WO2023083165A1 - 磁共振成像与聚焦超声热消融同步工作兼容系统及方法 - Google Patents

磁共振成像与聚焦超声热消融同步工作兼容系统及方法 Download PDF

Info

Publication number
WO2023083165A1
WO2023083165A1 PCT/CN2022/130565 CN2022130565W WO2023083165A1 WO 2023083165 A1 WO2023083165 A1 WO 2023083165A1 CN 2022130565 W CN2022130565 W CN 2022130565W WO 2023083165 A1 WO2023083165 A1 WO 2023083165A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
focused ultrasound
magnetic resonance
time
equipment
Prior art date
Application number
PCT/CN2022/130565
Other languages
English (en)
French (fr)
Inventor
吴昊
宗慎言
柳树
温家宝
Original Assignee
上海沈德医疗器械科技有限公司
沈德(宁波)医疗器械科技有限公司
南通沈德医疗器械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海沈德医疗器械科技有限公司, 沈德(宁波)医疗器械科技有限公司, 南通沈德医疗器械科技有限公司 filed Critical 上海沈德医疗器械科技有限公司
Publication of WO2023083165A1 publication Critical patent/WO2023083165A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the invention relates to an intelligent medical device, in particular to a magnetic resonance imaging and focused ultrasound thermal ablation synchronously compatible system and method.
  • Focused ultrasound thermal ablation uses ultrasound to focus on the target area.
  • the energy of the ultrasound can generate a high temperature above 65°C in the target area to kill the tissue and achieve the purpose of treatment.
  • magnetic resonance imaging scans the area to be treated, and can obtain phase changes caused by temperature to monitor the treatment process in real time, and the feedback of temperature changes can ensure the effectiveness and safety of treatment.
  • magnetic resonance-guided focused ultrasound thermal ablation technology as a non-invasive and effective treatment method, has been applied in the clinical treatment of uterine fibroids, essential tremor and other diseases.
  • Focused ultrasound thermal ablation utilizes the biological thermal effect of ultrasound, and the joint action of multiple beams of ultrasound will make the tissue reach a sufficiently high temperature.
  • the cell temperature is higher than 40°C, the cell stops growing, and when the temperature reaches 45°C, the protein begins to denature. If the temperature continues to rise, the protein will decompose, that is, the cell will be killed.
  • Magnetic resonance thermometry is based on changes in proton resonance frequency in tissue caused by temperature changes. It is measured in the experiment that at a magnetic field strength of 3T, the rate of change of the proton resonance frequency with temperature is 1.28Hz/°C. Changes in the proton resonance frequency are mapped onto the magnetic resonance image as phase changes in the focal region of the image.
  • the gradient echo sequence is performed on the magnetic resonance to scan the target layer, and the phase change map of the treatment area during the thermal ablation process can be obtained in real time, that is, the temperature change during the treatment process.
  • the purpose of the present invention is to provide a system and method compatible with magnetic resonance imaging and focused ultrasound thermal ablation with good compatibility and high safety in order to overcome the above-mentioned defects in the prior art.
  • a magnetic resonance imaging and focused ultrasound thermal ablation synchronously compatible system includes magnetic resonance equipment and focused ultrasound equipment, and also includes connected signal collectors and control circuits,
  • the signal collector detects the RF signal of the magnetic resonance equipment
  • the control circuit records the trigger time of the RF signal, and generates an enabling signal that triggers the focused ultrasound equipment to start heating based on the RF signal trigger time, and according to The echo time TE controls the heating time of the focused ultrasound equipment.
  • the generation of the enabling signal that triggers the focused ultrasound device to start working based on the triggering moment of the RF signal is specifically:
