WO2023083127A1 - 插电式燃料电池混合动力汽车热管理系统及其控制方法 - Google Patents

插电式燃料电池混合动力汽车热管理系统及其控制方法 Download PDF

Info

Publication number
WO2023083127A1
WO2023083127A1 PCT/CN2022/130226 CN2022130226W WO2023083127A1 WO 2023083127 A1 WO2023083127 A1 WO 2023083127A1 CN 2022130226 W CN2022130226 W CN 2022130226W WO 2023083127 A1 WO2023083127 A1 WO 2023083127A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
temperature
fuel cell
water pump
electric water
Prior art date
Application number
PCT/CN2022/130226
Other languages
English (en)
French (fr)
Inventor
尹建坤
马艳红
李川
刘建康
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023083127A1 publication Critical patent/WO2023083127A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present application relates to the technical field of hybrid electric vehicles, for example, it relates to a thermal management system and a control method for a plug-in fuel cell hybrid electric vehicle.
  • Plug-in fuel cell hybrid electric vehicles have two power sources, namely fuel cell engine and power battery. Because the fuel cell engine is in a low temperature environment, its conversion efficiency is very low and it needs to be warmed up. The discharge power of the power battery is also very low in a low temperature environment, especially when the state of charge of the battery is very low, the temperature has a great influence on the discharge capacity of the battery. In addition, using a lot of positive temperature coefficient (Positive Temperature Coefficient, PTC) hot air air conditioners on fuel cell hybrid vehicles is a very uneconomical heating method.
  • PTC Positive Temperature Coefficient
  • the improvement of the low-temperature performance of the fuel cell stack is mainly through the introduction of an external heat source heating system, or increasing the internal Joule heat of the fuel cell to heat the fuel cell.
  • the external heat source mainly includes PTC and hydrogen combustion heaters.
  • fuel cell hybrid power generally uses the waste heat of power system components (battery, motor, stack, etc.) or PTC to obtain it.
  • the above-mentioned thermal energy acquisition using the PTC scheme is too inefficient, and on the other hand, it consumes the electric energy of the whole vehicle (because the electric energy of the whole vehicle ultimately comes from the chemical energy of hydrogen, the power generation efficiency of the stack is low and there is energy loss in charging and discharging of battery energy);
  • Other heat sources can improve the utilization of waste heat, but the energy level of fuel cell vehicle heat sources is too low to meet the demand for low-temperature warm air.
  • This application provides a plug-in fuel cell hybrid electric vehicle thermal management system and its control method, in order to improve the performance of the fuel cell stack in the low-temperature environment of the vehicle, the low-temperature performance of the power battery and meet the requirements of the driver's air-conditioning and heating.
  • the wind gets demand.
  • the present application provides a thermal management system for a plug-in fuel cell hybrid electric vehicle.
  • the thermal management system for a plug-in fuel cell hybrid electric vehicle includes: a fuel cell stack temperature regulation circuit, including a fuel cell stack, a radiator, and a cooling fan , a first electric water pump and a thermostat, the radiator is connected to the fuel cell stack through a first pipeline and a second pipeline, and the thermostat includes a first interface, a second interface and a third interface , the first port and the third port are connected in series to the first pipeline, and the coolant flowing through the fuel cell stack flows into the third port, and the first port is configured to connect the
  • the cooling liquid is sent to the radiator, the second interface is connected to the second pipeline, the first electric water pump is arranged on the second pipeline, and is configured to drive the cooling liquid to flow to the fuel cell electric stack, the cooling fan is set to cool the radiator;
  • the heating circuit includes a PTC heater, a hydrogen combustion heater, a warm air core, a first three-way valve, a
  • the thermal management system of the plug-in fuel cell hybrid electric vehicle also includes a hydrogen bottle, and the hydrogen bottle is fed to the The hydrogen combustion heater supplies hydrogen, and the hydrogen cylinder supplies hydrogen to the fuel cell stack through the second hydrogen supply pipeline;
  • the plug-in fuel cell hybrid electric vehicle thermal management system also includes a first solenoid valve and a second Solenoid valve, the first solenoid valve is set in the first hydrogen supply pipeline, and the first solenoid valve is set to control the opening of the first hydrogen supply pipeline;
  • the second solenoid valve is set in The second hydrogen supply pipeline, the second solenoid valve is configured to control the opening of the second hydrogen supply pipeline.
  • both the first solenoid valve and the second solenoid valve are electronically controlled proportional valves.
  • the present application also provides a control method for the thermal management system of a plug-in fuel cell hybrid electric vehicle, which is implemented by the thermal management system of a plug-in fuel cell hybrid electric vehicle described in any of the above solutions, and the plug-in fuel cell
  • the control method of the thermal management system of a hybrid electric vehicle includes: starting the vehicle; judging whether the driver has a request for air conditioning and warm air; if the driver does not have the request for air conditioning and warm air, obtaining the actual temperature T1 of the power battery and Obtain the temperature T2 collected by the first temperature sensor; compare T1 with the first set temperature Th1, and T2 with the second set temperature Th2; respond to T1 ⁇ Th1, or T2 ⁇ Th2; turn on the warm-up mode; the warm-up mode includes: the A1 interface of the first three-way valve is disconnected, the B1 interface and the C1 interface are connected, the first interface of the thermostat is disconnected, the second interface and the The third interface is connected, the first electric water pump, the second electric water pump and the third electric water pump are turned
  • the normal cooling mode in response to T1 ⁇ Th1, and T2 ⁇ Th2, the normal cooling mode is turned on; the turning on of the normal cooling mode includes: the hydrogen combustion heating Both the heater and the PTC heater are closed, the C1 interface of the first three-way valve is disconnected, the A1 interface and the B1 interface are connected, the second electric water pump is closed, the hydrogen combustion heater and the PTC heater Both are closed, the second interface of the thermostat is disconnected, the first interface and the third interface are connected, the first electric water pump is turned on, and the third electric water pump is turned on; compare T1 with the first threshold The size of the temperature Tbat1 and the second threshold temperature Tbat2, Tbat2>Tbat1; in response to T1>Tbat2, the A2 interface of the second three-way valve is disconnected, the B2 interface and the C2 interface are connected, and the temperature-adjusting air conditioner cools the In response to T1 ⁇ Tbat1, the B2 interface of the second three-way valve is
  • the actual temperature T1 of the power battery is obtained and the The temperature T2 collected by the first temperature sensor; compare the size of T1 and the third set temperature Th3, and the size of T2 and the fourth set temperature Th4; in the case of T1>Th3, and T2>Th4, turn on the normal air conditioning mode
  • the normal air-conditioning mode includes: comparing T1 with the first threshold temperature Tbat1 and the second threshold temperature Tbat2, Tbat2>Tbat1; in response to T1>Tbat2, the third electric water pump is turned on, and the second The A2 interface of the three-way valve is disconnected, the B2 interface and the C2 interface are connected, and the temperature-adjusting air conditioner delivers cooling capacity to the cooler; in response to T1 ⁇ Tbat1, the third electric water pump is turned on, and the second and third The B2 interface of the through valve is disconnected, the A2 interface and the C2 interface are connected, and the temperature-
  • the normal air-conditioning mode also Including: judging whether the fuel cell stack is in the working state; in response to the fuel cell stack not being in the working state, comparing T2 with the set air-conditioning warm air temperature Tac; in the case of T2>TAC, the hydrogen combustion Both the heater and the PTC heater are turned off, the A1 port of the first three-way valve is disconnected, the C1 port and the B1 port are connected, the second electric water pump is turned on, and the second port of the thermostat is disconnected , the first interface communicates with the third interface, and the first electric water pump is turned on; in the case of T2 ⁇ TAC, the hydrogen combustion heater or the PTC heater is turned on, and the first three-way The C1 port of the valve is disconnected, the A1 port is connected to the B1 port, the second electric water pump is turned on, the second
  • T2 with the set air-conditioning warm air temperature TAC;
  • T2>TAC both the hydrogen combustion heater and the PTC heater are turned off, the A1 interface of the first three-way valve is disconnected, the C1 interface and the B1 interface are connected, and the second electric water pump is turned on , the second interface of the thermostat is disconnected, the first interface and the third interface are connected, and the first electric water pump is turned on;
  • the fourth temperature sensor detects temperature T3; compare the size of T2 and T3; if in the case of T2>T3, the A1 interface of the first three-way valve is disconnected, the C1 interface and the B1 interface are connected, the second electric water pump is turned on, and the hydrogen The combustion heater or the PTC heater is turned on, the first interface of the thermostat is disconnected, the second interface is connected to the third interface,
  • the heater mode is turned on; the heater mode includes : The A1 interface of the first three-way valve is disconnected, the B1 interface is connected to the C1 interface, the first interface of the thermostat is disconnected, the second interface is connected to the third interface, and the first The electric water pump, the second electric water pump and the third electric water pump are turned on, the hydrogen combustion heater or the PTC heater is turned on; the B2 interface of the second three-way valve is disconnected, and the A2 interface and the C2 interface connected, the thermostat air conditioner is turned off.
  • the plug-in fuel cell hybrid electric vehicle thermal management also includes: determining the heating mode, and the determining the heating mode includes: obtaining the actual power SOC of the power battery and the actual discharge power P of the power battery; comparing the SOC with the set power SOC1, and P and set the size of discharge power P1; in response to SOC>SOC1, and P>P1, turn on the hydrogen combustion heater, turn off the PTC heater; in response to SOC ⁇ SOC1, or P ⁇ P1, turn off the Hydrogen combustion heater, open described PTC heater.
  • FIG. 1 is a schematic structural diagram of a thermal management system of a plug-in fuel cell hybrid electric vehicle in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a hydrogen cylinder, a hydrogen combustion heater and a fuel cell stack in a thermal management system of a plug-in fuel cell hybrid electric vehicle in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a control module in a thermal management system of a plug-in fuel cell hybrid electric vehicle in an embodiment of the present application;
  • FIG. 4 is a flow chart 1 of a control method for a thermal management system of a plug-in fuel cell hybrid electric vehicle in an embodiment of the present application;
  • Fig. 5 is the second flow chart of the control method of the thermal management system of the plug-in fuel cell hybrid electric vehicle in the embodiment of the present application.
  • the first temperature sensor 52. The second temperature sensor; 53. The third temperature sensor; 54. The fourth temperature sensor;
  • first position and second position are two distinct positions, and furthermore, “a first feature on”, “above” and “above” a second feature includes that the first feature is directly above the second feature and diagonally above, or simply means that the level of the first feature is higher than the level of the second feature.
  • "Below”, “under” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the level of the first feature is smaller than that of the second feature.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the meanings of the above terms in this application according to the situation.
  • this embodiment provides a thermal management system for a plug-in fuel cell hybrid electric vehicle.
  • the thermal management system for a plug-in fuel cell hybrid electric vehicle includes a fuel cell stack temperature regulation circuit, a heating circuit, a power The battery temperature regulation circuit, the temperature regulation air conditioner 4 , the first temperature sensor 51 , the second temperature sensor 52 , the third temperature sensor 53 and the fourth temperature sensor 54 .
