WO2024024585A1 - 有価元素の回収方法および金属の製造方法 - Google Patents

有価元素の回収方法および金属の製造方法 Download PDF

Info

Publication number
WO2024024585A1
WO2024024585A1 PCT/JP2023/026369 JP2023026369W WO2024024585A1 WO 2024024585 A1 WO2024024585 A1 WO 2024024585A1 JP 2023026369 W JP2023026369 W JP 2023026369W WO 2024024585 A1 WO2024024585 A1 WO 2024024585A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
iron
slag
containing substance
carbon
Prior art date
Application number
PCT/JP2023/026369
Other languages
English (en)
French (fr)
Inventor
雄太 日野
陽太郎 井上
克則 ▲高▼橋
博一 杉森
健男 春日
Original Assignee
Jfeスチール株式会社
Jfeミネラル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, Jfeミネラル株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024024585A1 publication Critical patent/WO2024024585A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering valuable elements and a method for producing metals.
  • the positive electrode material of a lithium ion battery is made of an oxide (composite oxide) containing nickel (Ni), cobalt (Co), manganese (Mn), etc.
  • this composite oxide include LiNiO 2 , LiCoO 2 , LiMnO 2 and the like.
  • Metallic elements such as Ni, Co, and Mn cannot be said to be abundant worldwide. Therefore, recovering these metal elements (valuable elements) from the positive electrode material of lithium ion batteries is very beneficial from the viewpoint of effective resource utilization.
  • a lithium ion battery is composed of a combination of members such as a positive electrode material, a negative electrode material, and a separator, and further includes an electrolyte and the like. Therefore, when recovering valuable elements from the positive electrode material of a lithium ion battery, prior to recovery, preliminary treatments such as removal of electrolyte, pulverization, and crushing are performed. After such preliminary treatment, the positive electrode material is separated from the lithium ion battery, and then valuable elements are recovered from the separated positive electrode material.
  • the processes for recovering valuable elements include wet processing, in which the positive electrode material is dissolved in acid, followed by solvent extraction and electrolytic refining, and the other is heating the positive electrode material with a reducing agent and a slag-forming agent to reduce and generate valuable elements. It is classified into two types: dry processing (for example, Patent Document 1).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method for recovering valuable elements that can selectively recover Ni and Co.
  • the present invention provides the following [1] to [11].
  • the reducing agent contains a carbon-containing substance and an iron-containing substance, the iron-containing substance is at least one selected from the group consisting of metallic iron and iron oxide, and the carbon
  • a method for recovering a valuable element wherein the total amount of the contained substance and the iron-containing substance added is 1.0 equivalent or more and 1.5 equivalent or less.
  • [3] The method for recovering a valuable element according to [1] or [2] above, wherein the oxide further contains lithium.
  • [4] The method for recovering a valuable element according to any one of [1] to [3] above, wherein the manganese content in the oxide is 3% by mass or more and 12% by mass or less.
  • [5] The valuable element according to any one of [1] to [4] above, wherein the slag forming agent contains a mass ratio of CaO to SiO 2 (CaO/SiO 2 ) of 0.50 or less. Collection method.
  • [6] The method for recovering a valuable element according to any one of [1] to [5] above, wherein the temperature when heating the oxide is 1450° C. or higher.
  • Ni and Co can be selectively recovered.
  • the method for recovering valuable elements of the present invention involves adding a reducing agent to an oxide containing manganese and at least one element selected from the group consisting of nickel and cobalt. and a slag-forming agent containing CaO and SiO 2 are added and heated to reduce the oxide, and the reducing agent contains a carbon-containing substance and an iron-containing substance, and the iron-containing substance is at least one selected from the group consisting of metallic iron and iron oxide, and the total amount of the carbon-containing substance and the iron-containing substance added is 1.0 equivalent or more and 1.5 equivalent or less.
  • This recovery method generally involves dry-processing at least one element selected from the group consisting of nickel (Ni) and cobalt (Co) (hereinafter referred to as " This is a method of selectively recovering valuable elements (also called “valuable elements”).
  • the positive electrode material of lithium ion batteries is generally made of oxides (composite oxides) such as LiNiO 2 , LiCoO 2 , and LiMnO 2 .
  • oxides composite oxides
  • LiNiO 2 and LiCoO 2 decompose as follows at high temperatures, producing NiO and CoO, respectively. 2LiNiO 2 ⁇ Li 2 O+2NiO+1/2O 2 2LiCoO 2 ⁇ Li 2 O+2CoO+1/2O 2
  • Mn When a valuable element is recovered as a metal from a composite oxide by dry processing, Mn is generally inevitably reduced and transferred to a metal. However, it is said that it is difficult to separate Mn that has migrated to metal. For this reason, it is desirable to prevent Mn from being reduced as much as possible (to allow Mn to remain in the slag).
  • the present inventors conducted reduction experiments 1 and 2 described below. As a result, it has been found that by using a specific reducing agent in a specific amount, Ni and Co can be selectively transferred to metals while Mn remains in the slag.
  • a carbon-containing substance and an iron-containing substance were used together as a reducing agent. Specifically, coke (C) was used as the carbon-containing substance, and metallic iron (Fe) was used as the iron-containing substance.
  • C coke
  • Fe metallic iron
  • reduction experiment 1 the amount of Fe added was 1.0 equivalent, and the amount of C added was 0.5 equivalent.
  • reduction experiment 2 the amount of C added was 1.0 equivalent, and the amount of Fe added was 0.5 equivalent.
  • the amount of reducing agent required to reduce the oxides NiO and CoO is 1.0 equivalent.
  • Residual rate in the generated slag 100 x (amount of metal elements contained in the generated slag [kg]) / (amount of metal elements contained in the oxide to be reduced [kg])
  • FIG. 1 is a graph showing the results of reduction experiment 1
  • FIG. 2 is a graph showing the results of reduction experiment 2.
  • a high reduction rate of more than 70% by mass for Ni and Co was achieved. That is, Ni and Co could be transferred to the produced metal at a high reduction rate.
  • the reduction rate of Mn was very low (5% by mass or less), and a large amount of Mn could be retained in the slag.
  • the object to be reduced in this recovery method is an oxide containing manganese (Mn) and at least one element selected from the group consisting of nickel (Ni) and cobalt (Co), and specifically, for example, lithium It is a positive electrode material for ion batteries.
  • This oxide may further contain lithium (Li).
  • a positive electrode material (oxide) is obtained by subjecting a lithium ion battery to pre-treatment such as removing the electrolyte.
  • the Mn content in the oxide is preferably 3% by mass or more, more preferably 5% by mass or more.
  • the Mn content in the oxide is preferably 12% by mass or less, more preferably 10% by mass or less.
  • the Mn content in the oxide is determined using ICP (inductively coupled plasma) emission spectrometry. After confirming that measurement results similar to those obtained by ICP emission spectrometry are obtained, it may be simply determined using X-ray fluorescence elemental analysis (XRF).
  • ICP inductively coupled plasma
  • the reducing agent used in this recovery method contains a carbon-containing substance and an iron-containing substance. That is, a carbon-containing substance and an iron-containing substance are used together as a reducing agent. Thereby, as described above, high reduction rates can be obtained for Ni and Co while suppressing the reduction rate of Mn. That is, a generated metal containing less Mn and more Ni and Co can be obtained.
  • the content (total content) of carbon-containing substances and iron-containing substances in the reducing agent is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and particularly preferably 100% by mass. .
  • carbon-containing substances examples include solid carbon-containing substances such as graphite, coke, coal, and solid hydrocarbons; gaseous carbon-containing substances such as carbon monoxide (CO), and hydrocarbon gas (e.g., propane gas); It will be done.
  • CO carbon monoxide
  • hydrocarbon gas e.g., propane gas
  • gases such as CO, CO 2 , H 2 O, etc. are produced after reduction, which is preferable in that the amount of slag produced does not increase.
  • the iron-containing substance is at least one selected from the group consisting of metallic iron (Fe) and iron oxide.
  • the iron-containing substance used as a reducing agent will be explained below.
  • FIG. 3 is an Ellingham diagram (standard free energy change-temperature diagram).