  • the trigger time difference between the current RF signal trigger moment and the adjacent last RF signal trigger moment calculate the error value between the trigger time difference and one TR cycle, and judge whether the error value is less than the set threshold, if so, then in the The enabling signal is generated at the current RF signal triggering time, and if not, the current RF signal triggering time is deleted.
  • the set threshold is less than 1 ms.
  • control circuit obtains and records the triggering time of the RF signal by comparing the voltage value of the RF signal.
  • the heating duration of the focused ultrasound device is controlled to be shorter than the echo time TE.
  • the signal collector is an open-loop coil.
  • the heating of the focused ultrasound equipment is less than or equal to the phase encoding number of the imaging of the magnetic resonance equipment.
  • the present invention also provides a magnetic resonance imaging and focused ultrasound thermal ablation synchronous work compatible method, which is used to control the magnetic resonance equipment and focused ultrasound equipment to work alternately and compatiblely, including the following steps:
  • the RF signal of the magnetic resonance equipment is detected, and the trigger time of the RF signal is recorded. Based on the trigger time of the RF signal, an enabling signal for triggering the heating of the focused ultrasound equipment is generated, and the focus is controlled according to the echo time TE. The heating time of the ultrasound equipment.
  • the generation of the enabling signal that triggers the focused ultrasound device to start working based on the triggering moment of the RF signal is specifically:
  • the trigger time difference between the current RF signal trigger moment and the adjacent last RF signal trigger moment calculate the error value between the trigger time difference and one TR cycle, and judge whether the error value is less than the set threshold, if so, then in the The enabling signal is generated at the current RF signal triggering time, and if not, the current RF signal triggering time is deleted.
  • the heating duration of the focused ultrasound device is controlled to be shorter than the echo time TE.
  • the present invention has the following beneficial effects:
  • the present invention rationally utilizes the non-signal acquisition time in magnetic resonance imaging to control the heating work of the focused ultrasound equipment, so that the two can work synchronously;
  • the focused ultrasound equipment stops working, avoiding the mutual electromagnetic interference between the two, and realizing the perfect compatibility between the two;
  • the present invention detects and corrects the accuracy of the triggering time of the RF signal, thereby improving the control reliability.
  • Fig. 1 is a schematic diagram of the basic principles of the present invention
  • Fig. 2 is a schematic diagram of the partial structure of the system of the present invention.
  • Fig. 3 is a flow chart of error correction control in the present invention.
  • TR represents the interval time of phase encoding, that is, the time interval between each radio frequency pulse (RF) excitation, and this time interval is called a TR cycle.
  • RF radio frequency pulse
  • the effect of the gradient can form an echo in the current TR period, and the time from the center of the RF pulse to the center of the echo is TE.
  • magnetic resonance only collects signals in the range of ⁇ 1ms from the echo center, but in a gradient echo sequence suitable for temperature measurement, a TR period is usually 15-20ms.
  • the invention adopts the "dead time" in the TR cycle to control the focused ultrasound equipment, so as to realize the synchronous and non-interfering work of the two.