  • the fuel cell stack temperature regulation circuit includes a fuel cell stack 11, a power battery 31, a radiator 12, a cooling fan 13, a first electric water pump 14 and a thermostat 15, wherein the radiator 12 passes through the first pipeline 16 and the
  • the second pipeline 17 is connected to the fuel cell stack 11, the thermostat 15 includes a first interface 151, a second interface 152 and a third interface 153, the first interface 151 and the third interface 153 are connected in series with the first pipeline 16, and
  • the coolant flowing through the fuel cell stack 11 flows into the third port 153, the first port 151 is set to deliver the coolant to the radiator 12, the second port 152 is connected to the second pipeline 17, and the first electric water pump 14 is set on the second
  • Two pipelines 17 are set to drive the cooling liquid to flow to the fuel cell stack 11 , and the cooling fan 13 is used to cool down the radiator 12 .
  • the third port 153 of the thermostat 15 can be selectively communicated with the first port 151 and the second port 152.
  • the first electric water pump 14 starts Afterwards, the coolant can circulate in the path of fuel cell stack 11 - thermostat 15 - radiator 12 - first electric water pump 14 - fuel cell stack 11 .
  • the radiator 12 can cool down the cooling liquid, and further cool down the fuel cell stack 11, which can be adapted to the working condition that the fuel cell stack 11 needs to dissipate heat.
  • the coolant can circulate according to the flow mode of fuel cell stack 11 - thermostat 15 - first electric water pump 14 - fuel cell stack 11 , at this time, the coolant does not flow through the radiator 12, which can be adapted to the working condition of the fuel cell stack 11 starting at low temperature.
  • the thermostat 15 may be an electronic thermostat 15, or a wax type thermostat 15 may be used.
  • the heating circuit includes a PTC heater 21, a hydrogen combustion heater 22, a warm air core 23, a first three-way valve 24, a heat exchanger 25 and a second electric water pump 26, and the heat exchanger 25 includes a medium side and a heat exchange side , the outlet on the medium side of the heat exchanger, the PTC heater 21, the hydrogen combustion heater 22 and the warm air core 23 are connected in series in sequence, and the first three-way valve 24 includes an A1 interface, a B1 interface and a C1 interface, wherein the C1 interface can be Selectively connect the A1 interface and the B1 interface, the A1 interface is connected to the heater core 23, the B1 interface is connected to the inlet of the second electric water pump 26, the C interface is connected to the first pipeline 16, and the connection between the C1 interface and the first pipeline 16 It is located between the thermostat 15 and the fuel cell stack 11 , the outlet of the second electric water pump 26 is connected to the outlet of the medium side of the heat exchanger, and the heater core 23 is also connected to the first pipeline 16 .
  • the C1 port of the first three-way valve 24 When the fuel cell stack 11 is started at low temperature, the C1 port of the first three-way valve 24 is connected to the B1 port, and when the A1 port is disconnected, the coolant flowing out of the fuel cell stack 11 in the fuel cell stack temperature regulation circuit is flowing.
  • the C1 interface of the first three-way valve 24 can be connected with the A1 interface, and the B1 interface can be disconnected.
  • the coolant flows along the The medium side of the heat exchanger—the PTC heater 21—the hydrogen combustion heater 22—the warm air core 23—the second electric water pump 26—the medium side of the heat exchanger circulates.
  • the power battery temperature regulation circuit includes a power battery 31, a second three-way valve 32, a third electric water pump 33, and a cooler 34.
  • the second three-way valve 32 includes an A2 interface, a B2 interface, and a C2 interface, wherein the C2 interface can be selectively
  • the ground is connected to the A2 interface B2 interface
  • the first interface is connected to the inlet of the heat exchange side of the heat exchanger
  • the second interface is respectively connected to the outlet of the heat exchange side of the heat exchanger and the outlet of the third electric water pump 33
  • the third electric water pump 33 The inlet of the battery is connected to the cooler 34
  • the cooler 34 is connected to the power battery 31, and the power battery 31 is connected to the C2 interface.
  • the coolant flows along the third electric water pump 33-the heat exchange side of the heat exchanger-the power battery 31-cooler 34-the path of the third electric water pump 33 flows sequentially.
  • the PTC heater 21 or the hydrogen combustion heater 22 can be turned on, and the power battery can be connected through the heat exchanger 25.
  • the coolant in the temperature regulation circuit exchanges heat so that the coolant flowing through the power battery 31 heats up the power battery 31. If the temperature of the power battery 31 is high, the PTC heater 21 or the hydrogen combustion heater 22 can be turned off.
  • the heat exchanger 25 lowers the temperature of the coolant in the temperature regulation circuit of the power battery to cool down the temperature of the power battery 31 .
  • the heat exchanged to the heating circuit can be supplied to the warm air core 23 .
  • the C1 interface of the second three-way valve 32 can be connected with the B1 interface, and the A1 interface is disconnected.
  • 31-cooler 34-the path of the third electric water pump 33 flows sequentially, and the temperature-adjusting air conditioner 4 is turned on to provide cooling capacity to the cooler 34, and quickly cool down the coolant flowing through the cooler 34, and then the power battery 31 can be cooled. Cool down quickly.
  • the first temperature sensor 51 is set to collect the temperature of the cooling liquid flowing out from the fuel cell stack 11; the second temperature sensor 52 is set to collect the temperature of the cooling liquid flowing out from the medium side of the heat exchanger; the third temperature sensor 53 is set to Collect the temperature of the cooling liquid flowing out from the third electric water pump 33 ; the fourth temperature sensor 54 is set to collect the temperature of the cooling liquid flowing out from the heater core 23 .
  • the thermal management system of the plug-in fuel cell hybrid electric vehicle is equipped with a hydrogen combustion heating device and a PTC heater 21.
  • the hydrogen combustion heating device or the PTC heater 21 can be used to warm up the fuel cell stack 11, or to warm up the power battery 31. Warm up, or carry out warm-up for two parts at the same time; Simultaneously, hydrogen combustion heating device and PTC heater 21 are in the process of warm-up, if the driver has air-conditioning warm-air demand, also can warm-up while driving According to the driver’s demand for air-conditioning and heating, on the basis of the hydrogen combustion heating device or the PTC heater 21, if the waste heat generated by the fuel cell stack 11 is sufficient, the waste heat generated by the fuel cell stack 11 can also be used The waste heat supplements the heating, and makes full use of the waste heat of the stack to warm the driver.
  • the plug-in fuel cell hybrid vehicle thermal management system also includes a hydrogen bottle 71, the hydrogen bottle 71 supplies hydrogen to the hydrogen combustion heater 22 through the first hydrogen supply pipeline, and the hydrogen bottle 71 passes through The second hydrogen supply pipeline supplies hydrogen to the fuel cell stack 11;
  • the plug-in fuel cell hybrid vehicle thermal management system also includes a first solenoid valve 72 and a second solenoid valve 73, and the first solenoid valve 72 is arranged on the first supply hydrogen pipeline, and the first solenoid valve 72 is set to control the opening degree of the first hydrogen supply pipeline;
  • the second solenoid valve 73 is set on the second hydrogen supply pipeline, and the second solenoid valve 73 is set to control the opening of the second hydrogen supply pipeline The opening of the road.
  • both the first solenoid valve 72 and the second solenoid valve 73 are electronically controlled proportional valves.
  • the thermal management system of the plug-in fuel cell hybrid electric vehicle also includes a control module, and the control module includes a vehicle control unit (Vehicle Control Unit, VCU) 61, a battery management system (Battery Management System, BMS) 62, air conditioning controller (Air Conditioning, AC) 63 and fuel cell stack control unit (Fuel Cell Control Unit, FCCU) 64.
  • VCU vehicle control unit
  • BMS Battery Management System
  • AC Air Conditioning
  • FCCU Fuel cell stack control unit
  • the VCU 61 is responsible for the on-off control of the cooling fan 13 , the first electric water pump 14 , the thermostat 15 , the first three-way valve 24 , the second electric water pump 26 , the hydrogen combustion heater 22 , and the PTC heater 21 .
  • the BMS62 is responsible for collecting the temperature of the coolant in the power battery temperature regulation circuit by setting the third temperature sensor 53, and is set to send a cooling request to the AC63.
  • the BMS 62 is also configured to control the second three-way valve 32 and the third electric water pump 33 .
  • the BMS62 can also collect the temperature of the power battery 31 through the battery temperature sensor provided on the power battery 31 .
  • AC63 is responsible for controlling the wind speed of the warm air core 23 and controlling the cooling capacity delivered to the cooler 34 by the temperature-adjusting air conditioner 4 , and is mainly used for cooling control when the power battery 31 is overheated. At the same time, AC63 also collects the temperature of the front end and rear end of the heating circuit through the second temperature sensor 52 and the fourth temperature sensor 54 and sends it to VCU61. At the same time, AC63 also sends the target heating temperature of the warm air core 23 to VCU61.
  • the FCCU64 is responsible for the hydrogen supply control of the fuel cell stack 11 and the hydrogen supply of the hydrogen combustion heater 22.
  • the FCCU64 collects the pressure signal of the hydrogen cylinder 71 through the pressure sensor and sends it to the VCU61; The temperature is sent to the VCU61; the FCCU64 accepts and executes the control command on the opening degrees of the first solenoid valve 72 and the second solenoid valve 73 issued by the VCU61.
  • the thermal management system of the plug-in fuel cell hybrid electric vehicle has a non-working mode, a warm-up mode, a warm-up warm-up mode, a normal air-conditioning mode and a normal cooling mode.
  • the coolant is not flowing in the pipeline, multiple electric water pumps are not working, multiple solenoid valves are in their original positions, the radiator 12 and cooling fan 13 are not working, and the hydrogen combustion heater 22 and PTC are heating Device 21 does not work, and the thermostat air conditioner 4 does not work.
  • Warm-up mode refers to when the vehicle is normally started, if the VCU61 detects that the temperature reported by the power battery 31 is lower than a certain threshold, or the temperature of the fuel cell stack temperature regulation circuit is lower than a certain threshold, and the driver does not need air conditioning and heating, the VCU61 Controlling the PTC heater 21 or the combustion heater to be in the working state is a mode in which the fuel cell stack 11 or the power battery 31 is heated to their respective normal operating temperature ranges.
  • Warm-up warm-up mode refers to when the vehicle is normally started, if the VCU61 detects that the temperature reported by the power battery 31 is lower than a certain threshold, or the temperature of the fuel cell stack temperature regulation circuit is lower than a certain threshold, and the driver has an air conditioner heater. Requirements, VCU61 controls the PTC heater 21 or the hydrogen combustion heater 22 to be in the working state, heating the fuel cell stack 11 or the power battery 31 to their respective normal operating temperature ranges and supplying heat to the heater core 23 model.
  • Normal air-conditioning mode refers to when the vehicle is normally started, if the VCU61 detects that the temperature reported by the power battery 31 is higher than a certain threshold and the temperature of the fuel cell stack temperature regulation circuit is higher than a certain threshold, and the driver has a demand for air conditioning and warm air, the VCU61 controls The PTC heater 21 is in working condition, or the hydrogen combustion heater 22 is in working condition, or the waste heat generated by the reaction of circulating fuel cell stack 11 supplies heat for the warm air core 23, and makes the fuel cell stack 11 and the power battery 31 A mode in which the temperature is within the proper operating temperature range. It should be noted that in this mode, both the fuel cell stack 11 and the power battery 31 are warmed up.
  • Normal cooling mode refers to when the vehicle is normally started, when the driver does not request heating from the air conditioner, and the temperature of the power battery 31 and the temperature of the fuel cell stack 11 are not within the warm-up range, the VCU61 controls multiple motors of the thermal management system.
  • the water pump and the solenoid valve work to make the power battery 31 and the fuel cell stack 11 in a mode within a reasonable working temperature range.
