WO2023087392A1 - 调控层及制备方法和光电器件 - Google Patents

调控层及制备方法和光电器件 Download PDF

Info

Publication number
WO2023087392A1
WO2023087392A1 PCT/CN2021/134419 CN2021134419W WO2023087392A1 WO 2023087392 A1 WO2023087392 A1 WO 2023087392A1 CN 2021134419 W CN2021134419 W CN 2021134419W WO 2023087392 A1 WO2023087392 A1 WO 2023087392A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
control layer
electrode
combinations
charged
Prior art date
Application number
PCT/CN2021/134419
Other languages
English (en)
French (fr)
Inventor
赵金阳
陈黎暄
石志清
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2023087392A1 publication Critical patent/WO2023087392A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, in particular to a control layer, a preparation method and a photoelectric device.
  • Nanomaterials refer to the size of their structural units ranging from 1 nanometer to 100 nanometers. It has surface effect, small size effect and macroscopic quantum tunneling effect. When people subdivide a macroscopic object into ultrafine particles (nanoscale), it will show many strange properties, namely its optical, thermal, electrical, magnetic, mechanical and chemical properties and phases of bulk solids. will be significantly different. Therefore, it is widely used in many fields.
  • the film layer formed by nanomaterials is usually formed by spin coating, and the refractive index of the film layer formed by spin coating is fixed and cannot be adjusted, so that the film layer cannot well meet the requirements of the device's refractive index. thereby affecting the performance of the device.
  • the embodiments of the present application provide a control layer, a preparation method and a photoelectric device, so as to solve the problem that the refractive index of the film layer cannot be adjusted.
  • the present application provides a control layer, and the material of the control layer includes charged or electrically polarizable nanoparticles in a solvent.
  • the nanoparticles include nanoparticles and ligands coated on the surface of the nanoparticles, and the ligands are charged or electrically polarizable compounds in a solvent.
  • the ligand includes a compound containing one or more combinations of carboxyl, amine, sulfhydryl, halogen and phosphine groups and one or more of the surfactants several combinations.
  • the ligands include polyethylene glycol, polyethylene glycol derivatives, polysiloxane, polysiloxane derivatives, polyvinylcarbazole, polyvinylcarbazole Azole derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives, octyl mercaptan, dodecyl mercaptan, benzene mercaptan, 1,2-benzene mercaptan, 1, 3- benzene mercaptan, 1, 4- benzene mercaptan , 1,2-ethanedithiol, 3-mercaptopropionic acid, oleic acid, 1,2-ethylenediamine, octylamine, oleylamine, tri-n-octylphosphine, tributylphosphine, ammonium thiocyanate, tetra Butylammonium iodide, tetrabutylam
  • the nanoparticles include BaSO 4 , CaCO 3 , ZnSe, CdS, TiO 2 , BaTiO 3 , ZnS, ZrO 2 , Si 3 N 4 , SnO, ZnO, CdSe, CdTe, ZnSe, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, One or more combinations of InNSb, GaAlNP, InAlNP, CuInS 2 , CuInSe 2 , AgInS 2 , A 2 B m
  • control layer is a light-emitting layer
  • the nanoparticles are loosely packed or tightly packed.
  • the mass ratio of the nanoparticles to the ligand is (1-10):1.
  • the present application also provides an optoelectronic device, the optoelectronic device comprising:
  • control layer wherein the material of the control layer includes charged or electrically polarizable nanoparticles in a solvent.
  • the nanoparticles include nanoparticles and ligands coated on the surface of the nanoparticles, and the ligands are charged or electrically polarizable compounds in a solvent;
  • the ligands include compounds containing one or more combinations of carboxyl, amine, mercapto, mercaptan, halogen and phosphino groups, and one or more combinations of surfactants;
  • the ligands include polyethylene glycol, polyethylene glycol derivatives, polysiloxane, polysiloxane derivatives, polyvinylcarbazole, polyvinylcarbazole derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives , octylthiol, dodecanethiol, benzenethiol, 1,2-benzenethiol, 1,3-benzenethiol, 1,4-benzenethiol, 1,2-ethanedithiol, 3-mercapto Propionic acid, oleic acid, 1,2-ethylenediamine, octylamine, oleylamine, tri-n-octylphosphine, tributylphosphine, ammonium thiocyanate, tetrabutylammonium iodide, tetrabutylammonium bromide, Tetrabutylammonium chloride, tetrabutylammonium
  • the nanoparticles include BaSO 4 , CaCO 3 , ZnSe, CdS, TiO 2 , BaTiO 3 , ZnS, ZrO 2 , Si 3 N 4 , SnO, ZnO, CdSe, CdTe, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS , ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP, InAlNP, CuInS 2 , CuInSe 2 , AgInS 2 , One or several combinations of A 2 B m-1 C m X 3m+1 and BCX 3 ,
  • control layer is a light-emitting layer
  • the nanoparticles are loosely packed or tightly packed.
  • the mass ratio of the nanoparticles to the ligand is (1-10):1.
  • the embodiment of the present application also provides a preparation method of the regulatory layer, including:
  • the applying a voltage to the first electrode and the second electrode forms an electric field
  • the regulating layer containing charged or electrically polarizable nanoparticles includes:
  • the applying a voltage to the first electrode and the second electrode forms an electric field
  • the regulating layer containing charged or electrically polarizable nanoparticles includes:
  • the refractive index of the control layer is 1.5-2.4, and the refractive index of the control layer changes from a direction of 1.5 to a direction of 2.4.
  • the nanoparticles include nanoparticles and ligands coated on the surface of the nanoparticles, and the ligands are charged or electrically polarizable compounds in a solvent.
  • the ligands include compounds containing one or more combinations of carboxyl, amine, mercapto, mercaptan, halogen and phosphine groups and surfactants one or a combination of several.
  • the ligands include polyethylene glycol, polyethylene glycol derivatives, polysiloxane, polysiloxane derivatives, polyvinylcarbazole, polyvinylcarbazole Azole derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives, octyl mercaptan, dodecyl mercaptan, benzene mercaptan, 1,2-benzene mercaptan, 1, 3- benzene mercaptan, 1, 4- benzene mercaptan , 1,2-ethanedithiol, 3-mercaptopropionic acid, oleic acid, 1,2-ethylenediamine, octylamine, oleylamine, tri-n-octylphosphine, tributylphosphine, ammonium thiocyanate, tetra Butylammonium iodide, tetrabutylam
  • the nanoparticles include BaSO 4 , CaCO 3 , ZnSe, CdS, TiO 2 , BaTiO 3 , ZnS, ZrO 2 , Si 3 N 4 , SnO, ZnO, CdSe, CdTe, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, One or more combinations of GaAlNP, InAlNP, CuInS 2 , CuInSe 2 , AgInS 2 , A 2 B m-1 C m
  • control layer is a light-emitting layer
  • the nanoparticles are loosely packed or tightly packed.
  • the mass ratio of the nanoparticles to the ligand is (1-10):1.
  • the application discloses a regulating layer, a preparation method thereof and a photoelectric device.
  • the material of the regulating layer includes charged or electrically polarizable nanoparticles.
  • the control layer adopts charged or electrically polarizable nanoparticles in a solvent, so that the control layer can control the stacking degree of the nanoparticles to realize the adjustment of the refractive index.
  • Fig. 1 is a schematic diagram of the first structure of the regulatory layer provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a scanning electron microscope of the control layer provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of the density, refractive index and electric field intensity of the nanoparticles provided in the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the second structure of the regulatory layer provided by the embodiment of the present application.
  • Fig. 5 is a schematic flowchart of the preparation method of the control layer provided in the embodiment of the present application.
  • Fig. 6 is a schematic flowchart of the first structure of the preparation method of the control layer provided in the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the preparation method of the control layer provided in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the structure of nanoparticles provided by the embodiment of the present application.
  • FIG. 9 is an enlarged schematic diagram of F in FIG. 6 provided by the embodiment of the present application.
