WO2023082579A1 - 一种人工心脏瓣膜 - Google Patents

一种人工心脏瓣膜 Download PDF

Info

Publication number
WO2023082579A1
WO2023082579A1 PCT/CN2022/092937 CN2022092937W WO2023082579A1 WO 2023082579 A1 WO2023082579 A1 WO 2023082579A1 CN 2022092937 W CN2022092937 W CN 2022092937W WO 2023082579 A1 WO2023082579 A1 WO 2023082579A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
valve
main body
ear
artificial heart
Prior art date
Application number
PCT/CN2022/092937
Other languages
English (en)
French (fr)
Inventor
张海军
赵婧
刘祥
Original Assignee
上海臻亿医疗科技有限公司
江苏臻亿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海臻亿医疗科技有限公司, 江苏臻亿医疗科技有限公司 filed Critical 上海臻亿医疗科技有限公司
Priority to EP22891390.1A priority Critical patent/EP4327781A1/en
Priority to US18/562,597 priority patent/US20240238085A1/en
Publication of WO2023082579A1 publication Critical patent/WO2023082579A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means

Definitions

  • the invention relates to the technical field of medical devices, in particular to an artificial heart valve.
  • Heart valves are membrane-like structures that can open and close in the organs of humans or certain animals. Every human heart has four valves. The aortic valve connects the left ventricle to the aorta, the pulmonary valve connects the right ventricle to the pulmonary artery, the mitral valve connects the left atrium to the left ventricle, and the tricuspid valve connects the right atrium to the right ventricle. They all act as one-way valves, so that blood can only flow from one direction to the other and not back. With the development of social economy and the aging of the population, the incidence of valvular heart disease has increased significantly. Studies have shown that the incidence of valvular heart disease in the elderly population over 75 years old is as high as 13.3%.
  • the tricuspid valve As the atrioventricular valve of the right heart, the tricuspid valve has a structure similar to that of the mitral valve, including leaflets, annulus, chordae, papillary muscles, and myocardium.
  • Transcatheter tricuspid valve replacement/repair has the advantages of no need for thoracotomy, less trauma, and faster recovery of patients, and has attracted extensive attention from experts and researchers.
  • the technology of tricuspid valve replacement has developed rapidly, there are still some recognized difficulties in the design of the valve, such as the anchoring of the valve.
  • Most of the existing tricuspid valve designs use a larger oversize to provide radial support for anchoring, or use needle-punched structures to hook native tissue to form axial anchoring.
  • oversize anchoring refers to placing an artificial valve with a larger radial dimension on the annulus and below the annulus. Due to the larger radial dimension, a certain amount of oversize can be formed between the artificial valve and the native tissue. Therefore, sufficient radial extrusion force is generated between the rhombic grid of the artificial valve and the original tissue (valve ring and valve leaflet). During the cardiac cycle, the presence of radial extrusion force creates an axial friction between the diamond-shaped mesh of the artificial valve and the original tissue, so that there is no relative movement between the artificial valve and the original tissue, so as to achieve stable anchoring on the right side. Between the atrium and the right ventricle. At the same time, in order to enhance the axial anchoring, some products are provided with a certain length of needle-punched structure at the nodes of the rhombus grid. The existence of this needle-punched structure greatly improves the stability of axial anchoring.
  • the above-mentioned design method of using radial support to achieve axial anchoring and stability has a greater risk of damage to native tissues such as the valve annulus, valve leaflets, conduction tissue, and atrioventricular wall during actual use:
  • 1 Larger radial support After the size is implanted in the position of the valve ring, the valve ring needs to be stretched, which may damage the valve ring, compress the conduction tissue, and even compress the aorta, affecting left heart function; at the same time, for patients who have been implanted with PPM, the artificial valve is too large
  • the radial force of the PPM may also damage the wire of the PPM, or more complicated surgical methods are required;
  • 2 The acupuncture structure is very easy to pierce the native valve leaflet, valve annulus and ventricular wall.
  • the object of the present invention is to provide an artificial heart valve that can achieve axially stable anchoring and less damage to native tissue.
  • an artificial heart valve comprising:
  • the outer support includes a flange segment, a main body segment and a lug segment connected in sequence in the axial direction, the circumferential diameter of the flange segment gradually increases in the axial direction toward the side away from the main body segment, and is used for pressing on the On the tricuspid valve annulus, the main body section is used to be arranged on the inner side of the tricuspid valve leaflet, and the ear section includes a septal valve ear and an anterior and posterior valve ear, and the septal valve ear is used for anchoring on the tricuspid valve leaflet.
  • the front and rear valve grasping ears are used to be anchored on the anterior valve and/or posterior valve of the tricuspid valve leaflet, so that the tricuspid valve leaflet is clamped on the between the flange section and the ear section, and the length of the front and rear flap ear is greater than the length of the septum ear;
  • the artificial valve leaflet is arranged on the inside of the main body section, and is configured with an open state and a closed state.
  • the length of the grasping ears of the anterior and posterior flaps is 4 mm to 30 mm, and the length of the grasping ears of the septal valve is 2 mm to 15 mm.
  • the grasping ears of the front and rear flaps first extend toward the direction away from the axis and then extend toward the direction close to the flange segment, and are used to be threaded on the chordae of the anterior flap, and/or, to be threaded on the on the chord of the rear flap, and cooperate with the flange section to jointly fix the front flap and/or the rear flap.
  • the front and rear flap ear includes a strong rigid section and a weak rigid section connected in sequence, the first end of the strong rigid section is connected to the main body section, the second end is connected to the weak rigid section, and the strong rigid section
  • the segment extends in the direction away from the axis in the circumferential direction and is used to ensure the scope of grabbing the front and/or rear lobes
  • the weak segment extends in the direction of the flange segment in the axial direction
  • the length of the strong rigid section is 2 mm to 10 mm, and the length of the weak rigid section is 5 mm to 20 mm.
  • the strong rigid section is a metal rod
  • the weak rigid section is a single thin rod, braided rod or spring rod.
  • the included angle ⁇ between the weakly rigid section and the axis of the main body section, and the included angle ⁇ ranges from -15° to 15°.
  • the front and rear flap ear also includes a distal head and a covering layer, the distal head is arranged at the end of the weak rigid section away from the strong rigid section, and the covering layer covers the The outer surface of the distal head and the weak segment.
  • the distal head is a head structure with a smooth surface
  • the coating layer is a polymer coating layer
  • the ear of the septum valve extends in the circumferential direction toward the side away from the flange segment, and is used to abut against the septum valve, or to pass through the chord of the septum valve, and cooperate with The flange segments collectively secure the septal valves.
  • septal valve ear is a curved metal rod.
  • the included angle ⁇ is -10° ⁇ 55°.
  • the shape of the main body section is cylindrical or conical, the diameter of the main body section is larger than the diameter of the tricuspid valve leaflet, and when the main body section is conical, the diameter of the main body section It gradually narrows axially toward the side away from the flange segment.
  • the rigidity of the main body section increases gradually toward the side away from the flange section along the axial direction.
  • the present invention has at least the following beneficial effects:
  • the present invention provides a kind of artificial heart valve, the length of the grasping ears of the front and rear flaps is greater than the length of the grasping ears of the septal flap so that the front and rear flap grasping ears and the septal flap grasping ears are designed differently to adapt to different anatomical structures;
  • the septal valve ear is used for anchoring on the septal valve of the tricuspid valve leaflet
  • the anterior and posterior valve ear is used for anchoring on the anterior valve and/or posterior valve of the tricuspid valve leaflet, so that the The tricuspid valve leaflet is clamped between the flange section and the ear section, so that the structure of the flange section and the ear section of the outer stent has sufficient axial anchoring force, and an artificial heart can be realized without adding an acupuncture structure
  • the axial anchoring of the valve has less damage to the original tissue, and the artificial heart valve can be stably anchored between the right atrium and the right ventricle without a large diameter of the main body section.
  • Fig. 1 is a three-dimensional structural schematic view of an artificial heart valve according to an embodiment of the present invention when it is located in the heart;
  • Fig. 2 is a three-dimensional structural schematic diagram of an artificial heart valve according to an embodiment of the present invention.
  • 3a-3c are simple schematic diagrams of an artificial heart valve according to an embodiment of the present invention.
  • FIGS. 4a-4b are structural schematic diagrams of the septal flap grasping ear according to an embodiment of the present invention.
  • Figures 5a-5c are structural schematic diagrams of front and rear flap grasping ears according to an embodiment of the present invention.
  • Fig. 6 is a force diagram of the outer support of an embodiment of the present invention.
  • 10-artificial heart valve 100-outer stent; 110-flange section; 120-main body section; -weak rigid segment; 1323-distal head; 1324-covering layer; 200-skirt; 300-artificial leaflet; 400-inner stent.
