WO2023083055A1 - 渗透生长碳膜的方法 - Google Patents

渗透生长碳膜的方法 Download PDF

Info

Publication number
WO2023083055A1
WO2023083055A1 PCT/CN2022/128950 CN2022128950W WO2023083055A1 WO 2023083055 A1 WO2023083055 A1 WO 2023083055A1 CN 2022128950 W CN2022128950 W CN 2022128950W WO 2023083055 A1 WO2023083055 A1 WO 2023083055A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
single crystal
temperature
graphite
carbon source
Prior art date
Application number
PCT/CN2022/128950
Other languages
English (en)
French (fr)
Inventor
刘开辉
张志斌
王恩哥
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to KR1020247000070A priority Critical patent/KR20240017055A/ko
Publication of WO2023083055A1 publication Critical patent/WO2023083055A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • the invention belongs to the field of materials, and relates to a method for infiltrating and growing a carbon film induced by a solid carbon source through non-vapor deposition.
  • Carbon films are obtained by physical vapor deposition or chemical vapor deposition, and some are obtained by carbonization of polymer materials such as polyetherimide. Carbon atoms in carbon films are usually dominated by SP2 hybridization.
  • Graphene is a two-dimensional monoatomic layer composed of SP 2 hybridized carbon atoms arranged in a honeycomb structure.
  • Graphite is one of the most common forms of carbon materials. It can be considered to be stacked by extremely multi-layer graphene. Therefore, its mechanical, thermal, acoustic, and electrical properties have strong anisotropy. On the horizontal plane of graphite, These properties can be compared with those of graphene, which also makes graphite widely used in thermal conductivity, electrical conductivity, fire resistance, batteries, lubrication, steelmaking, catalysis, etc.
  • HOPG highly oriented pyrolytic graphite
  • the invention provides a method for infiltrating and growing a carbon film, the method comprising the steps of:
  • S1 providing a foil selected from a nickel foil or a copper-nickel alloy foil and having a first surface and a second surface;
  • said foil is a monocrystalline nickel foil.
  • the heating of the foil and the solid carbon source takes place in a tube furnace.
  • the heating of the foil and the solid carbon source is performed under a protective gas selected from one or more of argon, nitrogen, hydrogen.
  • the protective gas is a mixed gas of argon and hydrogen, preferably the flows of argon and hydrogen are respectively Ar: 100-1000 sccm, H 2 : 5-200 sccm.
  • the heating foil and the solid carbon source include the following steps: heating up to a temperature of 900-1350° C. within 60-120 minutes, and then maintaining the temperature at this temperature for 10 minutes-50 hours.
  • the atmosphere is kept constant, and cooled down to room temperature naturally.
  • step S1 includes the following steps:
  • steps S11-S14 are performed in a tube furnace.
  • the inert protective gas in step S12 is a mixed gas of Ar and H 2 .
  • the flows of Ar gas and H 2 gas in step S12 are 100-1000 sccm and 5-200 sccm respectively.
  • the high temperature resistant substrate in step S11 is a quartz or corundum substrate
  • the tube furnace is a quartz furnace or a corundum furnace.
  • the selection of high temperature resistant substrate and tube furnace in step S11 is related to the annealing temperature. Quartz material is selected when the annealing temperature is 1000-1150°C, and corundum material is selected when the annealing temperature is 1150-1350°C.
  • the solid carbon source is selected from one or more of graphite paper, graphite powder, activated carbon and carbon black.
  • the prepared carbon film is single crystal graphite or graphene. According to a preferred embodiment, the prepared carbon film is single crystal graphite with a radial dimension of 1-10 cm and a longitudinal thickness of 0.1-50 ⁇ m.
  • the prepared single crystal graphite has uniform orientation.
  • FIG. 1 is a schematic diagram of the process of growing single crystal graphite using single crystal nickel foil according to the present disclosure.
  • Fig. 2 is an optical photograph (a) and an electron backscatter diffraction (EBSD) characterization result (b) of the single crystal nickel foil prepared in Example 1 of the present disclosure.
  • EBSD electron backscatter diffraction
  • FIG. 3 is a photograph of single crystal graphite prepared in Example 4 of the present disclosure.
  • Figure 4 is an electron backscatter diffraction pattern (EBSD) of highly oriented pyrolytic graphite (HOPG) and single crystal graphite prepared in Example 4 of the present disclosure, wherein (a), (b), and (c) are highly oriented pyrolytic Graphite x-direction, y-direction, EBSD diagram of z-direction; (d), (e), (f) are respectively the x-direction, y-direction, z-direction EBSD diagram of the single crystal graphite prepared in Example 4 of the present disclosure.
  • EBSD electron backscatter diffraction pattern
  • reagents and starting materials used in the present disclosure are commercially available or can be prepared by conventional preparation methods.
  • any type of range eg thickness
  • each possible value that that range could reasonably encompass is individually disclosed or claimed, including any subranges subsumed therein.
  • the numerical range of thickness in this paper indicates the thickness within this range, wherein 1-200 microns should be understood to include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...200 microns , which also includes the ranges 1-5 and 1-10.
  • all numbers expressing amounts of material, reaction conditions, durations, quantitative properties of materials, etc. stated in the specification and claims are to be understood in all cases by the term “about "Retouch. It is also to be understood that any numerical range recited herein is intended to include all subranges within that range and any combination of the individual endpoints of that range or subrange.
  • the solid carbon source in this application refers to a solid that provides carbon with a purity of more than 90%, such as carbon fiber, graphite paper, graphite powder, activated carbon, and carbon black.
  • the solid carbon source is selected from one or more of graphite paper, graphite powder, activated carbon and carbon black.
  • Penetrating growth in this application means that carbon atoms of solid carbon source enter from one surface of the foil, penetrate the foil at the same time and arrange and grow on the other surface of the foil to form a carbon film.
  • the purity of the nickel foil or copper-nickel alloy foil raw material in this application is usually 99.5% or more. In one embodiment, the purity of the nickel foil or the copper-nickel alloy foil raw material is above 99.8%. In a preferred embodiment, the purity of the nickel foil or copper-nickel alloy foil raw material is above 99.9%. In a more preferred embodiment, the purity of the nickel foil or copper-nickel alloy foil raw material is above 99.99%.
