WO2023084947A1 - 有価元素の回収方法 - Google Patents

有価元素の回収方法 Download PDF

Info

Publication number
WO2023084947A1
WO2023084947A1 PCT/JP2022/037084 JP2022037084W WO2023084947A1 WO 2023084947 A1 WO2023084947 A1 WO 2023084947A1 JP 2022037084 W JP2022037084 W JP 2022037084W WO 2023084947 A1 WO2023084947 A1 WO 2023084947A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
reducing agent
metal
iron
amount
Prior art date
Application number
PCT/JP2022/037084
Other languages
English (en)
French (fr)
Inventor
雄太 日野
陽太郎 井上
克則 ▲高▼橋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023527719A priority Critical patent/JPWO2023084947A1/ja
Priority to EP22892447.8A priority patent/EP4403658A1/en
Priority to CN202280074992.5A priority patent/CN118234879A/zh
Priority to KR1020247012113A priority patent/KR20240065128A/ko
Publication of WO2023084947A1 publication Critical patent/WO2023084947A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering valuable elements.
  • positive electrode materials for lithium ion batteries are made of oxides (composite oxides) containing nickel (Ni), cobalt (Co), and the like.
  • Metal elements such as Ni and Co cannot be said to be abundant in the world. Therefore, recovering these metal elements (valuable elements) from positive electrode materials of lithium ion batteries is very beneficial from the viewpoint of effective utilization of resources.
  • a lithium-ion battery is composed of a combination of members such as a positive electrode material, a negative electrode material, and a separator, and further includes an electrolytic solution and the like. Therefore, when recovering valuable elements from positive electrode materials of lithium ion batteries, prior to recovery, pretreatments such as removal of the electrolytic solution, pulverization, and crushing are performed. After such pretreatment, the positive electrode material is separated from the lithium ion battery, and then the valuable element is recovered from the separated positive electrode material.
  • the process for recovering valuable elements consists of a wet process in which the positive electrode material is dissolved in acid, followed by solvent extraction and electrolytic refining, and a dry process in which the positive electrode material is heated with a reducing agent to reduce and generate the valuable element. are classified into two types.
  • Patent Document 1 Examples of reducing agents used in dry processing (for example, Patent Document 1) include carbonaceous materials such as graphite; Al-containing materials such as metallic aluminum (Al); Si-containing materials such as metallic silicon (Si) and FeSi; are mentioned.
  • the present inventors have investigated and found that metallic iron and iron oxide can be used as reducing agents.
  • the cost is lower than that of the Al-containing material or the Si-containing material, and since no carbonaceous material is used, the amount of CO 2 generated can be suppressed.
  • the proportion of Fe in the metal (alloy) obtained by reducing the positive electrode material (oxide) increases, and it is a valuable element. It has been found that the ratio of Ni and Co may decrease.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method for recovering valuable elements by which a metal with a high proportion of valuable elements can be obtained.
  • the present invention provides the following [1] to [6].
  • a reducing agent is added to an oxide containing at least one element selected from the group consisting of nickel and cobalt, and the oxide is reduced by heating, and the reducing agent is metallic iron and
  • a method for recovering valuable elements wherein at least one selected from the group consisting of iron oxide is contained, and the amount of the reducing agent added is 1.3 equivalents or less.
  • the method for recovering valuable elements of the present invention (hereinafter also referred to as "this recovery method” for convenience) is an oxide containing at least one element selected from the group consisting of nickel and cobalt obtained from a lithium ion battery A reducing agent is added to and heated to reduce the oxide, the reducing agent contains at least one selected from the group consisting of metallic iron and iron oxide, and the amount of the reducing agent added is , 1.3 equivalents or less.
  • the present recovery method comprises at least one element selected from the group consisting of nickel (Ni) and cobalt (Co) (hereinafter referred to as " This is a method for recovering valuable elements.
  • Cathode materials for lithium ion batteries are generally made of oxides (composite oxides) such as LiNiO 2 , LiCoO 2 and LiMnO 2 .
  • oxides composite oxides
  • LiNiO 2 and LiCoO 2 decompose at high temperatures as follows to produce NiO and CoO, respectively.
  • the present inventors conducted tests to confirm the possibility of reducing NiO and CoO by Fe and iron oxide (Test Examples 1 to 8). Specifically, first, powders of NiO, CoO, Fe and FeO were mixed at the powder composition (unit: molar ratio) shown in Table 1 below, and the resulting mixture was compacted. After that, the obtained compact was placed in an electric resistance furnace and heated at 1400° C. for 3 hours in an argon gas atmosphere. The generated phase in the molded body after heating was evaluated by measurement using an electron probe microanalyzer (EPMA). The composition of the alloy phase among the generated phases is also shown in Table 1 below.
  • EPMA electron probe microanalyzer
  • An object to be reduced in this recovery method is an oxide containing at least one element selected from the group consisting of nickel and cobalt, and specifically, it is, for example, a positive electrode material for a lithium ion battery.
  • a positive electrode material (oxide) is obtained by subjecting the lithium ion battery to pretreatment such as removal of the electrolyte.
  • the present recovery method uses a reducing agent containing at least one selected from the group consisting of metallic iron (Fe) and iron oxide.
  • metallic iron (Fe) for example, scrap or iron granules used in ironworks or the like may be used.