  • Fig. 10 is a schematic flowchart of the second structure of the method for preparing the control layer provided in the embodiment of the present application.
  • control layer and a preparation method thereof.
  • the material of the control layer includes charged or electrically polarizable nanoparticles in a solvent.
  • the application discloses a regulating layer, a preparation method thereof and a photoelectric device.
  • the material of the regulating layer includes charged or electrically polarizable nanoparticles.
  • the control layer adopts charged or polarizable nanoparticles in the solvent, so that the control layer can control the accumulation degree of the nanoparticles to realize the adjustment of the refractive index of the control layer, thereby improving the performance of the device.
  • FIG. 1 is a schematic diagram of the first structure of the control layer provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a scanning electron microscope of the control layer provided by the embodiment of the present application.
  • the present application provides a control layer 10 .
  • the material of the control layer 10 includes charged or electrically polarizable nanoparticles 100 in a solvent. Nanoparticles 100 include nanoparticles and ligands coated on the surface of the nanoparticles. Ligands are charged or electrically polarizable compounds.
  • ligands are added to the nanoparticles, because the ligands are charged or electrically polarizable compounds in the solvent, so that the nanoparticles 100 can be ionized in a polar solvent, so that the control layer 10 is formed by electrodeposition , and adjust the packing degree of the nanoparticles 100 by adjusting the size of the electric field, that is, regulate the packing density of the nanoparticles 100, so that the refractive index n of the regulating layer 10 can be changed between 1.5-2.4, that is, realize the adjustment of the regulating layer 10 Adjustment of the refractive index.
  • the nanoparticles 100 of the control layer 10 are loosely packed, and when the nanoparticles 100 are loosely packed, the refractive index of the control layer 10 changes from 2.4 to 1.5, making the refractive index smaller.
  • the control layer 10 is composed of loosely packed nanoparticles 100.
  • the refractive index of the control layer 10 is determined by the nanoparticles 100 and air, and the refractive index of air is 1, and the refractive index of the nanoparticles 100 is greater than 1.
  • the nano-particles 100 are loosely packed, so that the duty ratio of the air is large, so that the refractive index of the control layer 10 is reduced, thereby improving the light extraction efficiency.
  • loose packing and subsequent close packing are relative concepts, and there is no absolute loose packing or close packing.
  • the nanoparticles 100 in the control layer 10 are loosely packed, and when the density of the nanoparticles 100 in the control layer 10 is greater than 1.8 g / cm3 , the nanoparticles 100 in the control layer 10 are tightly packed; or, when the density of the nanoparticles 100 in the control layer 10 is less than 20g/ cm3 , the nanoparticles 100 in the control layer 10 are loosely packed , and when the density of the nanoparticles 100 in the control layer 10 is greater than 20 g/cm 3 , the nanoparticles 100 in the control layer 10 are closely packed; or, when the density of the nanoparticles 100 in the control layer 10 is less than 50 g/cm 3 , the nanoparticles 100 in the control layer 10 are loosely packed, and when the density of
  • the ligands include compounds containing one or more combinations of carboxyl, amine, mercapto, mercaptan, halogen and phosphine groups, and one or more combinations of surfactants.
  • the surfactant includes organic sulfate cetyltrimethylammonium bromide (CTAB), metal soap (naphthoate or stearate of metals such as cobalt, aluminum, iron, etc.), organic Amines (N-vinylpyrrolidone polymers), organophosphates or esters, etc.
  • CTAB organic sulfate cetyltrimethylammonium bromide
  • metal soap naphthoate or stearate of metals such as cobalt, aluminum, iron, etc.
  • organic Amines N-vinylpyrrolidone polymers
  • organophosphates or esters etc.
  • the ligands include polyethylene glycol, polyethylene glycol derivatives, polysiloxane, polysiloxane derivatives, polyvinyl carbazole, polyvinyl carbazole derivatives, polyvinyl alcohol, poly Vinyl alcohol derivatives, octamercaptan, dodecanethiol, benzenethiol, 1,2-benzenethiol, 1,3-benzenethiol, 1,4-benzenethiol, 1,2-ethanedithiol , 3-mercaptopropionic acid, oleic acid, 1,2-ethylenediamine, octylamine, oleylamine, tri-n-octylphosphine, tributylphosphine, ammonium thiocyanate, tetrabutylammonium iodide, tetrabutyl Ammonium bromide, tetrabutylammonium chloride, tetrabutylammoni
  • the nanoparticles include BaSO 4 , CaCO 3 , ZnSe, CdS, TiO 2 , BaTiO 3 , ZnS, ZrO 2 , Si 3 N 4 , SnO, ZnO, CdSe, CdTe, CdTe, ZnTe, CdZnS, CdZnSe , CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP, InAlNP, CuInS 2 , CuInSe 2 , AgInS 2 and perovskite quantum dots or a combination of several.
  • R 1 -NH 3 + is phenethylamine ion or n-butylamine ion
  • DR 2 -NH 3 + is halophenethylamine ion
  • R 3 -NH 3 + It is methylamine ion
  • a 2 B m-1 C m X 3m+1 may be (C 8 H 11 N) 2 PbBr 4 .
  • control layer 10 is a light-emitting layer, and its nanoparticles are quantum dots, and the nanoparticles 100 are loosely packed.
  • the quantum dots include at least one of single-structure quantum dots and core-shell structure quantum dots.
  • Single structure quantum dots include CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs , GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP, InAlNP, CuInS 2 , CuInSe 2 and AgInS 2 at least one.
  • the core of the quantum dot of the core-shell structure includes at least one of the above-mentioned single-structure quantum dots
  • the shell material of the quantum dot of the core-shell structure includes CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, ZnSeS and ZnS at least one.
  • quantum dots with a core-shell structure include CdZnSe/CdZnS/ZnS, CdZnSe/ZnSe/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS, InP/ZnSe/ At least one of ZnS and InP/ZnSeS/ZnS.
  • the light-emitting layer is composed of loosely packed nanoparticles 100.
  • the refractive index of the control layer 10 is determined by the nanoparticles 100 and air, and the refractive index of air is 1, and the refractive index of the nanoparticles 100 is greater than 1.
  • the nanoparticles 100 are loosely packed, that is, the packing density of the nanoparticles 100 is high, so that the air duty ratio is large, so that the refractive index of the control layer 10 is reduced, thereby improving the light extraction efficiency, thereby improving the luminous efficiency of the control layer 10.
  • FIG. 3 is a schematic diagram of the density, refractive index and electric field intensity of the nanoparticles provided in the embodiment of the present application.
  • the nanoparticle 100 composed of CdSe/ZnS and the ligand as polyethylene glycol is taken as an example for illustration.
  • CdSe/ZnS and polyethylene glycol are mixed at a mass ratio of 5:1 to form nanoparticles 100, and a small voltage is applied to form a small electric field when preparing the control layer 10, so that the nanoparticles 100 are loosely packed, that is, the control layer at this time 10 is formed by low-density stacked nanoparticles, the density of nanoparticles 100 in the regulating layer 10 is 1.5 g/cm 3 , and the refractive index of the regulating layer 10 is 1.74. That is, by controlling the magnitude of the electric field, the density of the nanoparticles 100 is controlled, so as to control whether the nanoparticles 100 are loosely packed or tightly packed, so as to regulate the refractive index of the regulating layer 10 .
  • the mass ratio of the nanoparticles to the ligand is (1-10):1.
  • the mass ratio of the nanoparticles to the ligand may be 1:1, 2:1, 5:1, 7.5:1, 8:1 or 10:1, etc.
  • the mass ratio of the nanoparticles to the ligands is set to (1-10): 1, so that the ligands can be attached to the nanoparticles, so that the nanoparticles 100 can be charged under the action of an electric field Or it can be electrically polarized, so as to further improve the accuracy of regulating the nanoparticles 100 , thereby further improving the performance of the regulating layer 10 .
  • size is a relative concept, there is no absolute big or small.