  • Single crystal nickel foil in this application means that its internal crystal lattice orientation and arrangement are completely consistent, and there are no grain boundary defects on the entire nickel foil.
  • single crystal graphite means that its internal lattice orientation and arrangement are completely consistent, and there are no grain boundary defects throughout the graphite.
  • the present disclosure provides a method for infiltrating and growing a carbon film, the method comprising the following steps:
  • S1 providing a foil selected from a nickel foil or a copper-nickel alloy foil and having a first surface and a second surface;
  • the carbon in the solid carbon source is absorbed by the foil, and the diffusion and transport of the solid state are used to finally realize the infiltration growth of the carbon film. It should be noted that the above method is different from the traditional vapor deposition method , under the condition of no carbon-containing gas (methane, ethylene, acetylene), the growth of carbon film was realized.
  • the solid carbon source is selected from one or more of graphite paper, graphite powder, activated carbon and carbon black.
  • the foil is selected from nickel foil or copper-nickel alloy foil.
  • the nickel foil can be polycrystalline nickel foil or single crystal nickel foil. 30 foil. In a preferred embodiment, said foil is selected from single crystal nickel foils.
  • step S2 the foil and the solid carbon source are heated to raise their temperature but the temperature should be lower than the melting temperature of the foil, for example 100-400°C lower than the melting temperature of the foil.
  • heating the foil and solid carbon source causes carbon atoms to adsorb into the foil, "dissolution" of the carbon in the foil occurs, and thermal diffusion of the carbon causes the carbon atoms to precipitate and align on the other surface of the foil .
  • the heating foil and solid carbon source of step S2 are performed in a tube furnace.
  • the heating foil and the solid carbon source in step S2 are carried out under a protective gas
  • the protective gas is selected from one or more of argon, nitrogen, hydrogen, such as the protective gas is selected from argon, nitrogen, hydrogen, argon and hydrogen, nitrogen and hydrogen, argon and nitrogen, or argon and nitrogen and hydrogen.
  • the protective gas is a mixed gas of argon and hydrogen.
  • the flow rates of argon and hydrogen in the mixed gas are respectively Ar: 100-1000 sccm and H 2 : 5-200 sccm.
  • the heating foil and the solid carbon source in step S2 include the following steps: heating up to a temperature of 900-1350° C. within 60-120 minutes, and then maintaining the temperature at this temperature for 10 minutes-50 hours.
  • the heating foil and solid carbon source in step S2 are heating nickel foil and solid carbon source, which includes the following steps: heating up to a temperature of 1000-1350° C. within 60-120 minutes, and then The holding time is 10min-50h. The longer the holding time, the thicker the thickness of the obtained carbon film. The thickness of the foil is typically 1-200 microns.
  • the thickness of the foil is 10-120 microns, such as 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 123, 114, 115, 116
  • step S2 after the osmotic growth in step S2 is completed, keep the atmosphere unchanged, and cool down to room temperature naturally.
  • the foil of step S1 is a single crystal nickel foil.
  • a single crystal nickel foil is provided, the single crystal nickel foil has a first surface and a second surface; the single crystal nickel foil is selected as a substrate and placed on a solid carbon source, wherein the The first surface of the single crystal nickel foil is close to the solid carbon source, the second surface of the single crystal nickel foil is far away from the solid carbon source, and finally a high quality single crystal graphite.
  • single crystal nickel foils For the preparation and characterization of single crystal nickel foils, please refer to "Seeded growth of large single-crystal copper foils with high-index facets", pp. 406–410, Vol. 581, 2020, Nature.
  • nickel foil 100 ⁇ m thick, 99.994%, Alfa Aesar
  • XRD X-ray diffraction
  • EBSD electron backscatter diffraction
  • step S1 is to provide single crystal nickel foil, comprising the following steps:
  • steps S11-S14 are performed in a tube furnace.
  • the pre-oxidation in step S11 can be performed under oxygen or air atmosphere.
  • the inert protective gas in step S12 is a mixed gas of nitrogen and H 2 or a mixed gas of Ar and H 2 or a mixed gas of nitrogen and Ar and H 2 .
  • the inert protective gas in step S12 is a mixed gas of Ar and H 2 .
  • the flow rates of Ar gas and H2 gas in step S12 are 100-1000 sccm and 5-200 sccm respectively.
  • the high-temperature-resistant substrate in step S11 may be a quartz or corundum substrate
  • the tube furnace used in steps S11-S14 may be a quartz furnace or a corundum furnace.
  • the selection of high temperature resistant substrate and tube furnace in step S11 is related to the annealing temperature. Quartz material is selected when the annealing temperature is 1000-1150°C, and corundum material is selected when the annealing temperature is 1150-1350°C.
  • the prepared single crystal graphite has a radial dimension of 1-10 cm and a longitudinal thickness of 0.01-50 ⁇ m.
  • the present disclosure provides a method of preparing single crystal nickel foil, the method comprising the steps of:
  • the inert protective gas is a mixed gas of Ar and H 2
  • the flows of Ar gas and H 2 gas are respectively 100- 1000sccm and 5-200sccm.
  • the crystal grains of the polycrystalline nickel foil grow abnormally, and finally a large-sized single crystal nickel foil is obtained.
  • the size of the single crystal nickel foil prepared by the method is related to the size of high temperature annealing, and at the same time, the method is not only applicable to nickel, but can be extended to other metals.
  • the present disclosure provides a method of growing single crystal graphite using solid state transport, the method comprising the steps of:
  • the single crystal nickel foil has a first surface and a second surface
  • step S2 specifically includes the following steps:
  • the disclosure utilizes the single crystal nickel foil obtained by high temperature annealing, places it on a solid carbon source, absorbs carbon at high temperature, and is driven by a chemical potential gradient to prepare single crystal graphite.
  • the method proposed in this disclosure solves the problem that single crystal graphite is difficult to prepare, and uses the method of non-vapor deposition to obtain large-size single crystal graphite with a length and width of 1-10 cm and a thickness of 0.1-50 ⁇ m through solid-state diffusion and transmission of carbon .
  • the radial dimension of the graphite paper is larger than that of the nickel foil, and the radial dimension of the prepared single crystal graphite is substantially the same as that of the single crystal nickel foil.