  • Iron oxides are generally of three types: ferrous oxide (FeO), also called wustite; triiron tetroxide ( Fe3O4 ) , also called magnetite; and ferric oxide ( Fe2O3 ), also called hematite. classified. Of these, magnetite and hematite have a standard free energy change higher than that of wustite at the same temperature and may be less likely to cause reduction reactions. Therefore, ferrous oxide (wustite) is preferable as the iron oxide because it is likely to cause a reduction reaction.
  • the iron oxide may be at least one of dust, scale, and sludge (hereinafter referred to as "dusts" for convenience) that are secondarily generated in the ironmaking process. The use of dust as iron oxide is preferable from the viewpoint of effectively utilizing the by-products of the iron manufacturing process and from the viewpoint of utilizing an inexpensive iron source.
  • the amount of the reducing agent added is 1.3 equivalents or less.
  • a metal with a low proportion of Fe and a high proportion of valuable elements Ni, Co
  • the amount of the reducing agent added is preferably 1.2 equivalents or less, more preferably 1.1 equivalents or less, still more preferably 1.0 equivalents or less, particularly preferably less than 1.0 equivalents, and 0.9 Equivalent or less is most preferred.
  • the lower limit of the amount of the reducing agent added is not particularly limited. However, from the viewpoint of suppressing insufficient reduction, the amount of the reducing agent to be added is preferably 0.1 equivalent or more, more preferably 0.3 equivalent or more, and still more preferably 0.5 equivalent or more.
  • the amount of reducing agent required to reduce the oxides NiO and CoO to be reduced is called 1.0 equivalent.
  • the reducing agent is metallic iron (Fe) or ferrous oxide (FeO)
  • the contents of NiO and CoO in the oxide to be reduced are obtained. Specifically, the contents of Ni and Co in the object to be reduced (oxide) are measured and regarded as the contents of NiO and CoO in the object to be reduced (oxide), respectively. The Ni and Co contents are measured using an energy dispersive X-ray analyzer (EDX).
  • EDX energy dispersive X-ray analyzer
  • the oxide to be reduced is heated while a reducing agent is added. This reduces the oxide.
  • a flux such as CaO or SiO 2 may be added in addition to the reducing agent.
  • the temperature (heating temperature) when heating the oxide is preferably 1300° C. or higher, more preferably 1350° C. or higher, still more preferably 1400° C. or higher, and particularly preferably 1450° C. or higher, because it is easy to suppress poor reduction.
  • the upper limit of the heating temperature is not particularly limited, and is appropriately set according to the performance of the equipment (furnace) used for heating. However, if the heating temperature is too high, extra costs may be incurred. Therefore, the heating temperature is preferably 1800° C. or lower, more preferably 1700° C. or lower.
  • the atmosphere (heating atmosphere) for heating the oxide includes, for example, an inert atmosphere such as a nitrogen gas (N 2 ) atmosphere and an argon gas (Ar) atmosphere; a reducing atmosphere such as a carbon monoxide gas (CO) atmosphere. ; and the like are preferably exemplified.
  • the time for heating the oxide is preferably 1 hour or more, more preferably 2 hours or more, and even more preferably 3 hours or more, because it is easy to suppress poor reduction.
  • the upper limit of the heating time is not particularly limited. However, if the heating time is too long, extra costs may be incurred. Therefore, the heating time is preferably 6 hours or less, more preferably 5 hours or less.
  • the equipment used for heating the oxide is not particularly limited, and examples include conventionally known equipment such as electric furnaces, resistance furnaces, high-frequency melting furnaces, low-frequency melting furnaces, rotary kilns, vertical furnaces, and steelmaking furnaces.
  • a metal is produced by reducing the oxide (cathode material) to be reduced. That is, the valuable elements (Ni, Co) contained in the oxide are recovered as metals.
  • the metal obtained by reducing the oxide contains, for example, iron (Fe) and valuable elements (Ni, Co).
  • Fe iron
  • Ni, Co valuable elements
  • Such metals are of considerable value as materials and can be used, for example, in steelmaking processes. It is preferable that the generated metal has a small proportion of Fe and a large proportion of valuable elements (Ni, Co). This increases the value as an alloy.
  • the produced metal may be a metal containing only one of the valuable elements (Ni, Co) (or the ratio of one valuable element is higher than the ratio of the other valuable elements).
  • slag may also be produced by reducing the oxide (cathode material).
  • the slag also referred to as “product slag” contains oxides such as, for example, FeO.
  • the produced slag may also contain oxides of valuable elements (for example, MnO) that were not contained in the produced metal.
  • MnO valuable elements
  • a positive electrode material for a lithium ion battery was prepared. Specifically, the lithium ion battery was subjected to pretreatments such as disassembly, discharge, and removal of the electrolyte to separate the positive electrode material.
  • Graphite (C) powder, metal aluminum (Al) powder, and metal silicon (Si) powder were prepared as reducing agents.
  • metallic iron (Fe) powder and ferrous oxide (FeO) powder obtained by atomization were prepared.
  • powders of dust, scale and scrap generated in the ironmaking process were prepared as other reducing agents.
  • the compositions of dust, scale and scrap are shown in Table 3 below. In Table 3 below, "M.Fe” indicates the amount of metallic Fe.
  • the composition of the metal produced by the reduction of the positive electrode material was determined. Also, the reduction rate (unit: mass %) was determined for each of the metallic elements Ni, Co and Mn. The reduction rate is the ratio of the amount of metal actually obtained to the theoretical amount of metal produced by the reduction reaction. For example, when the reduction rate of Co is 20 mol %, it means that 20 mol % of Co contained in the positive electrode material is reduced to become metal, and the remainder remains as oxide. The results are shown in Tables 4 to 6 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