  • the electric field intensity when the electric field intensity is less than 6V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than 6V/ ⁇ m, it is a large electric field; or when the electric field intensity is less than 50V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than When the electric field intensity is 50V/ ⁇ m, it is a large electric field; or when the electric field intensity is less than 200V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than 200V/ ⁇ m, it is a large electric field, etc.
  • the voltage when the voltage is less than 6V, it is a small voltage; when the voltage is greater than 6V, it is a large voltage; or when the voltage is less than 50V, it is a small voltage; when the voltage is greater than 50V, it is a large voltage; or when When the voltage is less than 200V, it is a small voltage; when the voltage is greater than 200V, it is a large voltage, etc.
  • the nanoparticles 100 in the regulation layer 10 are of low density, and when the density of the nanoparticles 100 in the regulation layer 10 is greater than 1.8 g / cm3 , the nanoparticles 100 in the control layer 10 are of high density; or, when the density of the nanoparticles 100 in the control layer 10 is less than 20g/ cm3 , the nanoparticles 100 of the control layer 10 are of low density , and when the density of the nanoparticles 100 in the control layer 10 is greater than 20 g/cm 3 , the nanoparticles 100 in the control layer 10 are of high density; or, when the density of the nanoparticles 100 in the control layer 10 is less than 50 g/cm 3 , the nanoparticles 100 in the control layer 10 have a low density, and when the density of the nanoparticles 100 in the control layer 10 have a low density, and when the density of the nanoparticles 100 in the control layer 10 have a low density, and when the density of the nanoparticles 100 in the control layer
  • FIG. 4 is a schematic diagram of the second structure of the control layer provided by the embodiment of the present application.
  • the difference between the second structure and the first structure is that:
  • the nanoparticles 100 are closely packed. When the nanoparticles 100 are closely packed, the refractive index of the control layer 10 changes from 2.4 to 1.5, and the refractive index of the control layer 10 increases.
  • the control layer 10 is composed of closely packed nanoparticles 100. At this time, the refractive index of the control layer 10 is determined by the nanoparticles 100 and air, the refractive index of air is 1, and the refractive index of the nanoparticles 100 is greater than 1.
  • the nanoparticles 100 are densely packed. At this time, the distance between the nanoparticles 100 is small, the air duty ratio is small, and the nanoparticles with high refractive index have a large duty ratio.
  • the refractive index of the layer 10 is beneficial to control the light internal reflection ability of the layer 10, thereby improving the carrier mobility and optical confinement ability, thereby improving the optical quality of the device.
  • nanoparticle 100 composed of CdSe/ZnS and ligand as polyethylene glycol as an example for illustration.
  • CdSe/ZnS and polyethylene glycol are mixed with a mass ratio of 5:1 to form nanoparticles 100, and a large voltage is applied to form a large electric field when preparing the control layer 10, so that the nanoparticles 100 are tightly packed, so that the nanoparticles 100
  • the density is 1.98 g/cm 3 , so that the refractive index of the control layer 10 is 2.03.
  • the nanoparticle is CdSe/ZnS and the ligand is polyethylene glycol to form the nanoparticle 100.
  • a voltage of 0-10.5V/ ⁇ m is applied to it to form an electric field.
  • the density of the nanoparticles 100 will change between 1.5-1.98 g/ cm3 with the change of the electric field, so that the nanoparticles 100 are tightly packed or loosely packed, and when the density of the nanoparticles 100 changes, the nanoparticles 100
  • the refractive index of the nanoparticle varies between 1.74 and 2.03 as the density changes, that is, by controlling the size of the electric field, the density of the nanoparticles 100 is controlled, that is, the nanoparticles 100 are controlled to be loosely packed or tightly packed, so as to realize the regulation Adjustment of the refractive index of layer 10 .
  • the present application provides a control layer 10, adding ligands to the nanoparticles, because the ligands are charged or electrically polarizable compounds in the solvent, so that the nanoparticles 100 can be ionized in polar solvents, so that the control layer 10 can pass through It is formed by electrodeposition, and by adjusting the size of the electric field, the packing degree of the nanoparticles 100 is adjusted, that is, by adjusting the size of the electric field, the packing density of the nanoparticles 100 is adjusted, so that the refractive index n of the control layer 10 can be in the range of 1.5- 2.4, that is to realize the control of the refractive index of the control layer 10 .
  • the present application also provides an optoelectronic device, which includes the control layer 10 provided in the present application.
  • Optoelectronic devices can be light emitting diodes, photodetectors, photovoltaics or sensors, etc.
  • the present application also provides a preparation method of the regulating layer, comprising:
  • a voltage is applied through the first electrode and the second electrode, so that an electric field is formed between the first electrode and the second electrode, and the charged or electrically polarizable nanoparticles are charged or electrically polarizable in a solvent to form an electric field containing A solution of charged or electrically polarizable nanoparticles, so that the accumulation degree of nanoparticles can be regulated by the intensity of the electric field, that is, the density of the nanoparticles can be regulated by controlling the intensity of the electric field, so as to realize the adjustment of the refractive index of the control layer, thereby improving Regulate the performance of the layer, thereby improving the performance of the device.
  • FIG. 5 is a schematic flow chart of the preparation method of the regulating layer provided in the embodiment of the present application.
  • Fig. 6 is a schematic flowchart of the first structure of the preparation method of the control layer provided in the embodiment of the present application.
  • the present application also provides a method for preparing the regulating layer 10, comprising:
  • the materials of the first electrode and the second electrode are independently selected from one or more combinations of ITO, graphene, metal or transition metal chalcogenide.
  • Transition metal chalcogenides include one or a combination of MoS 2 , MoSe 2 , WS 2 and WSe 2 .
  • the first electrode and the second electrode may be external electrodes or electrodes provided on the device.
  • FIG. 7 is a schematic structural diagram of the preparation method of the regulating layer provided in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the structure of nanoparticles provided by the embodiment of the present application.
  • FIG. 9 is an enlarged schematic diagram of F in FIG. 6 provided by the embodiment of the present application. Specifically, the nanoparticles and ligands with a mass ratio of (1-10): 1 are dissolved in a solvent to form a solution containing charged or electrically polarizable nanoparticles 100.
  • the ligands are ionized in the solvent, and the nanoparticles 100 is positively charged or negatively charged, and the nanoparticle 100 is positively charged as an example for illustration; then, a solution containing charged or electrically polarizable nanoparticles 100 is dripped on the first electrode and the second electrode, or, The first electrode and the second electrode are inserted into a solution containing charged or electrically polarizable nanoparticles 100 .
  • the solvent is a polar solvent, specifically, the solvent includes a colorless, transparent, low-boiling and volatile organic solvent or a colorless, transparent, low-boiling and volatile inorganic solvent.
  • the mass ratio of the nanoparticles to the ligand may be 1:1, 2:1, 5:1, 7.5:1, 8:1 or 10:1.
  • the mass ratio of the nanoparticles to the ligands is set to (1-10): 1, so that the ligands can be attached to the nanoparticles, so that the nanoparticles 100 can be charged under the action of an electric field Or it can be electrically polarized, so as to further improve the accuracy of regulating the nanoparticles 100 , thereby further improving the performance of the regulating layer 10 .
  • the ligands include compounds containing one or more combinations of carboxyl, amine, mercapto, mercaptan, halogen and phosphine groups, and one or more combinations of surfactants.
  • the surfactant includes organic sulfate cetyltrimethylammonium bromide (CTAB), metal soap (naphthoate or stearate of metals such as cobalt, aluminum, iron, etc.), organic Amines (N-vinylpyrrolidone polymers), organophosphates or esters, etc.
  • CTAB organic sulfate cetyltrimethylammonium bromide
  • metal soap naphthoate or stearate of metals such as cobalt, aluminum, iron, etc.
  • organic Amines N-vinylpyrrolidone polymers
  • organophosphates or esters etc.