  • the principle of the present invention is: the magnetic resonance equipment scans the target layer through the gradient echo sequence 101, detects the RF signal 102 of the gradient echo sequence 101 each time, and records the moment of each RF pulse center as the RF Signal triggering time, based on the RF signal triggering time, an enabling signal that triggers the focused ultrasound device to start heating is generated.
  • the heating stop time is 104.
  • the heating process can be operated within the time period of non-magnetic resonance signal acquisition.
  • the above-mentioned process is repeated continuously in the process of magnetic resonance imaging to complete the synchronous and compatible work of the two.
  • the present invention also performs error correction confirmation on the triggering moment of the RF signal.
  • the specific steps of generating an enabling signal that triggers the focused ultrasound device to start working based on the triggering moment of the RF signal include:
  • step 302. Calculate the error value between the trigger time difference and one TR cycle, and judge whether the error value is smaller than the set threshold value.
  • the set threshold value is less than 1 ms. If yes, the trigger is considered correct, and step 303 is executed; if not, the RF The signal is incorrect, go to step 304;
  • This embodiment provides a magnetic resonance imaging and focused ultrasound thermal ablation synchronously compatible system, including magnetic resonance equipment, focused ultrasound equipment, a signal collector 201 and a control circuit 202, as shown in Figure 2, during the imaging process of the magnetic resonance equipment Among them, the signal collector 201 detects the RF signal of the magnetic resonance equipment, the control circuit 202 records the trigger time of the RF signal, and generates an enabling signal for triggering the heating of the focused ultrasound equipment based on the trigger time of the RF signal, and according to the echo time TE, Controls the heating time of the focused ultrasound device.
  • the signal collector 201 adopts a simple open-loop coil for detecting RF signals of magnetic resonance.
  • the control circuit 202 has the functions of comparing the RF signal voltage, recording and judging the relationship between the RF cycle and the known TR cycle, and generating a trigger signal to make the focused ultrasound equipment work.
  • the synchronous control working process of the above-mentioned compatible system includes:
  • the hardware control circuit compares and corrects the peak voltage of the RF signal to form a trigger signal for controlling the work of the focused ultrasound equipment, and records its time;
  • steps a to c are repeated until a single magnetic resonance image acquisition is completed.
  • the number of repetitions of steps a to c is equal to the phase encoding number of imaging, usually 128 times.
  • the setting threshold in the error correction mechanism is set to 0.5ms.
  • This embodiment provides a method for synchronous operation compatibility between magnetic resonance imaging and focused ultrasound thermal ablation.
  • the RF signal of the resonance device records the trigger time of the RF signal, generates an enabling signal that triggers the focused ultrasound device to start heating based on the RF signal trigger time, and controls the heating duration of the focused ultrasound device according to the echo time TE, that is, when the trigger signal enables
  • the focused ultrasound equipment starts to work, and through timing control, the treatment is performed for a period of time, and it stops working before the echo signal is collected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgical Instruments (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种磁共振成像与聚焦超声热消融同步工作兼容系统及方法,同步工作兼容系统包括磁共振设备和聚焦超声设备,还包括相连接的信号采集器(201)和控制电路(202),在磁共振设备的成像过程中,信号采集器(201)检测磁共振设备的RF信号(102),控制电路(202)记录RF信号触发时刻,基于该RF信号(102)触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长。与现有技术相比,其具有兼容性好、安全性高等优点。