  • the right heart structure consists of right atrium 1, right ventricle 2, tricuspid valve ring 3 at the junction of right atrium 1 and right ventricle 2, tricuspid valve leaflet 4 attached thereto, and papillary muscles and Its tendons and other structures.
  • a healthy heart pumps blood from the right atrium 1 into the right ventricle 2, and the tricuspid valve leaflet 4 ensures that the blood flows in one direction, and finally flows out through the outflow tract of the right ventricle 2. Due to the disease of the tricuspid valve, the leaflet 4 of the tricuspid valve cannot fully guarantee the one-way flow of blood in the heart, resulting in the occurrence of tricuspid regurgitation.
  • the leaflet 4 of the tricuspid valve comprises an anterior valve 41, a posterior valve and a septal valve 42, and the both sides of the chordae 51 of the anterior valve are respectively connected with the anterior valve 41 and the anterior papillary muscle 61, and the both sides of the chordae 52 of the septal valve are The septal valves 42 and the septal papillary muscles 62 are respectively connected, and there are gaps between the chordae 52 of the two adjacent septal valves and between the chordae 51 of the two adjacent anterior valves.
  • Fig. 1 is a schematic perspective view of the three-dimensional structure of an artificial heart valve in this embodiment when it is located in the heart.
  • Fig. 2 is a schematic diagram of the three-dimensional structure of an artificial heart valve in this embodiment.
  • 3a-3c are simplified schematic diagrams of an artificial heart valve in this embodiment.
  • this embodiment provides an artificial heart valve 10, which is implanted into the heart through a catheter and finally anchored between the right atrium 1 and the right ventricle 2, the artificial heart valve 10 Replacement of the tricuspid valve leaflets ensures blood flow in one direction to heal tricuspid regurgitation.
  • the artificial heart valve 10 includes a stent, an artificial valve leaflet 300 and a skirt 200, the artificial valve leaflet 300 is arranged inside the stent, and the skirt 200 is attached to the stent.
  • the stent includes an outer stent 100, the artificial valve leaflet 300 is arranged inside the outer stent 100, and the skirt 200 is attached to the outer stent 100.
  • the outer stent 100 is composed of structural units whose axial shape can be changed, such as grid-like structural units or wave-shaped structural units.
  • the axial direction is composed of at least one row of structural units connected to each other in the circumferential direction. Rows of units can be directly or indirectly connected to each other.
  • the grid-like structural unit may be a rhombus, pentagonal, hexagonal or other structural unit that can form a closed shape.
  • the outer stent 100 can be made of biocompatible metal frames such as Nitinol, titanium alloy, cobalt chromium alloy, MP35n, 316 stainless steel, L605, Phynox/Elgiloy, platinum chromium, or other biocompatible metals or laser cut solid metal tube, preferably, the outer stent 100 is made of a shape memory alloy; the outer stent 100 can also be made of elastically or plastically deformable materials, such as balloon expandable, or can respond to temperature changes to A shape memory alloy that transitions between a contracted delivery state and an expanded deployed state; the outer stent 100 may also be constructed from braided wire or other suitable materials.
  • biocompatible metal frames such as Nitinol, titanium alloy, cobalt chromium alloy, MP35n, 316 stainless steel, L605, Phynox/Elgiloy, platinum chromium, or other biocompatible metals or laser cut solid metal tube, preferably, the outer stent 100 is made of a shape memory alloy; the outer
  • the outer bracket 100 sequentially includes a flange section 110 , a main body section 120 and an ear section 130 along the axial direction.
  • the flange section 110 is trumpet-shaped and extends axially away from the main body section 120 and the ear section 130, and covers the atrioventricular orifice (that is, covers the tricuspid annulus and the inner wall of the heart near the tricuspid annulus), That is, the flange section 110 is an extension section of the main body section 120 from the right ventricle 2 to the right atrium 1, and the circumferential diameter of the flange section 110 gradually increases from the right ventricle 2 to the right atrium 1.
  • the included angle ⁇ between the flange segment 110 and the radial section is -10°-55°, and the end of the flange segment 110 facing away from the main body segment 120 can abut against the annulus of the tricuspid valve 3 on the inner wall of the heart, so that the inner wall of the heart at the tricuspid annulus 3 can provide the flange segment 110 with an axial support force in a direction away from the right ventricle 2 .
  • the main body section 120 is distributed on the inner side of the tricuspid valve leaflet 4, and the main body section 120 is arranged in an interference fit with the tricuspid valve annulus 3. Further, the diameter of the main body section 120 is slightly larger than that of the tricuspid
  • the diameter of the valve annulus 3 is, for example, 1 to 1.1 times the diameter of the tricuspid valve annulus 3, so as to have a certain radial extrusion force on the tricuspid annulus 3 without providing a larger radial extrusion force , There will be no damage to the tricuspid annulus and compression of the conduction tissue.
  • the diameter of the main body section 120 may also be smaller than the diameter of the tricuspid annulus 3 .
  • the main body section 120 can be cylindrical; it can also be conical, and its diameter gradually decreases from the right atrium to the right ventricle, which is helpful for anchoring and stability.
  • the stiffness of the main body section 120 gradually increases axially from the right atrium 1 to the right ventricle 2, so that the stiffness of the main body section 120 near the right atrium is the smallest, which can reduce the chronic outward force, thereby reducing the compression on surrounding tissues, for example Conducting tissue or aorta, etc.
  • the main body section 120 can be directly or indirectly connected with the artificial valve leaflet 300 and used to provide support for the artificial valve leaflet 300 .
  • the ear-grabbing section 130 is an extension of the main body section 120 from the right atrium 1 to the right ventricle 2 , and the ear-grabbing section 130 includes a septal valve ear 131 and an anterior and posterior valve ear 132 .
  • the front and rear flap ear 132 is used for anchoring in the gap of the chordae 51 of the anterior flap, and/or, for anchoring in the gap of the rear flap of the chordae.
  • the front and rear flap ears 132 are used for After passing through the gap of the chordae 51 of the front flap and/or the gap of the chordae of the rear flap, the front flap 41 is clamped between the front and rear flap grasping ears 132 and the main body section 120, and/or, the rear flap is clamped It is arranged between the front and rear flap grasping ears 132 and the main body section 120, and cooperates with the flange section 110 to clamp the front flap 41 and/or the rear flap in the axial direction, so that the bracket can be stably anchored in the axial direction, so as to achieve artificial anchoring.
  • the role of the heart valve 10 The septal valve grasping ear 131 is used for anchoring on the septal valve or in the gap of the chordal tendon of the septal valve.
  • the length of the front and rear flap grasping ears 132 is 4mm-30mm.
  • the anterior valve 41 and posterior valve in general patients are larger and looser than the septal valve, while the leaflets and chordae of the septal valve 42 are smaller than those of the anterior valve 41 and the posterior valve, and The gaps of the chordae 52 of the septal valve are relatively fine. Therefore, in actual operation, it is necessary to consider not only the effective range of the grasping ear section 130 on the valve leaflets to ensure its grasping efficiency and improve the axial anchoring stability, but also consider the grasping effect of the septal valve grasping ear 131 and the front and rear valve grasping ears 132. Possible damage to native tissue by the ear.
  • the structures of the ear 131 for the septal flap and the ear 132 for the anterior and posterior flaps are different. Further, the length of the ear 132 for the anterior and posterior flaps is longer than that of the ear 131 for the septal flap.
  • FIGS. 4a-4b are structural schematic diagrams of the septal flap grasping ear of this embodiment.
  • the septal valve ear 131 extends in a direction away from the axis along the circumferential direction, so that its structure is generally U-shaped.
  • the valve ear 131 in this embodiment is, for example, a metal rod with a certain curvature.
  • the septal flap grasping ear 131 can pass through the gap of the tendon of the septal flap, and is used to fix the septal flap together with the flange segment 110; The interference fit together with the flange section 110 secures the septum.
  • the length of the septal flap grasping ear 131 is relatively short, for example, the value is 2mm-15mm.
  • FIGS. 5a-5c are structural schematic diagrams of the front and rear flap grasping ears of this embodiment. As shown in Figures 5a-5c, the front and rear flap grabbing ears 132 are first arranged circumferentially away from the axis and then axially close to the flange segment 110.
  • the front and rear flap ear 132 is a variable stiffness structure, and the front and rear flap ear 132 includes a strong rigid section 1321 and a weak rigid section 1322, one end of the strong rigid section 1321 is connected to the main body section 120, and the other end is connected to
  • the weak rigid section 1322 and the strong rigid section 1321 extend in a direction away from the axis in the circumferential direction, and are used to pull the valve leaflet to form an axial anchoring force and to connect the weak rigid section to ensure grasping
  • the rigid section 1321 is generally U-shaped, and its length is 2 mm to 10 mm, so as to improve the stability of anchoring.
  • the strong rigid section 1321 is a metal rod with a certain radian, and its body radial width is larger than that of the weak rigid section 1322 , so that its rigidity is larger than that of the weak rigid section 1322 .
  • the weak rigid section 1322 extends axially toward the flange section 110 , and there is a radial distance between the weak rigid section 1322 and the main body section 120 , so that the front lobe and/or the rear lobe can be clamped on the main body section 120 Between the weak rigid section 1322, because the stiffness of the weak rigid section 1322 is small, it provides a small radial pressure to the anterior lobe and/or the posterior lobe, so that the anterior lobe and/or the posterior lobe will not be increased in radial direction. upward squeezing force.
