special-shaped surface (such as the waist drum shape, saddle shape, conical arc surface, etc.), which has strong versatility.
  • the special-shaped surface such as the waist drum shape, saddle shape, conical arc surface, etc.
  • Fig. 1 is the numerical control program flow schematic diagram that the present invention creates
  • Fig. 2 is the schematic diagram of the waist-drum pattern knurling created by the present invention
  • Fig. 3 is the schematic diagram of the saddle-shaped texture knurling created by the present invention.
  • Fig. 4 is the schematic diagram of the textured knurling on the conical surface circular arc surface created by the present invention
  • Fig. 5 is a schematic diagram of the straight cylinder anilox knurling created by the present invention.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection.
  • Detachable connection, or integral connection it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • a numerical control turning method for special-shaped textured knurling is as follows:
  • Tool selection select 60° pan-pitch type inserts (A/AG type), and select the corresponding external thread insert material and coating grade according to the workpiece material (in the tool samples provided by the tool manufacturer, the workpiece material is selected according to the ISO standard. It is divided into five categories: P, M, K, N, and S, and you can choose from the corresponding sample).
  • the spindle speed is the maximum feed rate of 3800mm/min divided by the thread lead Ph, and the value obtained is rounded to the spindle speed.
  • Tool installation requires that the height of the tool tip be equal to or slightly higher than the center of rotation of the workpiece (less than 0.2mm).
  • Cycle 1 runs program number 29 and subsequent programs——(program number 13-15)
  • the numerical control system reads the corresponding data and calculation formulas in the program, Calculate the corresponding value——(program number 16) Cycle 2
  • the CNC system judges whether the starting angle of the helix is less than or equal to the starting angle of the last helix, if it is less than or equal to the starting angle of the last helix, the program continues to run downwards, run Go to program number 26 and then return to program number 16, and judge again until the start angle of the helix is greater than the start angle of the last helix, and the program ends cycle 2 to run program number 27 and subsequent programs——(program number 17, 18) Advance in the direction of the tool diameter, and quickly move to Z10.——(program number 19-23)
  • G32 feeds the tool in a straight line at a given angle; Tool, G32 linear thread feed, G02 clockwise from left to right, turning the helix along the arc contour.
  • the spindle speed is the maximum feed rate of 3800mm/min divided by the thread lead Ph, and the value obtained is rounded to the spindle speed.
  • Tool installation requires that the height of the tool tip be equal to or slightly higher than the center of rotation of the workpiece (less than 0.2mm).
  • Modulus is 0.5 mesh pattern saddle shape pattern knurling, other steps are identical with embodiment 1, and the difference of program is as follows:
  • Modulus is 0.5 net texture conical surface circular arc net texture knurling, other steps are identical with embodiment 1, and the difference of program is as follows:
  • Modulus is 0.5 net pattern cone cylindrical net pattern knurling, other steps are identical with embodiment 1, and the difference of program is as follows:
  • Multi-line thread turning is used to process the texture.
  • the main force of the CNC machine tool is the cutting force along the feed direction, and the cutting force can be controlled by controlling the cutting depth, completely avoiding the radial pressure of the traditional texture knurling process. Extremely large, causing the X-axis and spindle of the CNC lathe to bear a large load.
  • the present invention is flexible and convenient to use in actual production, and only needs to change the data value in the numerical control program to process the texture of different modulus, without purchasing and replacing the rollers of the corresponding modulus. Significantly reduce production preparation time and save production costs.
  • the invention only needs to change the tool path in the numerical control program, and can process the texture on the special-shaped surface (such as the waist drum shape, the saddle shape, the conical arc surface, etc.), and has strong versatility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Abstract

一种异形网纹滚花的数控车削方法,包括如下步骤:S1:选用60°泛螺距类型刀片,根据工件材料,选用刀具;S2:计算螺纹线数N、导程Ph;S3:在G97恒转速指令下,计算主轴转速;S4:编辑数控程序;S5:刀具安装,进行对刀,在S4数控程序的控制下进行加工滚花。