Description

磁共振成像与聚焦超声热消融同步工作兼容系统及方法 技术领域
本发明涉及一种智能医疗设备,尤其是涉及一种磁共振成像与聚焦超声热消融同步工作兼容系统及方法。
背景技术
聚焦超声热消融治疗利用超声共同聚焦于靶区,超声的能量可以在目标区域产生65℃以上的高温来杀死组织,以达到治疗的目的。同时,磁共振成像对被治疗区域的扫描,可获取温度引起的相位变化来实时地监控治疗过程,反馈的温度变化可确保治疗的有效性和安全性。当前,磁共振引导聚焦超声热消融技术作为一种无创的、有效的治疗方法,已被应用于子宫肌瘤、特发性震颤等疾病的临床治疗中。
聚焦超声热消融利用的是超声生物学热效应,多束超声的共同作用会使组织达到足够高的温度。一般说来,当细胞温度高于40℃时细胞停止生长,达到45℃时蛋白质开始变性,温度再继续升高,蛋白质将分解,即杀死细胞。而磁共振的温度测量根据的是温度变化引起的组织内质子共振频率的改变。实验中测得在3T的磁场强度,质子共振频率随温度的变化率是1.28Hz/℃。质子共振频率的改变映射到磁共振的图像上表现为图像上焦点区域处相位的变化。通常,在磁共振上进行梯度回波序列对目标层面扫描,可实时地得到热消融过程中治疗区域的相位变化图,即治疗过程中的温度变化。
然而,磁共振扫描和聚焦超声热消融治疗的同时工作必不可免的是两者之间的相互干扰。尤其是在聚焦超声工作时,换能器存在一定的电磁泄露,泄露的信号会耦合到磁共振的信号采集中,并最终降低图像信噪比,而磁共振温度测量的准确性与图像的信噪比成正比关系。因此,如何实现两者之间无干扰的同步工作是本领域亟待解决的技术问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种兼容性好、安全性高的磁共振成像与聚焦超声热消融同步工作兼容系统及方法。
本发明的目的可以通过以下技术方案来实现:
一种磁共振成像与聚焦超声热消融同步工作兼容系统,包括磁共振设备和聚焦超声设备,还包括相连接的信号采集器和控制电路,
在磁共振设备的成像过程中,所述信号采集器检测磁共振设备的RF信号,控制电路记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长。
进一步地,所述基于该RF信号触发时刻产生触发聚焦超声设备开始工作的使能信号具体为:
根据当前RF信号触发时刻与相邻的上一次RF信号触发时刻间的触发时间差,计算该触发时间差与一个TR周期间的误差值,判断该误差值是否小于设定阈值,若是,则在所述当前RF信号触发时刻产生所述使能信号,若否,则删除所述当前RF信号触发时刻。
进一步地,所述设定阈值小于1ms。
进一步地,所述控制电路通过比较所述RF信号的电压值获取RF信号触发时刻,并记录。
进一步地,控制所述聚焦超声设备的加热时长小于所述回波时间TE。
进一步地,所述信号采集器为开环线圈。
进一步地,所述聚焦超声设备的加热小于等于磁共振设备成像的相位编码数。
本发明还提供一种磁共振成像与聚焦超声热消融同步工作兼容方法,该方法用于控制磁共振设备和聚焦超声设备交替兼容工作,包括以下步骤:
在磁共振设备的成像过程中,检测磁共振设备的RF信号,记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长。
进一步地,所述基于该RF信号触发时刻产生触发聚焦超声设备开始工作的使能信号具体为:
根据当前RF信号触发时刻与相邻的上一次RF信号触发时刻间的触发时间差,计算该触发时间差与一个TR周期间的误差值,判断该误差值是否小于设定阈值,若是,则在所述当前RF信号触发时刻产生所述使能信号,若否,则删除所述当前 RF信号触发时刻。
进一步地,控制所述聚焦超声设备的加热时长小于所述回波时间TE。
与现有技术相比,本发明具有以下有益效果:
1、本发明合理的利用了磁共振成像中非信号的采集时间,控制聚焦超声设备的加热工作,使两者实现了同步工作;
2、磁共振信号采集的时间段内,聚焦超声设备停止工作,避免了两者间的相互电磁干扰,实现了两者的完美兼容;