  • the weak section 1322 is used to expand the scope of grabbing the anterior valve and/or the posterior valve, and the anterior valve and/or the posterior valve are clamped between the anterior and posterior valve grasping ears 132 and the main body section 120 to prevent the prosthetic valve support from The movement between the atrium and the right ventricle, and the effect of reducing the anteroposterior flap ear 132 to pierce the myocardium.
  • the length of the weakly rigid section 1322 is 5 mm to 20 mm, and its stiffness is small, so that it can avoid being stuck to the comb muscle and puncturing the right ventricle wall, tricuspid valve leaflet or tricuspid valve annulus. At the same time, the length of the weak rigid section 1322 is relatively long, which can axially limit the artificial heart valve 10 during the cardiac cycle, so as to increase the stability of the artificial heart valve 10 .
  • the weak rigid section 1322 can be in various forms, such as a single thin rod, braided rod or spring rod and the like. In order to better clamp the front lobe and/or the back lobe, there is an included angle ⁇ between the weak rigid section 1322 and the axis of the main body section 120, and the included angle ⁇ ranges from -15° to 15°.
  • the main body section, the strong rigid section and the weak rigid section are integrally formed by laser cutting, wherein the strong rigid section 1321 is a metal rod made of the same material as the main section, and the weak rigid section is laser cut
  • the rigid section 1321 is a thin metal rod or a spring rod with a relatively small width, or a rod-shaped structure with a certain length and rigidity braided by nickel-titanium wire.
  • the end of the weak rigid section 1322 away from the strong rigid section 1321 has a distal head 1323, and the distal head 1323 is fixed on the weak rigid section 1322 by integral cutting, riveting or welding.
  • 1323 is a rigid distal head, and the distal head 1323 can be a head structure with a smooth surface, such as spherical and rounded cone, etc., to protect the original tissue of the tricuspid valve from being caught by the anterior and posterior valves
  • the ends of the ears 132 are pierced.
  • the axial distance between the distal head 1323 and the flange section is 5 mm to 9 mm.
  • the Grasp ear tip 1323 When facing a patient with a shorter front or rear valve, the Grasp ear tip 1323 can abut against it from the other side (right ventricle side) of tricuspid valve annulus, and this just makes described support and right heart structure have three axial support points (flange section and right atrium The support point of the tricuspid annulus on the side, the support point of the strong segment at the gap of the chordae tendineus of the anterior valve and/or the support point of the strong segment at the gap of the chordal tendon of the posterior valve, and the connection between the distal head 1323 and the side of the right ventricle The supporting point of the tricuspid valve ring), the axial anchoring effect of the artificial heart valve 10 is increased without the needling structure, and the artificial heart valve 10 can be axially limited during the cardiac cycle.
  • the surface of the weak rigid section 1322 and the distal head 1323 has a coating layer 1324, the coating layer 1324 is a polymer coating layer, so as to prevent the front and rear valve ear 132 from damaging the original tissue, and promote the front and rear valve ear 132 endothelialization.
  • the flange section 110 , the main body section 120 and the ear section 130 can be integrally formed, or can be a separate structure and fixedly connected.
  • the body section 120 and the ear section 130 can be welded, sewn, glued, etc., the skirt 200 is attached to the flange section 110 and the body section 120, and the flange section 110 and the body section 120 can be The connection is fixed via the skirt 200 .
  • the part used to carry the artificial valve leaflet 300 in the outer support 100 of the prosthetic valve of the tricuspid valve that is, the artificial heart valve 10 of this embodiment
  • Both the diameter and the axial height require a larger size, resulting in a larger size of the artificial heart valve 10 under the valve after the artificial heart valve 10 is implanted into the tricuspid valve, which has a greater impact on the subvalvular structure of the original valve assembly. Risk of injury.
  • the double-layer stent can distribute the functions of carrying the artificial valve leaflet 300 and undertaking anchoring and sealing to different single-layer stents, so as to achieve the goal of not affecting the normal operation of other structures of the heart, but also better performing the implantation treatment function. Purpose. Therefore, the stent is preferably a double-layer stent structure.
  • the stent includes an outer stent 100 and an inner stent 400, the outer stent 100 is sleeved on the outside of the inner stent 400, and the axial direction of the outer stent 100 is in line with the The axial directions of the inner stents 400 are the same.
  • the artificial leaflet 300 is disposed inside the inner stent 400 , and the skirt 200 is attached to the outer stent 100 and/or the inner stent 400 .
  • the skirt 200 is attached to the outer stent 100 and the inner stent 400, and connects the outer stent 100 and the inner stent 400.
  • the outer stent and the inner stent can be connected in other existing ways, which will not be repeated here.
  • the inner stent 400 is tubular to provide an attachment environment for the artificial valve leaflet 300 and the skirt 200 .
  • the inner stent 400 has significant radial and axial stiffness, and can withstand the pulling of the artificial valve leaflet 300 .
  • the inner stent 400 is composed of structural units whose axial shape can change, such as grid-like structural units or wave-shaped structural units. Its axial direction consists of at least one row of structural units connected to each other in the circumferential direction, and multiple rows of units in the axial direction can be directly or indirectly connected to each other.
  • the inner stent 400 is made of biocompatible materials with shape memory properties such as nickel titanium, or biocompatible materials such as cobalt-chromium alloy and stainless steel, and is made by heat treatment, sandblasting, polishing or other processes that can process stents after cutting. become.
  • the stiffness of the inner stent can be adjusted by adjusting the wall thickness, rod width, phase transition temperature point, etc. to ensure the fatigue resistance of the valve leaflets.
  • the number of the artificial leaflets 300 is at least two, one end of the artificial leaflets 300 is directly or indirectly stably connected to the outer stent 100, and the other end of the artificial leaflets 300 is a free end, so that the artificial leaflets 300 can be opened and closed
  • the two states are dynamically switched.
  • In the closed state of the artificial valve leaflets 300 all the artificial valve leaflets 300 are tightly closed or converged in a sealed abutting manner.
  • a blood flow channel is formed between the artificial valve leaflets 300.
  • the artificial valve leaflet 300 can be formed by any suitable material or a combination of materials.
  • the artificial valve leaflet 300 can be selected from biological tissues or pericardial tissue of animals, for example: chemically stable heart valves from animals (such as pigs). Tissue, bovine (bovine pericardium) or sheep (sheep pericardium) or porcine (porcine pericardium) or equine (equine pericardium), preferably bovine pericardium tissue; can also be made from small intestinal submucosal tissue or from synthetic materials, e.g.
  • Biocompatible polymers can also be selected, such as: polyolefins, elastomers, polyethylene glycol, polyethersulfone, polysulfone, polyvinylpyrrolidone, polyvinyl chloride, other fluoropolymers, silicone polyesters , silicone polymers and/or oligomers, and/or polylactones, and block copolymers using them.
  • the surface of the artificial valve leaflet 300 also has an anticoagulant film layer, and the anticoagulant includes but not limited to heparinized polymer.
  • Fig. 6 is a force diagram of the outer support of an embodiment of the present invention.
  • the flange section 110 of the outer stent 100 when in use, the flange section 110 of the outer stent 100 is placed close to the tricuspid valve annulus 3, so that the flange section 110 is pressed against the tricuspid valve annulus 3 and subjected to a reaction force FA; After the front and rear flap grasping ears 132 pass through the gap between the tendons of the front flap and/or the tendons of the rear flap, the front flap and the rear flap are sandwiched between the flange section 110 and the front and rear flap gripping ears 132 in the axial direction.
  • the septum flap is sandwiched between the flange section 110 and the septal flap grasping ear 131, and the grasping ear section 130 receives the reaction force FB, These two forces can make the outer stent 100 stably anchored in the axial direction.
  • the front and rear valve grasping ears 132 are inserted in the gap between the chordae tendineae of the anterior valve or the chordae of the rear valve, so that the outer support 100 cannot rotate in the circumferential direction.
  • the main body section 120 of the stent can anchor the stent stably between the right atrium and the right ventricle without a large radial support force.
  • the present invention provides an artificial heart valve, which can be adapted to different anatomical structures through the difference between the front and rear flaps and septal flaps, and the flange section and the ear section structure of the artificial valve are also adopted.
  • the artificial heart valve of the present invention provides a new anchoring mechanism, while improving the anchoring stability of the stent, it reduces the impact on the original tissue as much as possible. damage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种人工心脏瓣膜,用以设置在右心房(1)和右心室(2)之间,包括外层支架(100)、裙边(200)和人工瓣叶(300)。外层支架(100)包括沿轴向依次连接的法兰段(110)、主体段(120)和抓耳段(130)。法兰段(110)的直径沿轴向朝向远离主体段(120)侧逐渐增大,并用于压设在三尖瓣瓣环(3)上。主体段(120)用以设置在三尖瓣瓣叶(4)的内侧。抓耳段(130)包括隔瓣抓耳(131)和前后瓣抓耳(132)。隔瓣抓耳(131)用以锚固在三尖瓣瓣叶(4)的隔瓣上,前后瓣抓耳(132)用以锚固在三尖瓣瓣叶(4)的前瓣和/或后瓣上,使得三尖瓣瓣叶(4)夹持在法兰段(110)和抓耳段(130)之间,且前后瓣抓耳(132)的长度大于隔瓣抓耳(131)的长度。