  • the Fe/FeO equilibrium is less noble than the Ni/NiO equilibrium and the Co/CoO equilibrium, and the possibility of reduction by Fe is considered.
  • CoO+Fe ⁇ Co+FeO: ⁇ G 0 -28950-6.82T[J]
  • metal iron for example, scrap or granulated iron used in a steel mill or the like may be used.
  • Iron oxide is generally divided into three types: ferrous oxide (FeO), also called wustite, triiron tetroxide (Fe 3 O 4 ), also called magnetite, and ferric oxide (Fe 2 O 3 ), also called hematite. It is classified. Among these, magnetite and hematite have a standard free energy change higher than that of wustite at the same temperature, and may be less likely to cause a reduction reaction. For this reason, ferrous oxide (wustite) is preferable as the iron oxide because it easily causes a reduction reaction.
  • the iron oxide may be at least one of dust, scale, and sludge (hereinafter referred to as "dust" for convenience) that is generated as a by-product in the iron manufacturing process. It is preferable to use dust as the iron oxide from the viewpoint of effectively utilizing by-products of the iron manufacturing process and from the viewpoint of utilizing an inexpensive iron source.
  • the total amount of the carbon-containing substance and iron-containing substance that are reducing agents is 1.0 equivalent or more and 1.5 equivalent or less.
  • the total addition amount of the carbon-containing substance and the iron-containing substance is 1.0 equivalent or more, which is the stoichiometric composition, preferably 1.2 equivalent or more, and more preferably 1.3 equivalent or more. On the other hand, the total amount added is preferably 1.4 equivalents or less.
  • the fixed carbon content and the carbon content and hydrogen content in the volatile matter contained in the carbon-containing substance are taken into consideration as components contributing to reduction.
  • the carbon-containing substance is coke
  • the amount of added coke multiplied by the carbon content in coke (unit: mass %) is calculated.
  • the carbon-containing substance is propane gas
  • (amount of propane added (unit: Nm 3 )/22.4) ⁇ (12 ⁇ 3+8) is calculated.
  • the amount of only the carbon-containing substance such as coke (C) added is preferably 1.0 equivalent. Thereby, as mentioned above, a higher reduction rate can be obtained for Ni and Co.
  • the amount of reducing agent required to reduce the oxides NiO and CoO to be reduced is called 1.0 equivalent.
  • the reducing agents are metallic iron (Fe), ferrous oxide (FeO), and coke (C)
  • the content of NiO and CoO in the oxide to be reduced is determined. Specifically, the contents of Ni and Co in the object to be reduced (oxide) are measured and regarded as the contents of NiO and CoO in the object to be reduced (oxide), respectively. The contents of Ni and Co are measured using an energy dispersive X-ray analyzer (EDX).
  • EDX energy dispersive X-ray analyzer
  • a slag-forming agent containing calcium oxide (CaO) and silicon dioxide (SiO 2 ) is used.
  • the content (total content) of CaO and SiO 2 in the slag forming agent is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and particularly preferably 100% by mass.
  • the mass ratio of CaO to SiO 2 (CaO/SiO 2 ) is also called basicity.
  • the mass ratio (CaO/SiO 2 ) of the slag forming agent used in this recovery method is not particularly limited, and is, for example, 2.00 or less, preferably 1.80 or less, and more preferably 1.60 or less.
  • the slag forming agent has a low basicity.
  • the mass ratio (CaO/SiO 2 ) of the slag forming agent is preferably 1.50 or less, more preferably 1.00 or less, even more preferably 0.50 or less, and particularly preferably 0.35 or less.
  • the method for further recovering Li from the generated slag is not particularly limited, and includes various methods such as a method of recovering Li in the form of lithium carbonate by wet treatment.
  • the lower limit of the mass ratio (CaO/SiO 2 ) of the slag-forming agent is not particularly limited, and is, for example, 0.15, preferably 0.20, more preferably 0.25, and even more preferably 0.30.
  • the slag forming agent may further contain lithium oxide (Li 2 O) in addition to CaO and SiO 2 as a raw material. It is preferable to prepare the slag forming agent in consideration of the amount of lithium contained in the raw material. Specifically, the reason is that it is easy to maintain the reductive smelting ability (it is easy to prevent the reduction reaction rate from decreasing), and it is easy to fix Li 2 O in the slag (the possibility of recovering Li in the post-process is advantageous).
  • ⁇ (CaO+Li 2 O)/SiO 2 ⁇ of the slag forming agent is preferably 0.05 or more, more preferably 0.10 or more, and even more preferably 0.15 or more.
  • ⁇ (CaO+Li 2 O)/SiO 2 ⁇ of the slag forming agent is preferably 2.50 or less because it is easy to suppress the increase in slag volume and because it is easy to fix Li 2 O to the slag. , 2.00 or less is more preferable, and 1.50 or less is still more preferable.
  • the amount of the slag-forming agent added is not particularly limited, but the mass ratio of the slag-forming agent to the oxide to be reduced (slag-forming agent/oxide) is preferably from 0.40 to 1.00, and from 0.45 to 0.85 is more preferable, and 0.50 to 0.80 is still more preferable.
  • the oxide to be reduced is heated in a state in which a reducing agent and a slag-forming agent are added. This reduces the oxide.
  • the temperature at which the oxide is heated is preferably 1300°C or higher, more preferably 1350°C or higher, even more preferably 1400°C or higher, and particularly preferably 1450°C or higher, since poor reduction can be easily suppressed.
  • the upper limit of the heating temperature is not particularly limited and is appropriately set depending on the performance of the equipment (furnace) used for heating, etc., but if the heating temperature is too high, it may result in extra cost. Therefore, the heating temperature is preferably 1800°C or lower, more preferably 1700°C or lower.
  • the atmosphere for heating the oxide includes, for example, an inert atmosphere such as a nitrogen gas (N 2 ) atmosphere or an argon gas (Ar) atmosphere; a reducing atmosphere such as a carbon monoxide gas (CO) atmosphere; ; etc. are preferably mentioned.
  • the time for heating the oxide is preferably 1 hour or more, more preferably 2 hours or more, and even more preferably 3 hours or more, because poor reduction can be easily suppressed.
  • the upper limit of the heating time is not particularly limited. However, if the heating time is too long, additional costs may be incurred. Therefore, the heating time is preferably 6 hours or less, more preferably 5 hours or less.
  • the equipment used for heating the oxide is not particularly limited, and includes conventionally known equipment such as arc furnaces, submerged arc furnaces, resistance furnaces, high-frequency melting furnaces, low-frequency melting furnaces, rotary kilns, vertical furnaces, and steelmaking furnaces.
  • conventionally known equipment such as arc furnaces, submerged arc furnaces, resistance furnaces, high-frequency melting furnaces, low-frequency melting furnaces, rotary kilns, vertical furnaces, and steelmaking furnaces.
  • equipment is equipment.
  • Metals are produced by reducing the oxide that is the object of reduction.
  • the metal obtained by reducing the oxide contains less Mn and more Ni and Co, as described above.
  • Ni and Co which are valuable elements contained in the oxide to be reduced, are selectively recovered as generated metals.
  • the generated metal may be a metal containing only one of the valuable elements Ni and Co (or the proportion of one type of valuable element is greater than the proportion of other valuable elements).
  • the produced metal may further contain iron (Fe).
  • ⁇ Generated slag> By reducing the oxide to be reduced, slag is generated in addition to metal.
  • the produced slag contains FeO and the like.
  • the generated slag may also contain oxides of valuable elements (for example, MnO) that are not included in the generated metal.
  • MnO valuable elements
  • the Mn/MnO equilibrium is less noble than the Fe/FeO equilibrium and the FeO/Fe 3 O 4 equilibrium; It is possible to suppress Mn from being mixed into the resulting metal.
  • wet processing is carried out, it is complicated because there are many different processing methods depending on the form of Mn.
  • Mn can be retained in the generated slag, which is advantageous.
  • a positive electrode material for a lithium ion battery was prepared. Specifically, the lithium ion battery was subjected to pre-treatments such as decomposition, discharge, and removal of electrolyte to separate the positive electrode material.
  • the content of Mn in the positive electrode material was 11.3% by mass.
  • Coke (C) powder was prepared as a reducing agent. Further, as reducing agents, metallic iron (Fe) powder obtained by atomization treatment and ferrous oxide (FeO) powder were prepared.
  • a slag-forming agent consisting of CaO and SiO 2 was prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