3、本发明对RF信号触发时刻的准确性进行检测并纠错,提高了控制可靠性。
附图说明
图1为本发明的基本原理示意图;
图2为本发明系统部分结构示意图;
图3为本发明的纠错控制流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
理论上,梯度回波序列在成像上的两个重要已知参数分别是重复时间TR和回波时间TE。TR表示的是相位编码的间隔时间,即每次射频脉冲(RF)激励之间的时间间隔,此时间间隔称之为一个TR周期。在每次RF激励后,梯度的作用可在当前的TR周期内形成一个回波,从RF脉冲中心到回波中心的时间即为TE。通常,磁共振仅对回波中心±1ms左右范围的信号进行采集,而在适用于温度测量的梯度回波序列中,一个TR周期通常为15~20ms。发明人比较发现,磁共振的信号采集时间相较一个TR周期是较短的,也就是,在一个TR周期内存在部分与成像无关的“死亡时间(dead time)”可用于聚焦超声的治疗工作。
本发明采用TR周期内的“死亡时间”控制聚焦超声设备,实现两者同步且互不干扰的工作。如图1所示,本发明的原理为:磁共振设备通过梯度回波序列101对目标层面扫描,检测梯度回波序列101每次的RF信号102,记录每次RF脉冲中心的时刻,作为RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声 设备开始加热的使能信号,该使能信号的时刻为103,并根据回波时间TE,控制聚焦超声设备的加热时长,聚焦超声设备的加热停止时间为104,通过对聚焦超声设备工作时序上的控制,使加热过程工作在非磁共振信号采集的时间段内。最终,在磁共振成像的过程不断重复上述过程,完成两者同步兼容的工作。
为了进一步提高准确性,本发明还对RF信号触发时刻进行了纠错确认。如图3所示,基于RF信号触发时刻产生触发聚焦超声设备开始工作的使能信号的具体步骤包括:
301、通过比较所述RF信号的电压值获取RF信号触发时刻,并记录,计算当前RF信号触发时刻与相邻的上一次RF信号触发时刻间的触发时间差;
302、计算该触发时间差与一个TR周期间的误差值,判断该误差值是否小于设定阈值,设定阈值小于1ms,若是,则认为该触发正确,执行步骤303,若否,则认为该RF信号不正确,执行步骤304;
303、在所述当前RF信号触发时刻产生使能信号,该使能信号为一个极短的脉冲,以使聚集超声设备开始工作;
304、删除所述当前RF信号触发时刻,不产生使能信号,等待下一个RF信号。
通过上述交替工作的方式,实现了磁共振的扫描和聚焦超声设备的同步工作和完全兼容,提升了磁共振设备和聚焦超声设备工作的安全性和准确性。
实施例1
本实施例提供一种磁共振成像与聚焦超声热消融同步工作兼容系统,包括磁共振设备、聚焦超声设备、信号采集器201和控制电路202,如图2所示,在磁共振设备的成像过程中,所述信号采集器201检测磁共振设备的RF信号,控制电路202记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长。
本实施例中,信号采集器201采用简易的开环线圈,用于探测磁共振的RF信号。控制电路202具有比较RF信号电压、记录并判断RF的周期与已知TR周期关系、生成使聚焦超声设备工作的触发信号的功能。
上述兼容系统的同步控制工作过程包括:
a.通过简易的开环线圈检测磁共振的RF信号;
b.硬件控制电路对RF信号的电压峰值进行比较及纠错,形成控制聚焦超声设备工作的触发信号,并记录其时刻;
c.结合已知的回波时间TE,控制聚焦超声设备的加热在“死亡时间”,加热结束后,等待下一次触发;
d.在磁共振成像的过程中,重复a~c的步骤,直至单次的磁共振图像采集完成。a~c步骤的重复次数等于成像的相位编码数,通常为128次。
本实施例中,纠错机制中的设定阈值设置为0.5ms。
实施例2