Description

一种人工心脏瓣膜 技术领域
本发明涉及医疗器械技术领域,特别涉及一种人工心脏瓣膜。
背景技术
心脏瓣膜是人或某些动物的器官里面可以开闭的膜状结构。每个人的心脏内都有四个瓣膜。即连结左心室和主动脉的主动脉瓣、连结右心室和肺动脉的肺动脉瓣、连结左心房和左心室的二尖瓣以及连结右心房和右心室的三尖瓣。它们均起单向阀门作用,使血液只能从一个方向流向另一个方向而不能倒流。随着社会经济的发展和人口的老龄化,瓣膜性心脏病的发病率明显增加,研究表明75岁以上的老年人群瓣膜性心脏病发病率高达13.3%。目前,采用传统外科手术治疗仍是重度瓣膜病变患者的首选治疗手段,但是对于高龄、合并多器官疾病、有开胸手术史以及心功能较差的患者来说,传统外科手术的风险大、死亡率高,部分患者甚至没有手术的机会。
三尖瓣作为右心脏的房室瓣,其结构与二尖瓣类似,包含瓣叶、瓣环、腱索、乳头肌及心肌。经导管三尖瓣的置换/修复术具有无需开胸、创伤小、患者恢复快等优点,受到了专家学者的广泛关注。虽然三尖瓣瓣膜置换技术飞速发展,但是在瓣膜的设计上仍存在一些公认的难题,比如,瓣膜的锚固。现有的三尖瓣设计大多采用较大的Oversize提供径向支撑进行锚固,或利用针刺结构钩住原生组织形成轴向锚固。具体地,Oversize锚固指的是将具有较大的径向尺寸的人工瓣膜置于瓣环及瓣环以下位置,由于径向尺寸较大,人工瓣膜可以与原生组织之间形成一定量的Oversize,从而人工瓣膜的菱形网格与原生组织(瓣环和瓣叶)之间产生足够的径向挤压力。在心动周期中,径向挤压力的存在使人工瓣膜的菱形网格与原生组织之间形成轴向的摩擦力,使人工瓣膜与原生组织之间不产生相对运动,从而达到稳定锚固于右心房和右心室之间的目的。同时,为了增强轴向的锚固,一些产品在其菱形网格的节点位置处设置一定长度的针刺结构,该针刺结构的存在大大提高了轴向锚固的稳定性。
然而,上述利用径向支撑达到轴向锚固稳定目的的设计方式在实际使用过程中存在较大的损伤瓣环、瓣叶,传导组织及房室壁等原生组织的风险:①较大的径向尺寸植入瓣环位置之后,需要撑开瓣环,可能会撑坏瓣环,压迫传导组织,甚至压迫主动脉,影响左心功能;同时对于已经植入PPM的患者来说,人工瓣膜过大的径向力还可能损坏PPM的导线,或者需采用更为复杂的手术手段等;②针刺结构极容易刺穿原生瓣叶、瓣环及心室壁。
发明内容
本发明的目的在于,提供一种可以达到轴向稳定锚固且对原生组织损伤较小的人工心脏瓣膜。
为了解决上述技术问题,本发明提供一种人工心脏瓣膜,包括:
外层支架,包括沿轴向依次连接的法兰段、主体段和抓耳段,所述法兰段的周向直径沿轴向朝向远离所述主体段侧逐渐增大,并用于压设在三尖瓣瓣环上,所述主体段用以设置在三尖瓣瓣叶的内侧,所述抓耳段包括隔瓣抓耳和前后瓣抓耳,所述隔瓣抓耳用以锚固在所述三尖瓣瓣叶的隔瓣上,所述前后瓣抓耳用以锚固在所述三尖瓣瓣叶的前瓣和/或后瓣上,使得所述三尖瓣瓣叶夹持在所述法兰段和抓耳段之间,且所述前后瓣抓耳的长度大于所述隔瓣抓耳的长度;
裙边,附着在所述法兰段和主体段上;以及
人工瓣叶,设置在所述主体段的内侧,并配置有打开状态和闭合状态。
可选的,所述前后瓣抓耳的长度为4mm~30mm,所述隔瓣抓耳的长度为2mm~15mm。
可选的,所述前后瓣抓耳先朝向远离轴线的方向延伸再朝向靠近所述法兰段的方向延伸,并用以穿设在前瓣的腱索上,和/或,用以穿设在后瓣的腱索上,并配合所述法兰段共同固定所述前瓣和/或后瓣。
进一步的,所述前后瓣抓耳包括依次连接的强刚段和弱刚段,所述强刚段的第一端连接所述主体段,第二端连接所述弱刚段,所述强刚段沿周向朝向远离轴线的方向延伸,并用以保证抓取所述前瓣和/或后瓣的范围,所述弱 刚段沿轴向朝向靠近所述法兰段的方向延伸,且所述弱刚段与所述主体段之间具有径向间距,使得所述前瓣和/或后瓣能够设置在所述主体段和所述弱刚段之间。
进一步的,所述强刚段的长度为2mm~10mm,所述弱刚段的长度为5mm~20mm。
进一步的,所述强刚段为金属杆,所述弱刚段为单根细杆、编织杆或弹簧杆。
进一步的,所述弱刚段与所述主体段的轴线之间具有夹角β,所述夹角β的取值为-15°~15°。
进一步的,所述前后瓣抓耳还包括末梢头部和包覆层,所述末梢头部设置于所述弱刚段远离所述强刚段的端部,所述包覆层包覆所述末梢头部和所述弱刚段的外表面。
进一步的,所述末梢头部为具有光滑表面的头部结构,所述包覆层为高分子包覆层。
可选的,所述隔瓣抓耳朝向远离所述法兰段侧沿周向朝向远离轴线的方向延伸,并用以抵接在隔瓣上,或者穿设在隔瓣的腱索上,并配合所述法兰段共同固定所述隔瓣。
进一步的,所述隔瓣抓耳为具有弧度的金属杆。
可选的,所述法兰段与主体段的径向截面之间具有夹角α,所述夹角α为-10°~55°。
可选的,所述主体段的形状为圆柱状或圆锥状,所述主体段的直径大于所述三尖瓣瓣叶的直径,且所述主体段为圆锥状时,所述主体段的直径沿轴向朝向远离法兰段侧逐渐缩小。
可选的,所述主体段的刚度沿轴向朝向远离法兰段侧逐渐增大。
与现有技术相比,本发明至少具有以下有益效果:
本发明提供一种人工心脏瓣膜,通过所述前后瓣抓耳的长度大于所述隔瓣抓耳的长度使得前后瓣抓耳和隔瓣抓耳区别设计,以适应不同的解剖结构;通过所述隔瓣抓耳用以锚固在所述三尖瓣瓣叶的隔瓣上,所述前后瓣抓耳用 以锚固在所述三尖瓣瓣叶的前瓣和/或后瓣上,使得所述三尖瓣瓣叶夹持在所述法兰段和抓耳段之间,使得外层支架法兰段和抓耳段结构具有足够的轴向锚固力,无需增设针刺结构就可以实现人工心脏瓣膜的轴向锚固,对原生组织损伤较小,并且无需较大的主体段直径就可以将人工心脏瓣膜稳定锚固在右心房和右心室之间。
附图说明
图1为本发明一实施例的一种人工心脏瓣膜位于心脏中时的立体结构示意图;
图2为本发明一实施例的一种人工心脏瓣膜的立体结构示意图;
图3a-3c为本发明一实施例的一种人工心脏瓣膜的简易示意图;
图4a-4b为本发明一实施例的隔瓣抓耳的结构示意图;
图5a-5c为本发明一实施例的前后瓣抓耳的结构示意图;
图6为本发明一实施例的外层支架向的受力图。
附图标记说明:
1-右心房;2-右心室;3-三尖瓣瓣环;4-三尖瓣瓣叶;41-前瓣;42-隔瓣;51-前瓣的腱索;52-隔瓣的腱索;61-前瓣乳头肌;62-隔瓣乳头肌;
10-人工心脏瓣膜;100-外层支架;110-法兰段;120-主体段;130-抓耳段;131-隔瓣抓耳;132-前后瓣抓耳;1321-强刚段;1322-弱刚段;1323-末梢头部;1324-包覆层;200-裙边;300-人工瓣叶;400-内层支架。
具体实施方式
以下将对本发明的一种人工心脏瓣膜作进一步的详细描述。下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述 公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。本文中,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。本文所使用的术语“内”、“外”、以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
