WO2023083110A1 - 超透镜增透膜的设计方法、装置及电子设备 - Google Patents

超透镜增透膜的设计方法、装置及电子设备 Download PDF

Info

Publication number
WO2023083110A1
WO2023083110A1 PCT/CN2022/129846 CN2022129846W WO2023083110A1 WO 2023083110 A1 WO2023083110 A1 WO 2023083110A1 CN 2022129846 W CN2022129846 W CN 2022129846W WO 2023083110 A1 WO2023083110 A1 WO 2023083110A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
extinction coefficient
film system
equivalent
film
Prior art date
Application number
PCT/CN2022/129846
Other languages
English (en)
French (fr)
Inventor
郝成龙
谭凤泽
朱健
Original Assignee
深圳迈塔兰斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈塔兰斯科技有限公司 filed Critical 深圳迈塔兰斯科技有限公司
Publication of WO2023083110A1 publication Critical patent/WO2023083110A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present application relates to the field of metasurface technology, in particular, to a design and coating method of an antireflection coating for a superlens.
  • the anti-reflection coating is a thin film deposited on the surface of the optical lens. Its principle is to make the reflected light interfere and destruct, so as to achieve the effect of anti-reflection/anti-reflection. Thin films can be monolayer or multilayer, depending on the substrate material and operating wavelength.
  • the film system is designed according to the material of the lens substrate, and the designed film system is deposited on the surface of the lens layer by layer by thermal evaporation.
  • the surface of the metalens Compared with traditional lenses, the surface of the metalens has micro-nano structures used to modulate the phase of incident light.
  • the film system designed with related technologies will be deposited on the micro-nano structures during coating, and will also fill the air between the micro-nano structures. In the gap, the incident light phase of the metalens is changed, which affects the optical performance of the metalens. Therefore, there is an urgent need for a design method of an anti-reflection coating that does not change the optical performance of the metalens.
  • the embodiments of the present application provide a design method, device and electronic equipment for an anti-reflection coating of a super lens.
  • the embodiment of the present application provides a method for designing an anti-reflection coating of a super lens, including:
  • Step S1 selecting a filling material, the filling material is used to fill the air gap between the micro-nano structures on the surface of the metalens, each of the micro-nano structures and the filling material around each of the micro-nano structures form a filling unit;
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit
  • Step S3 obtaining the refractive index and extinction coefficient of the filled metalens based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient;
  • Step S4 calculating the antireflection coating system of the hyperlens based on the refractive index of the hyperlens and the extinction coefficient of the hyperlens, and obtaining an initial coating result;
  • Step S5 optimizing the initial film system result to obtain the anti-reflection film system result; the optimization of the initial film system result includes:
  • Step S501 using finite element analysis to analyze the results of the initial film system to obtain the initial light field phase and initial transmittance of the metalens with film system;
  • Step S502 performing optimization iterations based on the initial light field phase and the initial transmittance to obtain an optimized anti-reflection film system result.
  • the calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit includes:
  • Step S201 calculating the equivalent refractive index and the equivalent extinction coefficient by a duty cycle method
  • Step S202 calculating the equivalent refractive index and the equivalent extinction coefficient by a direct calculation method.
  • the formula for calculating the equivalent refractive index and the equivalent extinction coefficient by the duty ratio method is as follows:
  • n 1 ( ⁇ ) ⁇ ′n u ( ⁇ )+ ⁇ ′′n f ( ⁇ ),
  • is the wavelength of light
  • n 1 ( ⁇ ) is the calculated equivalent refractive index of the filling unit
  • k 1 ( ⁇ ) is the calculated equivalent extinction coefficient of the filling unit
  • n u ( ⁇ ) is The refractive index of the micro-nano structure
  • n f ( ⁇ ) is the refractive index of the filling material
  • k u ( ⁇ ) is the extinction coefficient of the micro-nano structure
  • k f ( ⁇ ) is the extinction of the filling material coefficient
  • ⁇ ' is the ratio of the area of the micro-nano structure to the area of the filling unit
  • ⁇ " is the ratio of the area of the filling material to the area of the filling unit.
  • the calculation formulas for calculating the equivalent refractive index and the equivalent extinction coefficient by the direct calculation method are as follows:
  • h is the height of described micro-nano structure
  • T 0 is the intensity of incident light
  • T is the phase of the filling unit at different wavelengths
  • T( ⁇ ) is the transmittance of the filling unit at different wavelengths.
  • the formula for calculating the refractive index and extinction coefficient of the filled metalens based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient is as follows:
  • c is a weighting coefficient
  • M is the number of filling units contained in the entire metalens
  • N is the number of wavelengths selected
  • n( ⁇ ) is the equivalent refractive index
  • k( ⁇ ) is the equivalent extinction coefficient
  • the initial film system result includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • the optimization iteration includes interior point method, steepest descent method and Newton method.
  • the result of the optimized anti-reflection film system includes the number of film layers, the thickness of each layer of film and the material of each layer of film.
  • the optimization iteration includes interior point method, steepest descent method and Newton method.
  • the initial film system results include four film systems; the material of each film along the direction away from the super lens is titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) , Silicon oxide (SiO 2 ).
  • the film close to the metasurface is the first layer
  • the films far away from the metasurface are the second, third, and fourth layers in sequence; the thickness relationship between the films of each layer at least satisfies: the fourth layer The thickness ⁇ the thickness of the first layer ⁇ the thickness of the second layer ⁇ the thickness of the third layer.
  • the optimized film system result includes a six-layer film system, and the material of each film along the direction away from the hyperlens is respectively titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), thallium oxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ).
  • the film close to the metasurface is the first layer
  • the films far away from the metasurface are the second, third, fourth, fifth, and sixth layers in sequence
  • the thickness relationship between the films of each layer at least satisfies: the thickness of the fifth layer ⁇ thickness of the third layer ⁇ thickness of the first layer ⁇ thickness of the sixth layer ⁇ thickness of the second layer ⁇ thickness of the fourth layer.
  • the material of the substrate includes one or more of silicon, silicon oxide, organic glass, alkali glass and chalcogenide glass.
  • the material of the micro-nano structure includes one or more of silicon nitride, titanium oxide, aluminum oxide, gallium nitride, gallium phosphide, hydrogenated amorphous silicon, amorphous silicon and crystalline silicon.
  • the refractive index of the filling material is between the refractive index of air and the refractive index of the micro-nano structure.
  • the filler material includes alumina.
  • the embodiment of the present application also provides a method for coating a super lens anti-reflection film, the coating method comprising:
  • Step 1 using the filling material to fill the gap between the micro-nano structures on the surface of the super-lens, so that the surface of the super-lens after filling is smooth;
  • Step 2 coating the surface of the filled metalens.
  • the embodiment of the present application also provides a design device for an anti-reflection coating of a super lens, including a refractive index and extinction coefficient calculation module and a film system optimization module; wherein,
  • the refractive index and extinction coefficient calculation module is configured to calculate the equivalent refractive index and equivalent extinction of each micro-nano structure (2) and a filling unit composed of a filling material (3) around each micro-nano structure (2) coefficient; and obtain the refractive index and extinction coefficient of the filled metalens based on the equivalent refractive index and the equivalent extinction coefficient weighted average;
  • the film system optimization module is configured to calculate the initial film system result according to the refractive index and extinction coefficient of the filled metalens, and perform optimization iterations on the initial film system result to obtain the anti-reflection film system result; the film system
  • the optimization module includes film system calculation module and finite element analysis module; among them,
  • the film calculation module is configured to calculate film results
  • the finite element analysis module is configured to obtain light field phase and transmittance results according to the film system results
  • the film calculation module and the finite element analysis module jointly perform optimization iterations on the initial film results calculated by the film calculation module to obtain anti-reflection film results.
  • the embodiment of the present application further provides a superlens antireflection coating, which is designed using any of the above design methods for the superlens antireflection coating.
  • the embodiment of the present application further provides a superlens, including a superlens antireflection coating designed by any of the methods for designing an antireflection coating for a superlens described above.
  • the embodiment of the present application also provides an electronic device, including a bus, a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor, the transceiver, the memory It is connected with the processor through the bus, and it is characterized in that, when the computer program is executed by the processor, the steps in any one of the above-mentioned methods for designing an anti-reflection coating of a metalens are realized.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the design of the anti-reflection coating of the hyperlens as described in any of the above is realized steps in the method.
  • the design, device and electronic equipment of the hyperlens anti-reflection coating provided by the embodiment of the present application, the beneficial effects obtained by the provided technical solution at least include:
  • the design method of the superlens antireflection coating uses filling materials to fill the gap between the micro-nano structures on the superlens surface and make the superlens surface smooth, which solves the problem of changing the incident light phase on the superlens surface when the antireflection coating is deposited. question.
  • This method calculates the equivalent refractive index and equivalent extinction coefficient of the filling unit composed of micro-nano structure and filling material, and then obtains the refractive index and extinction coefficient of the filled metalens by weighted average.
  • the method calculates the initial film system result through the obtained refractive index and extinction coefficient of the metalens, and obtains the optimized anti-reflection film system result by optimizing the initial film system result.
  • the anti-reflection coating obtained by the method can increase the transmittance of incident light without affecting the micro-nano structure on the surface of the super-lens, and has no effect on the modulation of incident light by the super-lens.
  • FIG. 1 shows a schematic structural view of a metalens provided by an embodiment of the present application
  • FIG. 2 shows an optional structural schematic diagram of a metalens coating provided by an embodiment of the present application
  • Fig. 3 shows the flowchart of the design method of a kind of hyperlens anti-reflection coating provided by the embodiment of the present application
  • Figure 4 shows a schematic structural view of the filling unit provided by the embodiment of the present application.
  • Fig. 5 shows the flow chart of the coating method of the anti-reflection coating of the super lens provided by the embodiment of the present application
  • Fig. 6 shows an optional schematic diagram of the anti-reflection coating of the super lens provided by the embodiment of the present application
  • Fig. 7 shows the relationship between the phase and the transmittance of the direct calculation method provided by the embodiment of the present application and the wavelength of the incident light
  • FIG. 8 shows an optional schematic diagram of a design device for a super-lens anti-reflection coating provided in an embodiment of the present application
  • FIG. 9 shows an optional schematic diagram of the film system optimization module provided by the embodiment of the present application.
  • Figure 10 shows an optional arrangement of micro-nano structures provided by the embodiment of the present application.
  • Figure 11 shows the equivalent refractive index of an optional filling unit provided by the embodiment of the present application at a wavelength of 0.45 ⁇ m;
  • Figure 12 shows the equivalent extinction coefficient of an optional filling unit provided in the embodiment of the present application at a wavelength of 0.45 ⁇ m;
  • Figure 13 shows the equivalent refractive index of an optional filling unit provided by the embodiment of the present application at a wavelength of 0.55 ⁇ m;
  • Figure 14 shows the equivalent extinction coefficient of an optional filling unit provided in the embodiment of the present application at a wavelength of 0.55 ⁇ m;
  • Figure 15 shows the equivalent refractive index of an optional filling unit provided by the embodiment of the present application at a wavelength of 0.65 ⁇ m;
  • Figure 16 shows the equivalent extinction coefficient of an optional filling unit provided in the embodiment of the present application at a wavelength of 0.65 ⁇ m;
  • Figure 17 shows an optional metalens equivalent refractive index provided by the embodiment of the present application.
  • FIG. 18 shows an optional metalens equivalent extinction coefficient provided by the embodiment of the present application.
  • Fig. 19 shows an optional structural schematic diagram of the initial film system result provided by the embodiment of the present application.
  • Figure 20 shows an optional structural schematic diagram of the optimized film system results provided by the embodiment of the present application.