  • the radial direction is a plane direction perpendicular to the thickness direction of graphite paper, nickel foil or graphite.
  • the ratio of the radial dimension of the graphite paper to the radial dimension of the nickel foil may be 2:1 to 50:1.
  • the foil substrate underlying the carbon film of the present disclosure can be removed by conventional methods. For example, prepare a fresh ferric chloride solution, put the prepared carbon film sample into the solution, and let it stand for 1 hour to 5 days, the ferric chloride will react with nickel or copper-nickel alloy, and the foil will be etched away , and then put the obtained sample into deionized water, rinse several times, and finally obtain the transferred carbon film sample.
  • the carbon film of the present disclosure can also obtain a graphene film by a mechanical peeling method: specifically, stick it on the obtained single crystal graphite with an adhesive tape, then tear it off, stick it on any substrate, and heat it appropriately, then The tape is torn off, and the graphene sample after peeling will be obtained on the substrate. Due to the high quality of the prepared single crystal graphite, the quality of the torn sample is very pure, consistent with intrinsic graphene.
  • the method of the present disclosure is a method for continuously growing a carbon film, and the carbon film includes but is not limited to single crystal graphite;
  • This disclosure selects commercially available nickel foils, copper-nickel alloy foils, and various solid carbon sources as raw materials, and does not require complex surface pretreatment of the foils and carbon sources, and does not need to introduce a carbon-containing atmosphere ( methane, ethylene, acetylene, etc.), large-scale carbon films can be prepared, which greatly reduces the preparation cost;
  • the present disclosure provides a method for preparing single crystal graphite.
  • the prepared single crystal graphite has large size, few defects, superior performance and good application prospect;
  • the disclosed method is simple, effective and low in cost, and is conducive to the practical application and industrial production of large-size single crystal graphite.
  • the starting materials for the examples are commercially available and/or can be prepared in a variety of ways well known to those skilled in the materials art.
  • Embodiment 1 prepared single crystal nickel foil, comprising the following steps:
  • Inert protective gas Ar gas: 500 sccm; H 2 : 50 sccm
  • Inert protective gas Ar gas: 500 sccm; H 2 : 50 sccm
  • Figure 2 is the optical photograph and electron backscatter diffraction (EBSD) characterization results of the single crystal nickel foil prepared in Example 1.
  • the size of nickel is 4*3cm 2 , and the EBSD results show that it is a single crystal plane index of (520). crystal.
  • the electron backscatter diffraction test in this disclosure uses a PHI 710 Scanning Auger Nanoprobe system, and the test process is carried out according to standard procedures.
  • Embodiment 2 prepared single crystal nickel foil, comprising the following steps:
  • Inert protective gas Ar gas: 1000sccm; H 2 : 10sccm
  • Inert protective gas Ar gas: 1000sccm; H 2 : 10sccm
  • Embodiment 3 prepared single crystal nickel foil, comprising the following steps:
  • Inert protective gas Ar gas: 700 sccm; H 2 : 50 sccm
  • Examples 4-10 use the single crystal nickel foil obtained in Examples 1-3 to prepare single crystal graphite.
  • Embodiment 4 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • Example 1 put the single crystal nickel foil obtained in Example 1 on graphite paper (Beijing Jinglong Special Carbon Technology Co., Ltd., thickness 100 ⁇ m, purity 99.9%), and then put them together in a tube furnace;
  • Fig. 3 is a photograph of single crystal graphite prepared in Example 4 of the present disclosure, wherein the size of the prepared graphite is 4*3 cm 2 .
  • Figure 4 is the electron backscatter diffraction pattern (EBSD) of highly oriented pyrolytic graphite (HOPG) and the single crystal graphite prepared in Example 4 of the present disclosure, (a), (b), and (c) are respectively highly oriented pyrolytic graphite
  • EBSD diagrams in the x direction, y direction, and z direction show that although HOPG is a single crystal in the z direction, there is crystal plane rotation in the plane (x, y direction), and the single crystal property is not good.
  • (d), (e), and (f) are respectively the x direction of the single crystal graphite prepared by Example 4 of the present disclosure, the y direction, and the EBSD figure of the z direction, showing that the graphite prepared by the present invention is a single crystal in the z direction, and in In-plane (x, y direction) no crystal face rotation, good single crystal.
  • the source of highly oriented pyrolytic graphite is NT-MDT Company, and its purity is ZYA grade.
  • Embodiment 5 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • the single crystal nickel foil obtained by embodiment 1 is placed on the graphite powder (Alfa Aesar, 99%), and then put into the tube furnace together;
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 6 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • the single crystal nickel foil obtained by embodiment 2 is placed on activated carbon (Ron's reagent), and then put into the tube furnace together;
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 7 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • the single crystal nickel foil obtained by embodiment 2 is placed on the carbon black (Ron's reagent), and then put into the tube furnace together;
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 8 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • Example 3 (1) Put the single crystal nickel foil obtained in Example 3 on graphite paper (Beijing Jinglong Special Carbon Technology Co., Ltd., thickness 100 ⁇ m, purity 99.9%), and then put them together in a tube furnace;
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • Embodiment 9 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • Example 3 (1) Put the single crystal nickel foil obtained in Example 3 on graphite paper (Beijing Jinglong Special Carbon Technology Co., Ltd., thickness 100 ⁇ m, purity 99.9%), and then put them together in a tube furnace;
  • Embodiment 10 utilizes single crystal nickel foil to grow single crystal graphite, comprises the following steps:
  • Example 3 (1) Put the single crystal nickel foil obtained in Example 3 on graphite paper (Beijing Jinglong Special Carbon Technology Co., Ltd., thickness 100 ⁇ m, purity 99.9%), and then put them together in a tube furnace;
  • Example 5-10 Similar to Example 4, the single crystal graphite prepared in Examples 5-10 was also confirmed by electron backscatter diffraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种渗透生长碳膜的方法,包括如下步骤:S1,提供箔,所述箔选自镍箔或铜镍合金箔并且具有第一表面和第二表面;S2,选用所述箔作为衬底,将其放置于固态碳源上,其中,所述箔的第一表面靠近所述固态碳源,所述箔的第二表面远离所述固态碳源,然后加热箔和固态碳源使得在所述箔的第二表面上渗透生长出碳膜。