右心结构由右心房1,右心室2,右心房1和右心室2交界的三尖瓣瓣环3,附着于其上的三尖瓣瓣叶4,以及位于右心室2内的乳头肌及其腱索等结构构成。健康的心脏将血液从右心房1泵入右心室2,并由三尖瓣瓣叶4确保血流单向流动,最终由右心室2流出道流出。由于三尖瓣病变,三尖瓣瓣叶4不能完全保证血液在心脏内的单向流动,导致三尖瓣反流的发生。其中,三尖瓣瓣叶4包括前瓣41、后瓣和隔瓣42,前瓣的腱索51两侧分别连接所述前瓣41和前瓣乳头肌61,隔瓣的腱索52两侧分别连接隔瓣42和隔瓣乳头肌62,相邻两根所述隔瓣的腱索52之间和相邻两根前瓣的腱索51之间均具有间隙。
图1为本实施例的一种人工心脏瓣膜位于心脏中时的立体结构示意图。图2为本实施例的一种人工心脏瓣膜的立体结构示意图。图3a-3c为本实施例的一种人工心脏瓣膜的简易示意图。如图1-2以及图3a-3c所示,本实施例提供一种人工心脏瓣膜10,其由经导管方式植入心脏并最终锚固在右心房1和右心室2之间,人工心脏瓣膜10替换三尖瓣瓣叶确保血流单向流动,以治愈三尖瓣反流。所述人工心脏瓣膜10包括支架、人工瓣叶300和裙边200,所述人工瓣叶300设置在所述支架的内侧,所述裙边200附着在支架上。
请参阅图1-3b,所述支架包括外层支架100,所述人工瓣叶300设置在所 述外层支架100的内侧,所述裙边200附着在外层支架100上。
所述外层支架100由网格状结构单元或波浪形结构单元等轴向形态可进行变化的结构单元组成,轴向上由至少一排的周向上彼此相互连接的结构单元组成,轴向上多排单元间可彼此直接连接或间接连接。较佳地,所述网格状结构单元可呈菱形、五边形、六边形等可形成封闭形状的结构单元。外层支架100可以采用如镍钛诺、钛合金、钴铬合金、MP35n、316不锈钢、L605、Phynox/Elgiloy、铂铬,或其它生物相容性金属制成的生物相容性金属框架或激光切割的固体金属管,优选地,外层支架100采用形状记忆合金制备而成;外层支架100还可以采用可弹性或可塑性变形的材料,例如球囊可扩张的,或者可以是响应温度变化以在收缩的递送状态和扩张的展开状态之间转变的形状记忆合金;外层支架100还可以由编织线或其它合适的材料构造。
所述外层支架100沿轴向依次包括法兰段110、主体段120和抓耳段130。所述法兰段110呈喇叭形状沿轴向朝向远离主体段120和抓耳段130侧延伸,并覆盖房室口(即覆盖三尖瓣瓣环以及三尖瓣瓣环附近的心脏内壁),即所述法兰段110为所述主体段120的由右心室2向右心房1的延伸段,且所述法兰段110的周向直径由右心室2向右心房1的方向上逐渐增大,以匹配右心房2至三尖瓣瓣环3处的心脏内壁的尺寸变化。所述法兰段110与径向截面之间的夹角α为-10°~55°,且所述法兰段110朝向远离所述主体段120的端部能够抵接在三尖瓣瓣环3处的心脏内壁上,使得三尖瓣瓣环3处的心脏内壁可以向所述法兰段110提供一个朝向远离右心室2方向的轴向支撑力。
所述主体段120分布在三尖瓣瓣叶4的内侧,且所述主体段120与所述三尖瓣瓣环3过盈配合设置,进一步的,所述主体段120的直径略大于三尖瓣瓣环3的直径,例如是三尖瓣瓣环3的直径的1~1.1倍,以对三尖瓣瓣环3具有一定的径向挤压力,没有提供较大的径向挤压力,不会出现撑坏三尖瓣瓣环,压迫传导组织。当然,在其他实施例中,所述主体段120的直径还可以小于三尖瓣瓣环3的直径。所述主体段120可以为圆柱状;还可以为圆锥状,且直径从右心房向右心室逐渐缩小,有助于锚固稳定。所述主体段120的刚度沿轴向由右心房1向右心室2逐渐增大,使得靠近右心房处的主体段 120的刚度最小,可以降低慢性外向力,进而减少对周围组织的压迫,例如传导组织或主动脉等。所述主体段120可以直接或间接的与人工瓣叶300连接,并用于向人工瓣叶300提供支撑。
所述抓耳段130为所述主体段120从右心房1向右心室2的延伸段,所述抓耳段130包括隔瓣抓耳131和前后瓣抓耳132。所述前后瓣抓耳132用于锚固在前瓣的腱索51的间隙中,和/或,用于锚固在后瓣的腱索的间隙中,详细的,所述前后瓣抓耳132用于穿设在前瓣的腱索51的间隙和/或后瓣的腱索的间隙后,将前瓣41夹设在前后瓣抓耳132和主体段120之间,和/或,将后瓣夹设在前后瓣抓耳132和主体段120之间,并配合法兰段110共同沿轴向将前瓣41和/或后瓣夹持,以使得支架在轴向上稳定锚固,从而达到锚固人工心脏瓣膜10的作用。所述隔瓣抓耳131用于锚固在隔瓣上或者隔瓣的腱索的间隙中。所述前后瓣抓耳132的长度为4mm~30mm。
解剖学上可知,一般患者的前瓣41和后瓣较隔瓣大且松弛,而隔瓣42的瓣叶和腱索相对于前瓣41及后瓣的瓣叶和腱索均较小,且隔瓣的腱索52的间隙比较细密。因此,在实际操作中,既要考虑抓耳段130对瓣叶的有效范围以保证其抓瓣效率,提高轴向锚固稳定性,又要考虑隔瓣抓耳131和前后瓣抓耳132的抓耳可能会对原生组织产生的损伤。根据解剖结构的特点,所述隔瓣抓耳131和前后瓣抓耳132的结构不同,进一步的,所述前后瓣抓耳132的长度大于所述隔瓣抓耳131的长度。
图4a-4b为本实施例的隔瓣抓耳的结构示意图。如图4a-4b所示,所述隔瓣抓耳131沿周向朝向远离轴线的方向延伸,使得其结构大体呈U状,例如所述隔瓣抓耳131是跟支架主体一体切割,具有较大杆宽的金属杆结构,因此,隔瓣抓耳131的刚度较大。本实施例的所述隔瓣抓耳131例如是具有一定弧度的金属杆。所述隔瓣抓耳131可以穿设在隔瓣的腱索的间隙中,并用以与法兰段110共同将隔瓣固定住;还可以抵接在隔瓣处,并用以配合主体段120的过盈配合与法兰段110共同将隔瓣固定住。所述隔瓣抓耳131的长度较短,例如取值为2mm~15mm。
图5a-5c为本实施例的前后瓣抓耳的结构示意图。如图5a-5c所示,所述 前后瓣抓耳132先沿周向朝向远离轴线再沿轴向靠近法兰段110设置。所述前后瓣抓耳132为变刚度结构,所述前后瓣抓耳132包括强刚段1321和弱刚段1322,所述强刚段1321的一个端部连接主体段120,另一个端部连接所述弱刚段1322,所述强刚段1321沿周向朝向远离轴线的方向延伸,其用以承担牵拉瓣叶以形成轴向锚固力,以及连接弱刚度段的作用,从而保证抓取前瓣和/或后瓣的范围,所述强刚段1321形状大体为U状,其长度为2mm~10mm,从而提高锚定的稳定性。所述强刚段1321为具有一定弧度的金属杆,其本体径向宽度较弱刚段1322的本体径向宽度大,使得其刚度较弱刚段1322的刚度大。
所述弱刚段1322沿轴向朝向所述法兰段110延伸,所述弱刚段1322和主体段120之间具有径向间距,使得前瓣和/或后瓣可以夹设在主体段120和弱刚段1322之间,由于弱刚段1322的刚度较小,使得其向前瓣和/或后瓣提供一个小的径向压力,这样就不会增加前瓣和/或后瓣在径向上的挤压力。所述弱刚段1322用以扩大抓取前瓣和/或后瓣的范围,将前瓣和/或后瓣夹持在前后瓣抓耳132和主体段120之间,防止人工瓣膜支架在右心房和右心室之间窜动,以及降低前后瓣抓耳132刺穿心肌的作用。