  • the ligands include polyethylene glycol, polyethylene glycol derivatives, polysiloxane, polysiloxane derivatives, polyvinyl carbazole, polyvinyl carbazole derivatives, polyvinyl alcohol, poly Vinyl alcohol derivatives, octamercaptan, dodecanethiol, benzenethiol, 1,2-benzenethiol, 1,3-benzenethiol, 1,4-benzenethiol, 1,2-ethanedithiol , 3-mercaptopropionic acid, oleic acid, 1,2-ethylenediamine, octylamine, oleylamine, tri-n-octylphosphine, tributylphosphine, ammonium thiocyanate, tetrabutylammonium iodide, tetrabutyl Ammonium bromide, tetrabutylammonium chloride, tetrabutylammoni
  • the nanoparticles include BaSO 4 , CaCO 3 , ZnSe, CdS, TiO 2 , BaTiO 3 , ZnS, ZrO 2 , Si 3 N 4 , SnO, ZnO, CdSe, CdTe, CdTe, ZnTe, CdZnS, CdZnSe , CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP, InAlNP, CuInS 2 , CuInSe 2 , AgInS 2 and perovskite quantum dots or a combination of several.
  • R 1 -NH 3 + is phenethylamine ion or n-butylamine ion
  • DR 2 -NH 3 + is halophenethylamine ion
  • R 3 -NH 3 + It is methylamine ion
  • a 2 B m-1 C m X 3m+1 may be (C 8 H 11 N) 2 PbBr 4 .
  • the nanoparticle 100 composed of CdSe/ZnS and the ligand as polyethylene glycol is taken as an example for illustration.
  • a first voltage to the first electrode and the second electrode forms a first electric field
  • the first voltage is a small voltage
  • the first electric field is a small electric field
  • the positively charged nanoparticles 100 are aggregated to form large-sized nanoparticles 100
  • the large-sized nanoparticles Under the action of a small electric field, the particles 100 move and gather on the first electrode, forming the control layer 10 in which the large-sized nanoparticles 100 are loosely packed. That is, the refractive index of the control layer 10 is 1.5-2.4, and changes from the direction of 2.4 to the direction of 1.5, so that the refractive index becomes smaller.
  • control layer 10 The principle of forming the control layer 10 in which the nanoparticles 100 are loosely packed:
  • a small voltage is applied to the first electrode and the second electrode to form a small electric field, and the nanoparticles 100 gather together due to the mutual attraction of hydrogen bonds to form large-sized nanoparticles 100.
  • the large-sized nanoparticles 100 can Move and gather on the first electrode, because the force of the small electric field is smaller than the electrostatic repulsion of the large-sized nanoparticles 100, forming the control layer 10 in which the nanoparticles 100 are loosely packed. That is, the nanoparticles 100 make the refractive index of the control layer 10 change from 2.4 to 1.5 under the action of a small electric field.
  • the nanoparticles 100 composed of CdSe/ZnS and polyethylene glycol as a ligand move and gather on the first electrode under the action of a small electric field to form a control layer 10 in which the nanoparticles 100 are loosely packed.
  • the refractive index of the control layer 10 is 2.03.
  • the nanoparticle 100 prepared by electrodeposition is larger in size, and the pores of the formed film are larger, so the refractive index of the film is smaller, that is, the control layer 10 formed by electrodeposition has a lower refractive index than that obtained by spin coating.
  • the refractive index of the control layer 10 is formed by coating.
  • size is a relative concept, there is no absolute big or small.
  • the electric field intensity when the electric field intensity is less than 6V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than 6V/ ⁇ m, it is a large electric field; or when the electric field intensity is less than 50V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than When the electric field intensity is 50V/ ⁇ m, it is a large electric field; or when the electric field intensity is less than 200V/ ⁇ m, it is a small electric field; when the electric field intensity is greater than 200V/ ⁇ m, it is a large electric field, etc.
  • the voltage when the voltage is less than 6V, it is a small voltage; when the voltage is greater than 6V, it is a large voltage; or when the voltage is less than 50V, it is a small voltage; when the voltage is greater than 50V, it is a large voltage; or when When the voltage is less than 200V, it is a small voltage; when the voltage is greater than 200V, it is a large voltage, etc.
  • a small voltage is applied to the first electrode and the second electrode to form a small electric field.
  • the force of the small electric field is small, so that the distance between the nanoparticles 100 Larger, so as to form the control layer 10 in which the nanoparticles 100 are loosely packed, so as to realize the adjustment of the refractive index of the control layer 10 .
  • FIG. 10 is a schematic flowchart of the second structure of the method for preparing the control layer provided in the embodiment of the present application.
  • the nanoparticles 100 are composed of CdSe/ZnS and the ligand as polyethylene glycol.
  • the nanoparticles 100 overcome the mutual Due to the small distance between the nanoparticles 100, they move and gather on the first electrode to form the control layer 10 in which the nanoparticles 100 are closely packed.
  • the refractive index of the control layer 10 at this time is 1.74. That is, other steps are the same as those in Embodiment 1, and will not be repeated here.
  • the present application provides a method for preparing a control layer, applying a voltage to the first electrode and the second electrode to form an electric field, and adjusting the size of the electric field so that the nanoparticles 100 of the formed control layer 10 are loosely packed or loosely packed, That is, through the adjustment of the electric field, the density of the nanoparticles 100 is changed, so that the refractive index of the control layer 10 is changed between 1.5-2.4, thereby realizing the adjustment of the refractive index of the control layer 10 .
  • the application provides a control layer and its preparation method and optoelectronic device.
  • the preparation method of the control layer 10 apply a voltage through the first electrode and the second electrode, so that an electric field is formed between the first electrode and the second electrode, and the electric field makes the containing
  • the charged or electrically polarizable nanoparticles 100 are charged or electrically polarizable in the solvent, so that the accumulation degree of the nanoparticles 100 can be regulated by the electric field strength, that is, the density height of the nanoparticles 100 can be regulated by the electric field strength, so that the refractive index of the regulation layer 10 Change between 1.5-2.4 to realize the adjustment of the refractive index of the control layer, thereby improving the performance of the control layer 10, thereby improving the performance of the device.
  • control layer provided by the embodiment of the present application and its preparation method and photoelectric device have been introduced in detail above.
  • specific examples are used to illustrate the principle and implementation of the present application.
  • the description of the above embodiment is only for To help understand the method and its core idea of this application; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope.