  • Figure 21 shows the transmittance and phase of the metalens without the optimized anti-reflection coating system results at a wavelength of 0.45 ⁇ m
  • Figure 22 shows the transmittance and phase of the metalens containing the results of the optimized anti-reflection coating system at a wavelength of 0.45 ⁇ m;
  • Figure 23 shows the transmittance and phase of the metalens without the optimized anti-reflection coating system results at a wavelength of 0.55 ⁇ m
  • Figure 24 shows the transmittance and phase of the metalens containing the results of the optimized anti-reflection coating system at a wavelength of 0.55 ⁇ m;
  • Figure 25 shows the transmittance and phase of the metalens without the optimized anti-reflection coating system results at a wavelength of 0.65 ⁇ m
  • Figure 26 shows the transmittance and phase of the metalens containing the results of the optimized anti-reflection coating system at a wavelength of 0.65 ⁇ m;
  • FIG. 27 shows an optional schematic diagram of an electronic device provided by an embodiment of the present application.
  • the embodiments of the present invention can be implemented as methods, devices, electronic devices, and computer-readable storage media. Therefore, the embodiments of the present invention can be implemented in the following forms: complete hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software. Furthermore, in some embodiments, the embodiments of the present invention can also be implemented in the form of a computer program product in one or more computer-readable storage media containing computer program code.
  • the computer-readable storage medium includes: electrical, magnetic, optical, electromagnetic, infrared or semiconductor systems, devices or devices, or any combination of the above. More specific examples of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), flash memory (Flash Memory), Optical fiber, compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, device, or device.
  • the computer program code contained in the above-mentioned computer-readable storage medium can be transmitted by any appropriate medium, including: wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF) or any appropriate combination of the above.
  • any appropriate medium including: wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF) or any appropriate combination of the above.
  • a user interface may be written in assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, integrated circuit configuration data, or in one or more programming languages or combinations thereof.
  • Computer program codes for executing the operations of the embodiments of the present invention include object-oriented programming languages, such as: Java, Smalltalk, C++, and also include conventional procedural programming languages, such as: C language or similar programming language.
  • the computer program code can execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer and entirely on the remote computer or server. In cases involving a remote computer, the remote computer can be connected to the user's computer or to external computers through any kind of network, including a local area network (LAN) or a wide area network (WAN).
  • LAN local area network
  • WAN wide area network
  • Embodiments of the present invention describe the provided methods, apparatuses, and electronic devices through flowcharts and/or block diagrams.
  • each block of the flowchart and/or block diagram and combinations of blocks in the flowchart and/or block diagram can be implemented by computer readable program instructions.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, and these computer readable program instructions are executed by the computer or other programmable data processing apparatus to produce means for realizing the functions/operations specified by the blocks in the flowcharts and/or block diagrams.
  • These computer-readable program instructions may also be stored in a computer-readable storage medium that enables a computer or other programmable data processing device to operate in a specific manner. In this way, the instructions stored in the computer-readable storage medium produce an instruction device product including implementing the functions/operations specified by the blocks in the flowcharts and/or block diagrams.
  • a metalens is a lens whose surface is a metasurface. As shown in FIG. 1 , the metalens includes a substrate 1 and a micro-nano structure 2 , and the micro-nano structure 2 is used to modulate the phase of incident light.
  • the anti-reflection coating designed according to the base material of the super lens is coated by the traditional method, the designed film system will be deposited on the micro-nano structure 2 and will be filled into the air gap between the micro-nano structure 2, thereby changing the ultra-reflective coating.
  • the structure composed of micro-nano structure 2 and air on the surface of the lens changes the phase of the incident light and affects the optical performance of the metalens.
  • the thickness of the deposited film is uneven and the flatness is not good, so it is not suitable for mass production.
  • FIG. 3 shows a flow chart of a method for designing an antireflection coating for a metalens provided by an embodiment of the present application. As shown in Figures 2 and 3, the method includes:
  • step S1 the filling material 3 is selected, and the filling material 3 is used to fill the air gap between the micro-nano structures 2 on the surface of the super-lens and make the surface of the super-lens smooth.
  • the refractive index of the filling material 3 is between the refractive index of air and the refractive index of the micro-nano structure 2 , preferably, the refractive index of the filling material 3 is much smaller than the refractive index of the micro-nano structure 2 .
  • Each micro-nano structure 2 and the filling material 3 around each micro-nano structure form a filling unit, and the structure of the filling unit is shown in FIG. 4 .
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit.
  • Step S3 obtaining the refractive index and extinction coefficient of the filled metalens based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient. For example, calculate the equivalent refractive index and equivalent extinction coefficient of the filled cells contained in the whole metalens.
  • the weighting coefficients are tilted for micro-nano structures with low transmittance in certain wavelength bands, so as to ensure relatively high and uniform transmittance in the entire wavelength band.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the obtained initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • Step S5 optimizing the initial film system result to obtain the optimized AR film system result 402 .
  • the result of the antireflection film system includes the number of film layers, the thickness of each layer of film, and the material of each layer of film.
  • the initial film system result 401 and the optimized antireflection film system result 402 may be a single-layer film, or as shown in FIG. 6 , a multi-layer film, such as HLH, LHL, LHLH, etc. It should be noted that L represents a low-refractive index film layer, and H represents a high-refractive index film layer.
  • the material of substrate 1 comprises at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80% of the target wavelength band spectrum. %, at least about 85%, at least about 90%, or at least about 95% light transmittance.
  • the material of the substrate 1 includes one or more of silicon, silicon oxide, organic glass, alkali glass and chalcogenide glass.
  • the material of the micro-nano structure 2 includes one or more of silicon nitride, titanium oxide, aluminum oxide, gallium nitride, gallium phosphide, hydrogenated amorphous silicon, amorphous silicon and crystalline silicon.
  • the aspect ratio of the micro-nanostructure 2 (for example, the ratio of the height to the width of the micro-nanostructure 2 or the ratio of the height to the diameter of the micro-nanostructure 2) can be greater than 1, at least about 1.5:1, at least about 2: 1. At least about 3:1, at least about 4:1, at least about 5:1, at least about 6:1, or at least about 10:1. Optionally, the aspect ratio of the micro-nano structure 2 is less than or equal to 1.
  • the implementation of the design method of the super lens anti-reflection coating provided in the embodiment of the present application is as follows:
  • the filling material 3 is selected as alumina (Al 2 O 3 ).
  • Aluminum oxide has high transparency and is used to fill the air gap between the micro-nano structures on the surface of the superlens.
  • Each micro-nano structure and the surrounding area of each micro-nano structure The alumina constitutes a filling unit.
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of all filling units on the entire metalens.
  • step S3 the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive indices and equivalent extinction coefficients of all filled units on the entire metalens.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • the micro-nano structure 2 is a super-lens distributed in a uniform array, and the implementation of the method for designing the anti-reflection coating of the super-lens provided by the embodiment of the application is as follows:
  • the filling material 3 is selected as alumina (Al 2 O 3 ).
  • Aluminum oxide has high transparency and is used to fill the air gap between the micro-nano structures on the surface of the superlens.
  • Each micro-nano structure and the surrounding area of each micro-nano structure The alumina constitutes a filling unit.
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of the partially filled units on the metalens. For example, calculate the equivalent refractive index and equivalent extinction coefficient of 60% filled cells on a metalens. For example, only one calculation is performed on the filling unit composed of the micro-nano structure 2 and the surrounding filling material 3 with the same structure, instead of repeated calculation.
  • the adjacent filling units are formed into a superstructure unit, and the equivalent refractive index and equivalent extinction coefficient of a superstructure unit are calculated, so that the entire The equivalent refractive index and equivalent extinction coefficient of the metalens.
  • the whole metalens is divided into regular hexagons, and the equivalent refractive index of each regular hexagon is calculated to obtain the equivalent refractive index of the whole metalens.
  • step S3 the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive index and equivalent extinction coefficient of the partially filled units on the metalens.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • the filling material 3 includes but not limited to alumina.
  • the choice of filling material 3 should be a material with high transmittance to the radiation of the target band.
  • the target wavelength bands of the metalens include, but are not limited to, visible light, near-infrared light, mid-infrared light, far-infrared light, and ultraviolet light.
  • calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit includes:
  • Step S201 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by the duty cycle method.
  • Step S202 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by direct calculation method.
  • the calculation of the equivalent refractive index and equivalent extinction coefficient of the filling unit by the duty cycle method is as follows:
  • the duty cycle method is based on the refractive index and extinction coefficient of the micro-nano structure 2, the refractive index and extinction coefficient of the filling material 3, and the proportion of the micro-nano structure 2 and the filling material 3 in the filling unit.
  • the equivalent refractive index and equivalent extinction coefficient of the filling unit composed of filling material 3 are calculated as formula (1), formula (2) and formula (3):
  • n 1 ( ⁇ ) ⁇ ′n u ( ⁇ )+ ⁇ ′′n f ( ⁇ ), (1)
  • is the wavelength of light
  • n 1 ( ⁇ ) is the calculated equivalent refractive index of the filled unit
  • k 1 ( ⁇ ) is the calculated equivalent extinction coefficient of the filled unit
  • n u ( ⁇ ) is the micro-nano structure 2
  • n f ( ⁇ ) is the refractive index of the filling material 3
  • k u ( ⁇ ) is the extinction coefficient of the micro-nano structure 2
  • k f ( ⁇ ) is the extinction coefficient of the filling material 3
  • ⁇ ′ is the micro-nano structure
  • ⁇ ′′ is the ratio of the area of the filling material 3 to the area of the filling unit.
  • the implementation of the design method of the super lens anti-reflection coating provided in the embodiment of the present application is as follows:
  • Step S1 selecting a filling material 3, which is used to fill the air gap between the micro-nanostructures 2 on the surface of the metalens, each micro-nanostructure 2 and the filling material 3 around each micro-nanostructure form a filling unit, See Figure 4 for the structure of the filling unit.
  • Step S201 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by the duty cycle method. Combine formula (1), formula (2) and formula (3) Calculate the equivalent refractive index and equivalent extinction coefficient of the filling unit composed of the micro-nano structure 2 and the filling material 3 .
  • the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient of the filled units. For example, calculate the equivalent refractive index and equivalent extinction coefficient of the filled cells contained in the whole metalens.
  • the weighting coefficients are tilted for micro-nano structures with low transmittance in certain wavelength bands, so as to ensure relatively high and uniform transmittance in the entire wavelength band.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the obtained initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • the implementation method of calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by the direct calculation method is as follows:
  • h is the height of the micro-nano structure 2
  • T 0 is the intensity of the incident light
  • T( ⁇ ) is the transmittance of the filling unit at different wavelengths.
  • Step S1 selecting a filling material 3, which is used to fill the air gap between the micro-nanostructures 2 on the surface of the metalens, each micro-nanostructure 2 and the filling material 3 around each micro-nanostructure form a filling unit, See Figure 4 for the structure of the filling unit.
  • Step S202 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by direct calculation method.
  • the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient of the filled units. For example, calculate the equivalent refractive index and equivalent extinction coefficient of the filled cells contained in the whole metalens.
  • the weighting coefficients are tilted for micro-nano structures with low transmittance in certain wavelength bands, so as to ensure relatively high and uniform transmittance in the entire wavelength band.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the obtained initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • the method for designing the antireflection coating of the superlens provided in the embodiment of the present application is based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient of the filled unit to obtain the refractive index and extinction of the filled superlens Coefficient, the calculation formula is as follows:
  • C ij is the weighting coefficient, 1 ⁇ i ⁇ M, 1 ⁇ j ⁇ N, M is the number of filling units contained in the entire metalens, N is the number of selected wavelengths, n( ⁇ j ) is the filled The equivalent refractive index of the metalens at the jth wavelength, k( ⁇ j ) is the equivalent extinction coefficient of the filled metalens at the jth wavelength, and n i ( ⁇ j ) is the M filling units In the equivalent refractive index of the i-th filling unit at the j-th wavelength, ki ( ⁇ j ) is the equivalent extinction coefficient of the i-th filling unit at the j-th wavelength among the M said filling units.
  • the weighting coefficient C ij can tilt some micro-nanostructures 2 with low transmittance in certain wavelength bands, so as to ensure the uniformity and high transmittance of the metalens in the whole spectrum.
  • the method for designing an anti-reflection coating for a superlens provided in the embodiment of the present application is based on the weighted average of the refractive index and extinction coefficient of the entire superlens obtained in step S3 to calculate the initial film system result 401 .