有価元素の割合が多い金属が得られる有価元素の回収方法を提供する。上記回収方法は、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素を含有する酸化物に還元剤を添加して、加熱することにより、上記酸化物を還元し、上記還元剤が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種を含有し、上記還元剤の添加量が、1.3当量以下である。

Description

有価元素の回収方法
 本発明は、有価元素の回収方法に関する。
 近年、スマートフォン、パソコンなどの普及拡大および電気自動車の普及により、リチウムイオン電池の需要が急速に増加している。
 特に、昨今のCO発生量削減の観点から、化石燃料を使用しない電気自動車の需要は、今後は更に拡大すると思われ、それに伴うリチウムイオン電池の需要も今後は更に増加することが予想される。
 一般に、リチウムイオン電池の正極材は、ニッケル(Ni)、コバルト(Co)等を含有する酸化物(複合酸化物)からなる。
 Ni、Coなどの金属元素は、世界的に見ても豊富にあるとは言えない。
 このため、リチウムイオン電池の正極材から、これらの金属元素(有価元素)を回収することは、資源を有効利用する観点から、非常に有益である。
 リチウムイオン電池は、正極材、負極材、セパレータ等の部材の組み合わせにより構成され、更に、電解液なども含む。
 このため、リチウムイオン電池の正極材から有価元素を回収するに際しては、回収に先立って、電解液の除去、粉砕、破砕などの事前処理を実施する。
 このような事前処理を経て、リチウムイオン電池から正極材を分離し、その後、分離した正極材から有価元素を回収する。
 有価元素を回収する際の処理は、正極材を酸に溶解させた後に溶媒抽出および電解精錬などを実施する湿式処理と、正極材を還元剤とともに加熱して有価元素を還元生成させる乾式処理との2種類に分類される。
 乾式処理(例えば、特許文献1)に用いる還元剤としては、例えば、黒鉛などの炭素質材料;金属アルミニウム(Al)などのAl含有物;金属ケイ素(Si)、FeSiなどのSi含有物;等が挙げられる。
特開2021-95628号公報
 乾式処理において、還元剤としてAl含有物またはSi含有物を使用する場合、通常はスラグが生成するのでスラグ処理費がかかるうえ、還元剤そのものの価格が比較的高いことから、高コストである。
 また、炭素質材料を還元剤として使用する場合は、他の還元剤を使用する場合と比較して、CO発生量が多い。これは、昨今のCO発生量削減の観点からは、時代に逆行する場合がある。
 そこで、後述するように、本発明者らが検討したところ、還元剤として、金属鉄および酸化鉄を使用できることを見出した。この場合、Al含有物またはSi含有物と比較して低コストであり、かつ、炭素質材料を使用しないためCO発生量を抑制できる。
 しかし、本発明者らが更に検討したところ、使用する還元剤の量によっては、正極材(酸化物)を還元して得られる金属(合金)において、Feの割合が多くなり、有価元素であるNiおよびCoの割合が少なくなる場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、有価元素の割合が多い金属が得られる有価元素の回収方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[6]を提供する。
[1]ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素を含有する酸化物に還元剤を添加して、加熱することにより、上記酸化物を還元し、上記還元剤が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種を含有し、上記還元剤の添加量が、1.3当量以下である、有価元素の回収方法。
[2]上記酸化物が、リチウムイオン電池から得られる、上記[1]に記載の有価元素の回収方法。
[3]上記酸化鉄が、酸化第一鉄である、上記[1]または[2]に記載の有価元素の回収方法。
[4]上記還元剤が、ダスト、スケール、スラッジおよびスクラップからなる群から選ばれる少なくとも1種である、上記[1]~[3]のいずれかに記載の有価元素の回収方法。
[5]上記酸化物を加熱する際の温度が、1450℃以上である、上記[1]~[4]のいずれかに記載の有価元素の回収方法。
[6]上記酸化物を還元することにより、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を得る、上記[1]~[5]のいずれかに記載の有価元素の回収方法。
 本発明によれば、有価元素の割合が多い金属が得られる有価元素の回収方法を提供できる。
エリンガム図(標準自由エネルギー変化-温度線図)である。
[有価元素の回収方法]