Description

[根据细则37.2由ISA制定的发明名称] 渗透生长碳膜的方法
本申请要求于2021年11月9日递交的中国专利申请第202111318030.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明属于材料领域,涉及一种用固态碳源诱导的非气相沉积的渗透生长碳膜方法。
背景技术
碳膜大多数通过物理气相沉积或化学气相沉积法得到,也有通过高分子材料例如聚醚酰亚胺的炭化得到。碳膜中的碳原子通常以SP 2杂化形式为主。
石墨烯是一种由SP 2杂化的碳原子以蜂窝状结构排布的二维单原子层。石墨是碳材料最常见的形态之一,其可以认为是由极多层石墨烯堆叠而成,因此其力学、热学、声学、电学等性质具有很强的各向异性,在石墨的水平面上,这些性质可与石墨烯的性质相比拟,这也使得石墨在导热、导电、耐火、电池、润滑、炼钢、催化等方面具有十分广泛的应用。
而对于常见的石墨来说,层内多有晶界存在,极大地降低了其面内的优异性质,所以石墨烯的许多优异性能,在石墨上都无法发挥出来。例如科研工作中常用的高定向热解石墨(HOPG),其单晶性较差,单畴的尺寸仅为百微米量级。因此,制备大尺寸的单晶石墨是材料领域亟需攻克的难题。
发明内容
本发明提供一种渗透生长碳膜的方法,所述方法包括如下步骤:
S1,提供箔,所述箔选自镍箔或铜镍合金箔并且具有第一表面和第二表面;
S2,选用所述箔作为衬底,将其放置于固态碳源上,其中,所述箔的第一表面靠近所述固态碳源,所述箔的第二表面远离所述固态碳源,然后加热箔和固态碳源使得在所述箔的第二表面上渗透生长出碳膜。
根据一种实施方案,所述箔是单晶镍箔。
根据一种实施方案,加热箔和固态碳源在管式炉中进行。
根据一种实施方案,加热箔和固态碳源在保护气体下进行,所述保护气体选自:氩气、氮气、氢气中的一种或多种。例如,所述保护气体为氩气和氢气的混合气体,优选氩气和 氢气的流量分别为Ar:100-1000sccm,H 2:5-200sccm。
根据一种实施方案,所述加热箔和固态碳源包括如下步骤:在60-120min内升温至900-1350℃的温度,然后在此温度保持10min-50h。
根据一种实施方案,在生长结束后,保持气氛不变,自然冷却降至室温。
根据一种实施方案,步骤S1包括如下步骤:
S11,将多晶镍箔放置于耐高温衬底上,在150-650℃下预氧化1-5h;
S12,通入惰性保护气体,再在60-120min内升温至1000-1350℃;
S13,在1000-1350℃保持1-20h,进行对镍箔的退火过程;
S14,退火时间结束以后,气氛条件不变并冷却到室温,即得到单晶镍箔。
根据一种实施方案,步骤S11-S14在管式炉中进行。
根据一种优选的实施方案,步骤S12中所述惰性保护气体为Ar与H 2的混合气体。根据一种更优选的实施方案,步骤S12中Ar与H 2的体积比为Ar:H 2=0.5:1至200:1。根据一种甚至更优选的实施方案,步骤S12中Ar气与H 2气的流量分别为100-1000sccm和5-200sccm。
根据一种实施方案,步骤S11中耐高温衬底为石英或刚玉衬底,管式炉为石英炉或刚玉炉。例如,步骤S11中耐高温衬底、管式炉的选择与退火温度有关,在退火温度为1000-1150℃时选择石英材料,在退火温度为1150-1350℃时选择刚玉材料。
根据一种实施方案,所述固态碳源选自石墨纸、石墨粉、活性炭和炭黑中的一种或多种。
根据一种实施方案,所制备得到的碳膜为单晶石墨或石墨烯。根据一种优选的实施方案,所制备得到的碳膜为单晶石墨,其径向尺寸为1~10cm,纵向厚度为0.1~50μm。
根据一种实施方案,制备得到的单晶石墨取向一致。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本发明的限制。
图1为本公开利用单晶镍箔生长单晶石墨的过程示意图。
图2为本公开实施例1制备的单晶镍箔的光学照片(a)和电子背散射衍射(EBSD)表征结果(b)。
图3为本公开实施例4制备的单晶石墨的照片。
图4为高定向热解石墨(HOPG)和本公开实施例4制备的单晶石墨的电子背散射衍射图(EBSD),其中(a)、(b)、(c)分别为高定向热解石墨x方向,y方向,z方向的EBSD图;(d)、(e)、(f)分别为本公开实施例4制备的单晶石墨的x方向,y方向,z方向的EBSD图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明可在不偏离本发明基本属性的情况下以其它具体形式来实施。应理解的是,在不冲突的前提下,本发明的任一和所有实施方案都可与任一其它实施方案或多个其它实施方案中的技术特征进行组合以得到另外的实施方案。本发明包括这样的组合得到另外的实施方案。
本公开中提及的所有出版物和专利在此通过引用以它们的全部内容纳入本公开。如通过引用纳入的任何出版物和专利中使用的用途或术语与本公开中使用的用途或术语冲突,以本公开的用途和术语为准。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的通常含义。倘若对于某术语存在多个定义,则以本文定义为准。
本公开中使用的“包括”、“含有”或者“包含”等类似的词语意指出现该词前面的要素涵盖出现在该词后面列举的要素及其等同,而不排除未记载的要素。本文所用的术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…组成”、或“由…组成”。
应该理解,在本公开中使用的单数形式(如“一种”)可包括复数指代,除非另有规定。
本公开所用试剂和原料是市售可得的或者可通过常规制备方法制得的。
除非另有说明,当公开或要求保护任何类型的范围(例如厚度)时,意图单独公开或要求保护该范围可有理由涵盖的各可能的数值,包括涵盖在其中的任何子范围。例如在本文中厚度的数值范围如1至200微米表明该范围内的厚度,其中1-200微米应理解包括1、2、3、4、5、6、7、8、9、10…200微米,也包括1-5和1-10的范围。除了在工作实施例中或另外指出之外,在说明书和权利要求中陈述的表达材料的量、反应条件、持续时间和材料 的定量性质等的所有数字应理解为在所有情况中被术语“约”修饰。还应理解的是,本申请列举的任何数字范围意在包括该范围内的所有的子范围和该范围或子范围的各个端点的任何组合。
固态碳源在本申请中是指提供碳纯度90%以上的碳单质的固体,例如,碳纤维、石墨纸、石墨粉、活性炭和炭黑等。在一种实施方案中,所述固态碳源选自石墨纸、石墨粉、活性炭和炭黑中的一种或多种。
渗透生长在本申请中是指固态碳源的碳原子从箔的一个表面进入,同时穿透箔并在箔的另一个表面上排列生长形成碳膜。
本申请中的镍箔或者铜镍合金箔原料的纯度通常为99.5%以上。在一种实施方案中,镍箔或者铜镍合金箔原料的纯度在99.8%以上。在一种优选的实施方案中,镍箔或者铜镍合金箔原料的纯度在99.9%以上。在一种更优选的实施方案中,镍箔或者铜镍合金箔原料的纯度在99.99%以上。
单晶镍箔在本申请中是指其内部晶格取向、排布完全一致,在整个镍箔上无晶界缺陷。
单晶石墨在本申请中是指其内部晶格取向、排布完全一致,在整个石墨上无晶界缺陷。
本公开提供一种渗透生长碳膜的方法,所述方法包括如下步骤:
S1,提供箔,所述箔选自镍箔或铜镍合金箔并且具有第一表面和第二表面;
S2,选用所述箔作为衬底,将其放置于固态碳源上,其中,所述箔的第一表面靠近所述固态碳源,所述箔的第二表面远离所述固态碳源,然后加热箔和固态碳源使得在所述箔的第二表面上渗透生长出碳膜。
在本公开的生长方法中,通过箔对固态碳源中碳的吸收,利用了固态的扩散传输,最终实现了碳膜的渗透生长,需要作出说明的是,上述方法与传统的气相沉积方法不同,在无含碳气体(甲烷、乙烯、乙炔)的条件下,实现了碳膜的生长。