所述弱刚段1322的长度为5mm~20mm,且刚度较小,使得其可以避免卡滞到梳状肌,刺破右心室壁、三尖瓣瓣叶或三尖瓣瓣环。同时,弱刚段1322的长度较长,在心动周期中可以对人工心脏瓣膜10进行轴向限位,以增加人工心脏瓣膜10的稳定性。所述弱刚段1322可以为各种形式,例如单根细杆、编织杆或弹簧杆等。为了更好的夹持前瓣和/或后瓣,所述弱刚段1322与主体段120的轴线之间具有夹角β,夹角β的取值为-15°~15°。
在本实施例中,所述主体段、强刚段和弱刚段为一体激光切割成型,其中,所述强刚段1321为与主体段材料相同的金属杆,所述弱刚段为激光切割的宽度较强刚段1321宽度小的细金属杆或弹簧杆,或者镍钛丝编织而成的具有一定长度和刚度的杆状结构。
所述弱刚段1322远离强刚段1321的端部具有末梢头部1323,所述末梢头部1323通过一体切割、铆接或者焊接的方式固定在所述弱刚段1322上, 所述末梢头部1323为刚强度的末梢头部,且所述末梢头部1323可以为具有光滑表面的头部结构,例如是球形及圆角锥形等,以保护三尖瓣原生组织不被所述前后瓣抓耳132的端部刺破。并且,由于前后瓣抓耳132的长度较长,使得末梢头部1323与法兰段之间的轴向间距为5mm~9mm,在面对前瓣或后瓣长度较短的患者时,所述抓耳末梢头部1323可以从三尖瓣瓣环的另一侧(右心室侧)与其抵接,这就使得所述支架与右心结构具有三个轴向支撑点(法兰段与右心房侧的三尖瓣环的支撑点,强刚段在前瓣的腱索的间隙处和/或强刚段在后瓣的腱索的间隙处的支撑点,以及末梢头部1323与右心室侧的三尖瓣环的支撑点),没有设置针刺结构就增加了人工心脏瓣膜10的轴向锚固作用,并在心动周期中可以对人工心脏瓣膜10进行轴向限位。
所述弱刚段1322和末梢头部1323的表面具有包覆层1324,所述包覆层1324为高分子包覆层,以避免前后瓣抓耳132损伤原生组织,并促进前后瓣抓耳132的内皮化。
在本实施例中,所述法兰段110、主体段120和抓耳段130可以一体成型,也可以为分体结构,并固定连接。所述主体段120和抓耳段130可以通过焊接,缝合,胶接等方式,裙边200附着在所述法兰段110和主体段120上,且所述法兰段110和主体段120可以通过裙边200固定连接。
由于解剖学上三尖瓣瓣环尺寸较大,植入三尖瓣的假体瓣膜(即本实施例的人工心脏瓣膜10)的外层支架100中的用以承载人工瓣叶300的部分无论在直径还是轴向高度上均需要更大的尺寸,导致人工心脏瓣膜10植入三尖瓣后其瓣下的人工心脏瓣膜10尺寸较大,对原生瓣膜组合体的瓣下结构存在较大的损伤风险。而双层支架可将承载人工瓣叶300和承担锚固、密封等作用分配到不同的单层支架上,从而达到既不影响心脏其他结构的正常运转,又能较好的发挥植入治疗功能的目的。所以所述支架优选为双层支架结构。
请参阅图3c,所述支架包括外层支架100和内层支架400,所述外层支架100套设在所述内层支架400的外侧,且所述外层支架100的轴向与所述内层支架400的轴向相同。所述人工瓣叶300设置在所述内层支架400的内侧,所述裙边200附着在所述外层支架100和/或内层支架400上。在一个实 施例中,所述裙边200附着在所述外层支架100和内层支架400上,并连接所述外层支架100和内层支架400。在其他实施例中,外层支架和内层支架可以通过已有的其他方式进行连接,在此不予赘述。
所述内层支架400为管形,以向人工瓣叶300和裙边200提供附着环境。所述内层支架400具有显著的径向与轴向刚度,可承受人工瓣叶300牵拉。内层支架400由网格状结构单元或波浪形结构单元等轴向形态可进行变化的结构单元组成。其轴向由至少一排的周向上彼此相互连接的结构单元组成,且轴向上的多排单元间可彼此直接连接或间接连接。内层支架400采用镍钛等具有形状记忆特性的生物相容材料,或钴铬合金、不锈钢等生物相容的材料,在切割后经过热处理、喷砂、抛光或其他可加工支架的工艺制作而成。内层支架采用镍钛材料时,可通过调整壁厚、杆宽、相变温度点等方式来调整内层支架的刚度以保证瓣膜叶的耐疲劳性能。
所述人工瓣叶300的数量至少为两片,人工瓣叶300的一端与外层支架100直接或间接稳定连接,人工瓣叶300的另一端为自由端,使得人工瓣叶300在打开和闭合两种状态间动态切换,人工瓣叶300在所述闭合状态中,所有人工瓣叶300以密封抵接的方式合紧或会合,在打开状态下,人工瓣叶300之间形成血流通道,以实现血流的单向流通。人工瓣叶300可以由任意合适的材料或材料的组合形成,详细的,人工瓣叶300可以选择生物组织或者是动物的心包组织,例如:来自动物(如猪)的心脏瓣膜的化学性稳定的组织,牛(牛心包)或羊(羊心包)或猪(猪心包)或马(马心包),优选为牛心包组织;还可以由小肠粘膜下组织制成或者合成材料制成,例如,膨体聚四氟乙烯或聚酯,具体例如:热塑性聚碳酸酯聚氨酯、聚醚聚氨酯、分段聚醚聚氨酯、有机硅聚醚聚氨酯、有机硅-聚碳酸酯聚氨酯、以及超高分子量聚乙烯等;还可以选择生物相容的聚合物,例如:聚烯烃、弹性体、聚乙二醇、聚醚砜、聚砜、聚乙烯基吡咯烷酮、聚氯乙烯、其它的含氟聚合物、有机硅聚酯、硅氧烷聚合物和/或低聚物、和/或聚内酯、以及使用它们的嵌段共聚物。可选的,人工瓣叶300的表面还具有抗凝剂膜层,所述抗凝剂包括但不限于肝素化聚合物。
图6为本发明一实施例的外层支架向的受力图。如图6所示,在使用时, 外层支架100的法兰段110紧贴三尖瓣瓣环3设置,使得法兰段110压制在三尖瓣瓣环3上,并受到反作用力FA;前后瓣抓耳132穿设前瓣的腱索和/或后瓣的腱索的间隙后,沿轴向将前瓣和后瓣夹设在法兰段110和前后瓣抓耳132之间,隔瓣抓耳131抵接在隔瓣或穿设在隔瓣的腱索的间隙后,将隔瓣夹设在法兰段110和隔瓣抓耳131之间,抓耳段130受到反作用力FB,这两个力可以使得外层支架100稳定的锚固于轴向方向。同时,前后瓣抓耳132穿设前瓣的腱索或后瓣的腱索的间隙中,使得外层支架100不能产生周向的转动。此时,支架的主体段120无需较大的径向支撑力即可将支架稳固定的锚定在右心房和右心室之间。
综上所述,本发明提供一种人工心脏瓣膜,通过前后瓣抓耳和隔瓣抓耳的区别设置,可以适应不同的解剖结构,还采用有人工瓣膜的法兰段和抓耳段结构具有足够的轴向锚固力,以从轴向将人工心脏瓣膜锚定,本发明的人工心脏瓣膜提供了一种新的锚固机理,在提高了支架锚固稳定性的同时,尽可能减少了对原生组织的损伤。
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”和“第二”仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (14)