 本発明の有価元素の回収方法(以下、便宜的に「本回収方法」ともいう)は、リチウムイオン電池から得られる、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素を含有する酸化物に還元剤を添加して、加熱することにより、上記酸化物を還元し、上記還元剤が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種を含有し、上記還元剤の添加量が、1.3当量以下である。
 本回収方法は、概略的には、リチウムイオン電池の正極材(酸化物)から、乾式処理によって、ニッケル(Ni)およびコバルト(Co)からなる群から選ばれる少なくとも1種の元素(以下、「有価元素」ともいう)を回収する方法である。
 〈本発明者らが得た知見〉
 リチウムイオン電池の正極材は、一般的に、LiNiO、LiCoO、LiMnOなどの酸化物(複合酸化物)からなる。
 乾式処理を熱力学的に考えると、例えば、LiNiOおよびLiCoOは、高温では以下のように分解し、それぞれ、NiOおよびCoOが生成する。
 2LiNiO→LiO+2NiO+1/2O
 2LiCoO→LiO+2CoO+1/2O
 NiOおよびCoOの分解反応における標準自由エネルギー変化(ΔG)を、それぞれ、以下に示す。
 NiO→Ni+1/2O:ΔG=234900-84.68T[J]
 CoO→Co+1/2O:ΔG=235480-71.55T[J]
 高温の任意の温度で、これらの標準自由エネルギー変化の値よりも低位な自由エネルギー変化値を有する物質を、還元剤として使用できる。
 ところで、従来は、炭素質材料、Al含有物およびSi含有物などの還元力の強い物質が還元剤として使用される。
 しかし、CO発生量削減の観点およびコスト削減の観点から、別の還元剤を使用することが望まれる。
 そこで、本発明者らは、新たな還元剤となり得る物質として、炭素質ではなく、かつ、比較的に安価で希少でなく存在する物質を検討した。その結果、金属鉄(Fe)または酸化鉄が有効であることを見出した。
 酸化鉄の分解反応の標準自由エネルギー変化(ΔG)は、以下のとおりである。
 FeO→Fe+1/2O:ΔG=264430-64.73T[J]
 Fe→3FeO+1/2O:ΔG=302370-108.15T[J]
 図1は、エリンガム図(標準自由エネルギー変化-温度線図)である。
 上述した標準自由エネルギー変化およびエリンガム図(図1)を参照すると、Fe/FeO平衡は、Ni/NiO平衡およびCo/CoO平衡よりも卑であり、Feによる還元可能性が考えられる。
 また、FeO/Fe平衡は、Ni/NiO平衡よりも卑であるが、Co/CoO平衡よりは貴である。
 このため、NiおよびCoを選択的に還元する(Niは金属として回収され、Coはスラグに残存する)ことも期待される。具体的には、以下の反応が期待される。
 NiO+Fe→Ni+FeO:ΔG=-29530-19.95T[J]
 CoO+Fe→Co+FeO:ΔG=-28950-6.82T[J]
 なお、エリンガム図(図1)において、上にあるほど、金属化しやすい。
 還元剤として、SiまたはAlを使用すると、Mnも金属化しやすい。
 そこで、還元剤としてFe(またはFeO)を使用することによって、Mnは金属化しないで、NiおよびCoのみを金属化することも期待できる。
 しかし、従来の還元剤に含まれるC、Al、Siなどの元素は、標準自由エネルギー変化値が非常に低位であり、Feを用いる場合は還元反応が起こりにくい(起こっていても微量である)可能性が考えられる。
 そこで、本発明者らは、Feおよび酸化鉄によるNiO、CoOの還元可能性を確認する試験を実施した(試験例1~8)。
 具体的には、まず、NiO、CoO、FeおよびFeOの各粉体を、下記表1に示す粉体組成(単位:モル比)で混合し、得られた混合物を圧粉成形した。
 その後、得られた成形体を、電気抵抗炉の内部に入れ、アルゴンガス雰囲気にて、1400℃で3時間の加熱を実施した。
 加熱後の成形体における生成相を、電子線マイクロアナライザ(EPMA)を用いた測定により、評価した。生成相のうち、合金相の組成も、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、NiOおよびCoOにFeを添加した試験例1~4においては、NiOおよびCoOは還元されて、余剰添加分のFeとともに溶融し、Fe-Ni-Coの合金相が確認された。
 また、添加したFeの量が少ないほど、得られる合金において、Feの割合が減少し、NiおよびCoの割合が増加することが確認された。
 更に、上記表1に示すように、NiOおよびCoOにFeOを添加した試験例5~8においても、NiOおよびCoOは還元されて、Fe-Ni-Co合金相が確認された。FeOは、部分的に還元されて、Feとなり、合金の一部として存在した。このとき、以下の反応が起こっていると考えられる。
 4FeO→Fe+Fe