  • the initial film system result 401 is calculated by using film system design software (such as TFCalc).
  • the initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • the method for designing an anti-reflection coating for a metalens provided in the embodiment of the present application optimizes the initial film system result 401 to obtain an optimized anti-reflection film system result 402 .
  • the optimization process includes:
  • Step S501 using finite element analysis to analyze the initial film system result 401 to obtain the initial light field phase and initial transmittance of the metalens with film system.
  • step S502 optimization iterations are performed based on the initial light field phase and initial transmittance, and an optimized anti-reflection coating system result 402 is obtained.
  • optimization iterations include interior point method, steepest descent method and Newton's method.
  • the design method of the super lens anti-reflection coating includes:
  • the filling material 3 is selected as alumina (Al 2 O 3 ).
  • Aluminum oxide has high transparency and is used to fill the air gap between the micro-nano structures on the surface of the superlens.
  • Each micro-nano structure and the surrounding area of each micro-nano structure The alumina constitutes a filling unit.
  • Step S201 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by the duty ratio method.
  • step S3 the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive indices and equivalent extinction coefficients of all filled units on the entire metalens.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the initial film system result 401 includes the number of film layers, the thickness of each film and the material of each film.
  • Step S501 using finite element analysis to analyze the initial film system result 401 to obtain the initial light field phase and initial transmittance of the metalens with film system.
  • Step S502 performing optimization iterations based on the initial light field phase and initial transmittance, for example, using the interior point method to perform optimization iterations to obtain the optimized AR coating result 402 .
  • the design method of the super lens anti-reflection coating includes:
  • the filling material 3 is selected as alumina (Al 2 O 3 ).
  • Aluminum oxide has high transparency and is used to fill the air gap between the micro-nano structures on the surface of the superlens.
  • Each micro-nano structure and the surrounding area of each micro-nano structure The alumina constitutes a filling unit.
  • Step S202 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit by direct calculation method.
  • step S3 the refractive index and extinction coefficient of the filled metalens are obtained based on the weighted average of the equivalent refractive indices and equivalent extinction coefficients of all filled units on the entire metalens.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the initial film system result 401 includes the number of film layers, the thickness of each film and the material of each film.
  • Step S501 using finite element analysis to analyze the initial film system result 401 to obtain the initial light field phase and initial transmittance of the metalens with film system.
  • Step S502 performing optimization iterations based on the initial light field phase and initial transmittance, for example, using Newton's method to perform optimization iterations to obtain an optimized anti-reflection coating system result 402 .
  • the embodiment of the present application is only described with the filling material 3 being alumina as an example, but the embodiment of the present application is not limited thereto.
  • the filling material 3 may also be gallium nitride.
  • the design method of the superlens anti-reflection coating of the embodiment of the present application uses filling materials to fill the gap between the micro-nano structures on the surface of the super-lens and make the surface of the super-lens smooth, which solves the problem of changing the super-lens when the anti-reflection film is deposited.
  • This method calculates the equivalent refractive index and equivalent extinction coefficient of the filling unit composed of micro-nano structure and filling material, and then obtains the refractive index and extinction coefficient of the filled metalens by weighted average.
  • This method calculates the initial film system result through the obtained refractive index and extinction coefficient of the metalens, and obtains the optimized anti-reflection film system result by optimizing the initial film system result.
  • the anti-reflection coating obtained by the method can increase the transmittance of incident light without affecting the micro-nano structure on the surface of the super-lens, and has no effect on the modulation of incident light by the super-lens.
  • the embodiment of the present application also provides a method for coating a superlens antireflection film, adopting the antireflection film system designed by the design method of any superlens antireflection film in the above-mentioned embodiments, as shown in Figure 5, the coating method includes :
  • Step 1 using the filling material 3 to fill the gaps between the micro-nano structures on the surface of the super-lens, so that the surface of the super-lens after filling is flat.
  • Step 2 coating the surface of the filled metalens.
  • the embodiment of the coating method of the super lens anti-reflection coating provided by the embodiment of the present application is as follows:
  • Step 1 using the filling material 3 selected in the design method of the anti-reflection coating of the super-lens to fill the gap between the micro-nano structures 2 on the surface of the super-lens, and make the surface of the super-lens smooth.
  • step 2 an antireflection coating is formed on the surface of the filled superlens according to the results of the antireflection coating system obtained by the design method of the superlens antireflection coating.
  • the method of forming the anti-reflection film is thermal evaporation.
  • the anti-reflection coating can be a single-layer film or a multi-layer film.
  • FIG. 8 shows a schematic structural diagram of a design device for an anti-reflection coating of a metalens provided by an embodiment of the present application.
  • the design device for the anti-reflection coating of the metalens includes a calculation module 100 for refractive index and extinction coefficient and a module 200 for film system optimization.
  • the refractive index and extinction coefficient calculation module 100 is configured to calculate the refractive index and extinction coefficient of the filled metalens according to the refractive index and extinction coefficient of the micro-nano structure 2 and the filling material 3;
  • the film system optimization module 200 is configured to Calculate the initial film system result 401 based on the refractive index and extinction coefficient of the filled metalens, and perform optimization iterations on the initial film system result 401 to obtain an optimized anti-reflection film system result 402 .
  • FIG. 9 shows a schematic structural diagram of the film system optimization module 200 provided by the embodiment of the present application.
  • the film system optimization module 200 includes a film system calculation module 201 and a finite element analysis module 202 .
  • the film system calculation module 201 is configured to calculate the film system results; the finite element analysis module 202 is configured to obtain the light field phase and transmittance results according to the film system results; the film system calculation module 201 and the finite element analysis module 202 jointly
  • the initial film result 401 calculated by the film calculation module 201 is optimized and iterated to obtain an optimized anti-reflection film result 402 .
  • the refractive index and extinction coefficient calculation module of the design device of the superlens anti-reflection coating in the embodiment of the present application calculates the refractive index and extinction coefficient of the filled superlens according to the refractive index and extinction coefficient of the micro-nano structure and the filling material, the The film system optimization module of the device calculates the initial film system result according to the refractive index and extinction coefficient of the filled metalens, and performs optimization iterations on the initial film system result to obtain the optimized anti-reflection film system result.
  • the embodiment of the present application also provides a super-lens anti-reflection film, using any design method and device design of the super-lens anti-reflection film in the above-mentioned embodiments, the super-lens anti-reflection film is coated on the surface of the super-lens; wherein, the super-lens anti-reflection film
  • the lens includes a base 1, a micro-nano structure 2 and a filling material 3; the antireflection film system includes a single-layer film system or a multi-layer film system.
  • the working wavelength of the anti-reflection coating of the super lens is 450nm-650nm
  • the materials, refractive index n and extinction coefficient k of the substrate 1, the micro-nano structure 2 and the filling material 3 are shown in Table 1.
  • the shape of the micro-nanostructure 2 is cylindrical, and the height is 500nm.
  • the micro-nano structures 2 are arranged on the substrate 1 in a quadrilateral array.
  • the materials of substrate 1 and micro-nano structure 2 are selected as fused silica (Fused Silica) and titanium oxide (TiO 2 ), respectively, and the material of filling material 3 is aluminum oxide (Al 2 O 3 ).
  • step S2 under different wavelengths and different shapes of micro-nanostructures 2, the equivalent refractive index (neff) and The equivalent extinction coefficient (keff), the calculation results are shown in Figure 11 to Figure 16.
  • Figure 11 and Figure 12 respectively show the equivalent refractive index and equivalent extinction coefficient of the filled unit at 450 nm.
  • Figure 13 and Figure 14 respectively show the equivalent refractive index and equivalent extinction coefficient of the filled unit at 550 nm.
  • Figure 15 and Figure 16 respectively show the equivalent refractive index and equivalent extinction coefficient of the filled unit at 650 nm.
  • a metalens design is performed.
  • the designed metalens has a focal length of 20um and a diameter of 50um.
  • the shape of the micro-nano structure 2 is a nano cylinder, the height of the micro-nano structure 2 is 500nm, and the period of the micro-nano structure 2 is 300nm.
  • the calculated refractive index and extinction coefficient of the whole metalens are shown in Fig. 17 and Fig. 18 .
  • an initial film system result 401 is obtained through calculation.
  • the initial film system result 401 is a four-layer film system, and the material of each film along the direction away from the super lens is titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ).
  • the material of each film along the direction away from the super lens is titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ).
  • the initial film system result 401 takes the film close to the metasurface as the first layer, and the films far away from the metasurface are the second, third, and fourth layers in sequence, and the thickness relationship between the films of each layer is at least Satisfy: the fourth layer ⁇ the first layer ⁇ the second layer ⁇ the third layer.
  • the initial film system result 401 is optimized to obtain an optimized AR film system result 402 .
  • the optimized anti-reflection coating system results in 402 six-layer film system, and the materials of each layer of film along the direction away from the super lens are titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), thallium oxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ).
  • the optimized anti-reflection film system results in the film close to the metasurface as the first layer, and the films far away from the metasurface are the second, third, fourth, fifth, and sixth layers in sequence, and the thickness relationship between the films of each layer is at least Satisfy: the fifth floor ⁇ the third floor ⁇ the first floor ⁇ the sixth floor ⁇ the second floor ⁇ the fourth floor.
  • the optimized AR coating system result 402 increases the transmittance of incident light but does not affect the phase of the metalens.
  • the phase and transmittance of the metalens with or without the optimized anti-reflection coating system result 402 are compared, and the results are shown in FIGS. 21 to 26 .
  • the optimized anti-reflection film system result 402 provided in the embodiment of the present application realizes increasing the transmittance of incident light without changing the phase of the metalens.
  • Figure 21 and Figure 22 show the phase and transmittance at 450 nm with and without the optimized AR coating on the metalens, respectively.
  • Figure 23 and Figure 24 show the phase and transmittance at 550 nm with and without the optimized AR coating on the metalens, respectively.
  • Figure 25 and Figure 26 show the phase and transmittance at 650 nm with and without the optimized AR coating on the metalens, respectively. It can be seen from FIGS. 21 to 26 that the optimized anti-reflection coating provided by the embodiment of the present application increases the transmittance of incident light.
  • the design method and device of the superlens antireflection coating provided by the embodiment of the present application and the superlens antireflection coating designed by using the method and device can calculate the equivalent refractive index and extinction coefficient of the filling unit, and then calculate The equivalent refractive index and extinction coefficient of the metalens are obtained, and then the initial film system results are obtained and optimized based on the equivalent refractive index and extinction coefficient of the metalens.
  • the phase of the lens The optimized anti-reflection coating system results in an increase in the transmittance of incident light without changing the phase of the metalens.
  • an embodiment of the present application also provides an electronic device, including a bus, a transceiver, a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the transceiver, the memory, and the processor are respectively Connected through the bus, when the computer program is executed by the processor, the various processes of the above-mentioned embodiment of the method for designing the anti-reflection coating of the super-lens are realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides an electronic device, which includes a bus 1110 , a processor 1120 , a transceiver 1130 , a bus interface 1140 , a memory 1150 and a user interface 1160 .
  • the electronic device further includes: a computer program stored in the memory 1150 and operable on the processor 1120.
  • a computer program stored in the memory 1150 and operable on the processor 1120.
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit.
  • Step S3 obtaining the refractive index and extinction coefficient of the filled metalens based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the obtained initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • the transceiver 1130 is used for receiving and sending data under the control of the processor 1120 .
  • the bus architecture (represented by the bus 1110), the bus 1110 may include any number of interconnected buses and bridges, and the bus 1110 will include one or more processors represented by the processor 1120 and the memory represented by the memory 1150 Various circuits are connected together.
  • Bus 1110 represents one or more of any of several types of bus structures, including a memory bus as well as a memory controller, a peripheral bus, an Accelerated Graphical Port (AGP), a processor, or a A local bus of any bus structure in the bus architecture.
  • bus architectures include: Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Extended ISA (Enhanced ISA, EISA) bus, video electronics Standards Association (Video Electronics Standards Association, VESA), Peripheral Component Interconnect (PCI) bus.
  • the processor 1120 may be an integrated circuit chip with signal processing capabilities.