在一种实施方案中,所述固态碳源选自石墨纸、石墨粉、活性炭和炭黑中的一种或多种。
在步骤S1中,所述箔选自镍箔或铜镍合金箔,镍箔可以是多晶镍箔或单晶镍箔,铜镍合金箔例如可以是铜镍合金成分为90/10或70/30的箔。在一种优选的实施方案中,所述箔选自单晶镍箔。
在步骤S2中,加热箔和固态碳源使它们升温但是温度应低于箔熔融的温度,例如比箔熔融温度低100-400℃。抛开任何理论的限制,据信加热箔和固体碳源使得碳原子吸附进入箔中,发生碳在箔中的“溶解”,碳的受热扩散使得碳原子在箔的另一表面上析出和排 列。
在一种实施方案中,步骤S2的加热箔和固态碳源在管式炉中进行。
在一种优选的实施方案中,步骤S2的加热箔和固态碳源在保护气体下进行,所述保护气体选自:氩气、氮气、氢气中的一种或多种,例如所述保护气体选自氩气、氮气、氢气、氩气和氢气、氮气和氢气、氩气和氮气、或者氩气和氮气和氢气。在一种更优选的实施方案中,所述保护气体为氩气和氢气的混合气体。在一种甚至更优选的实施方案中,所述混合气体中氩气和氢气的流量分别为Ar:100-1000sccm,H 2:5-200sccm。
在一种实施方案中,步骤S2的加热箔和固态碳源包括如下步骤:在60-120min内升温至900-1350℃的温度,然后在此温度的保持时间为10min-50h。在一种优选的实施方案中,步骤S2的加热箔和固态碳源为加热镍箔和固态碳源,其包括如下步骤:在60-120min内升温至1000-1350℃的温度,然后在此温度的保持时间为10min-50h。保持时间越久,得到的碳膜厚度越厚。箔的厚度通常为1-200微米。在一些实施方案中,箔的厚度为10-120微米,例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、123、114、115、116、117、118、119和120微米。
在一种实施方案中,步骤S2的渗透生长结束后,保持气氛不变,自然冷却降至室温。
在一种优选的实施方案中,步骤S1的箔为单晶镍箔。如图1所示,提供单晶镍箔,所述单晶镍箔具有第一表面和第二表面;选用所述单晶镍箔作为衬底,将其放置于固态碳源上,其中,所述单晶镍箔的第一表面靠近所述固态碳源,所述单晶镍箔的第二表面远离所述固态碳源,并最终在所述单晶镍箔的第二表面上生长出高质量的单晶石墨。
单晶镍箔的制备和表征可参考Nature,2020年第581卷第406–410页“Seeded growth of large single-crystal copper foils with high-index facets”。例如,镍箔(100微米厚,99.994%,Alfa Aesar)首先在150–650℃在空气中氧化1–4小时,然后在还原气氛中在1200℃退火保持3-6小时。热退火后得到尺寸为约5×5cm 2的单晶镍箔。通过重复典型的退火程序,可以生产几种高指数单晶镍箔。单晶镍箔可通过X射线衍射(XRD)和电子背散射衍射(EBSD)表征。
在一种优选的实施方案中,步骤S1的提供箔为提供单晶镍箔,包括如下步骤:
S11,将多晶镍箔放置于耐高温衬底上,在150-650℃下预氧化1-5h;
S12,通入惰性保护气体,再在60-120min内升温至1000-1350℃;
S13,在1000-1350℃保持1-20h,进行对镍箔的退火过程;
S14,退火时间结束以后,气氛条件不变并冷却到室温,即得到单晶镍箔。
在一种实施方案中,步骤S11-S14在管式炉中进行。
步骤S11的预氧化可以在氧气或者空气氛围下进行。
在一种优选的实施方案中,步骤S12中所述惰性保护气体为氮气与H 2的混合气体或者Ar与H 2的混合气体或者氮气和Ar与H 2的混合气体。在一种更优选的实施方案中,步骤S12中所述惰性保护气体为Ar与H 2的混合气体。在一种甚至更优选的实施方案中,步骤S12中所述惰性保护气体为Ar与H 2的混合气体,Ar与H 2的体积比为Ar:H 2=0.5:1至200:1。在一种还更优选的实施方案中,步骤S12中Ar气与H2气的流量分别为100-1000sccm和5-200sccm。
步骤S11中耐高温衬底可以是石英或刚玉衬底,步骤S11-S14的管式炉可以是石英炉或刚玉炉。例如,步骤S11中耐高温衬底、管式炉的选择与退火温度有关,在退火温度为1000-1150℃时选择石英材料,在退火温度为1150-1350℃时选择刚玉材料。
在一些实施方案中,所制备得到的单晶石墨径向尺寸为1~10cm,纵向厚度为0.01~50μm。
在一种实施方案中,本公开提供一种制备单晶镍箔的方法,所述方法包括如下步骤:
(一)、将多晶镍箔放置于耐高温衬底上,并放于管式炉中,在150-600℃下预氧化1-5h;
(二)、在管式炉中通入惰性保护气体,再在60-120min内升温至1000-1350℃;
(三)、在1000-1350℃保持1-20h,进行对镍箔的退火过程;
(四)、退火时间结束以后,气氛条件不变并冷却到室温,即得到单晶镍箔。
其中,所述惰性保护气体为Ar与H 2的混合气体,Ar与H 2的体积比为Ar:H 2=10:1-100:1,并且Ar气与H 2气的流量分别为100-1000sccm和5-200sccm。
在本公开的方法中,通过预氧化处理,使得多晶镍箔在界面能和表面能的诱导下,晶粒实现异常长大,最终得到大尺寸单晶镍箔,需要作出说明的是,上述方法制得的单晶镍箔的尺寸与高温退火的尺寸相关,同时,该方法也不仅适用于镍,可推广到其他金属。
在一种实施方案中,本公开提供一种利用固态传输生长单晶石墨的方法,所述方法包括如下步骤:
S1,提供单晶镍箔,所述单晶镍箔具有第一表面和第二表面;
S2,选用所述单晶镍箔作为衬底,将其放置于固态碳源上,其中,所述单晶镍箔的第一表面靠近所述固态碳源,所述单晶镍箔的第二表面远离所述固态碳源,并最终在所述单晶镍箔的第二表面上生长出高质量的单晶石墨;
其中,步骤S2具体包括如下步骤:
S21,将单晶镍箔放置于固态碳源上,然后一同放入管式炉中;
S22,在管式炉中通入氩气和氢气的混合气体,再在60-120min内升温至1000-1350℃,其中,所述混合气体中氩气和氢气的流量分别为Ar:100-1000sccm,H 2:5-200sccm;
S23,温度升至1000-1350℃后,保持10min-50h,进行石墨的渗透生长;
S24,生长结束后,保持所通气氛不变,自然冷却降至室温,得到单晶石墨。
本公开利用高温退火制得的单晶镍箔,放置在固态碳源上,通过高温吸碳,在化学势梯度的驱动下,制得单晶石墨。本公开提出的方法,解决了单晶石墨难以制备的问题,利用非气相沉积的方法,通过碳的固态扩散传输,得到了长宽为1~10cm,厚为0.1~50μm的大尺寸单晶石墨。
在一种实施方案中,石墨纸的径向尺寸大于镍箔的径向尺寸,所制备的单晶石墨的径向尺寸与单晶镍箔的径向尺寸基本相同。其中,所述径向方向为垂直于石墨纸、镍箔或石墨厚度方向的平面方向。石墨纸的径向尺寸与镍箔的径向尺寸之比可以是2:1至50:1。
本公开的碳膜之下的箔衬底可以通过常规的方法除去。例如,配置新鲜的三氯化铁溶液,将制备的碳膜样品放入溶液中,静置1小时到5天,三氯化铁与镍或铜镍合金会发生反应,从而将箔刻蚀掉,再将得到的样品放入去离子水中,冲洗若干次,最终得到转移后的碳膜样品。
本公开的碳膜还可通过机械剥离法得到石墨烯薄膜:具体地,用胶带粘在制得的单晶石墨上面,然后撕下来,将其贴到任意衬底上,经过适当的加热,再将胶带撕走,衬底上就会得到剥离之后的石墨烯样品。由于制备的单晶石墨质量很高,撕下来的样品质量非常纯,与本征石墨烯一致。
本公开的优点包括以下的一个或多个:
1.本公开的方法为一种连续生长碳膜方法,碳膜包括但不限于单晶石墨;