Description

一种异形网纹滚花的数控车削方法 技术领域
本发明创造属于机械加工领域,尤其是涉及一种异形网纹滚花的数控车削方法。
背景技术
网纹滚花是在金属制品的捏手处或其他工作外表面滚压网状花纹的机械加工工艺,主要起防滑作用。随着时代进步,科技飞速发展。现代工业生产中数控加工占据主导地位,在数控加工技术的支持下,零件的加工呈现多样化,零件可获得更高的精度及表面质量。由于滚花过程是滚轮来滚压被加工表面的金属层,使其产生一定的塑性变形而形成花纹的,所以滚花时产生的径向压力很大。数控车床的X轴及主轴会承受很大的载荷,长期下来会影响数控机床的精度,可见传统滚花工艺不适合在现今数控车床上使用,迫切需要一种适用于当今数控车床的加工方法。
发明内容
有鉴于此,本发明创造旨在提出一种异形网纹滚花的数控车削方法,使机床负载小、灵活便捷的网纹滚花的数控车削方法。
为达到上述目的,本发明创造的技术方案是这样实现的:
一种异形网纹滚花的数控车削方法,包括如下步骤:
S1:选用60°泛螺距类型刀片,根据工件材料,选用刀具;
S2:在G97横转速指令下,计算主轴转速;
S3:编辑数控程序;
S4:刀具安装,进行对刀,在S3数控程序的控制下进行加工滚花。
所述步骤S1中根据加工工件的材料选择相应的相应的外螺纹刀片材质及涂层牌号,按照ISO标准将工件分为P、M、K、N、S五类,根据刀片材质进行选择,加工外圆直径小于50mm。
所述步骤S4中刀具安装要求刀尖高度与工件回转中心的高度差不大于0.2mm。
所述步骤S2中确认主轴转速的公式为:V max/Ph;
所述V max为机床允许的最大给进速度,单位为mm/min;
所述Ph为螺纹导程,单位mm。
所述步骤S3中的数控程序包括如下步骤:
B1:设定主轴转速,读取程序中的最大处直径、网纹模数、网纹有效长度、圆弧半径;
B2:读取计算公式1,运算螺纹线数相应数值,读取计算公式2,运算螺纹导程相应数值;
B3:判断直径方向进刀数值是否≥最终切深数值,若大于则进行步骤B4,若小于则进行步骤B10;
B4:读取计算公式3,运算螺纹分线间隔角度相应数值;
B5:判断螺旋线起始角度是否≤最后一条螺旋线起始角度,若大于则进行B6,若小于则进行步骤B8;
B6:直径方向进刀,定螺旋线起始角度,沿圆弧轮廓车顺时针车削螺旋线和逆时针车削螺旋线;
B7:螺旋线起始角度递增,然后返回B5;
B8:直径方向进刀递减;
B9:返回步骤B3;
B10:快速退刀至安全点,结束程序。
所述步骤B2中螺纹线数N的计算公式1为:N=D/m;
N—螺纹线数;
D—被加工表面直径,单位mm;
m—网纹模数。
螺纹导程Ph的计算公式2为:Ph=πD;
D—被加工表面直径,单位mm;
Ph—螺纹导程,单位mm;
π—圆周率。
所述螺旋线起始角度递增量为0、直径方向进刀递减量为0.15。
螺旋线间隔角度θ的计算公式3为:θ=360/N
N—螺纹线数。
程序运行说明:
(程序号1-2)横转速主轴正转(30r/min)切换到加工所需刀具(T0101)——(程序号3-11)数控系统读取程序中相应数据及计算公式,运算相应数值——(程序号12)循环1,数控系统进行判断直径方向进刀数值是否大于等于最终切深数值,若大于等于最终切深数值程序继续向下运行,运行至程序号28再返回到程序号12,再次进行判断,直至直径方向进刀数值小于最终切深数值,程序结束循环1运行程序号29及以后程序——(程序号13-15)数控系统读取程序中相应数据及计算公式,运算相应数值——(程序号16)循环2,数控系统进行判断螺旋线起始角度是否小于等于最后一条螺旋线起始角度,若小于等于最后一条螺旋线起始角度程序继续向下运行,运行至程序号26再返回到程序号16,再次进行判断,直至螺旋线起始角度大于最后一条螺旋线起始角度,程序结束循环2运行程序号27及以后程序——(程序号17、18)刀具直径方向进到,快速移动到Z10.——(程序号19-23)G32在给定角度直线螺纹进刀,G03逆时针自右向左,沿圆弧轮廓车削螺旋线,G32直线 螺纹退刀,G32直线螺纹进刀,G02顺时针自左向右,沿圆弧轮廓车削螺旋线。特别注意程序号19-23必须连续运行,中间不可单段运行,否则将会出现乱牙现象——(程序号24)快速退刀至Z10,完成一次圆弧轮廓螺旋线往复车削。——(程序号25、26)螺旋线起始角度递增、循环2结束返回DO2——(程序号27、28)直径方向进刀递减、循环1结束返回DO1。(程序号12-28)两层嵌套循环,刀具直径方向进刀,在圆周特定角度用G32螺纹切入,G03逆时针自右向左,沿圆弧轮廓车削螺旋线,G32直线螺纹退刀,G32直线螺纹进刀,G02顺时针自左向右,沿圆弧轮廓车削螺旋线,快速退刀至Z10。圆周旋转角度,再此往复螺纹切削,直至满足循环2的条件。刀具直径方向再次进刀,再次螺纹往复切削,直至满足循环1的条件。网纹加工完成。