  • each step of the above-mentioned method embodiment can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processors include: general-purpose processors, central processing units (Central Processing Unit, CPU), network processors (Network Processor, NP), digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD), Programmable Logic Array (Programmable Logic Array, PLA), Microcontroller Unit (Microcontroller Unit, MCU) or other programmable logic devices, discrete gates, transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be a single-core processor or a multi-core processor, and the processor may be integrated in a single chip or located in multiple different chips.
  • Processor 1120 may be a microprocessor or any conventional processor.
  • the method steps disclosed in connection with the embodiments of the present application may be directly executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (Random Access Memory, RAM), flash memory (Flash Memory), read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable Programmable read-only memory (Erasable PROM, EPROM), registers and other readable storage media known in the art.
  • the readable storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • Bus 1110 may also connect together various other circuits, such as peripherals, voltage regulators, or power management circuits, and bus interface 1140 provides an interface between bus 1110 and transceiver 1130, as is known in the art. Therefore, it will not be further described in this embodiment of the present application.
  • Transceiver 1130 may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium. For example: the transceiver 1130 receives external data from other devices, and the transceiver 1130 is used to send the data processed by the processor 1120 to other devices.
  • a user interface 1160 may also be provided such as: touch screen, physical keyboard, display, mouse, speaker, microphone, trackball, joystick, stylus.
  • the memory 1150 may further include a memory that is remotely set relative to the processor 1120, and these remotely set memories may be connected to a server through a network.
  • One or more parts of the above network can be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless local area network (WLAN), a wide area network (WAN), Wireless Wide Area Network (WWAN), Metropolitan Area Network (MAN), Internet (Internet), Public Switched Telephone Network (PSTN), Plain Old Telephone Service Network (POTS), Cellular Telephone Network, Wireless Network, Wireless Fidelity ( Wi-Fi) networks and combinations of two or more of the above networks.
  • VPN virtual private network
  • LAN local area network
  • WLAN wireless local area network
  • WAN wide area network
  • WWAN Wireless Wide Area Network
  • MAN Metropolitan Area Network
  • Internet Internet
  • PSTN Public Switched Telephone Network
  • POTS Plain Old Telephone Service Network
  • Cellular Telephone Network Wireless Network
  • Wireless Fidelity Wi-Fi
  • cellular telephone networks and wireless networks can be Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA) systems, Worldwide Interoperability for Microwave Access (WiMAX) systems, General Packet Radio Service (GPRS) systems, Wideband Code Division Multiple Access (CDMA) systems, Address (WCDMA) system, long-term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, long-term evolution-advanced (LTE-A) system, universal mobile telecommunications (UMTS) system, Enhanced Mobile Broadband (eMBB) system, massive Machine Type of Communication (mMTC) system, Ultra Reliable Low Latency Communications (uRLLC) system, etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • GPRS General Packet Radio Service
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division
  • non-volatile memory includes: read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory (Flash Memory).
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • synchronous connection dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus RAM, DRRAM
  • the memory 1150 of the electronic device described in the embodiment of the present application includes but is not limited to the above-mentioned and any other suitable type of memory.
  • the memory 1150 stores the following elements of the operating system 1151 and the application program 1152: executable modules, data structures, or a subset thereof, or an extended set thereof.
  • the operating system 1151 includes various system programs, such as: framework layer, core library layer, driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 1152 includes various application programs, such as a media player (Media Player) and a browser (Browser), for realizing various application services.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 1152 .
  • Application programs 1152 include: applets, objects, components, logic, data structures, and other computer system-executable instructions that perform particular tasks or implement particular abstract data types.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, each process of the above-mentioned embodiment of the method for designing an anti-reflective coating of a super lens is realized, and The same technical effect can be achieved, so in order to avoid repetition, details will not be repeated here.
  • Step S2 calculating the equivalent refractive index and equivalent extinction coefficient of the filling unit.
  • Step S3 obtaining the refractive index and extinction coefficient of the filled metalens based on the weighted average of the equivalent refractive index and the equivalent extinction coefficient.
  • Step S4 calculate the anti-reflection film system of the metalens based on the refractive index of the metalens and the extinction coefficient of the metalens, and obtain the initial film system result 401 .
  • the obtained initial film system result 401 includes the number of film layers, the thickness of each film layer, and the material of each film layer.
  • Step S5 optimizing the initial film system result 401 to obtain the optimized AR film system result 402 .
  • Computer-readable storage media including: volatile and non-volatile, removable and non-removable media, are tangible devices that retain and store instructions for use by instruction execution devices.
  • Computer-readable storage media include: electronic storage devices, magnetic storage devices, optical storage devices, electromagnetic storage devices, semiconductor storage devices, and any suitable combination of the above.
  • Computer-readable storage media include: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, compact disc read-only memory (CD-ROM), digital versatile disc (DVD ) or other optical storage, magnetic cassette storage, magnetic tape disk storage or other magnetic storage devices, memory sticks, mechanical encoding devices (such as punched cards or raised structures in grooves on which instructions are recorded), or any other A non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • NVRAM Non-volatile random access memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technologies
  • computer-readable storage media do not include transient signals themselves, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (such as light pulses passing through optical fiber cables), or Electrical signals transmitted through wires.