NiおよびCoを選択的に回収できる有価元素の回収方法を提供する。上記回収方法では、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とマンガンとを含有する酸化物に、還元剤と、CaOおよびSiOを含有する造滓剤とを添加して、加熱することにより、上記酸化物を還元する。上記還元剤は、炭素含有物質および鉄含有物質を含有し、上記鉄含有物質は、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種である。上記炭素含有物質および上記鉄含有物質の添加量は、合計で、1.0当量以上1.5当量以下である。

Description

有価元素の回収方法および金属の製造方法
 本発明は、有価元素の回収方法および金属の製造方法に関する。
 近年、電気自動車の普及により、リチウムイオン電池の需要が急速に増加している。
 特に、昨今のCO発生量削減の観点から、化石燃料を使用しない電気自動車の需要は、今後は更に拡大すると思われ、それに伴うリチウムイオン電池の需要も今後は更に増加することが予想される。
 一般に、リチウムイオン電池の正極材は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)等を含有する酸化物(複合酸化物)からなる。この複合酸化物の具体例としては、LiNiO、LiCoO、LiMnOなどが挙げられる。
 Ni、Co、Mnなどの金属元素は、世界的に見ても豊富にあるとは言えない。
 このため、リチウムイオン電池の正極材から、これらの金属元素(有価元素)を回収することは、資源を有効利用する観点から、非常に有益である。
 リチウムイオン電池は、正極材、負極材、セパレータ等の部材の組み合わせにより構成され、更に、電解液なども含む。
 このため、リチウムイオン電池の正極材から有価元素を回収するに際しては、回収に先立って、電解液の除去、粉砕、破砕などの事前処理を実施する。
 このような事前処理を経て、リチウムイオン電池から正極材を分離し、その後、分離した正極材から有価元素を回収する。
 有価元素を回収する際の処理は、正極材を酸に溶解させた後に溶媒抽出および電解精錬などを実施する湿式処理と、正極材を還元剤および造滓剤とともに加熱して有価元素を還元生成させる乾式処理(例えば、特許文献1)との2種類に分類される。
特開2021-95628号公報
 乾式処理では、複合酸化物(LiNiO、LiCoO、LiMnO)を還元することにより、有価元素(Ni、Co、Mn)を含有する金属のほか、スラグが生成する。
 このとき、Mnを極力還元させないこと(Mnを金属に移行させないでスラグに残留させること)、および、NiおよびCoを選択的に金属に移行させて回収することが要求される場合がある。
 本発明は、以上の点を鑑みてなされたものであり、NiおよびCoを選択的に回収できる有価元素の回収方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[11]を提供する。
 [1]ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とマンガンとを含有する酸化物に、還元剤と、CaOおよびSiOを含有する造滓剤とを添加して、加熱することにより、上記酸化物を還元し、上記還元剤が、炭素含有物質および鉄含有物質を含有し、上記鉄含有物質が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種であり、上記炭素含有物質および上記鉄含有物質の添加量が、合計で、1.0当量以上1.5当量以下である、有価元素の回収方法。
 [2]上記炭素含有物質の添加量が、1.0当量である、上記[1]に記載の有価元素の回収方法。
 [3]上記酸化物が、更に、リチウムを含有する、上記[1]または[2]に記載の有価元素の回収方法。
 [4]上記酸化物におけるマンガンの含有量が、3質量%以上12質量%以下である、上記[1]~[3]のいずれかに記載の有価元素の回収方法。
 [5]上記造滓剤が含有するCaOとSiOとの質量比(CaO/SiO)が、0.50以下である、上記[1]~[4]のいずれかに記載の有価元素の回収方法。
 [6]上記酸化物を加熱する際の温度が、1450℃以上である、上記[1]~[5]のいずれかに記載の有価元素の回収方法。
 [7]上記酸化鉄が、酸化第一鉄である、上記[1]~[6]のいずれかに記載の有価元素の回収方法。
 [8]上記鉄含有物質が、ダスト、スケール、スラッジおよびスクラップからなる群から選ばれる少なくとも1種である、上記[1]~[7]のいずれかに記載の有価元素の回収方法。
 [9]上記酸化物を還元することにより、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を得る、上記[1]~[8]のいずれかに記載の有価元素の回収方法。
 [10]上記酸化物が、リチウムイオン電池から得られる、上記[1]~[9]のいずれかに記載の有価元素の回収方法。
 [11]上記[1]~[10]のいずれかに記載の有価元素の回収方法を用いて、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を製造する、金属の製造方法。
 本発明によれば、NiおよびCoを選択的に回収できる。
還元実験1の結果を示すグラフである。 還元実験2の結果を示すグラフである。 エリンガム図(標準自由エネルギー変化-温度線図)である。
[有価元素の回収方法]
 本発明の有価元素の回収方法(以下、便宜的に「本回収方法」ともいう)は、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とマンガンとを含有する酸化物に、還元剤と、CaOおよびSiOを含有する造滓剤とを添加して、加熱することにより、上記酸化物を還元し、上記還元剤が、炭素含有物質および鉄含有物質を含有し、上記鉄含有物質が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種であり、上記炭素含有物質および上記鉄含有物質の添加量が、合計で、1.0当量以上1.5当量以下である。
 本回収方法は、概略的には、リチウムイオン電池の正極材(酸化物)から、乾式処理によって、ニッケル(Ni)およびコバルト(Co)からなる群から選ばれる少なくとも1種の元素(以下、「有価元素」ともいう)を選択的に回収する方法である。