  • the content of this specification does not It should be understood as a limitation on the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种调控层及其制备方法和光电器件,调控层的材料包括带电或可电极化的纳米颗粒。在本申请中,调控层采用在溶剂中带电或可电极化的纳米颗粒形成,使得可以通过调控纳米颗粒的密度来调控调控层的折射率,提高器件的性能。

Description

调控层及制备方法和光电器件 技术领域
本申请涉及显示技术领域,具体涉及一种调控层及制备方法和光电器件。
背景技术
纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。故其在很多领域被广泛应用。
目前,采用纳米材料形成的膜层,其通常采用旋涂方式形成,采用旋涂方式形成的膜层,其折射率是固定,不可调,使得膜层不能很好的满足器件折射率的要求,从而影响器件的性能。
技术问题
本申请实施例提供一种调控层及制备方法和光电器件,以解决膜层折射率不可调节的问题。
技术解决方案
本申请提供一种调控层,所述调控层的材料包括在溶剂中带电或可电极化的纳米颗粒。
可选的,在本申请的一些实施例中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物。
可选的,在本申请的一些实施例中,所述配体包括含有羧基、胺基、疏基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
可选的,在本申请的一些实施例中,所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
可选的,在本申请的一些实施例中,所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO 、CdSe、CdTe、ZnSe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
可选的,在本申请的一些实施例中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
可选的,在本申请的一些实施例中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
相应的,本申请还提供一种光电器件,所述光电器件包括:
调控层,其中,所述调控层的材料包括在溶剂中带电或可电极化的纳米颗粒。
可选的,在本申请的一些实施例中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物;
所述配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合;
所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合;
所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
可选的,在本申请的一些实施例中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
可选的,在本申请的一些实施例中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
相应的,本申请实施例还提供一种调控层的制备方法,包括:
提供一相对设置的第一电极和第二电极;
在所述第一电极和所述第二电极上设置含有带电或可电极化的纳米颗粒的溶液;
对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层。
可选的,在本申请的一些实施例中,所述对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层中,包括:
对所述第一电极和所述第二电极施加第一电压形成第一电场,所述含有带电或可电极化的纳米颗粒形成调控层,所述含有带电或可电极化的纳米颗粒疏松堆积,所述调控层的折射率为1.5-2.4,且所述调控层的折射率自2.4方向向1.5方向变化。
可选的,在本申请的一些实施例中,所述对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层中,包括:
对所述第一电极和所述第二电极施加第二电压形成第二电场,所述含有带电或可电极化的纳米颗粒形成调控层,所述含有带电或可电极化的纳米颗粒紧密堆积,所述调控层的折射率为1.5-2.4,且所述调控层的折射率自1.5方向向2.4方向变化。
可选的,在本申请的一些实施例中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物。
可选的,在本申请的一些实施例中,所述配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
可选的,在本申请的一些实施例中,所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
可选的,在本申请的一些实施例中,所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
可选的,在本申请的一些实施例中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
可选的,在本申请的一些实施例中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
有益效果
本申请公开了一种调控层及其制备方法和光电器件,调控层的材料包括带电或可电极化的纳米颗粒。在本申请中,调控层采用在溶剂中带电或可电极化的纳米颗粒,使得调控层可以调控纳米颗粒的堆积程度,来实现对折射率的调节。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的调控层的第一种结构示意图。
图2是本申请实施例提供的调控层的扫描电镜示意图。
图3是本申请实施例提供的纳米颗粒的密度、折射率和电场强度示意图。
图4是本申请实施例提供的调控层的第二种结构示意图。
图5是本申请实施例提供的调控层的制备方法的流程示意图。
图6是本申请实施例提供的调控层的制备方法的第一种结构流程示意图。
图7是本申请实施例提供的调控层的制备方法结构示意图。
图8是本申请实施例提供纳米颗粒的结构示意图。
图9是本申请实施例提供图6中的F处放大示意图。
图10是本申请实施例提供的调控层的制备方法的第二种结构流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。在本申请中,“反应”可以为化学反应或物理反应。
本申请实施例提供一种调控层及其制备方法。调控层的材料包括在溶剂中带电或可电极化的纳米颗粒。
本申请公开了一种调控层及其制备方法和光电器件,调控层的材料包括带电或可电极化的纳米颗粒。在本申请中,调控层采用在溶剂中带电或可电极化的纳米颗粒,使得调控层可以调控纳米颗粒的堆积程度,来实现对调控层折射率的调节,从而提高器件的性能。
以下分别进行详细说明。
请参阅图1和图2,图1是本申请实施例提供的调控层的第一种结构示意图。图2是本申请实施例提供的调控层的扫描电镜示意图。本申请提供一种调控层10。调控层10的材料包括在溶剂中带电或可电极化的纳米颗粒100。纳米颗粒100包括纳米粒子和包覆于纳米粒子表面的配体。配体为带电或可电极化的化合物。
在本申请中,在纳米粒子中加入配体,因配体为在溶剂中带电或可电极化的化合物,使得纳米颗粒100可以在极性溶剂中电离,从而使得调控层10通过电沉积方式形成,并通过调节电场的大小,来调节纳米颗粒100的堆积程度,也即调控纳米颗粒100的堆积密度,进而使得调控层10的折射率n可以在1.5-2.4之间变动,即实现对调控层10折射率的调控。
在一实施例中,调控层10的纳米颗粒100为疏松堆积,当纳米颗粒100呈疏松堆积时,调控层10的折射率自2.4方向向1.5方向变化,使得折射率变小。在本申请中,由疏松堆积的纳米颗粒100组成调控层10,此时的调控层10的折射率由纳米颗粒100和空气共同决定,而空气的折射率为1,纳米颗粒100的折射率大于1,纳米颗粒100呈疏松堆积,使得空气的占空比大,从而使得调控层10的折射率降低,从而提高光取出效率。
需要说明的是,疏松堆积与后续的紧密堆积是一个相对的概念,没有绝对的疏松堆积或紧密堆积。作为示例,当调控层10中的纳米颗粒100的密度小于1.8g/cm 3时,调控层10中的纳米颗粒100即为疏松堆积,而当调控层10中的纳米颗粒100的密度大于1.8g/cm 3时,调控层10中的纳米颗粒100即为紧密堆积;或者,当调控层10中的纳米颗粒100的密度小于20g/cm 3时,调控层10中的纳米颗粒100即为疏松堆积,而当调控层10中的纳米颗粒100的密度大于20g/cm 3时,调控层10中的纳米颗粒100即为紧密堆积;或者,当调控层10中的纳米颗粒100的密度小于50g/cm 3时,调控层10中的纳米颗粒100即为疏松堆积,而当调控层10中的纳米颗粒100的密度大于50g/cm 3时,调控层10中的纳米颗粒100即为紧密堆积,等等。
在一实施例中,配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
在一实施例中,表面活性剂包括有机硫酸盐十六烷基三甲基溴化铵(CTAB)、金属皂(钴、铝、铁等金属的萘酸盐或硬脂酸盐等)、有机胺(N-乙烯基吡咯烷酮聚合物)、有机磷酸盐或有机磷酸酯类等。
在一实施例中,配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
在一实施例中,纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2和钙钛矿量子点中的一种或几种组合。具体的,钙钛矿量子点包括A 2B m-1C mX 3m+1和BCX 3中的一种或两种组合,其中,m≥1,m为正整数,A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,R 1为C 6-C 20的芳香基或C 1-C 20的烷基,R 2为C 6-C 20的芳香基,D包括F、Cl、Br和I中的一种或多种组合,B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,R 3为C 1-C 20的烷基,R 4为C 1-C 20的烃基,C选自Pb 2+和Sn 2+中的一种或两种组合,X为卤族元素。进一步的,m的范围满足1≤m≤100,R 1-NH 3 +为苯乙胺离子或正丁胺离子,D-R 2-NH 3 +为卤代苯乙胺离子,R 3-NH 3 +为甲胺离子,NH=R 4-NH 3 +为甲脒离子。