  • the disclosed apparatus, electronic equipment and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined Or can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, and may be located in one location or distributed to multiple network units. Part or all of the units can be selected according to actual needs to solve the problems to be solved by the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage
  • several instructions are included to make a computer device (including: personal computer, server, data center or other network devices) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the above-mentioned storage medium includes various mediums that can store program codes as listed above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种超透镜增透膜的设计方法、装置、电子设备及存储介质,设计方法包括:选取填充材料(S1);计算填充单元的等效折射率与等效消光系数(S2);基于等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数(S3);基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果(S4);优化初始膜系结果,得到优化的增透膜系结果(S5)。通过采用填充材料填充超透镜表面微纳结构之间的间隙并使超透镜表面平整,解决了增透膜沉积时改变超透镜表面入射光相位的问题。该方法获得的增透膜能够在不影响超透镜表面微纳结构,不影响超透镜入射光相位的情况下,增加入射光透过率。

Description

超透镜增透膜的设计方法、装置及电子设备 技术领域
本申请涉及超表面技术领域,具体而言,涉及一种超透镜增透膜的设计和镀膜方法。
背景技术
增透膜是一种沉积在光学镜片表面的薄膜,其原理是使反射光干涉相消,从而达到减反/增透的效果。薄膜可以是单层膜也可以是多层膜,取决于基底材料和工作波段。
相关技术中根据透镜基底的材料设计膜系,采用热蒸镀的方法将设计好的膜系逐层沉积到透镜表面。
相比传统镜片,超透镜的表面具有用来调制入射光相位的微纳结构,采用相关技术设计的膜系在镀膜时会沉积到微纳结构上,还会填充到微纳结构之间的空气间隙中,从而改变超透镜的入射光相位,影响超透镜的光学性能。因此,亟需一种不改变超透镜光学性能的增透膜的设计方法。
发明内容
为解决现有存在的技术问题,本申请实施例提供了一种超透镜增透膜的设计方法、装置及电子设备。
第一方面,本申请实施例提供了一种超透镜增透膜的设计方法,包括:
步骤S1,选取填充材料,所述填充材料用于填充超透镜表面微纳结构之间的空气间隙,每个所述微纳结构和所述每个所述微纳结构周 围的填充材料组成一个填充单元;
步骤S2,计算所述填充单元的等效折射率与等效消光系数;
步骤S3,基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率和消光系数;
步骤S4,基于所述超透镜的折射率和所述超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果;
步骤S5,优化所述初始膜系结果,得到增透膜系结果;所述优化所述初始膜系结果包括:
步骤S501,采用有限元分析对所述初始膜系结果进行分析,得到带膜系超透镜的初始光场相位和初始透过率;
步骤S502,基于所述初始光场相位和所述初始透过率进行最优化迭代,得到优化的增透膜系结果。
可选地,所述计算所述填充单元的等效折射率与等效消光系数包括:
步骤S201,通过占空比法计算所述等效折射率与所述等效消光系数;或
步骤S202,通过直接计算法计算所述等效折射率与所述等效消光系数。
可选地,所述通过占空比法计算所述等效折射率与所述等效消光系数的计算公式如下:
n 1(λ)=ρ′n u(λ)+ρ″n f(λ),
k 1(λ)=ρ′k u(λ)+ρ″k f(λ),
ρ′+ρ″=1,
其中,λ为光的波长、n 1(λ)为计算得到所述填充单元的等效折射率,k 1(λ)为计算得到所述填充单元的等效消光系数;n u(λ)为所述微纳结构的折射率,n f(λ)为所述填充材料的折射率;k u(λ)为所述微纳结构的消光系数,k f(λ)为所述填充材料的消光系数;ρ′为所述微纳结构的面积占所述填充单元面积的比例,ρ″为所述填充材料的面积占所述填充单元面积的比例。
可选地,所述通过直接计算法计算所述等效折射率与所述等效消光系数的计算公式如下:
Figure PCTCN2022129846-appb-000001
Figure PCTCN2022129846-appb-000002
其中,h为所述微纳结构的高度,T 0为入射光的强度,
Figure PCTCN2022129846-appb-000003
为所述填充单元在不同波长下的相位,T(λ)为所述填充单元在不同波长下的透过率。
可选地,所述基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率和消光系数的计算公式如下:
Figure PCTCN2022129846-appb-000004
Figure PCTCN2022129846-appb-000005
其中,c为加权系数,M为整个超透镜所含有的填充单元数,N为选择的波长数,n(λ)为所述等效折射率,k(λ)为所述等效消光系数。
可选地,所述初始膜系结果包括膜层数、每层膜的厚度和每层膜的材料。
可选地,所述最优化迭代包括内点法、最速下降法和牛顿法。
可选地,所述优化的增透膜系结果包括膜层数、每层膜的厚度和每层膜的材料。
可选地,所述最优化迭代包括内点法、最速下降法和牛顿法。
可选地,所述初始膜系结果包括四层膜系;沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。
可选地,所述初始膜系结果以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四层;各层膜之间的厚度关系至少满足:第四层的厚度<第一层的厚度≤第二层的厚度<第三层的厚度。
可选地,所述优化的膜系结果包括六层膜系,沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化铊 (Ta 2O 5)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。
可选地,以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四、五、六层;各层膜之间的厚度关系至少满足:第五层的厚度≤第三层的厚度≤第一层的厚度<第六层的厚度<第二层的厚度≤第四层的厚度。
可选地,所述基底的材料包括硅、硅的氧化物、有机玻璃、碱性玻璃和硫系玻璃中的一种或多种。
可选地,所述微纳结构的材料包括氮化硅、氧化钛、氧化铝、氮化镓、磷化镓、氢化非晶硅、非晶硅和晶体硅中的一种或多种。
可选地,所述填充材料的折射率介于空气的折射率和所述微纳结构的折射率之间。
可选地,所述填充材料包括氧化铝。
第二方面,本申请实施例还提供了一种超透镜增透膜的镀膜方法,所述镀膜方法包括:
步骤一,利用所述填充材料填充超透镜表面所述微纳结构之间的间隙,使填充后的超透镜表面平整;
步骤二,在所述填充后的超透镜表面镀膜。
第三方面,本申请实施例还提供了一种超透镜增透膜的设计装置,包括折射率和消光系数计算模块和膜系优化模块;其中,
所述折射率和消光系数计算模块被配置为计算每个微纳结构(2)和每个微纳结构(2)周围的填充材料(3)组成的填充单元的等效折射率与等效消光系数;并基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率与消光系数;
所述膜系优化模块被配置为根据被填充的超透镜的折射率和消光系数计算初始膜系结果,并对所述初始膜系结果进行最优化迭代得到增透膜系结果;所述膜系优化模块包括膜系计算模块和有限元分析模块;其中,
所述膜系计算模块被配置为计算膜系结果;
所述有限元分析模块被配置为根据膜系结果得到光场相位和透 过率结果;
所述膜系计算模块和所述有限元分析模块联合对所述膜系计算模块计算的所述初始膜系结果进行最优化迭代,得到增透膜系结果。
第四方面,本申请实施例还提供了一种超透镜增透膜,采用上述任一超透镜增透膜的设计方法设计。
第五方面,本申请实施例还提供了一种超透镜,包括上述任一超透镜增透膜的设计方法设计的超透镜增透膜。
本申请实施例还提供了一种电子设备,包括总线、收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述收发器、所述存储器和所述处理器通过所述总线相连,其特征在于,所述计算机程序被所述处理器执行时实现上述任一所述的超透镜增透膜的设计方法中的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上述任一所述的超透镜增透膜的设计方法中的步骤。
本申请实施例提供的超透镜增透膜的设计、装置及电子设备,所提供的技术方案取得的有益效果至少包括:
本申请实施例提供的超透镜增透膜的设计方法采用填充材料填充超透镜表面微纳结构之间的间隙并使超透镜表面平整,解决了增透膜沉积时改变超透镜表面入射光相位的问题。该方法通过计算微纳结构和填充材料组成的填充单元的等效折射率和等效消光系数,进而加权平均获得了被填充超透镜的折射率和消光系数。该方法通过获得的超透镜的折射率和消光系数计算出初始膜系结果,并通过优化初始膜系结果获得优化的增透膜系结果。该方法获得的增透膜能够增加入射光透过率并不影响超透镜表面微纳结构,对超透镜调制入射光没有影响。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1示出了本申请实施例所提供的一种超透镜的结构示意图;
图2示出了本申请实施例所提供的一种超透镜镀膜的一种可选的结构示意图;
图3示出了本申请实施例所提供的一种超透镜增透膜的设计方法的流程图;
图4示出了本申请实施例所提供的填充单元的结构示意图;
图5示出了本申请实施例所提供的超透镜增透膜的镀膜方法的流程图;
图6示出了本申请实施例所提供的超透镜增透膜的一种可选的示意图;
图7示出了本申请实施例所提供的直接计算法的相位和透过率与入射光波长的关系;
图8示出了本申请实施例提供的超透镜增透膜的设计装置的一种可选的示意图;
图9示出了本申请实施例提供的膜系优化模块的一种可选的示意图;
图10示出了本申请实施例提供的微纳结构的一种可选的排列方式;
图11示出了本申请实施例提供的一种可选的填充单元在波长0.45μm下的等效折射率;
图12示出了本申请实施例提供的一种可选的填充单元在波长0.45μm下的等效消光系数;
图13示出了本申请实施例提供的一种可选的填充单元在波长0.55μm下的等效折射率;
图14示出了本申请实施例提供的一种可选的填充单元在波长0.55μm下的等效消光系数;
图15示出了本申请实施例提供的一种可选的填充单元在波长0.65μm下的等效折射率;
图16示出了本申请实施例提供的一种可选的填充单元在波长0.65μm下的等效消光系数;
图17示出了本申请实施例提供的一种可选的超透镜等效折射率;
图18示出了本申请实施例提供的一种可选的超透镜等效消光系数;
图19示出了本申请实施例提供的初始膜系结果的一种可选的结构示意图;
图20示出了本申请实施例提供的优化的膜系结果的一种可选的结构示意图;
图21示出了波长0.45μm下不含优化的增透膜系结果的超透镜的透过率和相位;
图22示出了波长0.45μm下含优化的增透膜系结果的超透镜的透过率和相位;
图23示出了波长0.55μm下不含优化的增透膜系结果的超透镜的透过率和相位;
图24示出了波长0.55μm下含优化的增透膜系结果的超透镜的透过率和相位;
图25示出了波长0.65μm下不含优化的增透膜系结果的超透镜的透过率和相位;
图26示出了波长0.65μm下含优化的增透膜系结果的超透镜的透过率和相位;
图27示出了本申请实施例提供的电子设备的一种可选的示意图。
图中附图标记分别表示:
1-基底;2-微纳结构;3-填充材料;401-初始膜系结果;402-优化的膜系结果。
具体实施方式
在本发明实施例的描述中,所属技术领域的技术人员应当知道,本发明实施例可以实现为方法、装置、电子设备及计算机可读存储介质。因此,本发明实施例可以具体实现为以下形式:完全的硬件、完全的软件(包括固件、驻留软件、微代码等)、硬件和软件结合的形式。此外,在一些实施例中,本发明实施例还可以实现为在一个或多个计算机可读存储介质中的计算机程序产品的形式,该计算机可读存储介质中包含计算机程序代码。
上述计算机可读存储介质可以采用一个或多个计算机可读存储介质的任意组合。计算机可读存储介质包括:电、磁、光、电磁、红外或半导体的系统、装置或器件,或者以上任意的组合。计算机可读存储介质更具体的例子包括:便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、闪存(Flash Memory)、光纤、光盘只读存储器(CD-ROM)、光存储器件、磁存储器件或以上任意组合。在本发明实施例中,计算机可读存储介质可以是任意包含或存储程序的有形介质,该程序可以被指令执行系统、装置、器件使用或与其结合使用。
上述计算机可读存储介质包含的计算机程序代码可以用任意适当的介质传输,包括:无线、电线、光缆、射频(Radio Frequency,RF)或者以上任意合适的组合。
可以以汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、集成电路配置数据或以一种或多种程序设计语言或其组合来编写用于执行本发明实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,例如:Java、Smalltalk、C++,还包括常规的过程式程序设计语言,例如:C语言或类似的程序设计语言。计算机程序代码可以完全的在用户计算机上执行、部分的在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行以及完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机 可以通过任意种类的网络,包括:局域网(LAN)或广域网(WAN),可以连接到用户计算机,也可以连接到外部计算机。
本发明实施例通过流程图和/或方框图描述所提供的方法、装置、电子设备。
应当理解,流程图和/或方框图的每个方框以及流程图和/或方框图中各方框的组合,都可以由计算机可读程序指令实现。这些计算机可读程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,从而生产出一种机器,这些计算机可读程序指令通过计算机或其他可编程数据处理装置执行,产生了实现流程图和/或方框图中的方框规定的功能/操作的装置。
也可以将这些计算机可读程序指令存储在能使得计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储介质中。这样,存储在计算机可读存储介质中的指令就产生出一个包括实现流程图和/或方框图中的方框规定的功能/操作的指令装置产品。
也可以将计算机可读程序指令加载到计算机、其他可编程数据处理装置或其他设备上,使得在计算机、其他可编程数据处理装置或其他设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机或其他可编程数据处理装置上执行的指令能够提供实现流程图和/或方框图中的方框规定的功能/操作的过程。
下面结合本申请实施例中的附图对本申请实施例进行描述。
超透镜是指表面为超表面的透镜。如图1所示,超透镜包括基底1和微纳结构2,微纳结构2用于对入射光相位进行调制。采用传统方法根据超透镜基底材料设计的增透膜在镀膜时,设计好的膜系会沉积在微纳结构2上,并会填充到微纳结构2之间的空气间隙中,从而改变了超透镜表面微纳结构2和空气组成的结构,进而改变了入射光相位,影响超透镜的光学性能。并且,由于超透镜表面微纳结构的存在,在沉积膜系时,受到空气间隙以及微纳结构占空比的影响,沉积得到的膜的厚度不均匀、平整度不好,不适用于量产。