 〈本発明者らが得た知見〉
 リチウムイオン電池の正極材は、一般的に、LiNiO、LiCoO、LiMnOなどの酸化物(複合酸化物)からなる。
 乾式処理を熱力学的に考えると、例えば、LiNiOおよびLiCoOは、高温では以下のように分解し、それぞれ、NiOおよびCoOが生成する。
 2LiNiO→LiO+2NiO+1/2O
 2LiCoO→LiO+2CoO+1/2O
 NiOおよびCoOの分解反応における標準自由エネルギー変化(ΔG)を、それぞれ、以下に示す。
 NiO→Ni+1/2O:ΔG=234900-84.68T[J]
 CoO→Co+1/2O:ΔG=235480-71.55T[J]
 高温の任意の温度で、これらの標準自由エネルギー変化の値よりも低位な自由エネルギー変化値を有する物質を、還元剤として使用できる。
 乾式処理によって複合酸化物から有価元素を金属として回収する場合、一般的に、Mnは、不可避的に還元されて、金属に移行する。
 しかし、金属に移行したMnは、分離困難とされている。このため、Mnを極力還元させないこと(Mnをスラグに残留させること)が望まれる。
 そこで、本発明者らは、以下に説明する還元実験1~2を実施した。これにより、特定の還元剤を特定の添加量で用いることにより、Mnをスラグに残留させつつ、NiおよびCoを選択的に金属に移行できることを見出した。
 還元実験1~2では、還元対象である酸化物(リチウムイオン電池の正極材)を、還元剤と造滓剤とを添加した状態で、1650℃のアルゴンガス雰囲気で加熱することにより、金属およびスラグを生成させた。
 生成した金属を「生成金属」と呼び、生成したスラグを「生成スラグ」と呼ぶ。
 還元剤として、炭素含有物質および鉄含有物質を併用した。具体的には、炭素含有物質としてコークス(C)を用い、鉄含有物質として金属鉄(Fe)を用いた。
 還元実験1では、Feの添加量を1.0当量とし、Cの添加量を0.5当量とした。
 還元実験2では、Cの添加量を1.0当量とし、Feの添加量を0.5当量とした。
 後述するように、酸化物のNiOおよびCoOを還元するのに必要な還元剤の量が、1.0当量である。
 なお、還元実験1~2では、酸化カルシウム(CaO)および二酸化ケイ素(SiO)を含有する造滓剤を用いた。酸化物(正極材)45kgに対して、30kgの造滓剤を用いた。
 下記式に基づいて、各金属元素の還元率(単位:質量%)を求めた。
 還元率=100×(生成金属が含有する金属元素の量[kg])/(還元対象である酸化物が含有する金属元素の量[kg])
 更に、下記式に基づいて、各金属元素について、生成スラグ中の残留率(単位:質量%)を求めた。
 生成スラグ中の残留率=100×(生成スラグが含有する金属元素の量[kg])/(還元対象である酸化物が含有する金属元素の量[kg])
 図1は、還元実験1の結果を示すグラフであり、図2は、還元実験2の結果を示すグラフである。
 図1~図2に示すように、NiおよびCoについては70質量%を超える(特にNiについては80質量%を超える)高い還元率を達成できた。すなわち、NiおよびCoを、高い還元率で生成金属に移行できた。
 また、Mnの還元率は、非常に低位(5質量%以下)であり、Mnをスラグ中に多く留まらせることができた。
 更に、還元実験1~2の結果を対比すると、コークス(C)の添加量を1.0当量とした場合(還元実験2)は、金属鉄(Fe)の添加量を1.0当量とした場合(還元実験1)よりも、NiおよびCoについて、より高い還元率が得られた。
 以上の結果から、特定の還元剤を特定の添加量で用いることにより、Mnが少なく、NiおよびCoを多く含有する生成金属が得られた。すなわち、NiおよびCoを選択的に回収できた。
 次に、本回収方法をより詳細に説明する。
 なお、以下の説明は、本発明の金属の製造方法の説明も兼ねる。
 〈還元対象(酸化物)〉
 本回収方法における還元対象は、ニッケル(Ni)およびコバルト(Co)からなる群から選ばれる少なくとも1種の元素とマンガン(Mn)とを含有する酸化物であり、具体的には、例えば、リチウムイオン電池の正極材である。
 この酸化物は、更に、リチウム(Li)を含有していてもよい。
 リチウムイオン電池に対して、電解液の除去などの事前処理を施すことによって、正極材(酸化物)を得る。
 一般的にリチウムイオン電池の正極材として用いられる酸化物(複合酸化物)の組成範囲から鑑みて、酸化物におけるMnの含有量は、3質量%以上が好ましく、5質量%以上がより好ましい。
 同様に、酸化物におけるMnの含有量は、12質量%以下が好ましく、10質量%以下がより好ましい。
 酸化物におけるMnの含有量は、ICP(誘導結合プラズマ)発光分光分析法を用いて求める。ICP発光分光分析法による測定結果と同様の測定結果が得られることを確認したうえで、簡易的に、蛍光X線元素分析法(XRF)を用いて求めてもよい。
 〈還元剤〉
 本回収方法に用いる還元剤は、炭素含有物質および鉄含有物質を含有する。すなわち、還元剤として、炭素含有物質と鉄含有物質とを併用する。
 これにより、上述したように、Mnの還元率を抑制しつつ、NiおよびCoについては、高い還元率が得られる。すなわち、Mnが少なく、NiおよびCoを多く含有する生成金属が得られる。
 還元剤中における炭素含有物質および鉄含有物質の含有量(合計含有量)は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましく、100質量%が特に好ましい。
 炭素含有物質としては、例えば、黒鉛、コークス、石炭、固体炭化水素などの固体炭素含有物質;一酸化炭素(CO)、炭化水素ガス(例えば、プロパンガス)などの気体炭素含有物質;等が挙げられる。
 還元剤として炭素含有物質を用いる場合、還元後にCO、CO、HOなどのガスが生成し、生成スラグ量の増大を招かずに済むという点で好ましい。
 鉄含有物質は、金属鉄(Fe)および酸化鉄からなる群から選ばれる少なくとも1種である。以下、還元剤としての鉄含有物質を説明する。
 図3は、エリンガム図(標準自由エネルギー変化-温度線図)である。
 上述した標準自由エネルギー変化およびエリンガム図(図3)を参照すると、Fe/FeO平衡は、Ni/NiO平衡およびCo/CoO平衡よりも卑であり、Feによる還元可能性が考えられる。