相对于现有技术,本发明创造所述的一种异形网纹滚花的数控车削方法具有以下优势:
1、采用车削多线螺纹方式加工网纹,数控机床主要受力为沿进给方向的切削力,且可通过控制切削深度来控制该切削力的大小,完全避免了传统网纹滚花工艺径向压力极大,使数控车床的X轴及主轴承受很大载荷的现象。
2、本发明在实际生产中使用灵活便捷,加工不同模数的网纹,只需更改数控程序中的数据值,无需购买、更换相应模数的滚轮。大幅减少生产准备时间,节约生产成本。
3、本发明只需要更改数控程序中走刀路径,就可以在异型表面上(如腰鼓形、马鞍形、锥面圆弧面等)加工网纹,通用性强。
附图说明
构成本发明创造的一部分的附图用来提供对本发明创造的进一步理解,本发明创造的示意性实施例及其说明用于解释本发明创造,并不构成对本发 明创造的不当限定。在附图中:
图1为本发明创造的数控程序流程示意图;
图2为本发明创造的腰鼓形网纹滚花示意图;
图3为本发明创造的马鞍形网纹滚花示意图;
图4为本发明创造的锥面圆弧面网纹滚花示意图;
图5为本发明创造的直筒型网纹滚花示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明创造中的实施例及实施例中的特征可以相互组合。
在本发明创造的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明创造的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明创造的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连 通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明创造中的具体含义。
下面将参考附图并结合实施例来详细说明本发明创造。
一种异形网纹滚花的数控车削方法,具体方法如下:
(1)刀具选用:选用60°泛螺距类型刀片(A/AG型),根据加工工件材料选择相应的外螺纹刀片材质及涂层牌号(刀具厂商提供的刀具样本中,按照ISO标准将工件材质分P、M、K、N、S五类,对应样本中选择即可)。
(2)确定主轴转速:必须在G97横转速指令下。主轴转速为,最大进给速度3800mm/min除以螺纹导程Ph,得到的数值取整为主轴转速。
(3)采用宏程序编制数控加工程序(fanuc系统)
Figure PCTCN2021139285-appb-000001
Figure PCTCN2021139285-appb-000002
Figure PCTCN2021139285-appb-000003
特点:巧妙借助G32指令实现分度定向,后续的异型车削直接用G01、G02、G03这些基本指令编写,方便便捷。
(4)刀具安装,要求刀尖高度与工件回转中心等高或略高(小于0.2mm)。
(5)完成对刀等基本操作后,执行加工程序,加工网纹滚花。网纹加工完成后,用外圆车刀再光一刀外圆,目的是去除加工网纹时产生的毛刺。
程序运行说明:
(程序号1-2)横转速主轴正转(30r/min)切换到加工所需刀具(T0101)——(程序号3-11)数控系统读取程序中相应数据及计算公式,运算相应数值——(程序号12)循环1,数控系统进行判断直径方向进刀数值是否大于等于最终切深数值,若大于等于最终切深数值程序继续向下运行,运行至程序号28再返回到程序号12,再次进行判断,直至直径方向进刀数值小于最终切深数值,程序结束循环1运行程序号29及以后程序——(程序号13-15)数控系统读取程序中相应数据及计算公式,运算相应数值——(程序号16)循环2,数控系统进行判断螺旋线起始角度是否小于等于最后一条螺旋线起始角度,若小于等于最后一条螺旋线起始角度程序继续向下运行,运行至程序号26再返回到程序号16,再次进行判断,直至螺旋线起始角度大于最后一条螺旋线起始角度,程序结束循环2运行程序号27及以后程序——(程序号17、18)刀具直径方向进到,快速移动到Z10.