2.本公开选用商业上可以购买的的镍箔、铜镍合金箔和多种固态碳源作为原料,不需要对箔、碳源进行复杂的表面预处理,不需要通入含碳的气氛(甲烷、乙烯、乙炔等), 就可以制备出大尺寸的碳膜,极大地降低制备成本;
3.本公开提供了一种制备单晶石墨的方法,制备出的单晶石墨尺寸大,缺陷少,性能优越,具有良好的应用前景;
4.本公开方法简单、有效,成本低,有助于大尺寸单晶石墨的实际应用及工业化生产。
下面结合具体实施例对本发明做进一步详细说明,但本发明并不限于以下实施例。
实施例
实施例的起始材料是市售可得的和/或可以以材料领域技术人员熟知的多种方法进行制备。
实施例1-3:制备单晶镍箔
实施例1
实施例1制备了单晶镍箔,包括如下步骤:
(一)、将多晶镍箔(Alfa Aesar,厚度100μm,纯度99.99%)放置于刚玉耐高温衬底上,并放于管式炉(天津市凯恒电热技术有限公司)中,在150℃下预氧化2h;
(二)、在管式炉中通入惰性保护气体(Ar气:500sccm;H 2:50sccm),再在100min内升温至1300℃;
(三)、在1300℃保持8h,进行对镍箔的退火过程;
(四)、退火时间结束以后,气氛条件不变并开始降温,自然冷却到室温。
图2为实施例1制备的单晶镍箔的光学照片和电子背散射衍射(EBSD)表征结果,镍的尺寸为4*3cm 2,EBSD结果表明其为一个晶面指数为(520)的单晶。本公开中电子背散射衍射测试使用PHI 710 Scanning Auger Nanoprobe系统,测试过程按照标准步骤进行。
实施例2:
实施例2制备了单晶镍箔,包括如下步骤:
(一)、将多晶镍箔放置于石英耐高温衬底上,并放于管式炉中,在600℃下预氧化1h;
(二)、在管式炉中通入惰性保护气体(Ar气:1000sccm;H 2:10sccm),再在60min内升温至1000℃;
(三)、在1000℃保持20h,进行对镍箔的退火过程;
(四)、退火时间结束以后,气氛条件不变并开始降温,自然冷却到室温。
实施例3:
实施例3制备了单晶镍箔,包括如下步骤:
(一)、将多晶镍箔放置于刚玉耐高温衬底上,并放于管式炉中,在150℃下预氧化5h;
(二)、在管式炉中通入惰性保护气体(Ar气:700sccm;H 2:50sccm),再在120min内升温至1350℃;
(三)、在1350℃保持1h,进行对镍箔的退火过程;
(四)、退火时间结束以后,气氛条件不变并开始降温,自然冷却到室温。
与实施例1类似,实施例2和3制备的单晶镍箔也通过
实施例4-10:使用实施例1-3获得的单晶镍箔来制备单晶石墨。
实施例4:
实施例4利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例1获得的单晶镍箔放于石墨纸(北京晶龙特碳科技有限公司,厚度100μm,纯度99.9%)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:10sccm),再在120min内升温至1300℃;
(三)、温度升至1300℃后,保持10h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
图3为本公开实施例4制备的单晶石墨的照片,其中制得的石墨尺寸为4*3cm 2
图4为高定向热解石墨(HOPG)和本公开实施例4制备的单晶石墨的电子背散射衍射图(EBSD),(a)、(b)、(c)分别为高定向热解石墨x方向,y方向,z方向的EBSD图,表明HOPG在z方向虽然是单晶,但是在面内(x、y方向)有晶面旋转,单晶性不好。(d)、(e)、(f)分别为本公开实施例4制备的单晶石墨的x方向,y方向,z方向的EBSD图,表明本发明制备的石墨在z方向是单晶,在面内(x、y方向)无晶面旋转,单晶性好。高定向热解石墨的来源为NT-MDT公司,其纯度为ZYA级。
实施例5:
实施例5利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例1获得的单晶镍箔放于石墨粉(Alfa Aesar,99%)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:10sccm),再在120min内升温至1300℃;
(三)、温度升至1300℃后,保持10h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
实施例6:
实施例6利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例2获得的单晶镍箔放于活性炭(罗恩试剂)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:10sccm),再在120min内升温至1300℃;
(三)、温度升至1300℃后,保持10h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
实施例7:
实施例7利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例2获得的单晶镍箔放于炭黑(罗恩试剂)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:10sccm),再在120min内升温至1300℃;
(三)、温度升至1300℃后,保持10h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
实施例8:
实施例8利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例3获得的单晶镍箔放于石墨纸(北京晶龙特碳科技有限公司,厚度100μm,纯度99.9%)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:5sccm),再在120min内升温至1350℃;
(三)、温度升至1350℃后,保持10min,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
实施例9:
实施例9利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例3获得的单晶镍箔放于石墨纸(北京晶龙特碳科技有限公司,厚度100μm,纯度99.9%)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:1000sccm,H 2:10sccm),再在60min内升温至1000℃;
(三)、温度升至1000℃后,保持50h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
实施例10:
实施例10利用单晶镍箔生长单晶石墨,包括如下步骤:
(一)、将通过实施例3获得的单晶镍箔放于石墨纸(北京晶龙特碳科技有限公司,厚度100μm,纯度99.9%)上,然后一同放入管式炉中;
(二)、在管式炉中通入氩气和氢气的混合气(Ar:500sccm,H 2:100sccm),再在120min内升温至1300℃;
(三)、温度升至1300℃后,保持1h,进行石墨的渗透生长;
(四)、生长结束后,保持所通气氛不变,使系统自然降至室温,取出样品,得到单晶石墨样品。
与实施例4类似,实施例5-10制备的单晶石墨也通过电子背散射衍射得到确定。
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理解:根据已经公开的上述教导,可以对那些细节进行各种修改和替换,这些改变均在本发明的保护范围之内。本发明的保护范围由所附权利要求及其等同物确定。