 また、FeO/Fe平衡は、Ni/NiO平衡よりも卑であるが、Co/CoO平衡よりは貴である。
 このため、NiおよびCoを選択的に還元する(Niを生成金属に含有させ、Coを生成スラグに含有させる)ことも期待される。具体的には、以下の反応が期待される。
 NiO+Fe→Ni+FeO:ΔG=-29530-19.95T[J]
 CoO+Fe→Co+FeO:ΔG=-28950-6.82T[J]
 なお、エリンガム図(図3)において、上にあるほど、金属化しやすい。
 還元剤として、SiまたはAlを使用すると、Mnも金属化しやすい。
 そこで、還元剤としてFe(またはFeO)を使用することによって、Mnは金属化しないで、NiおよびCoのみを金属化することも期待できる。
 金属鉄(Fe)としては、例えば、製鉄所などで使用するスクラップや粒鉄などを使用してもよい。
 酸化鉄は、一般的に、ウスタイトとも呼ばれる酸化第一鉄(FeO)、マグネタイトとも呼ばれる四酸化三鉄(Fe)およびヘマタイトとも呼ばれる酸化第二鉄(Fe)の3種類に区分される。
 これらのうち、マグネタイトおよびヘマタイトは、標準自由エネルギー変化が同一温度でのウスタイトのそれよりも高位であり、還元反応を引き起こしにくい場合がある。
 このため、還元反応を引き起こしやすいという理由から、酸化鉄としては、酸化第一鉄(ウスタイト)が好ましい。
 酸化鉄は、製鉄プロセスにおいて副次的に生成されるダスト、スケールおよびスラッジの少なくともいずれか1種(以下、便宜的に「ダスト類」と呼ぶ)であってもよい。
 酸化鉄としてダスト類を使用することは、製鉄プロセスの副産物を有効利用する観点および安価な鉄源を利用する観点から、好ましい。
 《還元剤の添加量》
 還元剤である炭素含有物質および鉄含有物質の添加量は、合計で、1.0当量以上1.5当量以下である。
 これにより、上述したように、Mnの還元率を抑制しつつ、NiおよびCoについては、高い還元率が得られる。すなわち、Mnが少なく、NiおよびCoを多く含有する生成金属が得られる。
 炭素含有物質および鉄含有物質の合計添加量は、化学量論組成である1.0当量以上であり、1.2当量以上が好ましく、1.3当量以上がより好ましい。
 一方、この合計添加量は、1.4当量以下が好ましい。
 なお、炭素含有物質の当量計算においては、還元に寄与する成分として、炭素含有物質に含まれる、固定炭素分ならびに揮発分中の炭素分および水素分を考慮する。
 例えば、炭素含有物質がコークスである場合、コークスの添加量×コークス中の炭素含有量(単位:質量%)を計算する。
 また、炭素含有物質がプロパンガスである場合、(プロパンの添加量(単位:Nm)/22.4)×(12×3+8)を計算する。
 還元剤として用いる炭素含有物質および鉄含有物質のうち、コークス(C)等の炭素含有物質のみの添加量は、1.0当量であることが好ましい。
 これにより、上述したように、NiおよびCoについて、より高い還元率が得られる。
 還元対象である酸化物のNiOおよびCoOを還元するのに必要な還元剤の量を、1.0当量と呼ぶ。
 例えば、還元剤が、金属鉄(Fe)、酸化第一鉄(FeO)、および、コークス(C)である場合、1当量の還元剤を用いる還元は、それぞれ、以下のように示される。
 Fe+(NiO,CoO)→(Ni,Co)+FeO
 3FeO+(NiO,CoO)→(Ni,Co)+Fe
 C+2(NiO,CoO)→2(Ni,Co)+CO
 還元剤の添加量を決定する際には、まず、還元対象である酸化物におけるNiOおよびCoOの含有量を求める。
 具体的には、還元対象(酸化物)におけるNiおよびCoの含有量を測定し、それぞれ、還元対象(酸化物)におけるNiOおよびCoOの含有量とみなす。
 NiおよびCoの含有量は、エネルギー分散型X線分析装置(EDX)を用いて測定する。
 〈造滓剤〉
 本回収方法においては、酸化カルシウム(CaO)および二酸化ケイ素(SiO)を含有する造滓剤を用いる。
 造滓剤中におけるCaOおよびSiOの含有量(合計含有量)は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましく、100質量%が特に好ましい。
 《質量比(CaO/SiO)》
 造滓剤について、CaOとSiOとの質量比(CaO/SiO)は、塩基度とも呼ばれる。
 本回収方法に用いる造滓剤の質量比(CaO/SiO)は、特に限定されず、例えば、2.00以下であり、1.80以下が好ましく、1.60以下がより好ましい。
 もっとも、Mnの還元率をより抑制できるという理由からは、造滓剤は低塩基度にすることが好ましい。具体的には、造滓剤の質量比(CaO/SiO)は、1.50以下が好ましく、1.00以下がより好ましく、0.50以下が更に好ましく、0.35以下が特に好ましい。
 また、造滓剤をこのように低塩基度にすることにより、NiおよびCoを含有する生成金属のほかに、Liを多く含有する生成スラグが得られる。これにより、リチウムも簡便に効率良く回収できる。
 なお、生成スラグからLiを更に回収する方法については、特に限定されず、湿式処理により炭酸リチウムの形態で回収する方法などの各種方法が挙げられる。
 造滓剤の質量比(CaO/SiO)の下限は、特に限定されず、例えば0.15であり、0.20が好ましく、0.25がより好ましく、0.30が更に好ましい。
 《質量比{(CaO+LiO)/SiO}》
 造滓剤は、原料として、CaOおよびSiOのほか、更に、酸化リチウム(LiO)を含有していてもよい。
 造滓剤は、原料中に含まれるリチウムの量を考慮して調製することが好ましい。
 具体的には、還元製錬能を維持しやすい(還元反応速度の低下を抑止しやすい)という理由、および、LiOをスラグに固定しやすい(後工程におけるLiの回収可能性が優位である)という理由から、造滓剤の{(CaO+LiO)/SiO}は、0.05以上が好ましく、0.10以上がより好ましく、0.15以上が更に好ましい。
 一方、スラグボリュームの増大を抑止しやすいという理由、および、LiOをスラグに固定しやすいという理由から、造滓剤の{(CaO+LiO)/SiO}は、2.50以下が好ましく、2.00以下がより好ましく、1.50以下が更に好ましい。
 《造滓剤の添加量》
 造滓剤の添加量は、特に限定されないが、還元対象である酸化物に対する造滓剤の質量比(造滓剤/酸化物)は、0.40~1.00が好ましく、0.45~0.85がより好ましく、0.50~0.80が更に好ましい。