  • the thermal management system of the plug-in fuel cell hybrid electric vehicle can adapt to the different needs of the hybrid electric vehicle by switching among the above-mentioned non-working mode, warm-up mode, warm air warm-up mode, normal air-conditioning mode and normal cooling mode.
  • this embodiment also provides a control method for the thermal management system of a plug-in fuel cell hybrid electric vehicle, the control method for the thermal management system of a plug-in fuel cell hybrid electric vehicle can Battery Hybrid Vehicle Thermal Management System Implementation.
  • a control method for a thermal management system of a plug-in fuel cell hybrid electric vehicle includes the following steps.
  • S20 Determine whether the driver has an air conditioner heating request. If the driver has no air conditioner heating request, execute S30.
  • the air conditioner control button has two states of being in the position of turning off the air conditioner and in the position of turning on the warm air of the air conditioner, and when the air conditioner control button is in the position of turning on the warm air, there is a certain space for temperature adjustment.
  • the BMS62 collects the actual temperature of the power battery 31 through the battery temperature sensor provided on the power battery 31 and sends it to the VCU61, and the FCCU64 obtains the temperature collected by the first temperature sensor 51 and sends it to the VCU61. Since the temperature collected by the first temperature sensor 51 is the temperature of the coolant flowing out of the fuel cell stack 11 , T2 may represent the actual temperature of the fuel cell stack 11 at this time.
  • Th1 is the temperature threshold of the power battery 31 in the warm-up mode
  • Th2 is the temperature threshold of the fuel cell stack 11 in the warm-up mode.
  • T1 ⁇ Th1 it indicates that the power battery 31 needs to be heated to ensure its normal operation.
  • T2 When ⁇ Th2, it indicates that the fuel cell stack 11 needs to be heated to ensure that it can be used normally. Therefore, when T1 ⁇ Th1, or T2 ⁇ Th2, at least one of the power battery 31 and the fuel cell stack 11 needs to be heated .
  • Turning on the warm-up mode includes: the A1 port of the first three-way valve 24 is disconnected, the B1 port is connected to the C1 port, the first port of the thermostat 15 is disconnected, the second port is connected to the third port, and the first electric water pump 14 1.
  • the second electric water pump 26 and the third electric water pump 33 are turned on, the hydrogen combustion heater 22 or the PTC heater 21 is turned on; the B2 interface of the second three-way valve 32 is disconnected, the A2 interface and the C2 interface are connected, and the thermostat air conditioner 4 is turned off .
  • the circulating flow path of the coolant in the heating circuit and the fuel cell stack temperature regulation circuit is the fuel cell stack 11 - the first three-way valve 24 - the second electric water pump 26 - the heat exchanger 25 - the PTC heater 21 - hydrogen combustion heater 22 - warm air core 23 - thermostat 15 - first electric water pump 14 - fuel cell stack 11.
  • the fuel cell stack 11 is heated by the PTC heater 21 or the hydrogen combustion heater 22 .
  • the circulating flow path of the coolant in the power battery temperature regulation circuit is power battery 31 -cooler 34 -third electric water pump 33 -heat exchanger 25 -second three-way valve 32 -power battery 31 .
  • the coolant in the power battery temperature regulation circuit absorbs heat from the heat exchanger 25 and heats the power battery 31 .
  • the VCU61 calculates the actual temperature T1 of the power battery 31 reported by the BMS62 and the actual temperature T2 of the fuel cell stack 11 reported by the FCCU64, combined with the collected pressure of the hydrogen cylinder 71 and enters the The amount of hydrogen in the hydrogen combustion heater 22 is converted into a corresponding duty ratio signal of the first solenoid valve 72, and the duty ratio signal is sent to the FCCU64, and the first solenoid valve 72 is controlled by the FCCU64 to control the hydrogen gas at this duty ratio. input amount.
  • the actual temperature of the power battery 31, the actual temperature of the fuel cell stack 11, the pressure of the hydrogen cylinder 71, and the map1 of the hydrogen input amount are pre-stored in the VCU61.
  • the actual temperature T2 and the pressure of the hydrogen cylinder 71 can be queried map1 to obtain the corresponding hydrogen input amount.
  • Turning on the normal cooling mode includes: the hydrogen combustion heater 22 and the PTC heater 21 are both closed, the C1 interface of the first three-way valve 24 is disconnected, the A1 interface and the B1 interface are connected, the second electric water pump 26 is closed, and the hydrogen combustion heater 22 and the PTC heater 21 are both turned off, the second interface of the thermostat 15 is disconnected, the first interface and the third interface are connected, the first electric water pump 14 is turned on, and the third electric water pump 33 is turned on.
  • T1 ⁇ Th1 and T2 ⁇ Th2 it indicates that the temperature of the power battery 31 and the fuel cell stack 11 has reached the minimum threshold for starting, and the power battery 31 and the fuel cell stack 11 need to be cooled.
  • the heating circuit and the fuel cell stack temperature regulation circuit are isolated by the first three-way valve 24, and the heating circuit stops heating.
  • the circulating flow path of the coolant in the fuel cell stack temperature regulation circuit is the fuel cell stack 11 - the first three-way valve 24 - the thermostat 15 - the radiator 12 - the first electric water pump 14 - the fuel cell stack 11 .
  • Whether the cooling fan 13 is turned on can be controlled according to whether the fuel cell stack 11 is working. When the fuel cell stack 11 is working, the cooling fan 13 is turned on, and according to the linear correlation between the speed of the cooling fan 13 and the temperature of the fuel cell stack 11, The rotation speed of the cooling fan 13 increases with the increase of the temperature of the fuel cell stack 11 .
  • the circulating flow path of the coolant in the power battery temperature regulation circuit can be divided into different paths according to the temperature of the power battery 31 .
  • Turning on the normal cooling mode also includes: comparing T1 with the first threshold temperature Tbat1 and the second threshold temperature Tbat2, Tbat2>Tbat1>Th1, and when the temperature of the power battery 31 reaches Tbat2, the power battery 31 produces a large amount of waste heat, which requires Rapid cooling.
  • the A2 interface of the second three-way valve 32 is disconnected, the B2 interface and the C2 interface are connected, and the temperature-adjusting air conditioner 4 delivers cooling capacity to the cooler 34.
  • the temperature of the power battery 31 is too high, and the power battery adjusts
  • the circulating flow path of the coolant in the temperature circuit is the power battery 31-cooler 34-the third electric water pump 33-heat exchanger 25-the second three-way valve 32-power battery 31, and the power battery 31 is quickly cooled by the cooler 34 , and the rotational speed of the third electric water pump 33 reaches the maximum.
  • the BMS62 controls the rotation speed of the third electric water pump 33 to change linearly within a certain value.
  • S70 acquiring the actual temperature T1 of the power battery 31 and acquiring the temperature T2 acquired by the first temperature sensor 51 .
  • Th3 is the temperature threshold of the power battery 31 in the heating mode
  • Th4 the temperature threshold of the fuel cell stack 11 in the heating mode.
  • T1>Th3 it indicates that the power battery 31 is warmed up and can be used normally; otherwise, the power battery 31 needs to be heated to ensure its normal startup.
  • T2>Th4 it indicates that the fuel cell stack 11 is warmed up and can be started normally; otherwise, the fuel cell stack 11 needs to be heated to ensure its normal startup.
  • Th3 and Th1 can be equal or not, and Th4 and Th2 can be equal or not.
  • the normal air-conditioning mode includes: comparing T1 with the first threshold temperature Tbat1 and the second threshold temperature Tbat2, Tbat2>Tbat1; if T1>Tbat2, the third electric water pump 33 is turned on, and the A2 interface of the second three-way valve 32 is disconnected , the B2 interface is connected to the C2 interface, and the temperature-regulating air conditioner 4 delivers cooling capacity to the cooler 34; if T1 ⁇ Tbat1, the third electric water pump 33 is turned on, the B2 interface of the second three-way valve 32 is disconnected, and the A2 interface and C2 The interface is connected, and the thermostat air conditioner 4 is turned off. In this way, the cooling operation of the power battery 31 can be realized.
  • the normal air-conditioning mode also includes: judging whether the fuel cell stack 11 is in the working state; if the fuel cell stack 11 is not in the working state, comparing T2 with the set air-conditioning warm air temperature TAC63, TAC63>Th2.
  • the set air conditioner warm air temperature TAC63 is the target temperature set by the driver and needs to adjust the driver's cabin through the warm air core 23 . If T2>TAC63, it means that the waste heat of the fuel cell stack 11 can be used to supply heat to the heater core 23 .
  • the A1 interface of the first three-way valve 24 is disconnected, the C1 interface and the B1 interface are connected, the second electric water pump 26 is turned on, the hydrogen combustion heater 22 and the PTC heater 21 are both turned off, and the second interface of the thermostat 15 disconnected, the first interface and the third interface are connected, and the first electric water pump 14 is turned on.
  • the circulating flow path of the coolant in the heating circuit and the fuel cell stack temperature regulation circuit is the fuel cell stack 11 - the first three-way valve 24 - the second electric water pump 26 - the heat exchanger 25 - the PTC heater 21 - hydrogen combustion heater 22 - warm air core 23 - thermostat 15 - first electric water pump 14 - fuel cell stack 11, only the waste heat of fuel cell stack 11 supplies heat to the warm air core 23.
  • T2 ⁇ TAC63 it means that the waste heat of the fuel cell stack 11 cannot be used to supply heat to the heater core 23, the C1 interface of the first three-way valve 24 is disconnected, the A1 interface and the B1 interface are connected, and the second electric water pump 26 is turned on. The hydrogen combustion heater 22 or the PTC heater 21 is turned on, and the first electric water pump 14 is turned off. At this time, the heating circuit and the fuel cell stack temperature regulation circuit are separated by the first three-way valve 24, and the coolant in the heating circuit Closed-loop circulation, the heating core 23 is supplied with heat by the hydrogen combustion heater 22 or the PTC heater 21 .
  • T2 If the fuel cell stack 11 is in working condition, then compare T2 with the size of the set air-conditioning warm air temperature TAC63; if T2>TAC63, the hydrogen combustion heater 22 and the PTC heater 21 are all closed, and A1 of the first three-way valve 24 The interface is disconnected, the C1 interface is connected to the B1 interface, the second electric water pump 26 is turned on, the second interface of the thermostat 15 is disconnected, the first interface and the third interface are connected, and the first electric water pump 14 is turned on, the effect is equivalent to the above fuel The effect when the battery stack 11 is not in working state and T2>TAC63.
  • T2 ⁇ TAC63 obtain the temperature T3 detected by the fourth temperature sensor 54, and compare the sizes of T2 and T3, if T2>T3, it indicates that the temperature of the coolant flowing out from the fuel cell stack 11 is between that of the current entering the heater core Between the cooling temperature of the body 23 and the temperature flowing out of the warm air core 23 , there is still part of waste heat in the fuel cell stack 11 that can be supplied to the warm air core 23 .
  • the hydrogen combustion heater 22 or the PTC heater 21 is turned on, the A1 port of the first three-way valve 24 is disconnected, the C1 port and the B1 port are connected, the second electric water pump 26 is turned on, and the first port of the thermostat 15 is disconnected , the second interface communicates with the third interface, and the first electric water pump 14 is turned on; at this time, the circulating flow path of the cooling liquid in the heating circuit and the fuel cell stack temperature regulation circuit is the fuel cell stack 11-the first three-way valve 24-second electric water pump 26-heat exchanger 25-PTC heater 21-hydrogen combustion heater 22-warm air core 23-thermostat 15-first electric water pump 14-fuel cell stack 11, in the use of fuel While the residual heat of the battery cell stack 11 is used, heat is also supplied to the warm air core 23 through the hydrogen combustion heater 22 or the PTC heater 21 .