Claims (18)

  1. 一种渗透生长碳膜的方法,所述方法包括如下步骤:
    S1,提供箔,所述箔选自镍箔或铜镍合金箔并且具有第一表面和第二表面;
    S2,选用所述箔作为衬底,将其放置于固态碳源上,其中,所述箔的第一表面靠近所述固态碳源,所述箔的第二表面远离所述固态碳源,然后加热箔和固态碳源使得在所述箔的第二表面上渗透生长出碳膜。
  2. 根据权利要求1的方法,其中所述箔是单晶镍箔。
  3. 根据权利要求1或2的方法,其中加热箔和固态碳源在管式炉中进行。
  4. 根据权利要求1-3任一项的方法,其中加热箔和固态碳源在保护气体下进行,所述保护气体选自:氩气、氮气、氢气中的一种或多种。
  5. 根据权利要求4的方法,其中所述保护气体为氩气和氢气的混合气体。
  6. 根据权利要求5的方法,其中所述混合气体中氩气和氢气的流量分别为Ar:100-1000sccm,H 2:5-200sccm。
  7. 根据前述权利要求中任一项的方法,其中所述加热箔和固态碳源包括如下步骤:
    在60-120min内升温至900-1350℃的温度,然后在此温度保持10min-50h。
  8. 根据前述权利要求中任一项的方法,其中在生长结束后,保持气氛不变,自然冷却降至室温。
  9. 根据权利要求2所述的方法,其中,步骤S1包括如下步骤:
    S11,将多晶镍箔放置于耐高温衬底上,并放于管式炉中,在150-650℃下预氧化1-5h;
    S12,在管式炉中通入惰性保护气体,再在60-120min内升温至1000-1350℃;
    S13,在1000-1350℃保持1-20h,进行对镍箔的退火过程;
    S14,退火时间结束以后,气氛条件不变并冷却到室温,即得到单晶镍箔。
  10. 根据权利要求9所述的方法,其中,步骤S11-S14在管式炉中进行。
  11. 根据权利要求9-10任一项所述的方法,其中,步骤S12中所述惰性保护气体为Ar与H 2的混合气体,Ar与H 2的体积比为Ar:H 2=0.5:1至200:1。
  12. 根据权利要求11所述的方法,其中,步骤S12中Ar气与H 2气的流量分别为100-1000sccm和5-200sccm。
  13. 根据权利要求9-12任一项所述的方法,其中,步骤S11中耐高温衬底为石英或刚 玉衬底,管式炉为石英炉或刚玉炉。
  14. 根据权利要求13所述的方法,其中,步骤S11中耐高温衬底、管式炉的选择与退火温度有关,在退火温度为1000-1150℃时选择石英材料,在退火温度为1150-1350℃时选择刚玉材料。
  15. 根据权利要求1-14任一项所述的方法,其中,所述固态碳源选自石墨纸、石墨粉、活性炭和炭黑中的一种或多种。
  16. 根据权利要求2所述的方法,其中,所制备得到的碳膜为单晶石墨或石墨烯。
  17. 根据权利要求16所述的方法,其中,所制备得到的碳膜为单晶石墨,其径向尺寸为1~10cm,纵向厚度为0.1~50μm。
  18. 根据权利要求17所述的方法,其中,制备得到的单晶石墨取向一致。
PCT/CN2022/128950 2021-11-09 2022-11-01 渗透生长碳膜的方法 WO2023083055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247000070A KR20240017055A (ko) 2021-11-09 2022-11-01 탄소 필름의 연속 에피택시 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111318030.3A CN115369484A (zh) 2021-11-09 2021-11-09 一种渗透生长碳膜的方法
CN202111318030.3 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023083055A1 true WO2023083055A1 (zh) 2023-05-19