 〈加熱〉
 本回収方法では、還元対象である酸化物に還元剤および造滓剤を添加した状態で、加熱する。これにより、酸化物が還元される。
 酸化物を加熱する際の温度(加熱温度)は、還元不良を抑制しやすいという理由から、1300℃以上が好ましく、1350℃以上がより好ましく、1400℃以上が更に好ましく、1450℃以上が特に好ましい。
 加熱温度の上限は、特に限定されず、加熱に使用する設備(炉)の性能等に応じて適宜設定されるが、加熱温度が高すぎると、余計にコストがかかる場合がある。このため、加熱温度は、1800℃以下が好ましく、1700℃以下がより好ましい。
 酸化物を加熱する際の雰囲気(加熱雰囲気)としては、例えば、窒素ガス(N)雰囲気、アルゴンガス(Ar)雰囲気などの不活性雰囲気;一酸化炭素ガス(CO)雰囲気などの還元性雰囲気;等が好適に挙げられる。
 酸化物を加熱する時間(加熱時間)は、還元不良を抑制しやすいという理由から、1時間以上が好ましく、2時間以上がより好ましく、3時間以上が更に好ましい。
 加熱時間の上限は、特に限定されない。もっとも、加熱時間が長すぎると、余計にコストがかかる場合がある。このため、加熱時間は、6時間以下が好ましく、5時間以下がより好ましい。
 酸化物の加熱に用いる設備としては、特に限定されず、例えば、アーク炉、サブマージドアーク炉、抵抗炉、高周波溶解炉、低周波溶解炉、ロータリーキルン、竪型炉、製鋼炉などの従来公知の設備が挙げられる。
 〈生成金属〉
 還元対象である酸化物を還元することにより、金属が生成する。
 本回収方法において、酸化物の還元により得られる金属(生成金属)は、上述したように、Mnが少なく、NiおよびCoを多く含有する。こうして、還元対象である酸化物に含有される有価元素であるNiおよびCoは、選択的に、生成金属として回収される。
 生成金属は、有価元素であるNiおよびCoのうち1種のみを含有する(または、1種の有価元素の割合が、他の有価元素の割合よりも多い)金属であってもよい。
 還元剤として鉄含有物質を使用する場合、生成金属は、更に、鉄(Fe)を含有してもよい。
 〈生成スラグ〉
 還元対象である酸化物を還元することにより、金属のほか、更に、スラグが生成する。
 還元剤として鉄含有物質を使用する場合、生成スラグは、FeOなどを含有する。
 そのほか、生成スラグは、生成金属に含まれなかった有価元素の酸化物(例えば、MnO)なども含有し得る。
 Mnを含有する酸化物を還元する場合、還元剤として鉄含有物質を使用することにより、Mn/MnO平衡が、Fe/FeO平衡およびFeO/Fe平衡よりも卑であるため、還元により得られる生成金属中にMnが混入することを抑制できる。
 湿式処理を実施する場合は、Mnの形態によって、その処理方法が非常に多いため煩雑である。これに対して、乾式処理による本回収方法によれば、生成スラグにMnを留めておくことができ、有益である。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 〈正極材〉
 まず、リチウムイオン電池の正極材を準備した。
 具体的には、リチウムイオン電池に対して、分解、放電、電解液の除去等の事前処理を実施して、正極材を分離した。正極材の組成は、モル比でNi:Mn:Co=6:2:2であった。なお、正極材は、更に、Liを含有していた。
 正極材におけるMnの含有量は11.3質量%であった。
 〈還元剤〉
 還元剤として、コークス(C)の粉体を準備した。
 更に、還元剤として、アトマイズ処理により得られた金属鉄(Fe)の粉体、および、酸化第一鉄(FeO)の粉体を準備した。
 〈造滓剤〉
 造滓剤として、CaOおよびSiOからなる造滓剤を準備した。CaOとSiOとの質量比(CaO/SiO)が異なる複数種類の造滓剤を準備した。
 〈正極材の還元:発明例1~4および比較例1~5〉
 次に、ヒートサイズ150kg規模のサブマージドアーク炉に、準備した正極材、還元剤および造滓剤を装入し、これらを、電極を用いて通電することにより加熱した。このとき、還元剤の一部は、電極の直下に配置した。こうして、正極材を還元し、生成金属および生成スラグを得た。加熱温度は1600℃、加熱時間は3時間、加熱雰囲気はAr雰囲気とした。
 正極材45kgに対して、30kgの造滓剤を添加した。すなわち、正極材に対する造滓剤の質量比(造滓剤/正極材)は、約0.67とした。
 用いた還元剤の種類および添加量(単位:当量)、ならびに、用いた造滓剤の質量比(CaO/SiO)を、下記表1に示す。
 また、Ni、CoおよびMnの各金属元素について、上述した式に基づいて、還元率を求めた。求めた還元率は、単位を「質量%」から「モル%」に換算した。
 更に、Liについて、上述した式に基づいて、生成スラグ中の残留率を求めた。求めた生成スラグ中の残留率は、単位を「質量%」から「モル%」に換算した。
 いずれも結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 〈評価結果まとめ〉
 上記表1に示すように、還元剤として、コークス(C)のみを使用した比較例1~2は、Mnの還元率が高かった。
 また、還元剤として、金属鉄(Fe)または酸化第一鉄(FeO)のみを使用した比較例3~5は、Mnの還元は抑制できたが、NiおよびCoの還元が不十分であった。
 これに対して、還元剤として、金属鉄(Fe)または酸化第一鉄(FeO)とコークス(C)とを併用した発明例1~6は、Mnの還元を抑制しつつ、NiおよびCoについては高い還元率が得られた。すなわち、NiおよびCoを選択的に回収できた。
 発明例1と発明例2とを対比すると、炭素含有物質であるコークス(C)の添加量を1.0当量とした発明例2は、これを0.4当量とした発明例1よりも、NiおよびCoについて、より高い還元率が得られた。
 発明例2と発明例3~4とを対比すると、質量比(CaO/SiO)が0.50の造滓剤を用いた発明例3~4は、質量比(CaO/SiO)が1.50の造滓剤を用いた発明例2と比べて、Mnの還元をより抑制できた。また、Liの生成スラグ中の残留率をより高くできた。
 発明例3~4と発明例5~6とを対比すると、造滓剤の質量比(CaO/SiO)を更に低下させた発明例5~6においては、発明例3~4と比較して、NiおよびCoの還元率の大きな低下を招くことなく、Mnの還元を更に抑制できた。

Claims (11)

  1.  ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とマンガンとを含有する酸化物に、還元剤と、CaOおよびSiOを含有する造滓剤とを添加して、加熱することにより、前記酸化物を還元し、
     前記還元剤が、炭素含有物質および鉄含有物質を含有し、前記鉄含有物質が、金属鉄および酸化鉄からなる群から選ばれる少なくとも1種であり、
     前記炭素含有物質および前記鉄含有物質の添加量が、合計で、1.0当量以上1.5当量以下である、有価元素の回収方法。
  2.  前記炭素含有物質の添加量が、1.0当量である、請求項1に記載の有価元素の回収方法。
  3.  前記酸化物が、更に、リチウムを含有する、請求項1または2に記載の有価元素の回収方法。
  4.  前記酸化物におけるマンガンの含有量が、3質量%以上12質量%以下である、請求項1~3のいずれか1項に記載の有価元素の回収方法。
  5.  前記造滓剤が含有するCaOとSiOとの質量比(CaO/SiO)が、0.50以下である、請求項1~4のいずれか1項に記載の有価元素の回収方法。
  6.  前記酸化物を加熱する際の温度が、1450℃以上である、請求項1~5のいずれか1項に記載の有価元素の回収方法。
  7.  前記酸化鉄が、酸化第一鉄である、請求項1~6のいずれか1項に記載の有価元素の回収方法。
  8.  前記鉄含有物質が、ダスト、スケール、スラッジおよびスクラップからなる群から選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の有価元素の回収方法。
  9.  前記酸化物を還元することにより、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を得る、請求項1~8のいずれか1項に記載の有価元素の回収方法。
  10.  前記酸化物が、リチウムイオン電池から得られる、請求項1~9のいずれか1項に記載の有価元素の回収方法。
  11.  請求項1~10のいずれか1項に記載の有価元素の回収方法を用いて、鉄と、ニッケルおよびコバルトからなる群から選ばれる少なくとも1種の元素とを含有する金属を製造する、金属の製造方法。
     