 また、添加したFeOの量が少ないほど、得られる合金において、Feの割合が減少し、NiおよびCoの割合が増加することが確認された。
 以上の結果から、Feおよび酸化鉄を還元剤として使用できることが確認された。
 更に、還元剤の添加量を低減することにより、NiおよびCoの割合が多い合金が得られることが確認された。
 次に、本回収方法をより詳細に説明する。
 〈還元対象(酸化物)〉
 本回収方法における還元対象は、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素を含有する酸化物であり、具体的には、例えば、リチウムイオン電池の正極材である。
 リチウムイオン電池に対して、電解液の除去などの事前処理を施すことによって、正極材(酸化物)を得る。
 〈還元剤〉
 上述した理由から、本回収方法においては、金属鉄(Fe)および酸化鉄からなる群から選ばれる少なくとも1種を含有する還元剤を用いる。
 金属鉄(Fe)としては、例えば、製鉄所などで使用するスクラップや粒鉄などを使用してもよい。
 酸化鉄は、一般的に、ウスタイトとも呼ばれる酸化第一鉄(FeO)、マグネタイトとも呼ばれる四酸化三鉄(Fe)およびヘマタイトとも呼ばれる酸化第二鉄(Fe)の3種類に区分される。
 これらのうち、マグネタイトおよびヘマタイトは、標準自由エネルギー変化が同一温度でのウスタイトのそれよりも高位であり、還元反応を引き起こしにくい場合がある。
 このため、還元反応を引き起こしやすいという理由から、酸化鉄としては、酸化第一鉄(ウスタイト)が好ましい。
 酸化鉄は、製鉄プロセスにおいて副次的に生成されるダスト、スケールおよびスラッジの少なくともいずれか1種(以下、便宜的に「ダスト類」と呼ぶ)であってもよい。
 酸化鉄としてダスト類を使用することは、製鉄プロセスの副産物を有効利用する観点および安価な鉄源を利用する観点から、好ましい。
 〈還元剤の添加量〉
 本回収方法において、還元剤の添加量は、1.3当量以下である。これにより、Feの割合が少なく、かつ、有価元素(Ni、Co)の割合が多い金属が得られる。
 還元剤の添加量が少ないほど、有価元素の割合がより多い(Feの割合がより少ない)金属が得られる。これにより、余剰なFeが還元剤として使用されずに金属中に残存することを抑制できる。
 また、還元剤の添加量が少ないほど、NiおよびCoのうち、特にNiの割合が多い金属が得られる。これは、エリンガム図(図1)において、CoよりもNiの方が上にあるように、CoよりもNiの方が金属化しやすく、Fe(または酸化鉄)によって、Niの方が先に還元されるためと推測される。
 これらの理由から、還元剤の添加量は、1.2当量以下が好ましく、1.1当量以下がより好ましく、1.0当量以下が更に好ましく、1.0当量未満が特に好ましく、0.9当量以下が最も好ましい。
 還元剤の添加量の下限は、特に限定されない。
 もっとも、還元不良を抑制する観点から、還元剤の添加量は、0.1当量以上が好ましく、0.3当量以上がより好ましく、0.5当量以上が更に好ましい。
 還元対象である酸化物のNiOおよびCoOを還元するのに必要な還元剤の量を、1.0当量と呼ぶ。
 例えば、還元剤が金属鉄(Fe)または酸化第一鉄(FeO)である場合、1当量の還元剤を用いる還元は、それぞれ、以下のように示される。
 Fe+(NiO,CoO)→(Ni,Co)+FeO
 3FeO+(NiO,CoO)→(Ni,Co)+Fe
 還元剤の添加量を決定する際には、まず、還元対象である酸化物におけるNiOおよびCoOの含有量を求める。
 具体的には、還元対象(酸化物)におけるNiおよびCoの含有量を測定し、それぞれ、還元対象(酸化物)におけるNiOおよびCoOの含有量とみなす。
 NiおよびCoの含有量は、エネルギー分散型X線分析装置(EDX)を用いて測定する。
 〈加熱〉
 本回収方法では、還元対象である酸化物に還元剤を添加した状態で、加熱する。これにより、酸化物が還元される。
 なお、加熱に際しては、還元剤とは別に、CaO、SiOなどのフラックスを添加してもよい。
 酸化物を加熱する際の温度(加熱温度)は、還元不良を抑制しやすいという理由から、1300℃以上が好ましく、1350℃以上がより好ましく、1400℃以上が更に好ましく、1450℃以上が特に好ましい。
 加熱温度の上限は、特に限定されず、加熱に使用する設備(炉)の性能等に応じて適宜設定されるが、加熱温度が高すぎると、余計にコストがかかる場合がある。このため、加熱温度は、1800℃以下が好ましく、1700℃以下がより好ましい。
 酸化物を加熱する際の雰囲気(加熱雰囲気)としては、例えば、窒素ガス(N)雰囲気、アルゴンガス(Ar)雰囲気などの不活性雰囲気;一酸化炭素ガス(CO)雰囲気などの還元性雰囲気;等が好適に挙げられる。
 酸化物を加熱する時間(加熱時間)は、還元不良を抑制しやすいという理由から、1時間以上が好ましく、2時間以上がより好ましく、3時間以上が更に好ましい。