在一实施例中,A 2B m-1C mX 3m+1可以为(C 8H 11N) 2PbBr 4。BCX 3可以为NH=CH 2NH 3PbBr 3、CH 3NH 3PbCl 3、CsPbBr 3、CsSnBr 3、(C 8H 11N) 2SnBr 4、CH 3NH 3PbBr 3或CH(NH 22PbBr 3等。
在一实施例中,调控层10为发光层,其纳米粒子为量子点,且纳米颗粒100为疏松堆积。具体的,量子点包括单一结构量子点及核壳结构量子点中的至少一种。单一结构量子点包括CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2和AgInS 2中的至少一种。核壳结构的量子点的核包括上述单一结构量子点中的至少一种,核壳结构的量子点的壳层材料包括CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种。作为示例,核壳结构的量子点包括CdZnSe/CdZnS/ZnS、CdZnSe/ZnSe/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS和InP/ZnSeS/ZnS中的至少一种。
在本申请中,由疏松堆积的纳米颗粒100组成发光层,此时的调控层10的折射率由纳米颗粒100和空气共同决定,而空气的折射率为1,纳米颗粒100的折射率大于1,纳米颗粒100疏松堆积,也即纳米颗粒100的堆积密度大,使得空气的占空比大,从而使得调控层10的折射率降低,从而提高光取出效率,从而提高调控层10的发光效率。
请参阅图3,图3是本申请实施例提供的纳米颗粒的密度、折射率和电场强度示意图。以纳米粒子为CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100为例进行说明。CdSe/ZnS和聚乙二醇以质量比为5:1混合形成纳米颗粒100,在制备调控层10时对其施加小电压形成小电场,使得纳米颗粒100呈疏松堆积,即此时的调控层10由低密度堆积的纳米颗粒形成,调控层10中的纳米颗粒100的密度为1.5g/cm 3,调控层10的折射率为1.74。也即,通过控制电场大小,来控制纳米颗粒100的密度高低,从而控制纳米颗粒100是呈疏松堆积还是紧密堆积,从而实现对调控层10的折射率进行调控。
在一实施例中,纳米粒子的质量比与配体的质量比为(1-10):1。具体的,纳米粒子的质量比与配体的质量比可以为1:1、2:1、5:1、7.5:1、8:1或10:1等。在本申请中,将纳米粒子的质量比与配体的质量比设置为(1-10):1,使得配体可以附着在纳米粒子上,从而使得在纳米颗粒100可以在电场的作用下带电或可电极化,从而进一步提高调控纳米颗粒100的准确度,从而进一步提高调控层10的性能。
需要说明的是,大小是一个相对的概念,没有绝对的大或小。作为示例,当电场强度小于6V/μm时,即为小电场;当电场强度大于6V/μm时,即为大电场;或当电场强度小于50V/μm时,即为小电场;当电场强度大于50V/μm时,即为大电场;或当电场强度小于200V/μm时,即为小电场;当电场强度大于200V/μm时,即为大电场等。作为示例,当电压小于6V时,即为小电压;当电压大于6V时,即为大电压;或当电压小于50V时,即为小电压;当电压大于50V时,即为大电压;或当电压小于200V时,即为小电压;当电压大于200V时,即为大电压等。
需要说明的是,高与低是一个相对的概念,没有绝对的高或低。作为示例,当调控层10中的纳米颗粒100的密度小于1.8g/cm 3时,调控层10中的纳米颗粒100即为低密度,而当调控层10中的纳米颗粒100的密度大于1.8g/cm 3时,调控层10中的纳米颗粒100即为高密度;或者,当调控层10中的纳米颗粒100的密度小于20g/cm 3时,调控层10中的纳米颗粒100即为低密度,而当调控层10中的纳米颗粒100的密度大于20g/cm 3时,调控层10中的纳米颗粒100即为高密度;或者,当调控层10中的纳米颗粒100的密度小于50g/cm 3时,调控层10中的纳米颗粒100即为低密度,而当调控层10中的纳米颗粒100的密度大于50g/cm 3时,调控层10中的纳米颗粒100即为高密度,等等。
请参阅图4,图4是本申请实施例提供的调控层的第二种结构示意图。第二种结构和第一种结构的不同之处在于:
纳米颗粒100为紧密堆积,当纳米颗粒100呈紧密堆积时,调控层10的折射率自2.4方向向1.5方向变化,调控层10的折射率增大。在本申请中,由紧密堆积的纳米颗粒100组成调控层10,此时的调控层10的折射率由纳米颗粒100和空气决定,空气的折射率为1,纳米颗粒100的折射率大于1,纳米颗粒100呈紧密堆积,此时纳米颗粒100的间距小,空气的占空比小,高折射率的纳米粒子占空比大,调控层10的折射率接近于其本体折射率,从而提高调控层10的折射率,有利于调控层10的光内反射能力,从而提高载流子迁移率和光限域能力,从而提高器件的光学品质。
请继续参阅图3,以纳米粒子为CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100为例进行说明。CdSe/ZnS和聚乙二醇以质量比为5:1混合形成纳米颗粒100,在制备调控层10时对其施加大电压形成大电场,使得纳米颗粒100呈紧密堆积,从而使得纳米颗粒100的密度为1.98 g/cm 3,从而调控层10的折射率为2.03。
在本申请中,纳米粒子为CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100,在制备调控层10时,对其施加0-10.5V/μm的电压以形成电场,当电场变化的同时,纳米颗粒100的密度会随着电场的变化而在1.5-1.98 g/cm 3之间变化,使得纳米颗粒100呈紧密堆积或疏松堆积,而纳米颗粒100的密度变化的同时,纳米颗粒100的折射率随着密度的变化而在1.74-2.03之间变化,即通过控制电场的大小,来控制纳米颗粒100的密度高低,也即控制纳米颗粒100呈疏松堆积或紧密堆积,从而实现对调控层10的折射率的调节。本申请提供一种调控层10,在纳米粒子中加入配体,因配体为在溶剂中带电或可电极化的化合物,使得纳米颗粒100可以在极性溶剂中电离,从而使得调控层10通过电沉积方式形成,并通过调节电场的大小,来调节纳米颗粒100堆积程度,也即,通过调节电场大小,来调节纳米颗粒100的堆积密度,进而使得调控层10的折射率n可以在1.5-2.4之间变动,即实现对调控层10折射率的调控。
本申请还提供一种光电器件,光电器件包括本申请提供的调控层10。光电器件可以为发光二极管、光电探测器、光伏或传感器等。
本申请还提供一种调控层的制备方法,包括:
B11、提供一相对设置的第一电极和第二电极。
B12、在第一电极和第二电极上设置含有带电或可电极化的纳米颗粒的溶液。
B13、对第一电极和第二电极施加电压形成电场,含有带电或可电极化的纳米颗粒形成调控层。
在本申请中,通过第一电极和第二电极施加电压,使得第一电极和第二电极之间形成电场,通过电场使得带电或可电极化的纳米颗粒在溶剂中带电或可电极化形成含有带电或可电极化的纳米颗粒的溶液,从而可以通过电场强度调控纳米颗粒的堆积程度,也即通过控制电场的强度调控纳米颗粒的密度高低,来实现对调控层的折射率的调整,从而提高调控层的性能,从而提高器件的性能。
以下进行具体说明:
实施例1:
请参阅图5和图6,图5是本申请实施例提供的调控层的制备方法的流程示意图。图6是本申请实施例提供的调控层的制备方法的第一种结构流程示意图。本申请还提供一种调控层10的制备方法,包括:
B11、提供一相对设置的第一电极和第二电极。
第一电极和第二电极的材料分别独立的选自ITO、石墨烯、金属或过渡金属硫属化合物中的一种或几种组合。过渡金属硫属化合物包括MoS 2、MoSe 2、WS 2和WSe 2中的一种或几种组合。第一电极和第二电极可以为外部的电极或设置器件上的电极。
B12、在第一电极和第二电极上设置含有带电或可电极化的纳米颗粒的溶液。
请参阅图7-图9,图7是本申请实施例提供的调控层的制备方法结构示意图。图8是本申请实施例提供纳米颗粒的结构示意图。图9是本申请实施例提供图6中的F处放大示意图。具体的,将质量比为(1-10):1的纳米粒子和配体溶解于溶剂中形成含有带电或可电极化的纳米颗粒100的溶液,此时的配体在溶剂中电离,纳米颗粒100带有正电荷或负电荷,以纳米颗粒100带有正电荷为例进行说明;然后,在第一电极和第二电极上滴加含有带电或可电极化的纳米颗粒100的溶液,或者,将第一电极和第二电极插入含有带电或可电极化的纳米颗粒100的溶液中。
溶剂为极性溶剂,具体的,溶剂包括无色透明的低沸点以及易挥发的有机溶剂或无色透明的低沸点以及易挥发的无机溶剂。
在一实施例中,纳米粒子的质量比与配体的质量比可以为1:1、2:1、5:1、7.5:1、8:1或10:1等。在本申请中,将纳米粒子的质量比与配体的质量比设置为(1-10):1,使得配体可以附着在纳米粒子上,从而使得在纳米颗粒100可以在电场的作用下带电或可电极化,从而进一步提高调控纳米颗粒100的准确度,从而进一步提高调控层10的性能。
在一实施例中,配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
在一实施例中,表面活性剂包括有机硫酸盐十六烷基三甲基溴化铵(CTAB)、金属皂(钴、铝、铁等金属的萘酸盐或硬脂酸盐等)、有机胺(N-乙烯基吡咯烷酮聚合物)、有机磷酸盐或有机磷酸酯类等。
在一实施例中,配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
在一实施例中,纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO 、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2和钙钛矿量子点中的一种或几种组合。具体的,钙钛矿量子点包括A 2B m-1C mX 3m+1和BCX 3中的一种或两种组合,其中,m≥1,m为正整数,A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,R 1为C 6-C 20的芳香基或C 1-C 20的烷基,R 2为C 6-C 20的芳香基,D包括F、Cl、Br和I中的一种或多种组合,B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,R 3为C 1-C 20的烷基,R 4为C 1-C 20的烃基,C选自Pb 2+和Sn 2+中的一种或两种组合,X为卤族元素。进一步的,m的范围满足1≤m≤100,R 1-NH 3 +为苯乙胺离子或正丁胺离子,D-R 2-NH 3 +为卤代苯乙胺离子,R 3-NH 3 +为甲胺离子,NH=R 4-NH 3 +为甲脒离子。