PCT/JP2023/026369 2022-07-28 2023-07-19 有価元素の回収方法および金属の製造方法 WO2024024585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120866 2022-07-28
JP2022120866 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024585A1 true WO2024024585A1 (ja) 2024-02-01

Family

ID=89706314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026369 WO2024024585A1 (ja) 2022-07-28 2023-07-19 有価元素の回収方法および金属の製造方法

Country Status (1)

Country Link
WO (1) WO2024024585A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611566A (zh) * 2014-12-29 2015-05-13 长沙矿冶研究院有限责任公司 废旧锂离子电池中有价金属回收的方法
WO2016141875A1 (zh) * 2015-03-11 2016-09-15 长沙矿冶研究院有限责任公司 一种废旧电池的回收处理方法
JP2021031762A (ja) * 2019-08-29 2021-03-01 住友金属鉱山株式会社 有価金属を回収する方法
JP2021095628A (ja) * 2019-12-13 2021-06-24 株式会社神戸製鋼所 有価元素の回収方法
JP2022015535A (ja) * 2020-07-09 2022-01-21 住友金属鉱山株式会社 有価金属を回収する方法
JP2022117640A (ja) * 2021-02-01 2022-08-12 住友金属鉱山株式会社 有価金属を回収する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611566A (zh) * 2014-12-29 2015-05-13 长沙矿冶研究院有限责任公司 废旧锂离子电池中有价金属回收的方法
WO2016141875A1 (zh) * 2015-03-11 2016-09-15 长沙矿冶研究院有限责任公司 一种废旧电池的回收处理方法
JP2021031762A (ja) * 2019-08-29 2021-03-01 住友金属鉱山株式会社 有価金属を回収する方法
JP2021095628A (ja) * 2019-12-13 2021-06-24 株式会社神戸製鋼所 有価元素の回収方法
JP2022015535A (ja) * 2020-07-09 2022-01-21 住友金属鉱山株式会社 有価金属を回収する方法
JP2022117640A (ja) * 2021-02-01 2022-08-12 住友金属鉱山株式会社 有価金属を回収する方法

Similar Documents

Publication Publication Date Title
Makuza et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review
Hu et al. Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction-Part I: A laboratory-scale study
Liu et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review
Tang et al. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach
Müller et al. Development of a recycling process for nickel-metal hydride batteries
de Oliveira Demarco et al. Recovery of metals from spent lithium-ion batteries using organic acids
Peng et al. A novel method for carbon removal and valuable metal recovery by incorporating steam into the reduction-roasting process of spent lithium-ion batteries
JP2012112027A (ja) リチウム並びにコバルトやその他メタルの回収方法
He et al. Thermochemically driven layer structure collapse via sulfate roasting toward the selective extraction of lithium and cobalt from spent LiCoO2 batteries
JP2021095628A (ja) 有価元素の回収方法
JP2023518880A (ja) 還元およびカルボニル化による電池の再利用
US10982300B2 (en) Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy
Ye et al. Facile method for preparing a nano lead powder by vacuum decomposition from spent lead-acid battery paste: leaching and desulfuration in tartaric acid and sodium tartrate mixed lixivium
Bhandari et al. Gaseous reduction of NMC-type cathode materials using hydrogen for metal recovery
Ma et al. Separation of Li and Al from spent ternary Li-ion batteries by in-situ aluminum‑carbon reduction roasting followed by selective leaching
WO2024024585A1 (ja) 有価元素の回収方法および金属の製造方法
Ouyang et al. Clean recycling process for lead oxide preparation from spent lead–acid battery pastes using tartaric acid–sodium tartrate as a transforming agent
Pindar et al. Kinetic evaluation of In-Situ Carbothermic processing of mixed electrode material of discarded Li-Ion batteries
WO2024024589A1 (ja) 有価元素の回収方法および金属の製造方法
Bhandari et al. Investigation of Hydrogen Reduction for Metal Recovery from End-of-Life Lithium-Ion Batteries
Pindar et al. Recycling of discarded coin cells for recovery of metal values
WO2023084947A1 (ja) 有価元素の回収方法
WO2004053173A1 (ja) V、Mo、及びNi含有廃棄物からの有価金属の回収方法
US20220302515A1 (en) Waste Battery Treatment Method
WO2020203937A1 (ja) 有価金属の回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846316

Country of ref document: EP

Kind code of ref document: A1