——(程序号19-23)G32在给定角度直线螺纹进刀,G03逆时针自右向左,沿圆弧轮廓车削螺旋线,G32直线螺纹退刀,G32直线螺纹进刀,G02顺时针自左向右,沿圆弧轮廓车削螺旋线。特别注意程序号19-23必须连续运行,中间不可单段运行,否则将会出现乱牙现象——(程序号24)快速退刀至Z10,完成一次圆弧轮廓螺旋线往复车削。——(程序号25、26)螺旋线起始角度递增、循环2结束返回DO2——(程序号27、28)直径方向进刀递减、循环1结束返回DO1。(程 序号12-28)两层嵌套循环,刀具直径方向进刀,在圆周特定角度用G32螺纹切入,G03逆时针自右向左,沿圆弧轮廓车削螺旋线,G32直线螺纹退刀,G32直线螺纹进刀,G02顺时针自左向右,沿圆弧轮廓车削螺旋线,快速退刀至Z10。圆周旋转角度,再此往复螺纹切削,直至满足循环2的条件。刀具直径方向再次进刀,再次螺纹往复切削,直至满足循环1的条件。网纹加工完成。
马鞍形(该类型实际加工时,应根据图纸尺寸,编辑程序)
Figure PCTCN2021139285-appb-000004
锥面圆弧形(该类型实际加工时,应根据图纸尺寸,编辑程序)
Figure PCTCN2021139285-appb-000005
Figure PCTCN2021139285-appb-000006
直通形(该类型实际加工时,应根据图纸尺寸,编辑程序)
12 #10=#1-0.2; X向第一刀切深
13 #11=#1-0.5; X向最终切深
22 G32Z-[#3+6]F[#5]; 正向(自右向左)车螺旋线
23 G32 Z5.F[#5]; 反向(自左向右)车螺旋线
实施例1:
(1)模数为0.5的腰鼓形网纹滚花,刀具选用:选用60°泛螺距类型刀片(A/AG型),根据加工工件材料选择相应的外螺纹刀片材质及涂层牌号(刀具厂商提供的刀具样本中,按照ISO标准将工件材质分P、M、K、N、S五类,对应样本中选择即可)。
(2)确定主轴转速:必须在G97横转速指令下。主轴转速为,最大进给速度3800mm/min除以螺纹导程Ph,得到的数值取整为主轴转速。
(3)采用宏程序编制数控加工程序(fanuc系统)
Figure PCTCN2021139285-appb-000007
Figure PCTCN2021139285-appb-000008
(4)刀具安装,要求刀尖高度与工件回转中心等高或略高(小于0.2mm)。
(5)完成对刀等基本操作后,执行加工程序,加工网纹滚花。网纹加工完成后,用外圆车刀再光一刀外圆,目的是去除加工网纹时产生的毛刺。
实施例2
模数为0.5的网纹马鞍形网纹滚花,其他步骤与实施例1相同,程序的不同如下所示:
Figure PCTCN2021139285-appb-000009
实施例3
模数为0.5的网纹锥面圆弧形网纹滚花,其他步骤与实施例1相同,程序的不同如下所示:
Figure PCTCN2021139285-appb-000010
Figure PCTCN2021139285-appb-000011
实施例4
模数为0.5的网纹锥圆筒形网纹滚花,其他步骤与实施例1相同,程序的不同如下所示:
10 #10=#1-0.2; X向第一刀切深=40-0.2=39.8
11 #11=#1-0.5; X向最终切深=40-0.5=39.5
22 G32Z-[#3+6]F[#5]; 正向(自右向左)车螺旋线
23 G32 Z5.F[#5]; 反向(自左向右)车螺旋线
采用车削多线螺纹方式加工网纹,数控机床主要受力为沿进给方向的切削力,且可通过控制切削深度来控制该切削力的大小,完全避免了传统网纹滚花工艺径向压力极大,使数控车床的X轴及主轴承受很大载荷的现象。本发明在实际生产中使用灵活便捷,加工不同模数的网纹,只需更改数控程序中的数据值,无需购买、更换相应模数的滚轮。大幅减少生产准备时间,节约生产成本。本发明只需要更改数控程序中走刀路径,就可以在异型表面上(如腰鼓形、马鞍形、锥面圆弧面等)加工网纹,通用性强。
以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。