本实施例提供一种磁共振成像与聚焦超声热消融同步工作兼容方法,该方法用于控制磁共振设备和聚焦超声设备交替兼容工作,包括以下步骤:在磁共振设备的成像过程中,检测磁共振设备的RF信号,记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长,即在触发信号使能后,聚焦超声设备开始工作,并通过时序的控制,使治疗进行一段时间,并在回波信号采集前停止工作。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种磁共振成像与聚焦超声热消融同步工作兼容系统,包括磁共振设备和聚焦超声设备,其特征在于,还包括相连接的信号采集器和控制电路,
    在磁共振设备的成像过程中,所述信号采集器检测磁共振设备的RF信号,控制电路记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根据回波时间TE,控制聚焦超声设备的加热时长。
  2. 根据权利要求1所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,所述基于该RF信号触发时刻产生触发聚焦超声设备开始工作的使能信号具体为:
    根据当前RF信号触发时刻与相邻的上一次RF信号触发时刻间的触发时间差,计算该触发时间差与一个TR周期间的误差值,判断该误差值是否小于设定阈值,若是,则在所述当前RF信号触发时刻产生所述使能信号,若否,则删除所述当前RF信号触发时刻。
  3. 根据权利要求2所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,所述设定阈值小于1ms。
  4. 根据权利要求1所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,所述控制电路通过比较所述RF信号的电压值获取RF信号触发时刻,并记录。
  5. 根据权利要求1所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,控制所述聚焦超声设备的加热时长小于所述回波时间TE。
  6. 根据权利要求1所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,所述信号采集器为开环线圈。
  7. 根据权利要求1所述的磁共振成像与聚焦超声热消融同步工作兼容系统,其特征在于,所述聚焦超声设备的加热小于等于磁共振设备成像的相位编码数。
  8. 一种磁共振成像与聚焦超声热消融同步工作兼容方法,其特征在于,该方法用于控制磁共振设备和聚焦超声设备交替兼容工作,包括以下步骤:
    在磁共振设备的成像过程中,检测磁共振设备的RF信号,记录RF信号触发时刻,基于该RF信号触发时刻产生触发聚焦超声设备开始加热的使能信号,并根 据回波时间TE,控制聚焦超声设备的加热时长。
  9. 根据权利要求8所述的磁共振成像与聚焦超声热消融同步工作兼容方法,其特征在于,所述基于该RF信号触发时刻产生触发聚焦超声设备开始工作的使能信号具体为:
    根据当前RF信号触发时刻与相邻的上一次RF信号触发时刻间的触发时间差,计算该触发时间差与一个TR周期间的误差值,判断该误差值是否小于设定阈值,若是,则在所述当前RF信号触发时刻产生所述使能信号,若否,则删除所述当前RF信号触发时刻。
  10. 根据权利要求8所述的磁共振成像与聚焦超声热消融同步工作兼容方法,其特征在于,控制所述聚焦超声设备的加热时长小于所述回波时间TE。
PCT/CN2022/130565 2021-11-09 2022-11-08 磁共振成像与聚焦超声热消融同步工作兼容系统及方法 WO2023083165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111317148.4 2021-11-09
CN202111317148.4A CN114145732A (zh) 2021-11-09 2021-11-09 磁共振成像与聚焦超声热消融同步工作兼容系统及方法