  1. 一种人工心脏瓣膜,用以设置在右心房和右心室之间,其特征在于,包括:
    外层支架,包括沿轴向依次连接的法兰段、主体段和抓耳段,所述法兰段的直径沿轴向朝向远离所述主体段侧逐渐增大,并用于压设在三尖瓣瓣环上,所述主体段用以设置在三尖瓣瓣叶的内侧,所述抓耳段包括隔瓣抓耳和前后瓣抓耳,所述隔瓣抓耳用以锚固在所述三尖瓣瓣叶的隔瓣上,所述前后瓣抓耳用以锚固在所述三尖瓣瓣叶的前瓣和/或后瓣上,使得所述三尖瓣瓣叶夹持在所述法兰段和抓耳段之间,且所述前后瓣抓耳的长度大于所述隔瓣抓耳的长度;
    裙边,附着在所述法兰段和主体段上;以及
    人工瓣叶,设置在所述主体段的内侧,并配置有打开状态和闭合状态。
  2. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述前后瓣抓耳的长度为4mm~30mm,所述隔瓣抓耳的长度为2mm~15mm。
  3. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述前后瓣抓耳先朝向远离轴线的方向延伸再朝向靠近所述法兰段的方向延伸,并用以穿设在前瓣的腱索上,和/或,用以穿设在后瓣的腱索上,并配合所述法兰段共同固定所述前瓣和/或后瓣。
  4. 如权利要求3所述的人工心脏瓣膜,其特征在于,所述前后瓣抓耳包括依次连接的强刚段和弱刚段,所述强刚段的第一端连接所述主体段,第二端连接所述弱刚段,所述强刚段的刚度较所述弱刚段的刚度强,所述强刚段沿周向朝向远离轴线的方向延伸,并用以保证抓取所述前瓣和/或后瓣的范围,所述弱刚段沿轴向朝向靠近所述法兰段的方向延伸,且所述弱刚段与所述主体段之间具有径向间距,使得所述前瓣和/或后瓣能够设置在所述主体段和所述弱刚段之间。
  5. 如权利要求4所述的人工心脏瓣膜,其特征在于,所述强刚段的长度为2mm~10mm,所述弱刚段的长度为5mm~20mm。
  6. 如权利要求4所述的人工心脏瓣膜,其特征在于,所述强刚段为金属 杆,所述弱刚段为单根细杆、编织杆或弹簧杆。
  7. 如权利要求4所述的人工心脏瓣膜,其特征在于,所述弱刚段与所述主体段的轴线之间具有夹角β,所述夹角β的取值为-15°~15°。
  8. 如权利要求4所述的人工心脏瓣膜,其特征在于,所述前后瓣抓耳还包括末梢头部和包覆层,所述末梢头部设置于所述弱刚段远离所述强刚段的端部,所述包覆层包覆所述末梢头部和所述弱刚段的外表面。
  9. 如权利要求8所述的人工心脏瓣膜,其特征在于,所述末梢头部为具有光滑表面的头部结构,所述包覆层为高分子包覆层。
  10. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述隔瓣抓耳朝向远离所述法兰段侧沿周向朝向远离轴线的方向延伸,并用以抵接在隔瓣上,或者穿设在隔瓣的腱索上,并配合所述法兰段共同固定所述隔瓣。
  11. 如权利要求10所述的人工心脏瓣膜,其特征在于,所述隔瓣抓耳为具有弧度的金属杆。
  12. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述法兰段与所述主体段的径向截面之间具有夹角α,所述夹角α为-10°~55°。
  13. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述主体段的形状为圆柱状或圆锥状,所述主体段的直径大于所述三尖瓣瓣叶的直径,且所述主体段为圆锥状时,所述主体段的直径沿轴向朝向远离法兰段侧逐渐缩小。
  14. 如权利要求1所述的人工心脏瓣膜,其特征在于,所述主体段的刚度沿轴向朝向远离法兰段侧逐渐增大。
PCT/CN2022/092937 2021-11-09 2022-05-16 一种人工心脏瓣膜 WO2023082579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22891390.1A EP4327781A1 (en) 2021-11-09 2022-05-16 Artificial heart valve
US18/562,597 US20240238085A1 (en) 2021-11-09 2022-05-16 Artificial heart valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111322399.1A CN114028030B (zh) 2021-11-09 2021-11-09 一种人工心脏瓣膜
CN202111322399.1 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023082579A1 true WO2023082579A1 (zh) 2023-05-19

Family

ID=80136978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092937 WO2023082579A1 (zh) 2021-11-09 2022-05-16 一种人工心脏瓣膜

Country Status (4)

Country Link
US (1) US20240238085A1 (zh)
EP (1) EP4327781A1 (zh)
CN (1) CN114028030B (zh)
WO (1) WO2023082579A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028030B (zh) * 2021-11-09 2023-02-28 上海臻亿医疗科技有限公司 一种人工心脏瓣膜
CN114081677B (zh) * 2021-11-16 2023-06-09 上海臻亿医疗科技有限公司 人工心脏瓣膜
CN117100459A (zh) * 2023-10-20 2023-11-24 北京新尖科技有限公司 瓣膜支架及瓣膜假体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160278923A1 (en) * 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
CN209091745U (zh) * 2018-10-30 2019-07-12 上海微创心通医疗科技有限公司 分体式心脏瓣膜支架及其假体
CN111035472A (zh) * 2018-10-11 2020-04-21 上海微创心通医疗科技有限公司 一种瓣膜支架及假体心脏瓣膜
CN111714250A (zh) * 2019-03-22 2020-09-29 上海微创心通医疗科技有限公司 一种心脏瓣膜支架及其假体
CN114028030A (zh) * 2021-11-09 2022-02-11 上海臻亿医疗科技有限公司 一种人工心脏瓣膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107647939A (zh) * 2011-06-21 2018-02-02 托尔福公司 人工心脏瓣膜装置及相关系统
CN105658178B (zh) * 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 用于假体心脏瓣膜的血栓管理和结构顺应特征
US10350062B2 (en) * 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
EP3585313A4 (en) * 2017-02-23 2020-12-30 University of Pittsburgh - of The Commonwealth System of Higher Education ENDOPROTHESIS-FREE BIOPOLYMER HEART VALVE REPLACEMENT THAT CAN REGENERATE LIVING TISSUES
CN109843221B (zh) * 2017-09-25 2021-10-22 先健科技(深圳)有限公司 心脏瓣膜
CN108635017A (zh) * 2018-06-01 2018-10-12 潘世伟 瓣膜夹合装置
US10653522B1 (en) * 2018-12-20 2020-05-19 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valve prosthesis
WO2020146842A1 (en) * 2019-01-10 2020-07-16 Vdyne, Llc Anchor hook for side-delivery transcatheter heart valve prosthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160278923A1 (en) * 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
CN111035472A (zh) * 2018-10-11 2020-04-21 上海微创心通医疗科技有限公司 一种瓣膜支架及假体心脏瓣膜
CN209091745U (zh) * 2018-10-30 2019-07-12 上海微创心通医疗科技有限公司 分体式心脏瓣膜支架及其假体
CN111714250A (zh) * 2019-03-22 2020-09-29 上海微创心通医疗科技有限公司 一种心脏瓣膜支架及其假体
CN114028030A (zh) * 2021-11-09 2022-02-11 上海臻亿医疗科技有限公司 一种人工心脏瓣膜

Also Published As

Publication number Publication date
US20240238085A1 (en) 2024-07-18
CN114028030B (zh) 2023-02-28
EP4327781A1 (en) 2024-02-28
CN114028030A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US10856974B2 (en) Heart valve repair and replacement
US11833038B2 (en) Valve prosthesis and method for delivery
US20200360138A1 (en) Method and Design for a Mitral Regurgitation Treatment Device
WO2023082579A1 (zh) 一种人工心脏瓣膜
US10426605B2 (en) Device and method for mitral valve regurgitation treatment
US10888424B2 (en) Prosthetic mitral valve coaptation enhancement device
US9393111B2 (en) Device and method for mitral valve regurgitation treatment
JP2023184533A (ja) 人工弁尖器具
CN111110398A (zh) 分体式心脏瓣膜支架及其假体
AU2018297210A1 (en) Prosthetic heart valve devices
JP2016531722A (ja) 僧帽弁逆流症処置用のデバイスおよび方法
EP3682851A1 (en) Valve stent and valve prosthesis
WO2020192599A1 (zh) 一种心脏瓣膜支架及其假体
CN111110403A (zh) 一种带锚定环的心脏瓣膜装置及其使用方法
WO2019128583A1 (zh) 心脏瓣膜假体及其支架
CN111035472A (zh) 一种瓣膜支架及假体心脏瓣膜
CN111772879A (zh) 一种人工心脏瓣膜
CN212382790U (zh) 一种带锚定环的心脏瓣膜装置
CN212395131U (zh) 一种人工心脏瓣膜
WO2022267210A1 (zh) 一种人工心脏瓣膜及其输送系统
CN216168093U (zh) 人工心脏瓣膜假体
EP3960129A1 (en) Prosthetic heart valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022891390

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891390

Country of ref document: EP

Effective date: 20231122