Claims (9)

  1. 一种异形网纹滚花的数控车削方法,其特征在于:包括如下步骤:
    S1:选用60°泛螺距类型刀片,根据工件材料,选用刀具;
    S2:在G97横转速指令下,计算主轴转速;
    S3:编辑数控程序;
    S4:刀具安装,进行对刀,在S3数控程序的控制下进行加工滚花。
  2. 根据权利要求1所述的一种异形网纹滚花的数控车削方法,其特征在于:所述步骤S1中根据加工工件的材料选择相应的相应的外螺纹刀片材质及涂层牌号,按照ISO标准将工件分为P、M、K、N、S五类,根据刀片材质进行选择,加工外圆直径小于50mm。
  3. 根据权利要求1所述的一种异形网纹滚花的数控车削方法,其特征在于:所述步骤S4中刀具安装要求刀尖高度与工件回转中心的高度差不大于0.2mm。
  4. 根据权利要求1所述的一种异形网纹滚花的数控车削方法,其特征在于:所述步骤S2中确认主轴转速的公式为:V max/Ph;
    所述V max为机床允许的最大给进速度,单位为mm/min;
    所述Ph为螺纹导程,单位mm。
  5. 根据权利要求1所述的一种异形网纹滚花的数控车削方法,其特征在于:所述步骤S3中的数控程序包括如下步骤:
    B1:设定主轴转速,读取程序中的最大处直径、网纹模数、网纹有效长度、圆弧半径;
    B2:读取计算公式1,运算螺纹线数相应数值,读取计算公式2,运算螺纹导程相应数值;
    B3:判断直径方向进刀数值是否≥最终切深数值,若大于则进行步骤B4,若小于则进行步骤B10;
    B4:读取计算公式3,运算螺纹分线间隔角度相应数值;
    B5:判断螺旋线起始角度是否≤最后一条螺旋线起始角度,若大于则进行B6,若小于则进行步骤B8;
    B6:直径方向进刀,定螺旋线起始角度,沿圆弧轮廓车顺时针车削螺旋线和逆时针车削螺旋线;
    B7:螺旋线起始角度递增,然后返回B5;
    B8:直径方向进刀递减;
    B9:返回步骤B3;
    B10:快速退刀至安全点,结束程序。
  6. 根据权利要求5所述的一种异形网纹滚花的数控车削方法,其特征在于:所述步骤B2中螺纹线数N的计算公式1为:N=D/m;
    N—螺纹线数;
    D—被加工表面直径,单位mm;
    m—网纹模数。
  7. 根据权利要求5所述的一种异形网纹滚花的数控车削方法,其特征在于:螺纹导程Ph的计算公式2为:Ph=πD;
    D—被加工表面直径,单位mm;
    Ph—螺纹导程,单位mm;
    π—圆周率。
  8. 根据权利要求5所述的一种异形网纹滚花的数控车削方法,其特征在于:所述螺旋线起始角度递增量为0、直径方向进刀递减量为0.15。
  9. 根据权利要求5所述的一种异形网纹滚花的数控车削方法,其特征在于:螺旋线间隔角度θ的计算公式3为:θ=360/N
    N—螺纹线数。
PCT/CN2021/139285 2021-11-19 2021-12-17 一种异形网纹滚花的数控车削方法 WO2023087471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111400479.4 2021-11-19
CN202111400479.4A CN114012114A (zh) 2021-11-19 2021-11-19 一种异形网纹滚花的数控车削方法