本申请实施例提供了一种超透镜增透膜的设计方法,在增透膜设 计过程中,将微纳结构之间的间隙填充为其他材料,在设计时将填充材料与微纳结构等效成平面透镜。图3示出了本申请实施例所提供的一种超透镜增透膜的设计方法的流程图。如图2和图3所示,该方法包括:
步骤S1,选取填充材料3,该填充材料3用于填充超透镜表面微纳结构2之间的空气间隙并使超透镜表面平整。填充材料3的折射率介于空气的折射率和微纳结构2的折射率之间,优选地,填充材料3的折射率远小于微纳结构2的折射率。每个微纳结构2和每个微纳结构周围的填充材料3组成一个填充单元,填充单元的结构参见图4。
步骤S2,计算填充单元的等效折射率与等效消光系数。
步骤S3,基于等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。例如,计算整个超透镜所含的填充单元的等效折射率与等效消光系数。优选地,加权系数对于在某些波段具有低透过率的微纳结构进行倾斜,以保证整个波段具有比较高且均一的透过率。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。示例性地,得到的初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S5,优化初始膜系结果,得到优化的增透膜系结果402。示例性地,增透膜系结果包括膜层数、每层膜的厚度和每层膜的材料。
示例性地,初始膜系结果401和优化的增透膜系结果402可以是单层膜,也可以如图6所示,是多层膜,例如HLH,LHL,LHLH等。需要说明的是,L表示低折射率膜层,H表示高折射率膜层。
在一些实施例中,基底1的材料包括在目标波段光谱上具有至少大约20%、至少大约30%、至少大约40%、至少大约50%、至少大约60%、至少大约70%、至少大约80%、至少大约85%、至少大约90%或至少大约95%的透光率的材料。示例性地,基底1的材料包括硅、硅的氧化物、有机玻璃、碱性玻璃和硫系玻璃中的一种或多种。可选地,微纳结构2的材料包括氮化硅、氧化钛、氧化铝、氮化镓、 磷化镓、氢化非晶硅、非晶硅和晶体硅中的一种或多种。示例性地,微纳结构2的纵横比(例如,微纳结构2的高度与宽度的比率或者微纳结构2的高度与直径的比率)可以大于1、至少大约1.5:1、至少大约2:1、至少大约3:1、至少大约4:1、至少大约5:1、至少大约6:1,或至少大约10:1。可选地,微纳结构2的纵横比小于或等于1。
具体而言,本申请实施例提供的超透镜增透膜的设计方法的实施方式如下:
步骤S1,选取填充材料3为氧化铝(Al 2O 3),氧化铝具有高透明度,用于填充超透镜表面微纳结构之间的空气间隙,每个微纳结构和每个微纳结构周围的氧化铝组成一个填充单元。
步骤S2,计算整个超透镜上所有填充单元的等效折射率与等效消光系数。
步骤S3,基于整个超透镜上所有填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
在一种示例的实施例中,对微纳结构2呈均一阵列分布的超透镜,本申请实施例提供的超透镜增透膜的设计方法的实施方式如下:
步骤S1,选取填充材料3为氧化铝(Al 2O 3),氧化铝具有高透明度,用于填充超透镜表面微纳结构之间的空气间隙,每个微纳结构和每个微纳结构周围的氧化铝组成一个填充单元。
步骤S2,计算超透镜上部分填充单元的等效折射率与等效消光系数。例如,计算超透镜上60%的填充单元的等效折射率与等效消光系数。例如,对结构相同的微纳结构2和其周围的填充材料3组成的填充单元只进行一次计算,而不是进行重复计算。再例如,根据超透镜上微纳结构2的排列,将相邻的填充单元组成一个超结构单元,计算出一个超结构单元的等效折射率和等效消光系数,从而根据超结构单元推出整个超透镜的等效折射率和等效消光系数。示例性地,根据超 透镜上微纳结构2的排列,以正六边形将整个超透镜分割,计算出每个正六边形的等效折射率从而得到整个超透镜的等效折射率。
步骤S3,基于超透镜上部分填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
应理解,在本申请实施例中,填充材料3包括但不限于氧化铝。填充材料3的选择应该是对目标波段的辐射具有高透过率的材料。本申请实施例中,超透镜的目标波段包括但不限于可见光、近红外光、中红外光、远红外光和紫外光。
在本申请实施例中,可选地,计算填充单元的等效折射率与等效消光系数包括:
步骤S201,通过占空比法计算填充单元的等效折射率与等效消光系数;或
步骤S202,通过直接计算法计算填充单元的等效折射率与等效消光系数。
在本申请实施例中,可选地,通过占空比法计算填充单元的等效折射率与等效消光系数的实施方式如下:
占空比法是根据微纳结构2的折射率和消光系数、填充材料3的折射率和消光系数以及微纳结构2和填充材料3在填充单元中所占的比例计算由微纳结构2和填充材料3组成的填充单元的等效折射率和等效消光系数,计算公式如公式(1)、公式(2)和公式(3)所示:
n 1(λ)=ρ′n u(λ)+ρ″n f(λ),   (1)
k 1(λ)=ρ′k u(λ)+ρ″k f(λ),   (2)
ρ′+ρ″=1,    (3)
其中,λ为光的波长、n 1(λ)为计算得到填充单元的等效折射率,k 1(λ)为计算得到填充单元的等效消光系数;n u(λ)为微纳结构2的折射率,n f(λ)为填充材料3的折射率;k u(λ)为微纳结构2的消光系数,k f(λ) 为填充材料3的消光系数;ρ′为微纳结构2的面积占填充单元面积的比例,ρ″为所述填充材料3的面积占所述填充单元面积的比例。
示例性地,本申请实施例提供的超透镜增透膜的设计方法的实施方式如下:
步骤S1,选取填充材料3,该填充材料3用于填充超透镜表面微纳结构2之间的空气间隙,每个微纳结构2和每个微纳结构周围的填充材料3组成一个填充单元,填充单元的结构参见图4。
步骤S201,通过占空比法计算填充单元的等效折射率与等效消光系数。根据微纳结构2的折射率和消光系数、填充材料3的折射率和消光系数以及微纳结构2和填充材料3在填充单元中所占的比例结合公式(1)、公式(2)和公式(3)计算由微纳结构2和填充材料3组成的填充单元的等效折射率和等效消光系数。
步骤S3,基于填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。例如,计算整个超透镜所含的填充单元的等效折射率与等效消光系数。优选地,加权系数对于在某些波段具有低透过率的微纳结构进行倾斜,以保证整个波段具有比较高且均一的透过率。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。示例性地,得到的初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
在本申请实施例中,可选地,通过直接计算法计算填充单元的等效折射率与等效消光系数的实施方式如下:
采用有限元分析法直接计算填充单元在不同波长下的相位
Figure PCTCN2022129846-appb-000006
和透过率T(λ)。根据公式(4)和公式(5)获得不同波长下的相位
Figure PCTCN2022129846-appb-000007
和透过率T(λ)的曲线如图7所示,利用切线法获得任一波长对应的折射率n 1(λ),由消光系数的定义直接得到任一波长对应的消光系数k 1(λ)。公式(4)和公式(5)如下:
Figure PCTCN2022129846-appb-000008
Figure PCTCN2022129846-appb-000009
其中,h为微纳结构2的高度,T 0为入射光的强度,
Figure PCTCN2022129846-appb-000010
为填充单元在不同波长下的相位,T(λ)为填充单元在不同波长下的透过率。
示例性地,示例性地,本申请实施例提供的超透镜增透膜的设计方法的实施方式如下:
步骤S1,选取填充材料3,该填充材料3用于填充超透镜表面微纳结构2之间的空气间隙,每个微纳结构2和每个微纳结构周围的填充材料3组成一个填充单元,填充单元的结构参见图4。
步骤S202,通过直接计算法计算填充单元的等效折射率与等效消光系数。采用有限元分析法直接计算填充单元在不同波长下的相位
Figure PCTCN2022129846-appb-000011
和透过率T(λ)。采用相位
Figure PCTCN2022129846-appb-000012
和透过率T(λ)结合公式(4)、公式(5)计算由微纳结构2和填充材料3组成的填充单元的等效折射率和等效消光系数。
步骤S3,基于填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。例如,计算整个超透镜所含的填充单元的等效折射率与等效消光系数。优选地,加权系数对于在某些波段具有低透过率的微纳结构进行倾斜,以保证整个波段具有比较高且均一的透过率。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。示例性地,得到的初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
在一种可选的实施方式中,本申请实施例提供的超透镜增透膜的设计方法基于填充单元的等效折射率和等效消光系数加权平均获得被填充的超透镜的折射率和消光系数,计算公式如下:
Figure PCTCN2022129846-appb-000013
Figure PCTCN2022129846-appb-000014
其中,C ij为加权系数,1≤i≤M,1≤j≤N,M为整个超透镜所含有的 填充单元数,N为选择的波长数,n(λ j)为所述被填充的超透镜在第j个波长的等效折射率,k(λ j)为所述被填充的超透镜在第j个波长的等效消光系数,n ij)为M个所述填充单元中第i个填充单元在第j个波长的等效折射率,k ij)为M个所述填充单元中第i个填充单元在第j个波长的等效消光系数。
优选地,加权系数C ij可以对某些波段具有低透过率的部分微纳结构2进行倾斜,以保证超透镜在全谱段的均一性和高透过率。
在一种可选的实施方式中,本申请实施例提供的超透镜增透膜的设计方法基于步骤S3中加权平均所得的整个超透镜的折射率和消光系数计算得到初始膜系结果401。
示例性地,利用膜系设计软件(例如TFCalc)计算得出初始膜系结果401。可选地,初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
在一种可选的实施方式中,本申请实施例提供的超透镜增透膜的设计方法对初始膜系结果401进行优化,得到优化的增透膜系结果402。优化过程包括:
步骤S501,利用有限元分析对初始膜系结果401进行分析,得到带膜系超透镜的初始光场相位和初始透过率。
步骤S502,基于初始光场相位和初始透过率进行最优化迭代,得到优化的增透膜系结果402。
可选地,最优化迭代包括内点法、最速下降法和牛顿法。
示例性地,本申请实施例提供的超透镜增透膜的设计方法包括:
步骤S1,选取填充材料3为氧化铝(Al 2O 3),氧化铝具有高透明度,用于填充超透镜表面微纳结构之间的空气间隙,每个微纳结构和每个微纳结构周围的氧化铝组成一个填充单元。
步骤S201,通过占空比法计算填充单元的等效折射率与等效消光系数。
步骤S3,基于整个超透镜上所有填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。其中,初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S501,利用有限元分析对初始膜系结果401进行分析,得到带膜系超透镜的初始光场相位和初始透过率。
步骤S502,基于初始光场相位和初始透过率进行最优化迭代,例如,利用内点法进行最优化迭代,得到优化的增透膜系结果402。
示例性地,本申请实施例提供的超透镜增透膜的设计方法包括:
步骤S1,选取填充材料3为氧化铝(Al 2O 3),氧化铝具有高透明度,用于填充超透镜表面微纳结构之间的空气间隙,每个微纳结构和每个微纳结构周围的氧化铝组成一个填充单元。
步骤S202,通过直接计算法计算填充单元的等效折射率与等效消光系数。
步骤S3,基于整个超透镜上所有填充单元的等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。其中,初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S501,利用有限元分析对初始膜系结果401进行分析,得到带膜系超透镜的初始光场相位和初始透过率。
步骤S502,基于初始光场相位和初始透过率进行最优化迭代,例如,利用牛顿法进行最优化迭代,得到优化的增透膜系结果402。
应理解,本申请实施例仅以填充材料3为氧化铝为例进行说明,但本申请实施例并不限于此,例如,填充材料3还可以是氮化镓。
综上所述,本申请实施例的超透镜增透膜的设计方法,采用填充材料填充超透镜表面微纳结构之间的间隙并使超透镜表面平整,解决了增透膜沉积时改变超透镜表面入射光相位的问题。该方法通过计算微纳结构和填充材料组成的填充单元的等效折射率和等效消光系数,进而加权平均获得了被填充超透镜的折射率和消光系数。该方法通过 获得的超透镜的折射率和消光系数计算出初始膜系结果,并通过优化初始膜系结果获得优化的增透膜系结果。该方法获得的增透膜能够增加入射光透过率并不影响超透镜表面微纳结构,对超透镜调制入射光没有影响。
本申请实施例还提供了一种超透镜增透膜的镀膜方法,采用上述实施例中任一超透镜增透膜的设计方法设计的增透膜系,如图5所示,该镀膜方法包括:
步骤一,利用填充材料3填充超透镜表面微纳结构之间的间隙,使填充后的超透镜表面平整。
步骤二,在填充后的超透镜表面镀膜。
示例性地,本申请实施例提供的超透镜增透膜的镀膜方法的实施方式如下:
步骤一,利用超透镜增透膜的设计方法中选取的填充材料3填充超透镜表面微纳结构2之间的间隙,并使超透镜的表面平整。
步骤二,依据超透镜增透膜的设计方法获得的增透膜系结果,在被填充的超透镜表面形成增透膜。
可选地,形成增透膜的方法为热蒸镀。可选地,增透膜可以是单层膜也可以是多层膜。
上文结合图3至图7,详细描述了本申请实施例提供的超透镜增透膜的设计方法,该方法也可以通过相应的装置实现,下面将结合图8和图9,详细描述本申请实施例提供的超透镜增透膜的设计装置。
图8示出了本申请实施例所提供的一种超透镜增透膜的设计装置的结构示意图。如图8所示,该超透镜增透膜的设计装置包括折射率和消光系数计算模块100和膜系优化模块200。
其中,折射率和消光系数计算模块100被配置为根据微纳结构2和填充材料3的折射率和消光系数计算被填充的超透镜的折射率和消光系数;膜系优化模块200被配置为根据被填充的超透镜的折射率和消光系数计算初始膜系结果401,并对初始膜系结果401进行最优化迭代得到优化的增透膜系结果402。
图9示出了本申请实施例所提供的膜系优化模块200的结构示意图。如图9所示,该膜系优化模块200包括膜系计算模块201和有限元分析模块202。
其中,膜系计算模块201被配置为计算膜系结果;有限元分析模块202被配置为根据膜系结果得到光场相位和透过率结果;膜系计算模块201和有限元分析模块202联合对膜系计算模块201计算的初始膜系结果401进行最优化迭代,得到优化的增透膜系结果402。
因此,本申请实施例的超透镜增透膜的设计装置的折射率和消光系数计算模块根据微纳结构和填充材料的折射率和消光系数计算被填充的超透镜的折射率和消光系数,该装置的膜系优化模块根据被填充的超透镜的折射率和消光系数计算初始膜系结果并对初始膜系结果进行最优化迭代获得优化的增透膜系结果。
本申请实施例还提供了一种超透镜增透膜,采用上述实施例中任一超透镜增透膜的设计方法及装置设计,该超透镜增透膜涂覆于超透镜表面;其中,超透镜包括基底1、微纳结构2和填充材料3;增透膜系包括单层膜系或多层膜系。
示例性地,该超透镜增透膜的工作波长在450nm-650nm,基底1、微纳结构2和填充材料3的材料、折射率n和消光系数k如表1所示。微纳结构2的形状为圆柱形,高度为500nm。如图10所示,微纳结构2呈四边形阵列排布在基底1上。
表1
Figure PCTCN2022129846-appb-000015
根据步骤S1及表1,选取基底1和微纳结构2的材质分别为熔融石英(Fused Silica)和氧化钛(TiO 2),填充材料3的材料为氧化铝(Al 2O 3)。
根据步骤S2,采用占空比法和直接计算法计算不同波长和不同微纳结构2的形状下,基底1、微纳结构2和填充材料3组成的填充单元的等效折射率(neff)和等效消光系数(keff),计算结果如图11至图16所示。图11和图12分别示出了填充单元在450nm下的等效折射率和等效消光系数。图13和图14分别示出了填充单元在550nm下的等效折射率和等效消光系数。图15和图16分别示出了填充单元在650nm下的等效折射率和等效消光系数。