  • T2 ⁇ T3 it indicates that the coolant flowing out from the fuel cell stack 11 is not enough to supply heat to the heater core 23.
  • the C1 interface of the first three-way valve 24 is disconnected, and the A1 interface Connect with the B1 interface, the second electric water pump 26 is turned on, the hydrogen combustion heater 22 or the PTC heater 21 is turned on, the second interface of the thermostat 15 is disconnected, the first interface and the third interface are connected, the first electric water pump 14 is turned on, at this time the heating circuit and the fuel cell stack temperature regulation circuit are separated by the first three-way valve 24, the coolant in the heating circuit is closed-loop circulated, and the hydrogen combustion heater 22 or the PTC heater 21 is used for heating The wind core body 23 provides heat.
  • step S80 if T1 ⁇ Th3, or T2 ⁇ Th4, execute S100.
  • T1 ⁇ Th3, or T2 ⁇ Th4 it indicates that at least one of the power battery 31 and the fuel cell stack 11 needs to be heated to ensure its normal operation, and at the same time, the demand for air conditioning and warm air needs to be taken into account.
  • Turning on the heating mode includes: the A1 interface of the first three-way valve 24 is disconnected, the B1 interface is connected to the C1 interface, the first interface of the thermostat 15 is disconnected, the second interface is connected to the third interface, and the first electric The water pump 14, the second electric water pump 26 and the third electric water pump 33 are turned on, and the hydrogen combustion heater 22 or the PTC heater 21 is turned on; the B2 interface of the second three-way valve 32 is disconnected, the A2 interface and the C2 interface are connected, and the temperature adjustment air conditioner 4 off.
  • the circulating flow path of the coolant in the heating circuit and the fuel cell stack temperature regulation circuit is the fuel cell stack 11 - the first three-way valve 24 - the second electric water pump 26 - the heat exchanger 25 - the PTC heater 21 - hydrogen combustion heater 22 - warm air core 23 - thermostat 15 - first electric water pump 14 - fuel cell stack 11.
  • the circulating flow path of the coolant in the power battery temperature regulation circuit is power battery 31 -cooler 34 -third electric water pump 33 -heat exchanger 25 -second three-way valve 32 -power battery 31 .
  • Heat is supplied to the warm air core 23 through the hydrogen combustion heater 22 or the PTC heater 21, and at the same time heats the fuel cell stack 11, and at the same time heats the medium side of the heat exchanger to supply the cooling liquid in the temperature regulation circuit of the power battery Heat is absorbed from the heat exchanger 25 to heat the power battery 31 .
  • the VCU61 sets the air conditioner warm air temperature TAC63 according to the actual temperature T1 of the power battery 31 reported by the BMS62 and the actual temperature T2 of the representative fuel cell stack 11 reported by the FCCU64, and combines the collected
  • the pressure of the hydrogen cylinder 71 calculates the amount of hydrogen that enters the hydrogen combustion heater 22, and converts the amount of hydrogen into the duty ratio signal of the first solenoid valve 72 that responds, and sends the duty ratio signal to the FCCU64 to be controlled by the FCCU64
  • the first solenoid valve 72 controls the input amount of hydrogen at this duty ratio.
  • the actual temperature of the power battery 31, the actual temperature of the fuel cell stack 11, the set air-conditioning and warm air temperature, the pressure of the hydrogen cylinder 71 and the map1 of the hydrogen input amount are pre-stored in the VCU61, and the collected actual temperature T1 of the power battery 31 , the actual temperature T2 of the fuel cell stack 11, the set air-conditioning warm air temperature TAC63, and the pressure of the hydrogen cylinder 71 can be obtained by querying the map1 to obtain the corresponding hydrogen input.
  • control method of the thermal management system of the plug-in fuel cell hybrid electric vehicle further includes step S110 after steps S50 and S100 .
  • Determining the heating mode includes the following steps.
  • S112 Comparing the SOC with the set electric quantity SOC1, and P with the set discharge power P1.
  • SOC1 is the power threshold of the power battery 31 when the PTC heater 21 is heating
  • P1 is the discharge power threshold of the power battery 31 when the PTC heater 21 is heating.
  • step S110 is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

提供一种插电式燃料电池混合动力汽车热管理系统及控制方法,插电式燃料电池混合动力汽车热管理系统配备氢气燃烧加热器(22)和PTC加热器(21),氢气燃烧加热器(22)或PTC加热器(21)可以用来为燃料电池电堆(11)暖机,也可以为动力电池(31)暖机;氢气燃烧加热器(22)和PTC加热器(21)在暖机的过程中,在驾驶员有空调暖风需求时的情况下,也可以在暖机的同时为驾驶员提供暖风需求;根据驾驶员的空调暖风需求,在氢气燃烧加热器(22)或PTC加热器(21)的基础上,在燃料电池电堆(11)产生的废热足够的情况下,还可以利用燃料电池电堆(11)产生的废热对取暖进行补充,保障低温环境下的燃料电池电堆(11)和动力电池(31)的性能并满足驾驶员的空调暖风获取需求。

Description

插电式燃料电池混合动力汽车热管理系统及其控制方法
本申请要求在2021年11月15日提交中国专利局、申请号为202111345783.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及混合动力汽车技术领域,例如涉及一种插电式燃料电池混合动力汽车热管理系统及其控制方法。
背景技术
插电式燃料电池混合动力汽车,存在两种动力源,分别是燃料电池发动机和动力电池,由于燃料电池发动机在低温环境下,其转化效率很低,需要暖机。动力电池在低温环境下其放电功率亦很低,尤其在电池的荷电状态很低的情况下,温度对于电池的放电能力影响很大。另外在燃料电池混合动力车上采用很多的正温度系数(Positive Temperature Coefficient,PTC)热风空调是一种很不经济的取暖方式。
因此,为了保证插电式燃料电池混合动力汽车在低温下正常工作,特别是燃料电池电堆,需要对其进行低温加热以保证其低温性能。对于燃料电池电堆的低温性能的提升主要通过引进外部热源加热系统,或者提高燃料电池内部焦耳热来给燃料电池加热,外部热源包括主要包括PTC和氢气燃烧加热器。针对低温下驾驶员的暖风方案,燃料电池混合动力一般采用动力系统部件(电池,电机,电堆等)的余热或者PTC来获取。以上采用PTC方案的热能获取,一方面效率太低,另一方面耗费整车电能(因整车电能最终来源于氢气的化学能,电堆发电效率低和电池能量充放存在能量损失);引用其他热源可以提高废热利用,但是燃料电池汽车热源的能级太低,对于低温的暖风需求往往不能满足。
发明内容
本申请提供了一种插电式燃料电池混合动力汽车热管理系统及其控制方法,以提高整车在低温环境下的燃料电池电堆的性能、动力电池的低温性能并满足驾驶员的空调暖风获取需求。
本申请提供一种插电式燃料电池混合动力汽车热管理系统,该插电式燃料电池混合动力汽车热管理系统包括:燃料电池电堆调温回路,包括燃料电池电堆、散热器、冷却风扇、第一电动水泵和节温器,所述散热器分别通过第一管路和第二管路连接所述燃料电池电堆,所述节温器包括第一接口、第二接口和 第三接口,所述第一接口和所述第三接口串联于所述第一管路,且流经所述燃料电池电堆的冷却液流入所述第三接口,所述第一接口设置为将所述冷却液输送至所述散热器,所述第二接口连通所述第二管路,所述第一电动水泵设置于所述第二管路,且设置为驱动所述冷却液流向所述燃料电池电堆,所述冷却风扇设置为给所述散热器降温;制热回路,包括PTC加热器、氢气燃烧加热器、暖风芯体、第一三通阀、换热器和第二电动水泵,所述换热器的介质侧的出口、所述PTC加热器、所述氢气燃烧加热器和所述暖风芯体依次串联,所述第一三通阀包括A1接口、B1接口和C1接口,所述A1接口连接所述暖风芯体,所述B1接口连接所述第二电动水泵的入口,所述C1接口连接所述第一管路,且所述C1接口和所述第一管路的连接位置位于所述节温器和所述燃料电池电堆之间,所述第二电动水泵的出口连接所述换热器的介质侧的出口,所述暖风芯体还与所述第一管路连接;动力电池调温回路,包括动力电池、第二三通阀、第三电动水泵和冷却器,所述第二三通阀包括A2接口、B2接口和C2接口,所述第一接口连接所述换热器的换热侧的入口,所述第二接口分别连接所述换热器的换热侧的出口以及所述第三电动水泵的出口,所述第三电动水泵的入口连接所述冷却器,所述冷却器连接所述动力电池,所述动力电池连接所述C2接口;调温空调,设置为给所述冷却器提供冷量;第一温度传感器,所述第一温度传感器设置为采集从所述燃料电池电堆流出的所述冷却液的温度;第二温度传感器,所述第二温度传感器设置为采集从所述换热器的介质侧流出的所述冷却液的温度;第三温度传感器,所述第三温度传感器设置为采集从所述第三电动水泵流出的所述冷却液的温度;第四温度传感器,所述第四温度传感器设置为采集从所述暖风芯体流出的所述冷却液的温度。
作为插电式燃料电池混合动力汽车热管理系统的可选技术方案,所述插电式燃料电池混合动力汽车热管理系统还包括氢气瓶,所述氢气瓶通过第一供氢管路给所述氢气燃烧加热器供给氢气,所述氢气瓶通过第二供氢管路给所述燃料电池电堆供给氢气;所述插电式燃料电池混合动力汽车热管理系统还包括第一电磁阀和第二电磁阀,所述第一电磁阀设置于所述第一供氢管路,且所述第一电磁阀设置为控制所述第一供氢管路的开度;所述第二电磁阀设置于所述第二供氢管路,所述第二电磁阀设置为控制所述第二供氢管路的开度。
作为插电式燃料电池混合动力汽车热管理系统的可选技术方案,所述第一电磁阀和所述第二电磁阀均为电控比例阀。
本申请还提供一种插电式燃料电池混合动力汽车热管理系统的控制方法,通过任一上述方案中所述的插电式燃料电池混合动力汽车热管理系统实施,所述插电式燃料电池混合动力汽车热管理系统的控制方法包括:车辆启动;判断驾驶员是否有空调暖风请求;在所述驾驶员没有所述空调暖风请求的情况下, 获取所述动力电池的实际温度T1并获取所述第一温度传感器采集的温度T2;比较T1和第一设定温度Th1的大小,以及T2和第二设定温度Th2的大小;响应于T1<Th1,或者T2<Th2;开启暖机模式;所述开启暖机模式包括:所述第一三通阀的A1接口断开,B1接口和C1接口连通,所述节温器的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵、所述第二电动水泵以及所述第三电动水泵开启,所述氢气燃烧加热器或者所述PTC加热器开启;所述第二三通阀的B2接口断开,A2接口和C2接口连通,所述调温空调关闭。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,响应于T1≥Th1,且T2≥Th2,开启正常冷却模式;所述开启正常冷却模式包括:所述氢气燃烧加热器和所述PTC加热器均关闭,所述第一三通阀的C1接口断开,A1接口和B1接口连通,所述第二电动水泵关闭,所述氢气燃烧加热器和所述PTC加热器均关闭,所述节温器的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵开启,所述第三电动水泵开启;比较T1和第一阈值温度Tbat1以及第二阈值温度Tbat2的大小,Tbat2>Tbat1;响应于T1>Tbat2,所述第二三通阀的A2接口断开,B2接口和C2接口连通,所述调温空调给所述冷却器输送冷量;响应于T1<Tbat1,所述第二三通阀的B2接口断开,A2接口和C2接口连通,所述调温空调关闭。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,在所述驾驶员具有所述空调暖风请求的情况下,获取所述动力电池的实际温度T1并采集所述第一温度传感器采集的温度T2;比较T1和第三设定温度Th3的大小,以及T2和第四设定温度Th4的大小;在T1>Th3,且T2>Th4的情况下,开启正常空调模式;述正常空调模式包括:比较T1和所述第一阈值温度Tbat1以及所述第二阈值温度Tbat2的大小,Tbat2>Tbat1;响应于T1>Tbat2,所述第三电动水泵开启,所述第二三通阀的A2接口断开,B2接口和C2接口连通,所述调温空调进行给所述冷却器输送冷量;响应于T1<Tbat1,所述第三电动水泵开启,所述第二三通阀的B2接口断开,A2接口和C2接口连通,所述调温空调关闭。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,在比较T1和所述第一阈值温度Tbat1以及所述第二阈值温度Tbat2的大小之后,所述正常空调模式还包括:判断所述燃料电池电堆是否处于工作状态;响应于燃料电池电堆未处于工作状态,比较T2和设定空调暖风温度Tac的大小;在T2>TAC的情况下,所述氢气燃烧加热器和所述PTC加热器均关闭,所述第一三通阀的A1接口断开,C1接口和B1接口连通,所述第二电动水泵开启,所述节温器的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵开启;在T2≤TAC的情况下,所述氢气燃烧加热器或所述PTC加热器开 启,所述第一三通阀的C1接口断开,A1接口和B1接口连通,所述第二电动水泵开启,所述节温器的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵开启。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,响应于所述燃料电池电堆处于所述工作状态,比较T2和所述设定空调暖风温度TAC的大小;在T2>TAC的情况下,所述氢气燃烧加热器和所述PTC加热器均关闭,所述第一三通阀的A1接口断开,C1接口和B1接口连通,所述第二电动水泵开启,所述节温器的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵开启;在T2≤TAC的情况下,获取所述第四温度传感器检测的温度T3;比较T2和T3的大小;若在T2>T3的情况下,所述第一三通阀的A1接口断开,C1接口和B1接口连通,所述二电动水泵开启,所述氢气燃烧加热器或所述PTC加热器开启,所述节温器的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵开启;在T2≤T3的情况下,所述氢气燃烧加热器和所述PTC加热器均关闭,所述第一三通阀的C1接口断开,A1接口和B1接口连通,所述二电动水泵开启,所述氢气燃烧加热器或所述PTC加热器开启,所述节温器的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵开启。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,在T1≤Th3,或T2≤Th4的情况下,开启暖风暖机模式;所述开启暖风暖机模式包括:所述第一三通阀的A1接口断开,B1接口和C1接口连通,所述节温器的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵、所述第二电动水泵以及所述第三电动水泵开启,所述氢气燃烧加热器或者所述PTC加热器开启;所述第二三通阀的B2接口断开,A2接口和C2接口连通,所述调温空调关闭。
作为插电式燃料电池混合动力汽车热管理系统的控制方法的可选技术方案,所述开启暖风暖机模式或者所述开启暖机模式后,所述插电式燃料电池混合动力汽车热管理系统的控制方法还包括:确定加热模式,所述确定加热模式包括:获取所述动力电池的实际电量SOC,以及所述动力电池的实际放电功率P;比较SOC与设定电量SOC1的大小,以及P和设定放电功率P1的大小;响应于SOC>SOC1,且P>P1,开启所述氢气燃烧加热器,关闭所述PTC加热器;响应于SOC≤SOC1,或者P≤P1,关闭所述氢气燃烧加热器,开启所述PTC加热器。
附图说明
图1为本申请实施例中插电式燃料电池混合动力汽车热管理系统的结构示意图;
图2为本申请实施例中插电式燃料电池混合动力汽车热管理系统中氢气瓶与氢气燃烧加热器和燃料电池电堆的结构示意图;
图3为本申请实施例中插电式燃料电池混合动力汽车热管理系统中控制模块的结构示意图;
图4为本申请实施例中插电式燃料电池混合动力汽车热管理系统的控制方法的流程图一;
图5为本申请实施例中插电式燃料电池混合动力汽车热管理系统的控制方法的流程图二。
图中:
11、燃料电池电堆;12、散热器;13、冷却风扇;14、第一电动水泵;15、节温器;16、第一管路;17、第二管路;
21、PTC加热器;22、氢气燃烧加热器;23、暖风芯体;24、第一三通阀;25、换热器;26、第二电动水泵;
31、动力电池;32、第二三通阀;33、第三电动水泵;34、冷却器;
4、调温空调;
51、第一温度传感器;52、第二温度传感器;53、第三温度传感器;54、第四温度传感器;
61、VCU;62、BMS;63、AC;64、FCCU;
71、氢气瓶;72、第一电磁阀;73、第二电磁阀。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指 示或暗示相对重要性。术语“第一位置”和“第二位置”为两个不同的位置,而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征的水平高度高于第二特征的水平高度。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征的水平高度小于第二特征的水平高度。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
下面描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如图1所示,本实施例提供一种插电式燃料电池混合动力汽车热管理系统,该插电式燃料电池混合动力汽车热管理系统包括燃料电池电堆调温回路、制热回路、动力电池调温回路、调温空调4、第一温度传感器51、第二温度传感器52、第三温度传感器53和第四温度传感器54。
燃料电池电堆调温回路包括燃料电池电堆11、动力电池31、散热器12、冷却风扇13、第一电动水泵14和节温器15,其中,散热器12分别通过第一管路16和第二管路17连接燃料电池电堆11,节温器15包括第一接口151、第二接口152和第三接口153,第一接口151和第三接口153串联于第一管路16,且流经燃料电池电堆11的冷却液流入第三接口153,第一接口151设置为将冷却液输送至散热器12,第二接口152连通第二管路17,第一电动水泵14设置于第二管路17,且设置为驱动冷却液流向燃料电池电堆11,冷却风扇13用于给散热器12降温。
节温器15的第三接口153可选择性地与第一接口151和第二接口连通152,当第三接口153连通第一接口151,第二接口152断开时,第一电动水泵14启动后,冷却液可按照燃料电池电堆11-节温器15-散热器12-第一电动水泵14-燃料电池电堆11的路径进行循环流动。此时,在冷却风扇13的作用下,散热器12可对冷却液进行降温,进而对燃料电池电堆11进行降温,可适应于燃料电池电堆11需要散热的工况。当第三接口153连通第二接口152,第一接口151断开时,冷却液可按照燃料电池电堆11-节温器15-第一电动水泵14-燃料电池电堆11的流动方式进行循环,此时,冷却液不流经散热器12,可适应于燃料电池电 堆11低温启动的工况。
可选地,节温器15可以为电子节温器15,亦可采用蜡式节温器15。
制热回路包括PTC加热器21、氢气燃烧加热器22、暖风芯体23、第一三通阀24、换热器25和第二电动水泵26,换热器25包括介质侧和换热侧,换热器的介质侧的出口、PTC加热器21、氢气燃烧加热器22和暖风芯体23依次串联,第一三通阀24包括A1接口、B1接口和C1接口,其中,C1接口可选择性地连通A1接口和B1接口,A1接口连接暖风芯体23,B1接口连接第二电动水泵26的入口,C接口连接第一管路16,且C1接口和第一管路16的连接位置位于节温器15和燃料电池电堆11之间,第二电动水泵26的出口连接换热器的介质侧的出口,暖风芯体23还与第一管路16连接。当PTC加热器21和/或氢气燃烧加热器22启动时,可对流经的冷却液进行加热,暖风芯体23设置为向驾驶室提供暖气。
当燃料电池电堆11低温启动时,第一三通阀24的C1接口和B1接口连通,A1接口断开时,燃料电池电堆调温回路中从燃料电池电堆11流出的冷却液在流经C1接口和第一管路16的连接位置时,在第二电动水泵26的驱动下依次流向换热器的介质侧-PTC加热器21-氢气燃烧加热器22-暖风芯体23-第一管路16,当PTC加热器21和/或氢气燃烧加热器22启动时,可对冷却液进行加热,进而用于燃料电池电堆11的低温启动。当燃料电池电堆11的温度能够满足工作需求时,可将第一三通阀24的C1接口和A1接口连通,B1接口断开,此时在第二电动水泵26的驱动下,冷却液沿换热器的介质侧-PTC加热器21-氢气燃烧加热器22-暖风芯体23-第二电动水泵26-换热器的介质侧进行循环流动。
动力电池调温回路包括动力电池31、第二三通阀32、第三电动水泵33和冷却器34,第二三通阀32包括A2接口、B2接口和C2接口,其中,C2接口可选择性地与A2接口B2接口连通,第一接口连接换热器的换热侧的入口,第二接口分别连接换热器的换热侧的出口以及第三电动水泵33的出口,第三电动水泵33的入口连接冷却器34,冷却器34连接动力电池31,动力电池31连接C2接口。
当第二三通阀32的C1接口和A1接口连通,B1接口断开时,在第三电动水泵33的驱动下,冷却液沿第三电动水泵33-换热器的换热侧-动力电池31-冷却器34-第三电动水泵33的路径循序流动,此时,若动力电池31需要低温启动,则可将PTC加热器21或氢气燃烧加热器22开启,通过换热器25对动力电池调温回路的冷却液换热,以使流经动力电池31的冷却液对动力电池31进行升温,若动力电池31的温度较高时,可关闭PTC加热器21或氢气燃烧加热器22,通过换热器25将动力电池调温回路的冷却液降温,可对动力电池31进行降温, 此时,交换至制热回路的热量可供给暖风芯体23。当动力电池31过热时,需要对动力电池31进行快速散热,此时可将第二三通阀32的C1接口和B1接口连通,A1接口断开,冷却液沿第三电动水泵33-动力电池31-冷却器34-第三电动水泵33的路径循序流动,开启调温空调4,以对冷却器34提供冷量,对流经冷却器34的冷却液进行快速降温,进而可对动力电池31进行快速降温。
第一温度传感器51设置为采集从燃料电池电堆11流出的冷却液的温度;第二温度传感器52设置为采集从换热器的介质侧流出的冷却液的温度;第三温度传感器53设置为采集从第三电动水泵33流出的冷却液的温度;第四温度传感器54设置为采集从暖风芯体23流出的冷却液的温度。
该插电式燃料电池混合动力汽车热管理系统配备氢气燃烧加热装置和PTC加热器21,氢气燃烧加热装置或PTC加热器21可以用来为燃料电池电堆11暖机,也可以为动力电池31暖机,或者同时为两个部件进行暖机;同时,氢气燃烧加热装置和PTC加热器21在暖机的过程中,如果驾驶员有空调暖风需求时,也可以在暖机的同时为驾驶员提供暖风需求;根据驾驶员的空调暖风需求,在氢气燃烧加热装置或PTC加热器21的基础上,若燃料电池电堆11产生的废热足够,还可以利用燃料电池电堆11产生的废热对取暖进行补充,充分利用电堆废热为驾驶员取暖。
可选地,如图2所示,插电式燃料电池混合动力汽车热管理系统还包括氢气瓶71,氢气瓶71通过第一供氢管路给氢气燃烧加热器22供给氢气,氢气瓶71通过第二供氢管路给燃料电池电堆11供给氢气;插电式燃料电池混合动力汽车热管理系统还包括第一电磁阀72和第二电磁阀73,第一电磁阀72设置于第一供氢管路,且第一电磁阀72设置为控制第一供氢管路的开度;第二电磁阀73设置于第二供氢管路,第二电磁阀73设置为控制第二供氢管路的开度。可选地,第一电磁阀72和第二电磁阀73均为电控比例阀。
可选地,如图3所示,插电式燃料电池混合动力汽车热管理系统还包括控制模块,控制模块包括整车控制单元(Vehicle Control Unit,VCU)61、电池管理系统(Battery Management System,BMS)62、空调控制器(Air Conditioning,AC)63和燃料电池电堆控制单元(Fuel Cell Control Unit,FCCU)64。
VCU61负责冷却风扇13、第一电动水泵14、节温器15、第一三通阀24、第二电动水泵26、氢气燃烧加热器22、PTC加热器21的启闭控制。
BMS62负责通过设置第三温度传感器53采集动力电池调温回路的冷却液的温度,并设置为向AC63发出冷却请求。BMS62还设置为控制第二三通阀32和第三电动水泵33。BMS62还可通过设置于动力电池31的电池温度传感器采集动力电池31的温度。
AC63负责暖风芯体23的风速控制,以及控制调温空调4输送给冷却器34的冷量控制,主要用于对动力电池31过热时的冷却控制。同时,AC63还通过第二温度传感器52及第四温度传感器54采集制热回路前端和后端的温度将其发送给VCU61,同时AC63还将暖风芯体23的目标加热温度发送给VCU61。
FCCU64负责燃料电池电堆11的氢气供应控制和控制氢气燃烧加热器22的氢气供给,FCCU64通过压力传感器采集氢气瓶71的压力信号并将其发送给VCU61;FCCU64通过获取第一温度传感器51采集的温度并将其发送给VCU61;FCCU64接受并执行VCU61的发出的对第一电磁阀72及第二电磁阀73的开度的控制指令。
本实施例中,插电式燃料电池混合动力汽车热管理系统具有不工作模式,暖机模式,暖风暖机模式、正常空调模式和正常冷却模式。
在不工作模式下,冷却液在管路中处于不流动状态,多个电动水泵不工作,多个电磁阀处于原始位置,散热器12以及冷却风扇13不工作,氢气燃烧加热器22和PTC加热器21不工作,调温空调4不工作。
暖机模式指车辆正常启动状态下,如果VCU61检测到动力电池31上报的温度低于一定门限,或者燃料电池电堆调温回路的温度低于一定门限,且驾驶员没有空调暖风需求,VCU61控制PTC加热器21或燃烧加热器处于工作状态,为燃料电池电堆11或动力电池31进行加热至其各自的正常工作温度范围的一种模式。
暖风暖机模式是指车辆正常启动状态下,如果VCU61检测到动力电池31上报的温度低于一定门限,或者燃料电池电堆调温回路的温度低于一定门限,且驾驶员具有空调暖风需求,VCU61控制PTC加热器21或氢气燃烧加热器22处于工作状态,为燃料电池电堆11或动力电池31进行加热至其各自的正常工作温度范围并为暖风芯体23供热的一种模式。
正常空调模式指车辆正常启动状态下,如果VCU61检测到动力电池31上报的温度高于一定门限且燃料电池电堆调温回路的温度高于一定门限,且驾驶员具有空调暖风需求,VCU61控制PTC加热器21处于工作状态,或氢气燃烧加热器22处于工作状态,或者循环燃料电池电堆11反应产生的废热,为暖风芯体23供热,并且使燃料电池电堆11和动力电池31温度在合适的工作温度范围内的一种模式。需要注意的是,在该模式下燃料电池电堆11和动力电池31都暖机完成。
正常冷却模式指车辆正常启动状态下,在驾驶员无空调暖风请求时,动力电池31的温度和燃料电池电堆11的温度都不在暖机范围内时,VCU61控制热 管理系统的多个电动水泵,电磁阀工作,使动力电池31和燃料电池电堆11处于合理的工作温度范围内的一种模式。
插电式燃料电池混合动力汽车热管理系统通过在上述不工作模式,暖机模式,暖风暖机模式、正常空调模式和正常冷却模式中进行切换,以使适应混合动力汽车的不同需求。
如图4所示,本实施例还提供一种插电式燃料电池混合动力汽车热管理系统的控制方法,该插电式燃料电池混合动力汽车热管理系统的控制方法可通过上述插电式燃料电池混合动力汽车热管理系统实施。插电式燃料电池混合动力汽车热管理系统的控制方法包括以下步骤。
S10:车辆启动。
启动车辆后,确认车辆处于准备(ready)状态,若车辆未处于ready状态,则插电式燃料电池混合动力汽车热管理系统处于不工作模式。若车辆处于ready状态,则执行S20。
S20:判断驾驶员是否有空调暖风请求。若驾驶员没有空调暖风请求,则执行S30。
当驾驶员具有空调暖风请求时,驾驶员操作空调控制按钮,AC63判断空调控制按钮的位置并产生请求信息。空调控制按钮具有处于关闭空调的位置,和处于空调暖风开启的位置两种状态,并且当空调控制按钮位于暖风开启的位置时,具有一定的调温空间。
S30:获取动力电池31的实际温度T1并获取第一温度传感器51采集的温度T2。
BMS62通过设置于动力电池31的电池温度传感器采集动力电池31的实际温度,并将其发送给VCU61,FCCU64通过获取第一温度传感器51采集的温度并将其发送给VCU61。由于第一温度传感器51采集的温度为流出燃料电池电堆11的冷却液的温度,因此T2可代表此时燃料电池电堆11的实际温度。
S40:比较T1和第一设定温度Th1的大小,以及T2和第二设定温度Th2的大小;若T1<Th1,或者T2<Th2;则执行S50。Th1为暖机模式下动力电池31的温度门限;Th2为暖机模式下燃料电池电堆11的温度门限,当T1<Th1时,表明需要对动力电池31进行加热以保证其正常启用,当T2<Th2时,表明需要对燃料电池电堆11进行加热,以保证其可正常启用,从而,当T1<Th1,或者T2<Th2时,动力电池31和燃料电池电堆11中的至少一个需要加热。
S50:开启暖机模式。
开启暖机模式包括:第一三通阀24的A1接口断开,B1接口和C1接口连通,节温器15的第一接口断开,第二接口和第三接口连通,第一电动水泵14、第二电动水泵26以及第三电动水泵33开启,氢气燃烧加热器22或者PTC加热器21开启;第二三通阀32的B2接口断开,A2接口和C2接口连通,调温空调4关闭。此时,制热回路和燃料电池电堆调温回路的冷却液的循环流动路径为燃料电池电堆11-第一三通阀24-第二电动水泵26-换热器25-PTC加热器21-氢气燃烧加热器22-暖风芯体23-节温器15-第一电动水泵14-燃料电池电堆11。通过PTC加热器21或氢气燃烧加热器22加热,以对燃料电池电堆11进行加热。动力电池调温回路中冷却液的循环流动路径为动力电池31-冷却器34-第三电动水泵33-换热器25-第二三通阀32-动力电池31。当PTC加热器21或氢气燃烧加热器22进行加热工作后,动力电池调温回路中冷却液从换热器25吸收热量并对动力电池31进行加热。
需要注意的是,至于暖机模式下,通过氢气燃烧加热器22加热还是通过PTC加热器21加热,在下文详见限定。当氢气燃烧加热器22加热处于工作状态时,VCU61根据BMS62上报的动力电池31的实际温度T1和FCCU64上报的代表燃料电池电堆11的实际温度T2、并结合采集的氢气瓶71压力计算进入至氢气燃烧加热器22的氢气量,并转化为响应的第一电磁阀72的占空比信号,并将占空比信号发送给FCCU64,由FCCU64控制第一电磁阀72以该占空比控制氢气的输入量。VCU61中预存有动力电池31的实际温度、燃料电池电堆11的实际温度、氢气瓶71的压力和氢气输入量的map1,通过将采集的动力电池31的实际温度T1、燃料电池电堆11的实际温度T2、氢气瓶71的压力查询map1可得到对应的氢气输入量。
S40中,若T1≥Th1,且T2≥Th2,则执行S60。
S60:开启正常冷却模式。
开启正常冷却模式包括:氢气燃烧加热器22和PTC加热器21均关闭,第一三通阀24的C1接口断开,A1接口和B1接口连通,第二电动水泵26关闭,氢气燃烧加热器22和PTC加热器21均关闭,节温器15的第二接口断开,第一接口和第三接口连通,第一电动水泵14开启,第三电动水泵33开启。
当T1≥Th1,且T2≥Th2时,表明此时动力电池31和燃料电池电堆11的温度已经满足能够启动的最低门限,此时需要对动力电池31和燃料电池电堆11进行冷却。此时,制热回路和燃料电池电堆调温回路通过第一三通阀24隔离开,制热回路停止加热。燃料电池电堆调温回路中冷却液的循环流动路径为燃料电池电堆11-第一三通阀24-节温器15—散热器12-第一电动水泵14-燃料电池电堆11。可根据燃料电池电堆11是否工作以控制冷却风扇13是否开启,燃料电池 电堆11工作时,制冷却风扇13开启,并且根据制冷却风扇13的转速和燃料电池电堆11的温度线性相关,制冷却风扇13的转速随燃料电池电堆11的温度的升高而加快。
动力电池调温回路中冷却液的循环流动路径可根据动力电池31的温度而分为不同的路径。开启正常冷却模式还包括:比较T1和第一阈值温度Tbat1以及第二阈值温度Tbat2的大小,Tbat2>Tbat1>Th1,并且当动力电池31的温度达到Tbat2时,动力电池31产生大量的废热,需要快速散热。
若T1>Tbat2,则第二三通阀32的A2接口断开,B2接口和C2接口连通,调温空调4给冷却器34输送冷量,此时动力电池31的温度过高,动力电池调温回路中冷却液的循环流动路径为动力电池31-冷却器34-第三电动水泵33-换热器25-第二三通阀32-动力电池31,通过冷却器34给动力电池31快速降温,并且第三电动水泵33的转速达到最大。
若T1<Tbat1,则第二三通阀32的B2接口断开,A2接口和C2接口连通,调温空调4关闭。此时,BMS62控制第三电动水泵33的转速在一定值内线性变化。
S20中,若驾驶员具有空调暖风请求,则执行S70。
S70:获取动力电池31的实际温度T1并采集第一温度传感器51采集的温度T2。
S80:比较T1和第三设定温度Th3的大小,以及T2和第四设定温度Th4的大小。
若T1>Th3,且T2>Th4,则执行S90。Th3为暖风暖机模式下动力电池31的温度门限;Th4:暖风暖机模式下燃料电池电堆11的温度门限。
S90:开启正常空调模式。
当T1>Th3,表明此时动力电池31完成暖机可正常启用,否则需要对动力电池31加热以保证其正常启动。当T2>Th4时,表明此时燃料电池电堆11完成暖机可正常启用,否则需要对燃料电池电堆11加热以保证其正常启动。需要注意的是,Th3和Th1可以相等,亦可不等,Th4和Th2可以相等,亦可不等。
正常空调模式包括:比较T1和第一阈值温度Tbat1以及第二阈值温度Tbat2的大小,Tbat2>Tbat1;若T1>Tbat2,则第三电动水泵33开启,第二三通阀32的A2接口断开,B2接口和C2接口连通,调温空调4进行给冷却器34输送冷量;若T1<Tbat1,则第三电动水泵33开启,第二三通阀32的B2接口断开,A2接口和C2接口连通,调温空调4关闭。如此可实现对动力电池31的降温操作。
正常空调模式还包括:判断燃料电池电堆11是否处于工作状态;若燃料电池电堆11未处于工作状态,则比较T2和设定空调暖风温度TAC63的大小,TAC63>Th2。设定空调暖风温度TAC63为驾驶员设定的需要将驾驶室通过暖风芯体23调节的目标温度。若T2>TAC63,说明可以利用燃料电池电堆11的余热给暖风芯体23供给热量。此时,第一三通阀24的A1接口断开,C1接口和B1接口连通,第二电动水泵26开启,氢气燃烧加热器22和PTC加热器21均关闭,节温器15的第二接口断开,第一接口和第三接口连通,第一电动水泵14开启。此时,制热回路和燃料电池电堆调温回路的冷却液的循环流动路径为燃料电池电堆11-第一三通阀24-第二电动水泵26-换热器25-PTC加热器21-氢气燃烧加热器22-暖风芯体23-节温器15-第一电动水泵14-燃料电池电堆11,仅通过燃料电池电堆11的余热给暖风芯体23供给热量。
若T2≤TAC63,说明无法利用燃料电池电堆11的余热给暖风芯体23供给热量,第一三通阀24的C1接口断开,A1接口和B1接口连通,第二电动水泵26开启,氢气燃烧加热器22或PTC加热器21开启,第一电动水泵14关闭,此时制热回路和燃料电池电堆调温回路通过第一三通阀24分隔开,制热回路内的冷却液闭环循环,通过氢气燃烧加热器22或PTC加热器21给暖风芯体23供热。
若燃料电池电堆11处于工作状态,则比较T2和设定空调暖风温度TAC63的大小;若T2>TAC63,氢气燃烧加热器22和PTC加热器21均关闭,第一三通阀24的A1接口断开,C1接口和B1接口连通,第二电动水泵26开启,节温器15的第二接口断开,第一接口和第三接口连通,第一电动水泵14开启,效果等同于上述燃料电池电堆11未处于工作状态且T2>TAC63时的效果。
若T2≤TAC63,则获取第四温度传感器54检测的温度T3,并比较T2和T3的大小,若T2>T3,表明从燃料电池电堆11流出的冷却液的温度介于当前进入暖风芯体23的冷却温度和流出暖风芯体23的温度之间,燃料电池电堆11还存在部分余热可供给暖风芯体23。因此,氢气燃烧加热器22或PTC加热器21开启,第一三通阀24的A1接口断开,C1接口和B1接口连通,第二电动水泵26开启,节温器15的第一接口断开,第二接口和第三接口连通,第一电动水泵14开启;此时,制热回路和燃料电池电堆调温回路的冷却液的循环流动路径为燃料电池电堆11-第一三通阀24-第二电动水泵26-换热器25-PTC加热器21-氢气燃烧加热器22-暖风芯体23-节温器15-第一电动水泵14-燃料电池电堆11,在利用燃料电池电堆11的余热的同时,还通过氢气燃烧加热器22或PTC加热器21给暖风芯体23供给热量。
若T2≤T3,表明从燃料电池电堆11流出的冷却液完全不足以给暖风芯体 23供给热量,为了避免加热回路的能量损失,第一三通阀24的C1接口断开,A1接口和B1接口连通,第二电动水泵26开启,氢气燃烧加热器22或PTC加热器21开启,节温器15的第二接口断开,第一接口和第三接口连通,所述第一电动水泵14开启,此时制热回路和燃料电池电堆调温回路通过第一三通阀24分隔开,制热回路内的冷却液闭环循环,通过氢气燃烧加热器22或PTC加热器21给暖风芯体23供热。
步骤S80中,若T1≤Th3,或T2≤Th4,则执行S100。
当T1≤Th3,或T2≤Th4时,表明动力电池31和燃料电池电堆11中的至少一个需要进行加热,以保证其正常启用,同时还需要兼顾空调暖风需求。
S100:开启暖风暖机模式。
开启暖风暖机模式包括:第一三通阀24的A1接口断开,B1接口和C1接口连通,节温器15的第一接口断开,第二接口和第三接口连通,第一电动水泵14、第二电动水泵26以及第三电动水泵33开启,氢气燃烧加热器22或者PTC加热器21开启;第二三通阀32的B2接口断开,A2接口和C2接口连通,调温空调4关闭。此时,制热回路和燃料电池电堆调温回路的冷却液的循环流动路径为燃料电池电堆11-第一三通阀24-第二电动水泵26-换热器25-PTC加热器21-氢气燃烧加热器22-暖风芯体23-节温器15-第一电动水泵14-燃料电池电堆11。动力电池调温回路中冷却液的循环流动路径为动力电池31-冷却器34-第三电动水泵33-换热器25-第二三通阀32-动力电池31。通过氢气燃烧加热器22或PTC加热器21给暖风芯体23供给热量,且同时给燃料电池电堆11加热,同时还给换热器的介质侧加热以供动力电池调温回路中冷却液从换热器25吸收热量并对动力电池31进行加热。
当氢气燃烧加热器22处于加热工作状态时,VCU61根据BMS62上报的动力电池31的实际温度T1和FCCU64上报的代表燃料电池电堆11的实际温度T2、设定空调暖风温度TAC63、并结合采集的氢气瓶71的压力计算进入至氢气燃烧加热器22的氢气量,并将氢气量转化为响应的第一电磁阀72的占空比信号,并将占空比信号发送给FCCU64,由FCCU64控制第一电磁阀72以该占空比控制氢气的输入量。VCU61中预存有动力电池31的实际温度、燃料电池电堆11的实际温度、设定空调暖风温度、氢气瓶71的压力和氢气输入量的map1,通过将采集的动力电池31的实际温度T1、燃料电池电堆11的实际温度T2、设定空调暖风温度TAC63、氢气瓶71的压力查询map1可得到对应的氢气输入量。
如图5所示,插电式燃料电池混合动力汽车热管理系统的控制方法还包括位于步骤S50以及S100之后的步骤S110。
S110:确定加热模式。
确定加热模式包括如下步骤。
S111:获取动力电池31的实际电量SOC,以及动力电池31的实际放电功率P。
S112:比较SOC与设定电量SOC1的大小,以及P和设定放电功率P1的大小。
若SOC>SOC1,且P>P1,则执行S113;若SOC≤SOC1,或者P≤P1,则执行S114。
S113:开启氢气燃烧加热器22,关闭PTC加热器21。
S114:关闭氢气燃烧加热器22,开启PTC加热器21。
SOC1为PTC加热器21加热时动力电池31的电量门限;P1为PTC加热器21加热时动力电池31的放电功率门限。
可选地,开启正常空调模式后,若T2>T3时,无论燃料电池电堆是否处于工作状态,则执行步骤S110。

Claims (10)

  1. 一种插电式燃料电池混合动力汽车热管理系统,包括:
    燃料电池电堆调温回路,包括燃料电池电堆(11)、散热器(12)、冷却风扇(13)、第一电动水泵(14)和节温器(15),所述散热器(12)分别通过第一管路(16)和第二管路(17)连接所述燃料电池电堆(11),所述节温器(15)包括第一接口(151)、第二接口(152)和第三接口(153),所述第一接口(151)和所述第三接口(153)串联于所述第一管路(16),且流经所述燃料电池电堆(11)的冷却液流入所述第三接口(153),所述第一接口(151)设置为将所述冷却液输送至所述散热器(12),所述第二接口(152)连通所述第二管路(17),所述第一电动水泵(14)设置于所述第二管路(17),且设置为驱动所述冷却液流向所述燃料电池电堆(11),所述冷却风扇(13)设置为给所述散热器(12)降温;
    制热回路,包括正温度系数PTC加热器(21)、氢气燃烧加热器(22)、暖风芯体(23)、第一三通阀(24)、换热器(25)和第二电动水泵(26),所述换热器(25)的介质侧的出口、所述PTC加热器(21)、所述氢气燃烧加热器(22)和所述暖风芯体(23)依次串联,所述第一三通阀(24)包括A1接口、B1接口和C1接口,所述A1接口连接所述暖风芯体(23),所述B1接口连接所述第二电动水泵(26)的入口,所述C1接口连接所述第一管路(16),且所述C1接口和所述第一管路(16)的连接位置位于所述节温器(15)和所述燃料电池电堆(11)之间,所述第二电动水泵(26)的出口连接所述换热器(25)的介质侧的出口,所述暖风芯体(23)还与所述第一管路(16)连接;
    动力电池调温回路,包括动力电池(31)、第二三通阀(32)、第三电动水泵(33)和冷却器(34),所述第二三通阀(32)包括A2接口、B2接口和C2接口,所述第一接口连接所述换热器(25)的换热侧的入口,所述第二接口分别连接所述换热器(25)的换热侧的出口以及所述第三电动水泵(33)的出口,所述第三电动水泵(33)的入口连接所述冷却器(34),所述冷却器(34)连接所述动力电池(31),所述动力电池(31)连接所述C2接口;
    调温空调(4),设置为给所述冷却器(34)提供冷量;
    第一温度传感器(51),所述第一温度传感器(51)设置为采集从所述燃料电池电堆(11)流出的所述冷却液的温度;
    第二温度传感器(52),所述第二温度传感器(52)设置为采集从所述换热器(25)的介质侧流出的所述冷却液的温度;
    第三温度传感器(53),所述第三温度传感器(53)设置为采集从所述第三电动水泵(33)流出的所述冷却液的温度;
    第四温度传感器(54),所述第四温度传感器(54)设置为采集从所述暖风芯体(23)流出的所述冷却液的温度。
  2. 根据权利要求1所述的系统,还包括氢气瓶(71),所述氢气瓶(71)通过第一供氢管路给所述氢气燃烧加热器(22)供给氢气,所述氢气瓶(71)通过第二供氢管路给所述燃料电池电堆(11)供给氢气;
    还包括第一电磁阀(72)和第二电磁阀(73),所述第一电磁阀(72)设置于所述第一供氢管路,且所述第一电磁阀(72)设置为控制所述第一供氢管路的开度;所述第二电磁阀(73)设置于所述第二供氢管路,所述第二电磁阀(73)设置为控制所述第二供氢管路的开度。
  3. 根据权利要求2所述的系统,其中,所述第一电磁阀(72)和所述第二电磁阀(73)均为电控比例阀。
  4. 一种插电式燃料电池混合动力汽车热管理系统的控制方法,通过权利要求1-3任一项所述的插电式燃料电池混合动力汽车热管理系统实施,包括:
    车辆启动;
    判断驾驶员是否有空调暖风请求;
    在所述驾驶员没有所述空调暖风请求的情况下,获取所述动力电池(31)的实际温度T1并获取所述第一温度传感器(51)采集的温度T2;
    比较T1和第一设定温度Th1的大小,以及T2和第二设定温度Th2的大小;
    响应于T1<Th1,或者T2<Th2;
    开启暖机模式;
    所述开启暖机模式包括:所述第一三通阀(24)的A1接口断开,B1接口和C1接口连通,所述节温器(15)的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵(14)、所述第二电动水泵(26)以及所述第三电动水泵(33)开启,所述氢气燃烧加热器(22)或者所述PTC加热器(21)开启;所述第二三通阀(32)的B2接口断开,A2接口和C2接口连通,所述调温空调(4)关闭。
  5. 根据权利要求4所述的控制方法,其中,响应于T1≥Th1,且T2≥Th2,开启正常冷却模式;
    所述开启正常冷却模式包括:所述氢气燃烧加热器(22)和所述PTC加热器(21)均关闭,所述第一三通阀(24)的C1接口断开,A1接口和B1接口连通,所述第二电动水泵(26)关闭,所述氢气燃烧加热器(22)和所述PTC加热器(21)均关闭,所述节温器(15)的第二接口断开,所述第一接口和所述 第三接口连通,所述第一电动水泵(14)开启,所述第三电动水泵(33)开启;
    比较T1和第一阈值温度Tbat1以及第二阈值温度Tbat2的大小,Tbat2>Tbat1;
    响应于T1>Tbat2,所述第二三通阀(32)的A2接口断开,B2接口和C2接口连通,所述调温空调(4)给所述冷却器(34)输送冷量;
    响应于T1<Tbat1,所述第二三通阀(32)的B2接口断开,A2接口和C2接口连通,所述调温空调(4)关闭。
  6. 根据权利要求4所述的控制方法,其中,在所述驾驶员具有所述空调暖风请求的情况下,获取所述动力电池(31)的实际温度T1并采集所述第一温度传感器(51)采集的温度T2;
    比较T1和第三设定温度Th3的大小,以及T2和第四设定温度Th4的大小;
    在T1>Th3,且T2>Th4的情况下,开启正常空调模式;
    所述正常空调模式包括:
    比较T1和所述第一阈值温度Tbat1以及所述第二阈值温度Tbat2的大小,Tbat2>Tbat1;
    响应于T1>Tbat2,所述第三电动水泵(33)开启,所述第二三通阀(32)的A2接口断开,B2接口和C2接口连通,所述调温空调(4)给所述冷却器(34)输送冷量;
    响应于T1<Tbat1,所述第三电动水泵(33)开启,所述第二三通阀(32)的B2接口断开,A2接口和C2接口连通,所述调温空调(4)关闭。
  7. 根据权利要求6所述的控制方法,其中,在比较T1和所述第一阈值温度Tbat1以及所述第二阈值温度Tbat2的大小之后,所述正常空调模式还包括:
    判断所述燃料电池电堆(11)是否处于工作状态;
    响应于所述燃料电池电堆(11)未处于工作状态,比较T2和设定空调暖风温度TAC(63)的大小;
    在T2>TAC(63)的情况下,所述氢气燃烧加热器(22)和所述PTC加热器(21)均关闭,所述第一三通阀(24)的A1接口断开,C1接口和B1接口连通,所述第二电动水泵(26)开启,所述节温器(15)的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵(14)开启;
    在T2≤TAC(63的情况下,所述氢气燃烧加热器(22)或所述PTC加热器(21)开启,所述第一三通阀(24)的C1接口断开,A1接口和B1接口连通, 所述第二电动水泵(26)开启,所述节温器(15)的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵(14)开启。
  8. 根据权利要求7所述的控制方法,其中,响应于所述燃料电池电堆(11)处于所述工作状态,比较T2和所述设定空调暖风温度TAC(63)的大小;
    在T2>TAC(63)的情况下,所述氢气燃烧加热器(22)和所述PTC加热器(21)均关闭,所述第一三通阀(24)的A1接口断开,C1接口和B1接口连通,所述第二电动水泵(26)开启,所述节温器(15)的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵(14)开启;
    在T2≤TAC(63)的情况下,获取所述第四温度传感器(54)检测的温度T3;
    比较T2和T3的大小;
    在T2>T3的情况下,所述第一三通阀(24)的A1接口断开,C1接口和B1接口连通,所述二电动水泵开启,所述氢气燃烧加热器(22)或所述PTC加热器(21)开启,所述节温器(15)的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵(14)开启;
    在T2≤T3的情况下,所述氢气燃烧加热器(22)和所述PTC加热器(21)均关闭,所述第一三通阀(24)的C1接口断开,A1接口和B1接口连通,所述二电动水泵开启,所述氢气燃烧加热器(22)或所述PTC加热器(21)开启,所述节温器(15)的第二接口断开,所述第一接口和所述第三接口连通,所述第一电动水泵(14)开启。
  9. 根据权利要求5所述的控制方法,其中,在T1≤Th3,或T2≤Th4的情况下,开启暖风暖机模式;
    所述开启暖风暖机模式包括:所述第一三通阀(24)的A1接口断开,B1接口和C1接口连通,所述节温器(15)的第一接口断开,所述第二接口和所述第三接口连通,所述第一电动水泵(14)、所述第二电动水泵(26)以及所述第三电动水泵(33)开启,所述氢气燃烧加热器(22)或者所述PTC加热器(21)开启;所述第二三通阀(32)的B2接口断开,A2接口和C2接口连通,所述调温空调(4)关闭。
  10. 根据权利要求9所述的控制方法,所述开启暖风暖机模式或者所述开启暖机模式后,还包括:
    确定加热模式,所述确定加热模式包括:
    获取所述动力电池(31)的实际电量SOC,以及所述动力电池(31)的实 际放电功率P;
    比较SOC与设定电量SOC1的大小,以及P和设定放电功率P1的大小;
    响应于SOC>SOC1,且P>P1,开启所述氢气燃烧加热器(22),关闭所述PTC加热器(21);
    响应于SOC≤SOC1,或者P≤P1,关闭所述氢气燃烧加热器(22),开启所述PTC加热器(21)。
PCT/CN2022/130226 2021-11-15 2022-11-07 插电式燃料电池混合动力汽车热管理系统及其控制方法 WO2023083127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111345783.3 2021-11-15
CN202111345783.3A CN113978274A (zh) 2021-11-15 2021-11-15 插电式燃料电池混合动力汽车热管理系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2023083127A1 true WO2023083127A1 (zh) 2023-05-19

Family

ID=79748466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130226 WO2023083127A1 (zh) 2021-11-15 2022-11-07 插电式燃料电池混合动力汽车热管理系统及其控制方法

Country Status (2)

Country Link
CN (1) CN113978274A (zh)
WO (1) WO2023083127A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505018A (zh) * 2023-06-14 2023-07-28 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法
CN116979104A (zh) * 2023-06-29 2023-10-31 上海徐工智能科技有限公司 一种燃料电池系统温度控制方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113246807B (zh) * 2021-06-18 2023-02-21 中国第一汽车股份有限公司 燃料电池混合动力汽车热管理系统、方法、车辆及介质
CN113978274A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 插电式燃料电池混合动力汽车热管理系统及其控制方法
CN114824357B (zh) * 2022-03-31 2024-05-07 中国第一汽车股份有限公司 一种氢燃料电池电动汽车动力总成冷却系统、试验方法及评价方法
CN114843550B (zh) * 2022-05-25 2024-05-28 一汽解放汽车有限公司 一种热管理集成系统和车辆
CN115447345A (zh) * 2022-09-28 2022-12-09 福龙马集团股份有限公司 环卫车辆的热管理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168281A (ja) * 2012-02-15 2013-08-29 Toyota Motor Corp 燃料電池システム
CN104006471A (zh) * 2014-05-30 2014-08-27 安徽江淮汽车股份有限公司 一种混合动力汽车空调系统及其控制方法
CN212195005U (zh) * 2020-04-28 2020-12-22 长城汽车股份有限公司 燃料电池汽车的热管理系统和燃料电池汽车
CN113246807A (zh) * 2021-06-18 2021-08-13 中国第一汽车股份有限公司 燃料电池混合动力汽车热管理系统、方法、车辆及介质
CN113978274A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 插电式燃料电池混合动力汽车热管理系统及其控制方法
CN114347751A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 插电式燃料电池混合动力汽车热管理系统及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109927534B (zh) * 2019-03-20 2023-04-25 天津大学 一种混合动力重型载货汽车的热管理系统及控制方法
CN111251910B (zh) * 2019-12-17 2022-04-29 武汉理工大学 一种燃料电池汽车双源混合动力系统的上电启动方法
CN111342081B (zh) * 2020-03-04 2022-09-09 广西玉柴机器股份有限公司 燃料电池的余热管理系统
CN113619356B (zh) * 2020-05-06 2023-12-12 比亚迪股份有限公司 空调辅助控制系统、方法及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168281A (ja) * 2012-02-15 2013-08-29 Toyota Motor Corp 燃料電池システム
CN104006471A (zh) * 2014-05-30 2014-08-27 安徽江淮汽车股份有限公司 一种混合动力汽车空调系统及其控制方法
CN212195005U (zh) * 2020-04-28 2020-12-22 长城汽车股份有限公司 燃料电池汽车的热管理系统和燃料电池汽车
CN113246807A (zh) * 2021-06-18 2021-08-13 中国第一汽车股份有限公司 燃料电池混合动力汽车热管理系统、方法、车辆及介质
CN113978274A (zh) * 2021-11-15 2022-01-28 中国第一汽车股份有限公司 插电式燃料电池混合动力汽车热管理系统及其控制方法
CN114347751A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 插电式燃料电池混合动力汽车热管理系统及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505018A (zh) * 2023-06-14 2023-07-28 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法
CN116505018B (zh) * 2023-06-14 2024-01-26 北京理工大学 一种提高电池温度均匀性的燃料电池冷却系统装置和方法
CN116979104A (zh) * 2023-06-29 2023-10-31 上海徐工智能科技有限公司 一种燃料电池系统温度控制方法、装置、设备及存储介质
CN116979104B (zh) * 2023-06-29 2024-04-26 上海徐工智能科技有限公司 一种燃料电池系统温度控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113978274A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023083127A1 (zh) 插电式燃料电池混合动力汽车热管理系统及其控制方法
CN106335387B (zh) 预调节电动车辆
CN108357333B (zh) 电气化车辆中使用电池冷却剂泵控制电池冷却的方法
CN108417928B (zh) 在快速充电期间用于在冷却电池的同时加热车舱的方法
CN109980246B (zh) 燃料电池汽车热管理系统
EP4296096A1 (en) Thermal management system for fuel cell hybrid electric vehicle, method, vehicle and medium
CN109962268B (zh) 燃料电池汽车热管理方法
CN107839433A (zh) 插电式混合动力汽车的整车热管理系统
CN114347751A (zh) 插电式燃料电池混合动力汽车热管理系统及其控制方法
US20200290429A1 (en) Vehicle vapor-injection heat pump system with controllable evaporator valve
CN113246800A (zh) 一种燃料电池汽车热管理系统
CN113246801B (zh) 一种燃料电池汽车整车热管理系统
CN114161997B (zh) 双电堆大功率氢燃料电池汽车热管理系统
KR20180106827A (ko) 차량용 히트 펌프 시스템
JP2015058886A (ja) 車両用空調装置、車両空調用ヒータ、及び車両の空調方法
CN112238733A (zh) 一种电动汽车热调控系统
CN116080352B (zh) 混合动力车
US11890914B2 (en) Balancing battery heating and cabin heating with shared thermal-management system
CN108859735B (zh) 用于混合动力车辆的冷却系统及冷却方法
CN216659651U (zh) 一种燃料电池汽车热管理系统及燃料电池汽车
US20220069385A1 (en) Temperature adjustment circuit
WO2020129260A1 (ja) 車両
CN113942368A (zh) 驾驶室采暖系统及其控制方法、车辆热管理系统
CN108859736B (zh) 一种基于混动车辆的控制方法及控制系统
CN112449553A (zh) 车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891921

Country of ref document: EP

Kind code of ref document: A1