Publications (1)

Publication Number Publication Date
WO2023083165A1 true WO2023083165A1 (zh) 2023-05-19

Family

ID=80459284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130565 WO2023083165A1 (zh) 2021-11-09 2022-11-08 磁共振成像与聚焦超声热消融同步工作兼容系统及方法

Country Status (2)

Country Link
CN (1) CN114145732A (zh)
WO (1) WO2023083165A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114145732A (zh) * 2021-11-09 2022-03-08 上海沈德医疗器械科技有限公司 磁共振成像与聚焦超声热消融同步工作兼容系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049474A1 (en) * 1999-12-30 2001-12-06 Mark Wagshul Interleaved operation of MRI and electronic equipment
CN1957263A (zh) * 2004-04-29 2007-05-02 皇家飞利浦电子股份有限公司 磁共振成像系统、磁共振成像方法和计算机程序
CN102019044A (zh) * 2010-12-09 2011-04-20 上海交通大学 相控型高强度聚焦超声和磁共振融合的肿瘤治疗系统
CN102247163A (zh) * 2010-04-12 2011-11-23 西门子公司 磁共振引导高强度聚焦超声聚焦的方法和装置
CN104602761A (zh) * 2012-07-09 2015-05-06 皇家飞利浦有限公司 声辐射力磁共振成像
US20170281042A1 (en) * 2014-10-11 2017-10-05 University Of Virginia Patent Foundation Systems and methods for magnetic resonance thermometry using balanced steady state free precession
CN107405502A (zh) * 2015-03-04 2017-11-28 皇家飞利浦有限公司 声辐射力成像
WO2021116763A1 (en) * 2019-12-12 2021-06-17 Insightec, Ltd. Systems and methods for reducing interference between mri apparatus and ultrasound systems
CN114145732A (zh) * 2021-11-09 2022-03-08 上海沈德医疗器械科技有限公司 磁共振成像与聚焦超声热消融同步工作兼容系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542495B2 (ja) * 2009-06-08 2014-07-09 株式会社東芝 磁気共鳴イメージング装置
CN107205718B (zh) * 2015-12-30 2020-06-05 深圳先进技术研究院 一种聚焦超声位移成像方法及装置
CN109939368A (zh) * 2017-12-20 2019-06-28 深圳先进技术研究院 磁共振引导下高强度聚焦超声治疗系统、方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049474A1 (en) * 1999-12-30 2001-12-06 Mark Wagshul Interleaved operation of MRI and electronic equipment
CN1957263A (zh) * 2004-04-29 2007-05-02 皇家飞利浦电子股份有限公司 磁共振成像系统、磁共振成像方法和计算机程序
CN102247163A (zh) * 2010-04-12 2011-11-23 西门子公司 磁共振引导高强度聚焦超声聚焦的方法和装置
CN102019044A (zh) * 2010-12-09 2011-04-20 上海交通大学 相控型高强度聚焦超声和磁共振融合的肿瘤治疗系统
CN104602761A (zh) * 2012-07-09 2015-05-06 皇家飞利浦有限公司 声辐射力磁共振成像
US20170281042A1 (en) * 2014-10-11 2017-10-05 University Of Virginia Patent Foundation Systems and methods for magnetic resonance thermometry using balanced steady state free precession
CN107405502A (zh) * 2015-03-04 2017-11-28 皇家飞利浦有限公司 声辐射力成像
WO2021116763A1 (en) * 2019-12-12 2021-06-17 Insightec, Ltd. Systems and methods for reducing interference between mri apparatus and ultrasound systems
CN114145732A (zh) * 2021-11-09 2022-03-08 上海沈德医疗器械科技有限公司 磁共振成像与聚焦超声热消融同步工作兼容系统及方法

Also Published As

Publication number Publication date
CN114145732A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US5538494A (en) Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration
JP4722039B2 (ja) 超音波治療装置
WO2023083165A1 (zh) 磁共振成像与聚焦超声热消融同步工作兼容系统及方法
US20020193681A1 (en) Focused ultrasound system with MRI synchronization
US20040236219A1 (en) System for producing an ultrasound image using line-based image reconstruction
EP0170416A1 (en) Ultrasound hyperthermia apparatus
JP4958475B2 (ja) 超音波装置
US7198601B2 (en) Ultrasonic contrast medium imaging apparatus and method
CN102019044B (zh) 相控型高强度聚焦超声和磁共振融合的肿瘤治疗系统
KR101629701B1 (ko) 초음파 진단을 위한 송수신 신호를 이용한 초음파 영상 형성 방법과 그를 위한 고강도 집속 초음파 치료 장치
JPH08131454A (ja) 超音波治療装置および超音波照射装置
US20140081145A1 (en) Multi-channel hemispherical ultrasonic wave transmit and receiving detection system and method
JPH06315541A (ja) 画像診断装置を用いた治療装置
US20110251529A1 (en) Real-time ablation monitoring for desired lesion size
CN210811480U (zh) 一种可评估肺静脉封堵情况的标测电极导管
Lai et al. Linear signal cancellation of nonlinear pulsing schemes in a verasonics research scanner
TW201944968A (zh) 修正核磁共振導引高強度聚焦超音波手術的聚焦點的方法及其系統
CN111096746A (zh) 微波热声超声双模态成像评估肝脏水分含量的装置和方法
CN101669842A (zh) 体外高能聚焦超声波治疗监控方法
CN113116382A (zh) 皮肤组织的温度检测装置及检测方法
JP2004209066A (ja) 検査装置
CN109939368A (zh) 磁共振引导下高强度聚焦超声治疗系统、方法及装置
WO2022166818A1 (zh) 超声消融系统及其控制方法
JPS6113956A (ja) 超音波温熱治療装置
CN113117263A (zh) 超声消融的监控方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891959

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891959

Country of ref document: EP

Effective date: 20240607