根据步骤S3,基于图11至图16所示的结果,进行超透镜设计。设计超透镜焦距为20um,直径为50um。微纳结构2的形状为纳米圆柱,微纳结构2的高度为500nm,微纳结构2的周期为300nm。计算可得整个超透镜的折射率和消光系数如图17和图18所示。
根据步骤S4,基于图17和图18所示的超透镜的折射率和消光系数,计算获得初始膜系结果401。其中,初始膜系结果401为四层膜系,沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。示例性地,如图19所示,初始膜系结果401以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四层,各层膜之间的厚度关系至少满足:第四层<第一层≤第二层<第三层。
根据步骤S5,如图20所示,优化初始膜系结果401得到优化的增透膜系结果402。其中,优化的增透膜系结果402六层膜系,沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化铊(Ta 2O 5)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。示例性地,优化的增透膜系结果以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四、五、六层,各层膜之间的厚度关系至少满足:第五层≤第三层≤第一层<第六层<第二层≤第四层。
优化的增透膜系结果402增加了入射光的透过率但不影响超透镜 的相位。示例性地,通过设置对比试验,对比超透镜上有无优化的增透膜系结果402的情况下相位和透过率,结果如图21至图26所示。本申请实施例提供的优化的增透膜系结果402实现了在不改变超透镜相位的基础上增加入射光的透过率。图21和图22分别示出了超透镜上有无优化的增透膜在450nm下的相位和透过率。图23和图24分别示出了超透镜上有无优化的增透膜在550nm下的相位和透过率。图25和图26分别示出了超透镜上有无优化的增透膜在650nm下的相位和透过率。由图21至26可知,本申请实施例提供的优化的增透膜增加了入射光的透射率。
综上所述,本申请实施例提供的超透镜增透膜的设计方法及装置以及采用该方法和装置设计的超透镜增透膜,通过计算填充单元的等效折射率和消光系数,进而计算出超透镜的等效折射率和消光系数,然后基于超透镜的等效折射率和消光系数得到初始膜系结果并优化,避免了因增透膜沉积在微纳结构之间的间隙而改变超透镜的相位。优化后的增透膜系结果提高了入射光的透过率并不改变超透镜的相位。
此外,本申请实施例还提供了一种电子设备,包括总线、收发器、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,该收发器、该存储器和处理器分别通过总线相连,计算机程序被处理器执行时实现上述超透镜增透膜的设计方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,参见图27所示,本申请实施例还提供了一种电子设备,该电子设备包括总线1110、处理器1120、收发器1130、总线接口1140、存储器1150和用户接口1160。
在本申请实施例中,该电子设备还包括:存储在存储器1150上并可在处理器1120上运行的计算机程序,计算机程序被处理器1120执行时实现以下步骤:
步骤S2,计算填充单元的等效折射率与等效消光系数。
步骤S3,基于等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。示例性地,得到的初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
收发器1130,用于在处理器1120的控制下接收和发送数据。
本申请实施例中,总线架构(用总线1110来代表),总线1110可以包括任意数量互联的总线和桥,总线1110将包括由处理器1120代表的一个或多个处理器与存储器1150代表的存储器的各种电路连接在一起。
总线1110表示若干类型的总线结构中的任何一种总线结构中的一个或多个,包括存储器总线以及存储器控制器、外围总线、加速图形端口(Accelerate Graphical Port,AGP)、处理器或使用各种总线体系结构中的任意总线结构的局域总线。作为示例而非限制,这样的体系结构包括:工业标准体系结构(Industry Standard Architecture,ISA)总线、微通道体系结构(Micro Channel Architecture,MCA)总线、扩展ISA(Enhanced ISA,EISA)总线、视频电子标准协会(Video Electronics Standards Association,VESA)、外围部件互连(Peripheral Component Interconnect,PCI)总线。
处理器1120可以是一种集成电路芯片,具有信号处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中硬件的集成逻辑电路或软件形式的指令完成。上述的处理器包括:通用处理器、中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、可编程逻辑阵列(Programmable Logic Array,PLA)、微控制单元(Microcontroller Unit,MCU)或其他可编程逻辑器件、分立门、晶体管逻辑器件、分立硬件组件。可以实现或执行本申请实施例中公开 的各方法、步骤及逻辑框图。例如,处理器可以是单核处理器或多核处理器,处理器可以集成于单颗芯片或位于多颗不同的芯片。
处理器1120可以是微处理器或任何常规的处理器。结合本申请实施例所公开的方法步骤可以直接由硬件译码处理器执行完成,或者由译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存(Flash Memory)、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、寄存器等本领域公知的可读存储介质中。所述可读存储介质位于存储器中,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
总线1110还可以将,例如外围设备、稳压器或功率管理电路等各种其他电路连接在一起,总线接口1140在总线1110和收发器1130之间提供接口,这些都是本领域所公知的。因此,本申请实施例不再对其进行进一步描述。
收发器1130可以是一个元件,也可以是多个元件,例如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发器1130从其他设备接收外部数据,收发器1130用于将处理器1120处理后的数据发送给其他设备。取决于计算机系统的性质,还可以提供用户接口1160,例如:触摸屏、物理键盘、显示器、鼠标、扬声器、麦克风、轨迹球、操纵杆、触控笔。
应理解,在本申请实施例中,存储器1150可进一步包括相对于处理器1120远程设置的存储器,这些远程设置的存储器可以通过网络连接至服务器。上述网络的一个或多个部分可以是自组织网络(ad hoc network)、内联网(intranet)、外联网(extranet)、虚拟专用网(VPN)、局域网(LAN)、无线局域网(WLAN)、广域网(WAN)、无线广域网(WWAN)、城域网(MAN)、互联网(Internet)、公共交换电话网(PSTN)、普通老式电话业务网(POTS)、蜂窝电话网、无线网络、无线保真(Wi-Fi)网络以及两个或更多个上述网络的组合。例如,蜂 窝电话网和无线网络可以是全球移动通信(GSM)系统、码分多址(CDMA)系统、全球微波互联接入(WiMAX)系统、通用分组无线业务(GPRS)系统、宽带码分多址(WCDMA)系统、长期演进(LTE)系统、LTE频分双工(FDD)系统、LTE时分双工(TDD)系统、先进长期演进(LTE-A)系统、通用移动通信(UMTS)系统、增强移动宽带(Enhance Mobile Broadband,eMBB)系统、海量机器类通信(massive Machine Type of Communication,mMTC)系统、超可靠低时延通信(Ultra Reliable Low Latency Communications,uRLLC)系统等。
应理解,本申请实施例中的存储器1150可以是易失性存储器或非易失性存储器,或可包括易失性存储器和非易失性存储器两者。其中,非易失性存储器包括:只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存(Flash Memory)。
易失性存储器包括:随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如:静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例描述的电子设备的存储器1150包括但不限于上述和任意其他适合类型的存储器。
在本申请实施例中,存储器1150存储了操作系统1151和应用程序1152的如下元素:可执行模块、数据结构,或者其子集,或者其扩展集。
具体而言,操作系统1151包含各种系统程序,例如:框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序1152包含各种应用程序,例如:媒体播放器(Media Player)、浏览器(Browser),用于实现各种应用业务。实现本申请实施例方法的程序可以包含在应用程序1152中。应用程序1152包括:小程序、对象、组件、逻辑、数据结构以及其他执行特定任务或实现特定抽象数据类型的计算机系统可执行指令。
此外,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述超透镜增透膜的设计方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体而言,计算机程序被处理器执行时可实现以下步骤:
步骤S2,计算填充单元的等效折射率与等效消光系数。
步骤S3,基于等效折射率与等效消光系数加权平均获得被填充的超透镜的折射率和消光系数。
步骤S4,基于超透镜的折射率和超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果401。示例性地,得到的初始膜系结果401包括膜层数、每层膜的厚度和每层膜的材料。
步骤S5,优化初始膜系结果401,得到优化的增透膜系结果402。
计算机可读存储介质包括:永久性和非永久性、可移动和非可移动媒体,是可以保留和存储供指令执行设备所使用指令的有形设备。计算机可读存储介质包括:电子存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备以及上述任意合适的组合。计算机可读存储介质包括:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、非易失性随机存取存储器(NVRAM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带存储、磁带磁盘存储或其他磁性存储设备、记忆棒、机械 编码装置(例如在其上记录有指令的凹槽中的穿孔卡或凸起结构)或任何其他非传输介质、可用于存储可以被计算设备访问的信息。按照本申请实施例中的界定,计算机可读存储介质不包括暂时信号本身,例如无线电波或其他自由传播的电磁波、通过波导或其他传输介质传播的电磁波(例如穿过光纤电缆的光脉冲)或通过导线传输的电信号。
在本申请所提供的几个实施例中,应该理解到,所披露的装置、电子设备和方法,可以通过其他的方式实现。例如,以上描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的、机械的或其他的形式连接。
所述作为分离部件说明的单元可以是或也可以不是物理上分开的,作为单元显示的部件可以是或也可以不是物理单元,既可以位于一个位置,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或全部单元来解决本申请实施例方案要解决的问题。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术作出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(包括:个人计算机、服务器、数据中心或其他网络设备)执行本申请各个实施例所述方法的全部或部分步骤。而上述存储介质包括如前述所列举的各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例披露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种超透镜增透膜的设计方法,其特征在于,所述方法包括:
    步骤S1,选取填充材料(3),所述填充材料(3)用于填充超透镜表面微纳结构(2)之间的空气间隙并使超透镜表面平整;每个所述微纳结构(2)和所述每个所述微纳结构(2)周围的填充材料(3)组成一个填充单元;
    步骤S2,计算所述填充单元的等效折射率与等效消光系数;
    步骤S3,基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率和消光系数;
    步骤S4,基于所述超透镜的折射率和所述超透镜的消光系数计算超透镜的增透膜系,得到初始膜系结果(401);
    步骤S5,优化所述初始膜系结果(401),得到优化的增透膜系结果(402);所述优化所述初始膜系结果(401)包括:
    步骤S501,采用有限元分析对所述初始膜系结果(401)进行分析,得到带膜系超透镜的初始光场相位和初始透过率;
    步骤S502,基于所述初始光场相位和所述初始透过率进行最优化迭代,得到优化的增透膜系结果(402)。
  2. 根据权利要求1所述的方法,其特征在于,所述计算所述填充单元的等效折射率与等效消光系数包括:
    步骤S201,通过占空比法计算所述等效折射率与所述等效消光系数;或
    步骤S202,通过直接计算法计算所述等效折射率与所述等效消光系数。
  3. 根据权利要求2所述的方法,其特征在于,所述通过占空比法计算所述等效折射率与所述等效消光系数的计算公式如下:
    n 1(λ)=ρ′n u(λ)+ρ″n f(λ),
    k 1(λ)=ρ′k u(λ)+ρ″k f(λ),
    ρ′+ρ″=1,
    其中,λ为光的波长、n 1(λ)为计算得到所述填充单元的等效折射 率,k 1(λ)为计算得到所述填充单元的等效消光系数;n u(λ)为所述微纳结构(2)的折射率,n f(λ)为所述填充材料(3)的折射率;k u(λ)为所述微纳结构(2)的消光系数,k f(λ)为所述填充材料(3)的消光系数;ρ′为所述微纳结构(2)的面积占所述填充单元面积的比例,ρ″为所述填充材料(3)的面积占所述填充单元面积的比例。
  4. 根据权利要求2所述的方法,其特征在于,所述通过直接计算法计算所述等效折射率与所述等效消光系数的计算公式如下:
    Figure PCTCN2022129846-appb-100001
    Figure PCTCN2022129846-appb-100002
    其中,h为所述微纳结构的高度,T 0为入射光的强度,
    Figure PCTCN2022129846-appb-100003
    为所述填充单元在不同波长下的相位,T(λ)为所述填充单元在不同波长下的透过率。
  5. 根据权利要求1所述的方法,其特征在于,所述基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率和消光系数的计算公式如下:
    Figure PCTCN2022129846-appb-100004
    Figure PCTCN2022129846-appb-100005
    其中,c为加权系数,M为整个超透镜所含有的填充单元数,N为选择的波长数,n(λ)为所述等效折射率,k(λ)为所述等效消光系数。
  6. 根据权利要求1所述的方法,其特征在于,所述初始膜系结果(401)包括膜层数、每层膜的厚度和每层膜的材料。
  7. 根据权利要求1所述的方法,其特征在于,所述最优化迭代包括内点法、最速下降法和牛顿法。
  8. 根据权利要求1所述的方法,其特征在于,所述优化的增透膜系结果(402)包括膜层数、每层膜的厚度和每层膜的材料。
  9. 如权利要求6所述的方法,其特征在于,所述初始膜系结果 (401)包括四层膜系;沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。
  10. 如权利要求9所述的方法,其特征在于,所述初始膜系结果(401)以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四层;各层膜之间的厚度关系至少满足:第四层的厚度<第一层的厚度≤第二层的厚度<第三层的厚度。