Family

ID=84060592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128950 WO2023083055A1 (zh) 2021-11-09 2022-11-01 渗透生长碳膜的方法

Country Status (3)

Country Link
KR (1) KR20240017055A (zh)
CN (1) CN115369484A (zh)
WO (1) WO2023083055A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112999A (zh) * 2015-09-09 2015-12-02 中国计量科学研究院 一种制备单晶石墨烯的方法
CN105386124A (zh) * 2015-12-15 2016-03-09 北京大学 石墨烯单晶及其快速生长方法
CN111690982A (zh) * 2019-03-11 2020-09-22 北京大学 一种利用任意指数面的单晶铜箔生长单晶石墨烯的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344493B1 (ko) * 2007-12-17 2013-12-24 삼성전자주식회사 단결정 그라펜 시트 및 그의 제조방법
CN104803372B (zh) * 2014-01-28 2017-05-17 常州二维碳素科技股份有限公司 石墨烯薄膜及其制法和用途
CN111072022A (zh) * 2019-12-11 2020-04-28 中国科学院上海微系统与信息技术研究所 一种石墨薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112999A (zh) * 2015-09-09 2015-12-02 中国计量科学研究院 一种制备单晶石墨烯的方法
CN105386124A (zh) * 2015-12-15 2016-03-09 北京大学 石墨烯单晶及其快速生长方法
CN111690982A (zh) * 2019-03-11 2020-09-22 北京大学 一种利用任意指数面的单晶铜箔生长单晶石墨烯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAN WANG; XIAOZHI XU; JIAYU LI; LI LIN; LUZHAO SUN; XIAO SUN; SHULI ZHAO; CONGWEI TAN; CHENG CHEN; WENHUI DANG; HUAYING REN; JINC: "Surface Monocrystallization of Copper Foil for Fast Growth of Large Single‐Crystal Graphene under Free Molecular Flow", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 28, no. 40, 26 August 2016 (2016-08-26), DE , pages 8968 - 8974, XP071816260, ISSN: 0935-9648, DOI: 10.1002/adma.201603579 *
HUANG MING, RUOFF RODNEY S.: "Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates", ACCOUNTS OF CHEMICAL RESEARCH, ACS , WASHINGTON , DC, US, vol. 53, no. 4, 21 April 2020 (2020-04-21), US , pages 800 - 811, XP093065308, ISSN: 0001-4842, DOI: 10.1021/acs.accounts.9b00643 *
ROBERTSON ALEX W., WARNER JAMIE H.: "Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 3, 9 March 2011 (2011-03-09), US , pages 1182 - 1189, XP093065311, ISSN: 1530-6984, DOI: 10.1021/nl104142k *

Also Published As

Publication number Publication date
KR20240017055A (ko) 2024-02-06
CN115369484A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN103774113B (zh) 一种制备六方氮化硼薄膜的方法
CN107190315B (zh) 一种制备超平整无褶皱石墨烯单晶的方法
WO2016169108A1 (zh) 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
US20110091647A1 (en) Graphene synthesis by chemical vapor deposition
EP2616390B1 (en) Process for growth of graphene
KR101513136B1 (ko) 그래핀 필름의 제조방법, 그래핀 필름, 및 이를 포함하는 전자 소자
WO2012150763A2 (ko) 연속적인 열처리 화학 기상 증착 방법을 이용한 고품질 그래핀 제조 방법
US8865105B2 (en) Graphene and its growth
KR20130020351A (ko) 그래핀 박막의 형성방법 및 그 방법에 의해 제조된 그래핀
CN110699749B (zh) 一种制备大面积连续单层单晶石墨烯薄膜的方法
CN105603384A (zh) 一种cvd沉积石墨烯膜的规模化生产方法
CN111690982B (zh) 一种利用任意指数面的单晶铜箔生长单晶石墨烯的方法
CN109179388B (zh) 一种一氧化碳制备石墨烯的方法
CN111005066A (zh) 单晶异种二维材料的外延生长方法及层叠结构体
CN114214042B (zh) 一种石墨烯膜做为耐高温热界面材料或散热膜材料的应用
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN111908452A (zh) 一种石墨烯碳纳米管复合高导热膜及其制备方法
CN111470490A (zh) 取向碳纳米管/石墨烯复合导热膜及其制备方法、半导体器件
WO2023083055A1 (zh) 渗透生长碳膜的方法
CN105480966B (zh) 一种在原位还原碳化钨时自生长石墨烯的方法
US11685656B2 (en) Method for manufacturing monocrystalline graphene
CN114229837B (zh) 一种石墨烯膜及其制备方法
CN108117070B (zh) 人造石墨的制备方法
CN112830479B (zh) 一种利用硫束流解耦技术制备易剥离近自由态石墨烯的方法
CN107777681B (zh) 一种利用纳米粉催化制备双层和/或多层石墨烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247000070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000070

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2024508968

Country of ref document: JP