 加熱時間の上限は、特に限定されない。もっとも、加熱時間が長すぎると、余計にコストがかかる場合がある。このため、加熱時間は、6時間以下が好ましく、5時間以下がより好ましい。
 酸化物の加熱に用いる設備としては、特に限定されず、例えば、電気炉、抵抗炉、高周波溶解炉、低周波溶解炉、ロータリーキルン、竪型炉、製鋼炉などの従来公知の設備が挙げられる。
 〈生成物〉
 還元対象である酸化物(正極材)を還元することにより、金属が生成する。すなわち、酸化物に含有される有価元素(Ni、Co)は、金属として回収される。
 本回収方法において、酸化物の還元により得られる金属(「生成金属」ともいう)は、例えば、鉄(Fe)および有価元素(Ni、Co)を含有する。このような金属は、材料として十分に価値があり、例えば、製鉄プロセスにおいて使用できる。
 生成金属は、Feの割合が少なく、かつ、有価元素(Ni、Co)の割合が多いことが好ましい。これにより、合金としての価値が高まる。
 生成金属は、有価元素(Ni、Co)のうち1種のみを含有する(または、1種の有価元素の割合が、他の有価元素の割合よりも多い)金属であってもよい。
 酸化物(正極材)を還元することにより、金属のほか、更に、スラグが生成する場合がある。スラグ(「生成スラグ」ともいう)は、例えば、FeOなどの酸化物を含有する。
 そのほか、生成スラグは、生成金属に含まれなかった有価元素の酸化物(例えば、MnO)なども含有し得る。
 Mnを含有する酸化物を還元する場合、Mn/MnO平衡が、Fe/FeO平衡およびFeO/Fe平衡よりも卑であるため、還元により得られる生成金属中にMnが混入することを抑制できる。
 湿式処理を実施する場合は、Mnの形態によって、その処理方法が非常に多いため煩雑である。これに対して、乾式処理による本回収方法によれば、スラグにMnを留めておくことができ、有益である。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 〈正極材〉
 まず、リチウムイオン電池の正極材を準備した。
 具体的には、リチウムイオン電池に対して、分解、放電、電解液の除去等の事前処理を実施して、正極材を分離した。正極材の組成を、下記表2に示す。下記表2に示すように、正極材の組成は、モル比でNi:Mn:Co=6:2:2であった。
Figure JPOXMLDOC01-appb-T000002
 〈還元剤〉
 還元剤として、黒鉛(C)の粉体、金属アルミニウム(Al)の粉体、および、金属ケイ素(Si)の粉体を準備した。
 別の還元剤として、アトマイズ処理により得られた金属鉄(Fe)の粉体、および、酸化第一鉄(FeO)の粉体を準備した。
 更に別の還元剤として、製鉄プロセスで発生したダスト、スケールおよびスクラップそれぞれの粉体を準備した。
 ダスト、スケールおよびスクラップの組成を、下記表3に示す。下記表3中、「M.Fe」は金属Feの量を示す。
Figure JPOXMLDOC01-appb-T000003
 〈正極材の還元:発明例1~23、比較例1~10および参考例1~6〉
 次に、ヒートサイズ50~80kg規模の電気炉に、準備した正極材を入れ、更に、上述した還元剤のいずれか、および、フラックス(CaO、SiO)を添加し、加熱した。こうして、正極材を還元した。加熱時間は、いずれも3時間とした。
 用いた還元剤の種類および添加量(単位:当量)、加熱温度(単位:℃)ならびに加熱雰囲気(Ar、NまたはCO)を、下記表4に示す。
 正極材の還元により生成した金属の組成を求めた。
 また、Ni、CoおよびMnの各金属元素について、還元率(単位:質量%)を求めた。還元率は、還元反応によって生成する理論上の金属量に対する、実際に得られた金属量の比率である。例えば、Coの還元率が20モル%である場合、正極材に含まれるCoのうち、20モル%が還元されて金属となり、残りが酸化物として残存していることを意味する。
 結果を下記表4~表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 〈評価結果まとめ〉
 上記表4~表5に示すように、還元剤の添加量が1.3当量以下である発明例1~23の生成金属は、還元剤の添加量が1.3当量以下ではない比較例1~10の生成金属よりも、Feの割合が少なく、かつ、NiおよびCoの合計割合が多いことが分かった。
 ここで、例えば、発明例1~3を参照されたい。
 還元剤の添加量が少ないほど、生成金属におけるFeの割合が減少し、NiおよびCoの合計割合が増加する傾向が見られた。
 また、還元剤の添加量が少ないほど、生成金属におけるNiの割合が増加する(Coの割合が減少する)傾向も見られた。
 これは、発明例4~6、7~9、10~12、13~15、16~17、18~19、20~21および22~23においても同様であった。
 