Publications (1)

Publication Number Publication Date
WO2023087471A1 true WO2023087471A1 (zh) 2023-05-25

Family

ID=80065916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139285 WO2023087471A1 (zh) 2021-11-19 2021-12-17 一种异形网纹滚花的数控车削方法

Country Status (2)

Country Link
CN (1) CN114012114A (zh)
WO (1) WO2023087471A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043906A (ja) * 1996-08-07 1998-02-17 Matsushita Electric Ind Co Ltd 凹溝の旋削方法および旋削装置
CN101704175A (zh) * 2009-12-04 2010-05-12 山西平阳重工机械有限责任公司 高精度薄壁壳体表面无退刀槽网纹切削方法
CN103551594A (zh) * 2013-11-13 2014-02-05 丰兴精密产业(惠州)有限公司 一种数控车床车网纹花工艺
CN111659908A (zh) * 2020-06-19 2020-09-15 重庆郭氏洪伸科技有限公司 基于车削的柱面网纹加工方法及系统
CN113156889A (zh) * 2021-03-09 2021-07-23 台州职业技术学院 一种利用宏程序加工网纹滚花的工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208245819U (zh) * 2018-05-31 2018-12-18 阳江职业技术学院 一种回转体花纹加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043906A (ja) * 1996-08-07 1998-02-17 Matsushita Electric Ind Co Ltd 凹溝の旋削方法および旋削装置
CN101704175A (zh) * 2009-12-04 2010-05-12 山西平阳重工机械有限责任公司 高精度薄壁壳体表面无退刀槽网纹切削方法
CN103551594A (zh) * 2013-11-13 2014-02-05 丰兴精密产业(惠州)有限公司 一种数控车床车网纹花工艺
CN111659908A (zh) * 2020-06-19 2020-09-15 重庆郭氏洪伸科技有限公司 基于车削的柱面网纹加工方法及系统
CN113156889A (zh) * 2021-03-09 2021-07-23 台州职业技术学院 一种利用宏程序加工网纹滚花的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG DONGYING; PENG ZHENG: "Triangular thread on concave ellipse profile", METAL WORKING(METAL CUTTING), no. 11, 1 June 2017 (2017-06-01), pages 39 - 41, XP009546470, ISSN: 1674-1641 *

Also Published As

Publication number Publication date
CN114012114A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US10421136B2 (en) Method for deburring a gear blank
CN100542726C (zh) 一种大螺距螺纹制造方法
US5076744A (en) Screw cutting machine
CN103231200B (zh) 石油钻杆螺纹的修复方法
CN102489719A (zh) 薄壁件的斜端槽的数控加工方法
CN106407622B (zh) 一种大螺距螺纹车削刀具设计方法
Dimov et al. Micromilling strategies: optimization issues
CN105904154B (zh) 一种新能源电动汽车电机内壳体加工工艺
CN108544041A (zh) 内螺纹铣削加工方法
CN105127697A (zh) 一种燃气轮机加长进口导叶片加工方法
CN101862868B (zh) 一种使用数控机床加工卷筒绳槽的方法
WO2023087471A1 (zh) 一种异形网纹滚花的数控车削方法
JP4568880B2 (ja) Nc工作機械の加工制御システム
CN111659908B (zh) 基于车削的柱面网纹加工方法及系统
CN109719462A (zh) 一种非金属大导程梯形螺纹的粗铣精车复合加工方法
CN102101177A (zh) 异型孔型轧辊加工方法及刀具
CN101587348A (zh) 三维刃口轮廓的螺旋线插补加工方法
CN103624653A (zh) 用于成形麻花钻螺旋槽的加工方法
CN113329835A (zh) 蜂窝挤出模头及其制造方法
RU2351441C2 (ru) Способ обработки детали
CN1067619C (zh) 轧辊磨床数控系统和方法
CN206435582U (zh) 一种管内外带有螺旋形翅片型材的挤压模具
CN104384619A (zh) 螺旋齿轮齿形的车削方法
JPH06254720A (ja) ネジの加工方法
JP2007130706A (ja) マシニングセンタによる歯車の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964616

Country of ref document: EP

Kind code of ref document: A1