在一实施例中,A 2B m-1C mX 3m+1可以为(C 8H 11N) 2PbBr 4。BCX 3可以为NH=CH 2NH 3PbBr 3、CH 3NH 3PbCl 3、CsPbBr 3、CsSnBr 3、(C 8H 11N) 2SnBr 4、CH 3NH 3PbBr 3或CH(NH 22PbBr 3等。
在本申请中,以纳米粒子为CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100为例进行说明。
B13、对第一电极和第二电极施加电压形成电场,含有带电或可电极化的纳米颗粒形成调控层。
请继续参阅图3。对第一电极和第二电极施加第一电压形成第一电场,第一电压为小电压,第一电场为小电场;带有正电荷的纳米颗粒100聚集形成大尺寸纳米颗粒100,大尺寸纳米颗粒100在小电场的作用下,运动并聚集到第一电极上,形成大尺寸纳米颗粒100呈疏松堆积的调控层10。即调控层10的折射率为1.5-2.4,且自2.4方向向1.5方向变化,使得折射率变小。
形成纳米颗粒100呈疏松堆积的调控层10的原理:
对第一电极和第二电极施加小电压形成小电场,由于纳米颗粒100的氢键的相互吸引作用聚集到一起,形成大尺寸纳米颗粒100,大尺寸纳米颗粒100在小电场的作用下,能够运动并聚集到第一电极上,因小电场的力小于大尺寸纳米颗粒100的静电斥力,形成纳米颗粒100呈疏松堆积的调控层10。即纳米颗粒100在小电场的作用下,使得调控层10的折射率自2.4方向向1.5方向变化。
如,由CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100,通过在小电场的作用下,运动并聚集到第一电极上形成纳米颗粒100呈疏松堆积的调控层10,此时的调控层10的折射率为2.03。
与旋涂相比,电沉积制备的纳米颗粒100尺寸更大,组成的薄膜的孔隙较大,因此薄膜的折射率较小,即采用电沉积方式形成的调控层10,其折射率小于采用旋涂方式形成调控层10的折射率。
需要说明的是,大小是一个相对的概念,没有绝对的大或小。作为示例,当电场强度小于6V/μm时,即为小电场;当电场强度大于6V/μm时,即为大电场;或当电场强度小于50V/μm时,即为小电场;当电场强度大于50V/μm时,即为大电场;或当电场强度小于200V/μm时,即为小电场;当电场强度大于200V/μm时,即为大电场等。作为示例,当电压小于6V时,即为小电压;当电压大于6V时,即为大电压;或当电压小于50V时,即为小电压;当电压大于50V时,即为大电压;或当电压小于200V时,即为小电压;当电压大于200V时,即为大电压等。
在本申请中,对第一电极和第二电极施加小电压,以形成小电场,与同种电性的纳米颗粒100的静电斥力相比,小电场的力较小,使得纳米颗粒100的间距较大,从而形成纳米颗粒100呈疏松堆积的调控层10,从而实现对调控层10的折射率的调整。
实施例2:
请参阅图10,图10是本申请实施例提供的调控层的制备方法的第二种结构流程示意图。
需要说明的是,实施例2与实施例1的不同之处在于:
请继续参阅图3。将小电压改为大电压,即大电压为第二电压;小电场改为大电场,即大电场为第二电场,形成的调控层10,其纳米颗粒100呈紧密堆积,即纳米颗粒100在大电场的作用下,使得调控层10的折射率自1.5方向向2.4方向变化。
具体的,对第一电极和第二电极施加大电压形成大电场,由CdSe/ZnS和配体为聚乙二醇构成纳米颗粒100,通过在大电场的作用下,克服纳米颗粒100了彼此间的静电斥力,因纳米颗粒100间距小,运动并聚集到第一电极上形成纳米颗粒100呈紧密堆积的调控层10,此时的调控层10的折射率为1.74。即,其它步骤与实施例1相同,此处不再赘述。
本申请提供一种调控层的制备方法,对第一电极和第二电极施加电压,以形成电场,通过电场大小的调节,使得形成的调控层10的纳米颗粒100呈疏松堆积或疏松堆积的,也即通过电场大小的调节,改变纳米颗粒100的密度,从而使得调控层10的折射率在1.5-2.4之间变化,从而实现对调控层10的折射率的调整。
本申请提供一种调控层及其制备方法和光电器件,调控层10的制备方法:通过第一电极和第二电极施加电压,使得第一电极和第二电极之间形成电场,通过电场使得含有带电或可电极化的纳米颗粒100在溶剂中带电或可电极化,从而可以通过电场强度调控纳米颗粒100的堆积程度,即通过电场强度调控纳米颗粒100的密度高度,使得调控层10的折射率在1.5-2.4之间变化,来实现对调控层的折射率的调整,从而提高调控层10的性能,从而提高器件的性能。
以上对本申请实施例所提供的一种调控层及其制备方法和光电器件进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种调控层,其中,所述调控层的材料包括在溶剂中带电或可电极化的纳米颗粒。
  2. 根据权利要求1所述的调控层,其中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物。
  3. 根据权利要求2所述的调控层,其中,所述配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
  4. 根据权利要求2所述的调控层,其中,所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
  5. 根据权利要求2所述的调控层,其中,所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
  6. 根据权利要求1所述的调控层,其中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
  7. 根据权利要求1所述的调控层,其中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
  8. 一种光电器件,其中,所述光电器件包括调控层,其中,所述调控层的材料包括在溶剂中带电或可电极化的纳米颗粒。
  9. 根据权利要求8所述的光电器件,其中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物;
    所述配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合;
    所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合;
    所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
  10. 根据权利要求8所述的光电器件,其中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
  11. 根据权利要求8所述的光电器件,其中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
  12. 一种调控层的制备方法,其包括:
    提供一相对设置的第一电极和第二电极;
    在所述第一电极和所述第二电极上设置含有带电或可电极化的纳米颗粒的溶液;
    对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层。
  13. 根据权利要求12所述的调控层的制备方法,其中,所述对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层中,包括:
    对所述第一电极和所述第二电极施加第一电压形成第一电场,所述含有带电或可电极化的纳米颗粒形成调控层,所述含有带电或可电极化的纳米颗粒疏松堆积,所述调控层的折射率为1.5-2.4,且所述调控层的折射率自2.4方向向1.5方向变化。
  14. 根据权利要求12所述的调控层的制备方法,其中,所述对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层中,包括:
    所述对所述第一电极和所述第二电极施加电压形成电场,所述含有带电或可电极化的纳米颗粒形成调控层中,包括:
    对所述第一电极和所述第二电极施加第二电压形成第二电场,所述含有带电或可电极化的纳米颗粒形成调控层,所述含有带电或可电极化的纳米颗粒紧密堆积,所述调控层的折射率为1.5-2.4,且所述调控层的折射率自1.5方向向2.4方向变化。
  15. 根据权利要求12所述的调控层的制备方法,其中,所述纳米颗粒包括纳米粒子和包覆于所述纳米粒子表面的配体,所述配体为在溶剂中带电或可电极化的化合物。
  16. 根据权利要求15所述的调控层的制备方法,其中,所述配体包括含有羧基、胺基、疏基、疏醇基、卤素和膦基中的一种或几种组合的化合物以及表面活性剂中的一种或几种组合。
  17. 根据权利要求15所述的调控层的制备方法,其中,所述配体包括聚乙二醇、聚乙二醇衍生物、聚硅氧烷、聚硅氧烷衍生物、聚乙烯咔唑、聚乙烯咔唑衍生物、聚乙烯醇、聚乙烯醇衍生物、辛硫醇、十二硫醇、苯硫醇、1,2-苯硫醇、1,3-苯硫醇、1,4-苯硫醇、1,2-乙二硫醇、3-巯基丙酸、油酸、1,2-乙二胺、辛胺、油胺、三正辛基膦、三丁基膦、硫氰酸铵、四丁基碘化铵、四丁基溴化铵、四丁基氯化铵、四丁基氟化铵、十二烷基苯磺酸钙、十二烷基苯磺酸钠、二壬基萘磺酸钡、十六烷基三甲基溴化铵、N-乙烯基吡咯烷酮聚合物、萘酸钴、萘酸铝、萘酸铁、硬脂酸钴、硬脂酸铝和硬脂酸铁中的一种或几种组合。
  18. 根据权利要求15所述的调控层的制备方法,其中,所述纳米粒子包括BaSO 4、CaCO 3、ZnSe、CdS、TiO 2、BaTiO 3、ZnS、ZrO 2、Si 3N 4、SnO、ZnO、CdSe、CdTe、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP、CuInS 2、CuInSe 2、AgInS 2、A 2B m-1C mX 3m+1和BCX 3中的一种或几种组合,其中,其中, m≥1,所述 m为正整数,所述A选自R 1-NH 3 +和D-R 2-NH 3 +中的一种或多种组合,所述R 1为C 6-C 20的芳香基或C 1-C 20的烷基,所述R 2为C 6-C 20的芳香基,所述D包括F、Cl、Br和I中的一种或多种组合,所述B选自R 3-NH 3 +、NH=R 4-NH 3 +、Cs +和Rb +中的一种或多种组合,所述R 3为C 1-C 20的烷基,所述R 4为C 1-C 20的烃基,所述C选自Pb 2+和Sn 2+中的一种或两种组合,所述X为卤族元素。