Claims (6)

  1.  ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素を含有する酸化物に還元剤を添加して、加熱することにより、前記酸化物を還元し、
     前記還元剤が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種を含有し、
     前記還元剤の添加量が、1.3当量以下である、有価元素の回収方法。
  2.  前記酸化物が、リチウムイオン電池から得られる、請求項1に記載の有価元素の回収方法。
  3.  前記酸化鉄が、酸化第一鉄である、請求項1または2に記載の有価元素の回収方法。
  4.  前記還元剤が、ダスト、スケール、スラッジおよびスクラップからなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の有価元素の回収方法。
  5.  前記酸化物を加熱する際の温度が、1450℃以上である、請求項1~4のいずれか1項に記載の有価元素の回収方法。
  6.  前記酸化物を還元することにより、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を得る、請求項1~5のいずれか1項に記載の有価元素の回収方法。
PCT/JP2022/037084 2021-11-12 2022-10-04 有価元素の回収方法 WO2023084947A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023527719A JPWO2023084947A1 (ja) 2021-11-12 2022-10-04
EP22892447.8A EP4403658A1 (en) 2021-11-12 2022-10-04 Valuable element recovery mehtod
CN202280074992.5A CN118234879A (zh) 2021-11-12 2022-10-04 有价值元素的回收方法
KR1020247012113A KR20240065128A (ko) 2021-11-12 2022-10-04 유가 원소의 회수 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-184548 2021-11-12
JP2021184548 2021-11-12
JP2022048290 2022-03-24
JP2022-048290 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023084947A1 true WO2023084947A1 (ja) 2023-05-19