  11. 如权利要求8所述的方法,其特征在于,所述优化的增透膜系结果(402)包括六层膜系,沿着远离超透镜方向每层膜的材质依次分别是氧化钛(TiO 2)、氧化硅(SiO 2)、氧化铊(Ta 2O 5)、氧化硅(SiO 2)、氧化钛(TiO 2)、氧化硅(SiO 2)。
  12. 如权利要求11所述的方法,其特征在于,所述优化的增透膜系结果以靠近超表面的膜为第一层,远离超表面的膜依次为第二、三、四、五、六层;各层膜之间的厚度关系至少满足:第五层的厚度≤第三层的厚度≤第一层的厚度<第六层的厚度<第二层的厚度≤第四层的厚度。
  13. 如权利要求1所述的方法,其特征在于,所述基底(1)的材料包括硅、硅的氧化物、有机玻璃、碱性玻璃和硫系玻璃中的一种或多种。
  14. 如权利要求1所述的方法,其特征在于,所述微纳结构(2)的材料包括氮化硅、氧化钛、氧化铝、氮化镓、磷化镓、氢化非晶硅、非晶硅和晶体硅中的一种或多种。
  15. 如权利要求1所述的方法,其特征在于,所述填充材料(3)的折射率介于空气的折射率和所述微纳结构(2)的折射率之间。
  16. 如权利要求1所述的方法,其特征在于,所述填充材料(3)包括氧化铝。
  17. 一种超透镜增透膜的镀膜方法,采用如权利要求1-16任一所述的超透镜增透膜的设计方法,包括:
    步骤一,利用填充材料(3)填充超透镜表面微纳结构(2)之间的间隙,使填充后的超透镜表面平整;
    步骤二,在填充后的超透镜表面镀膜。
  18. 一种超透镜增透膜,其特征在于,采用如权利要求1-16任一所述的超透镜增透膜的设计方法设计。
  19. 一种超透镜,其特征在于,包括如权利要求18所述的超透镜增透膜。
  20. 一种超透镜增透膜的设计装置,其特征在于,适用于如权利要求1-16中任一所述的超透镜增透膜的设计方法,所述装置包括折射率和消光系数计算模块(100)和膜系优化模块(200);其中,
    所述折射率和消光系数计算模块(100)被配置为计算每个微纳结构(2)和每个微纳结构(2)周围的填充材料(3)组成的填充单元的等效折射率与等效消光系数;并基于所述等效折射率与所述等效消光系数加权平均获得被填充的超透镜的折射率与消光系数;
    所述膜系优化模块(200)被配置为根据被填充的超透镜的折射率和消光系数计算初始膜系结果(401),并对所述初始膜系结果(401)进行最优化迭代得到优化的增透膜系结果(402);所述膜系优化模块(200)包括膜系计算模块(201)和有限元分析模块(202);其中,
    所述膜系计算模块(201)被配置为计算膜系结果;
    所述有限元分析模块(202)被配置为根据膜系结果得到光场相位和透过率结果;
    所述膜系计算模块(201)和所述有限元分析模块(202)联合对所述膜系计算模块(201)计算的所述初始膜系结果(401)进行最优化迭代,得到优化的增透膜系结果(402)。
  21. 一种电子设备,包括总线、收发器、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述收发器、所述存储器和所述处理器通过所述总线相连,其特征在于,所述计算机程序被所述处理器执行时实现如权利要求1至16中任一项所述的超透镜增透膜的设计方法中的步骤。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的超透镜增透膜的设计方法中的步骤。
PCT/CN2022/129846 2021-11-09 2022-11-04 超透镜增透膜的设计方法、装置及电子设备 WO2023083110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111320258.6 2021-11-09
CN202111320258.6A CN113885106B (zh) 2021-11-09 2021-11-09 超透镜增透膜的设计方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023083110A1 true WO2023083110A1 (zh) 2023-05-19

Family

ID=79016954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129846 WO2023083110A1 (zh) 2021-11-09 2022-11-04 超透镜增透膜的设计方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN113885106B (zh)
WO (1) WO2023083110A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116680766A (zh) * 2023-08-01 2023-09-01 杭州纳境科技有限公司 消色差超透镜的确定方法、装置、电子设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3074566A1 (en) 2017-08-31 2019-03-07 Metalenz, Inc. Transmissive metasurface lens integration
CN114286953A (zh) 2019-07-26 2022-04-05 梅特兰兹股份有限公司 孔隙-超表面和混合折射-超表面成像系统
CN113885106B (zh) * 2021-11-09 2023-03-24 深圳迈塔兰斯科技有限公司 超透镜增透膜的设计方法、装置及电子设备
CN114397718B (zh) * 2022-02-23 2023-09-29 深圳迈塔兰斯科技有限公司 无热化超透镜及其设计方法
CN114325886B (zh) * 2022-02-23 2023-08-25 深圳迈塔兰斯科技有限公司 超表面及其设计方法、装置及电子设备
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device
CN115421295A (zh) * 2022-09-14 2022-12-02 深圳迈塔兰斯科技有限公司 超透镜的设计方法、超透镜及加工工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006366A (zh) * 2004-04-15 2007-07-25 纳诺奥普托公司 光学膜及其制造方法
CN101131317A (zh) * 2007-09-20 2008-02-27 华中科技大学 一种微纳深沟槽结构测量方法及装置
JP2009139875A (ja) * 2007-12-11 2009-06-25 Hitachi Ltd 投射型液晶表示装置および光学ユニット
JP2009181847A (ja) * 2008-01-31 2009-08-13 D D K Ltd 絶縁体の成型方法、金型構造及び前記成型方法により製造した絶縁体を使用するコネクタ
US7643719B1 (en) * 2003-03-14 2010-01-05 Phosistor Technologies, Inc. Superlens and a method for making the same
CN109216854A (zh) * 2018-09-28 2019-01-15 北京环境特性研究所 一种介质填充的开口谐振环单元及平面微波透镜
CN109856707A (zh) * 2019-02-26 2019-06-07 江西凤凰光学科技有限公司 一种宽波段超低反射率的增透膜
CN110297296A (zh) * 2018-03-21 2019-10-01 英特尔公司 采用超颖表面采集透镜的光接收器
CN110797747A (zh) * 2019-11-06 2020-02-14 安徽大学 一种基于全介质超表面的激光发射器及参数确定方法
CN111585035A (zh) * 2020-06-23 2020-08-25 深圳大学 一种动态调节的超表面及其制造方法与电磁波调控方法
CN111936902A (zh) * 2018-04-02 2020-11-13 埃尔瓦有限公司 金属光学超表面的制造
CN112384831A (zh) * 2018-06-29 2021-02-19 应用材料公司 使用可流动cvd对用于光学部件的微米/纳米结构所进行的间隙填充
JP2021113898A (ja) * 2020-01-18 2021-08-05 ウシオ電機株式会社 透過型レリーフ回折格子素子
CN113885106A (zh) * 2021-11-09 2022-01-04 深圳迈塔兰斯科技有限公司 超透镜增透膜的设计方法、装置及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399421B2 (en) * 2005-08-02 2008-07-15 International Business Machines Corporation Injection molded microoptics
KR20120081658A (ko) * 2010-12-16 2012-07-20 삼성전자주식회사 수퍼 렌즈를 포함하는 포토마스크 및 그 제조 방법
CN102701143A (zh) * 2012-06-14 2012-10-03 吴奎 微纳米透镜片辅助聚光光刻工艺制备有序微纳米结构
CN111913243A (zh) * 2019-05-08 2020-11-10 北庭星云科技(北京)有限公司 用于制造一个或多个纳米滤光超表面元件或系统的方法
CN110244452B (zh) * 2019-05-28 2020-05-12 电子科技大学 一种消像差的液体介质超透镜
CN113433689B (zh) * 2021-05-14 2022-04-08 北京科技大学 一种基于有效介质理论的消色差超透镜设计方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643719B1 (en) * 2003-03-14 2010-01-05 Phosistor Technologies, Inc. Superlens and a method for making the same
CN101006366A (zh) * 2004-04-15 2007-07-25 纳诺奥普托公司 光学膜及其制造方法
CN101131317A (zh) * 2007-09-20 2008-02-27 华中科技大学 一种微纳深沟槽结构测量方法及装置
JP2009139875A (ja) * 2007-12-11 2009-06-25 Hitachi Ltd 投射型液晶表示装置および光学ユニット
JP2009181847A (ja) * 2008-01-31 2009-08-13 D D K Ltd 絶縁体の成型方法、金型構造及び前記成型方法により製造した絶縁体を使用するコネクタ
CN110297296A (zh) * 2018-03-21 2019-10-01 英特尔公司 采用超颖表面采集透镜的光接收器
CN111936902A (zh) * 2018-04-02 2020-11-13 埃尔瓦有限公司 金属光学超表面的制造
CN112384831A (zh) * 2018-06-29 2021-02-19 应用材料公司 使用可流动cvd对用于光学部件的微米/纳米结构所进行的间隙填充
CN109216854A (zh) * 2018-09-28 2019-01-15 北京环境特性研究所 一种介质填充的开口谐振环单元及平面微波透镜
CN109856707A (zh) * 2019-02-26 2019-06-07 江西凤凰光学科技有限公司 一种宽波段超低反射率的增透膜
CN110797747A (zh) * 2019-11-06 2020-02-14 安徽大学 一种基于全介质超表面的激光发射器及参数确定方法
JP2021113898A (ja) * 2020-01-18 2021-08-05 ウシオ電機株式会社 透過型レリーフ回折格子素子
CN111585035A (zh) * 2020-06-23 2020-08-25 深圳大学 一种动态调节的超表面及其制造方法与电磁波调控方法
CN113885106A (zh) * 2021-11-09 2022-01-04 深圳迈塔兰斯科技有限公司 超透镜增透膜的设计方法、装置及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116680766A (zh) * 2023-08-01 2023-09-01 杭州纳境科技有限公司 消色差超透镜的确定方法、装置、电子设备及存储介质
CN116680766B (zh) * 2023-08-01 2023-11-10 杭州纳境科技有限公司 消色差超透镜的确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113885106A (zh) 2022-01-04
CN113885106B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023083110A1 (zh) 超透镜增透膜的设计方法、装置及电子设备
WO2023160225A1 (zh) 超表面及其设计方法、装置及电子设备
CN114624878B (zh) 光学系统设计的方法及装置
Xia et al. High-throughput optical screening for efficient semitransparent organic solar cells
Lee et al. Omnidirectional Flexible Transmissive Structural Colors with High‐Color‐Purity and High‐Efficiency Exploiting Multicavity Resonances
WO2023050867A1 (zh) 阶梯状基底超表面及相关设计方法、加工方法和光学透镜
Lu et al. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials
JP5539162B2 (ja) エレクトロクロミック素子
Tan et al. 3D imaging using extreme dispersion in optical metasurfaces
Deng et al. All‐Silicon Broadband Ultraviolet Metasurfaces
WO2024082995A1 (zh) 一种超表面相位系数优化方法、装置及电子设备
US20170192139A1 (en) Anti-peep film, method for manufacturing the same and display device
Yuan et al. Effective, angle-independent radiative cooler based on one-dimensional photonic crystal
WO2017219404A1 (zh) 液晶透镜和3d显示器
JP2013047780A (ja) 光学素子、それを用いた光学系および光学機器
JP2014122961A (ja) 反射防止膜を有する光学素子、光学系および光学機器
Yu et al. Semiconductor solar superabsorbers
TW201516450A (zh) 薄型廣角四片式成像鏡頭組
Lin et al. Enhanced diffraction efficiency with angular selectivity by inserting an optical interlayer into a diffractive waveguide for augmented reality displays
JP2013257405A (ja) 反射防止膜、および、それを有する光学素子、光学系、光学機器
US20170227842A1 (en) Mask plate
CN107703568A (zh) 光反射膜及液晶显示装置用背光单元
WO2024066608A1 (zh) 一种超表面的设计方法、装置及电子设备
CN112764135B (zh) 一种极低残余反射的窄带减反射膜
CN107425074B (zh) 一种薄膜晶体管及其制作方法、阵列基板、显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891905

Country of ref document: EP

Kind code of ref document: A1