  19. 根据权利要求12所述的调控层的制备方法,其中,所述调控层为发光层,所述纳米颗粒为疏松堆积或紧密堆积。
  20. 根据权利要求12所述的调控层的制备方法,其中,所述纳米粒子的质量比与所述配体的质量比为(1-10):1。
PCT/CN2021/134419 2021-11-18 2021-11-30 调控层及制备方法和光电器件 WO2023087392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111374968.7A CN114141961B (zh) 2021-11-18 2021-11-18 调控层及制备方法和光电器件
CN202111374968.7 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023087392A1 true WO2023087392A1 (zh) 2023-05-25

Family

ID=80390117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134419 WO2023087392A1 (zh) 2021-11-18 2021-11-30 调控层及制备方法和光电器件

Country Status (2)

Country Link
CN (1) CN114141961B (zh)
WO (1) WO2023087392A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110123229A (ko) * 2010-07-19 2011-11-14 주식회사 나노브릭 표시 장치, 표시 방법 및 머신 판독 가능한 기록 매체
CN102422213A (zh) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 利用光子晶体特性的显示方法及 装置
JP2015114640A (ja) * 2013-12-16 2015-06-22 セイコーエプソン株式会社 電気泳動表示装置及び電子機器
US20150268531A1 (en) * 2014-03-18 2015-09-24 Sipix Imaging, Inc. Color display device
WO2019130913A1 (ja) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 配光制御デバイス
WO2019187753A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 光学デバイス
JP2020003643A (ja) * 2018-06-28 2020-01-09 パナソニックIpマネジメント株式会社 光学デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019023A2 (en) * 1990-05-25 1991-12-12 Savin Corporation Electrophoretically deposited particle coatings and structures made therefrom
US20090169866A1 (en) * 2007-12-31 2009-07-02 Agnes Ostafin Nanocomposite materials with dynamically adjusting refractive index and methods of making the same
US8045107B2 (en) * 2009-11-06 2011-10-25 Sharp Laboratories Of America, Inc. Color-tunable plasmonic device with a partially modulated refractive index
CN102816563B (zh) * 2012-08-29 2014-07-09 上海交通大学 一种折射率可调的二氧化硅包覆量子点的纳米复合发光材料的制法和用途
US11233189B2 (en) * 2018-12-11 2022-01-25 Facebook Technologies, Llc Nanovoided tunable birefringence
WO2020136713A1 (ja) * 2018-12-25 2020-07-02 シャープ株式会社 発光デバイスの製造方法
CN113061957A (zh) * 2021-03-10 2021-07-02 深圳市华星光电半导体显示技术有限公司 纳米颗粒薄膜及其制备方法、显示面板
CN113745442A (zh) * 2021-08-23 2021-12-03 深圳市华星光电半导体显示技术有限公司 纳米粒子薄膜的制备方法、纳米粒子薄膜及显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422213A (zh) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 利用光子晶体特性的显示方法及 装置
KR20110123229A (ko) * 2010-07-19 2011-11-14 주식회사 나노브릭 표시 장치, 표시 방법 및 머신 판독 가능한 기록 매체
JP2015114640A (ja) * 2013-12-16 2015-06-22 セイコーエプソン株式会社 電気泳動表示装置及び電子機器
US20150268531A1 (en) * 2014-03-18 2015-09-24 Sipix Imaging, Inc. Color display device
WO2019130913A1 (ja) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 配光制御デバイス
WO2019187753A1 (ja) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 光学デバイス
JP2020003643A (ja) * 2018-06-28 2020-01-09 パナソニックIpマネジメント株式会社 光学デバイス

Also Published As

Publication number Publication date
CN114141961A (zh) 2022-03-04
CN114141961B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
US10808174B2 (en) Process for preparing a quantum dot, a quantum dot prepared therefrom, and an electronic device including the same
US10711193B2 (en) Quantum dots and production methods thereof, and quantum dot polymer composites and electronic devices including the same
US9701896B2 (en) Quantum dot-containing compositions including an emission stabilizer, products including same, and method
JP6934104B2 (ja) 素子、電子機器、および素子の製造方法
US9887316B2 (en) Quantum dots, method, and devices
EP3336158B1 (en) Emissive nanocrystal particle, method of preparing the same and device including emissive nanocrystal particle
US10978658B2 (en) Light emitting device and display device including the same
US11744096B2 (en) Light emitting device and display device including 1HE same
KR20210004748A (ko) 발광 소자와 이를 포함한 표시 장치
KR20140071812A (ko) 양이온성 금속 칼코게나이드 화합물로 표면안정화된 나노입자
US20230287260A1 (en) Synchronized piezoelectric and luminescence material and element including the same
WO2023087392A1 (zh) 调控层及制备方法和光电器件
WO2018120511A1 (zh) 一种量子点薄膜及其制备方法
KR20100033090A (ko) 반도체 나노입자 및 이를 포함하는 광학 영상 조영제 및 전자소자
WO2022244668A1 (ja) インク組成物、光変換層、カラーフィルタおよび光変換フィルム
US11611054B2 (en) Quantum dot device and electronic device
JP7269728B2 (ja) 量子ドット分散液の製造方法、及び量子ドット分散液
CN116162459B (zh) 量子点的纯化方法、量子点、发光器件与电子设备
CN113707781B (zh) 基板及其制备方法
US20220229214A1 (en) Color conversion panel and display device including the same
CN110752320A (zh) 复合材料及其制备方法和量子点发光二极管
US20210257551A1 (en) Quantum dot device, method of manufacturing the same, and electronic device
EP3882999A1 (en) Quantum dot device and electronic device
WO2024109343A1 (zh) 薄膜及其制备方法、光电器件
WO2023088022A1 (zh) 发光器件、发光器件的制备方法及显示装置