Family

ID=86335550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037084 WO2023084947A1 (ja) 2021-11-12 2022-10-04 有価元素の回収方法

Country Status (4)

Country Link
EP (1) EP4403658A1 (ja)
JP (1) JPWO2023084947A1 (ja)
KR (1) KR20240065128A (ja)
WO (1) WO2023084947A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280216A (en) * 1975-12-22 1977-07-05 Kennecott Copper Corp Extracting method of nickel* nickel copper* nickel cobalt and nickel copper cobalt from concentrates
JP2004285473A (ja) * 2002-12-06 2004-10-14 Mitsubishi Corp V、Mo、及びNi含有廃棄物からの有価金属の回収方法
JP2017509786A (ja) * 2013-12-23 2017-04-06 ユミコア リチウムイオン電池のリサイクルプロセス
JP2021095628A (ja) 2019-12-13 2021-06-24 株式会社神戸製鋼所 有価元素の回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280216A (en) * 1975-12-22 1977-07-05 Kennecott Copper Corp Extracting method of nickel* nickel copper* nickel cobalt and nickel copper cobalt from concentrates
JP2004285473A (ja) * 2002-12-06 2004-10-14 Mitsubishi Corp V、Mo、及びNi含有廃棄物からの有価金属の回収方法
JP2017509786A (ja) * 2013-12-23 2017-04-06 ユミコア リチウムイオン電池のリサイクルプロセス
JP2021095628A (ja) 2019-12-13 2021-06-24 株式会社神戸製鋼所 有価元素の回収方法

Also Published As

Publication number Publication date
JPWO2023084947A1 (ja) 2023-05-19
EP4403658A1 (en) 2024-07-24
KR20240065128A (ko) 2024-05-14

Similar Documents

Publication Publication Date Title
JP3079287B2 (ja) 使用済みリチウム電池からの有価物回収方法
JP2021095628A (ja) 有価元素の回収方法
CN101603141B (zh) 利用低镁中间型红土镍矿生产镍铁的方法
JP3434318B2 (ja) 使用済みリチウム二次電池からの有価金属の分別回収方法
WO2023084947A1 (ja) 有価元素の回収方法
CN110983043B (zh) 一种用中低品位红土镍矿制备高品位镍铁的方法
CN102046817A (zh) 生铁制造方法
CN102206756B (zh) 直接还原-渣金熔分综合回收利用稀土镍氢电池废料的方法
JP7103293B2 (ja) 有価金属の回収方法
JPH06172916A (ja) ステンレス鋼の製造
JP2012207241A (ja) 還元鉄の製造方法
WO2024024585A1 (ja) 有価元素の回収方法および金属の製造方法
WO2024024589A1 (ja) 有価元素の回収方法および金属の製造方法
CN118234879A (zh) 有价值元素的回收方法
WO2020203937A1 (ja) 有価金属の回収方法
JP2012201946A (ja) 鉄鋼ダスト還元焙焼用ロータリーキルンの操業方法
JP4485987B2 (ja) V,Mo,及びNi含有廃棄物からの有価金属の回収方法
CN114350957A (zh) 一种从废旧锂电池全面回收有价元素的方法
US3759695A (en) Process for making ferrosilicon
CN112746143A (zh) 一种直流电弧炉无焦炭冶炼低碳铁合金的工艺
CN1029374C (zh) 利用氩氧炉尘中的金属氧化物冶炼铬钢及其合金的方法
JP2001040426A (ja) マンガン鉱石予備還元品の製造方法
Illés et al. The Fundamental Aspects of Ferro-Alloy Production from Spent Lithium-Ion Batteries by Reduction Using Calcium-Aluminate Slags
Zheng et al. Effect of reduction parameters on the size and morphology of the metallic particles in carbothermally reduced stainless steel dust
RU2142018C1 (ru) Брикет для металлургического производства

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023527719

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012113

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18701088

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022892447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892447

Country of ref document: EP

Effective date: 20240419

WWE Wipo information: entry into national phase

Ref document number: 202280074992.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE