WO2023082454A1 - 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用 - Google Patents

一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用 Download PDF

Info

Publication number
WO2023082454A1
WO2023082454A1 PCT/CN2021/144063 CN2021144063W WO2023082454A1 WO 2023082454 A1 WO2023082454 A1 WO 2023082454A1 CN 2021144063 W CN2021144063 W CN 2021144063W WO 2023082454 A1 WO2023082454 A1 WO 2023082454A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
water
components
whole cell
nanoparticles
Prior art date
Application number
PCT/CN2021/144063
Other languages
English (en)
French (fr)
Inventor
刘密
Original Assignee
苏州尔生生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州尔生生物医药有限公司 filed Critical 苏州尔生生物医药有限公司
Publication of WO2023082454A1 publication Critical patent/WO2023082454A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine

Definitions

  • the invention belongs to the field of immune prevention and treatment, in particular to a nano- or micro-vaccine reassembled from the whole cell components of one or more bacteria lysed, especially a vaccine based on one or more than two bacteria Vaccines of whole cell components and their use in the prevention and treatment of corresponding diseases.
  • Immunity is a physiological function of the human body.
  • the human body relies on this function to identify "self” and “non-self” components, thereby destroying and removing abnormal substances such as bacteria and viruses in the human body, or damaged cells and tumors produced by the human body itself Cells, etc., to maintain the health of the human body.
  • By regulating the balance of the body's immune system we can affect the occurrence, development and treatment of diseases caused by the body's infection with bacteria.
  • Vaccine is one of the important methods of disease immunotherapy and prevention.
  • the basis for developing vaccines against diseases caused by bacteria is the selection of appropriate antigens to activate the recognition of bacteria by the human immune system, and the bacteria themselves are the best source of antigen recognition.
  • scientists have used inactivation technology, attenuated live vaccine technology or recombinant technology of antigen protein expression in vitro to prepare corresponding vaccines.
  • These technologies have shown certain curative effects in the practice of preparing vaccines, but there are also some disadvantages, such as poor circulation effects, and the prevention or treatment effects need to be improved.
  • the object of the present invention is to address the problems of the prior art, to provide a micro or nano vaccine system loaded with one or more whole cell components of bacteria, for preventing or treating diseases or vaccines caused by bacteria. way of cancer.
  • the present invention divides one or more bacterial whole cell components into a water-soluble part that can be dissolved in pure water or an aqueous solution without a solubilizer and a water-insoluble part that can be dissolved in an aqueous solution with a certain solubilizer, and the water-soluble The part and the water-insoluble part are entrapped in the nanoparticle or micron particle and loaded on its surface, thereby ensuring that the antigenic substance is all loaded in the prepared vaccine.
  • the present invention adopts the following technical scheme: a vaccine system for preventing or treating diseases based on one or more bacterial whole cell components, including nanoparticles and/or microparticles, one or more The whole cell component of bacteria; the vaccine system is a nano vaccine system and/or a micro vaccine system; the whole cell component is a water-soluble component and/or a water-insoluble component.
  • the whole cell fraction is obtained by lysing whole cells of one or more bacteria, or the whole cell fraction is processed after lysing whole cells of one or more bacteria, or the whole cell fraction is obtained by one or more
  • the whole cells of various bacteria are processed and lysed, and the product obtained by lysing one type of bacteria is called the whole cell component, and the product obtained by lysing two or more bacteria is called the whole cell component mixture.
  • the processing includes inactivation, denaturation, nucleic acid degradation, radiation, curing, chemical modification, ionization, and biomineralization, and the specific operation methods are conventional techniques.
  • the interior or surface of the nanoparticles or microparticles may or may not be treated with biomineralization, nuclease degradation, chemical modification, solidification, and ionization, and the specific operation methods are conventional techniques.
  • the water-soluble component is soluble in pure water or an aqueous solution without a solubilizer; the water-insoluble component is insoluble in pure water but soluble in an aqueous solution containing a solubilizer or an organic solvent.
  • the whole cell component is the water-soluble component and/or the water-insoluble component of the whole cell in one or more bacteria, and the water-soluble component is one or more bacterial lysates that are soluble in pure water or do not contain The original water-soluble part in the aqueous solution of the solvent; the water-insoluble component is the original water-insoluble part lysed by one or more bacteria.
  • the solubilization method is used to change from being insoluble in pure water to being in an aqueous solution containing a solubilizing agent or in an organic solvent. soluble part.
  • the water-soluble component and the water-insoluble component are respectively loaded on different particles, or the water-soluble component and the water-insoluble component are loaded on the same particle.
  • the vaccine system based on one or more bacteria of the present invention is a nano- or micro-vaccine system, called a nano-vaccine or a micro-vaccine, which can prevent or treat diseases caused by bacteria.
  • Particle-loaded whole cell components or whole cell component mixtures or composed of nano-scale or micron-size particles, said particle-loaded whole cell components or whole cell component mixtures, and immune adjuvants;
  • the whole cell fraction is a mixture of water-soluble components and/or water-insoluble components of whole cells of one or more bacteria or a corresponding mixture.
  • the mixture can be, but is not limited to, water soluble ingredients mixed with each other, or water insoluble ingredients mixed with each other, or all and/or partially water soluble components mixed with all and/or partially water soluble components.
  • the preparation method of the vaccine system for preventing or treating diseases based on the whole cell components of one or more bacteria of the present invention is as follows: firstly use ultrapure water or aqueous solution or a solution containing a solubilizing agent to lyse the bacteria, and collect the whole cells of the bacteria Components, and then the whole cell components of a bacterium or multiple bacteria are loaded on the inside and/or surface of nanoparticles and/or microparticles to obtain the prevention or treatment based on one or more bacterial whole cell components
  • the whole cell components of one or more bacteria are loaded inside and/or on the surface of nano and/or micro particles to obtain the vaccine system; or one or more whole cell components of bacteria, immune adjuvant
  • the agent is loaded inside and/or on the surface of the nano- and/or micro-particles to obtain the vaccine system.
  • the vaccine system of the present invention can be prepared according to the developed preparation methods of nano-sized particles and micron-sized particles, including but not limited to common solvent evaporation methods, dialysis methods, extrusion methods, precipitation methods, and hot-melt methods.
  • the vaccine system is prepared by the double emulsion method in the solvent evaporation method.
  • the invention discloses the application of the above-mentioned vaccine system for preventing or treating diseases based on one or more bacterial whole cell components in the preparation of vaccines for preventing and/or treating diseases, and the vaccine system is used for preventing or treating diseases and their recurrence
  • the disease is a disease or cancer caused by bacteria, for example, when preventing or treating a disease related to bacteria, one of the bacteria used to prepare the vaccine is the same as the bacteria used to prevent or treat the disease.
  • the active ingredient whole cell component of the vaccine system based on one or more bacterial whole cell components of the present invention for preventing or treating diseases is a water-soluble component mixture and/or a water-insoluble component or a mixture thereof, consisting of Produced by one or more kinds of bacteria, multiple refers to two or more kinds. This is where the creativity of the present invention lies.
  • the bacterial whole cell components are recombined into nano-vaccine or micro-vaccine.
  • the present invention uses one or more whole-cell components of bacteria to prevent or treat diseases or cancers caused by bacteria. The effect has improved significantly.
  • the loading method is the water-soluble components and water-insoluble components of the whole cells respectively or Simultaneously loaded inside the particle, and/or separately or simultaneously loaded on the surface of the particle.
  • the loading method is that the water-soluble components and non-water-soluble components of the whole cell are separately or simultaneously loaded inside the particles, and/or are separately or simultaneously loaded on the surface of the particles, including but not limited to the simultaneous loading of water-soluble components on Particles are neutralized and loaded on the surface of particles, water-insoluble components are loaded in particles and on the surface of particles at the same time, water-soluble components are loaded in particles but not water-soluble components are loaded on the surface of particles, water-insoluble components are loaded in particles and water-soluble The active ingredient is loaded on the particle surface, the water-soluble ingredient and the water-insoluble ingredient are loaded in the particle and only the water-insoluble ingredient is loaded on the particle surface, the water-soluble ingredient and the water-insoluble ingredient are loaded in the particle, and only the water-soluble ingredient is loaded on the particle On the surface, the water-soluble components are loaded in the particles, while the water-soluble components and the water-insoluble components are loaded on the particle surface at the same time, the water-insoluble components are loaded in the particles, and
  • the inside and/or surface of the particle further includes an immune adjuvant.
  • the way of adding the immune adjuvant includes loading in the nanoparticle or microparticle, or loading on the surface of the nanoparticle or microparticle, or loading in the nanoparticle or microparticle and on the surface of the nanoparticle or microparticle at the same time.
  • the surface of the vaccine system for preventing or treating diseases based on one or more bacterial whole cell components is not connected or connected to the target head, specifically, the surface of the vaccine system may not be connected to the target head with active targeting function or A target head connected with an active targeting function; the target head can lead the vaccine system to target specific cells; the specific bacterial cells are dendritic cells, macrophages, B cells, T cells, NK cells, NKT cells One or more of neutrophils, eosinophils, basophils, lymph nodes, thymus, spleen, and bone marrow.
  • the target head when the surface of the vaccine system is connected with a target head with active targeting function, includes, but is not limited to, antibodies, carbohydrates, lipids, polypeptides, nucleic acids that can specifically bind to ligands on the cell membrane surface. or the target can be mannose, CD32 antibody, CD11c antibody, CD103 antibody, CD44 antibody, DEC205 antibody, CD40 antibody.
  • the whole cell components can be divided into two types according to their solubility in pure water or aqueous solutions without solubilizers. Parts: water-soluble ingredients and water-insoluble ingredients.
  • the water-soluble component is the original water-soluble part that is soluble in pure water or an aqueous solution without a solubilizer
  • the water-insoluble component is the original non-water-soluble part that is insoluble in pure water.
  • the part that is insoluble in an aqueous solution without a solubilizing agent becomes soluble in an aqueous solution containing a solubilizing agent or in an organic solvent.
  • Both the water-soluble part and the water-insoluble part in the whole cell fraction can be dissolved by a solubilizing aqueous solution containing a solubilizing agent or an organic solvent.
  • the solubilizer is at least one of the solubilizers that can increase the solubility of proteins or polypeptides in aqueous solution;
  • the organic solvent is an organic solvent that can dissolve proteins or polypeptides.
  • the water-insoluble components can also be changed from insoluble in pure water to soluble by using other methods that can solubilize proteins and polypeptide fragments.
  • the organic solvent includes but not limited to DMSO, acetonitrile, ethanol, methanol, DMF, isopropanol, propanol, dichloromethane, ethyl acetate. Those skilled in the art can understand that the organic solvent can also use other organic solvent-containing methods that can solubilize proteins and polypeptide fragments.
  • the nanoparticle is a nanoscale particle
  • the microparticle is a micronscale particle.
  • the particle diameter of the nano-vaccine and nano-sized particles is 1 nm to 1000 nm, preferably 50 nm to 800 nm, more preferably 100 nm to 600 nm; the particle size of the micron vaccine and micron-sized particles is 1 ⁇ m to 1000 ⁇ m, preferably It is 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, and most preferably 1 ⁇ m to 5 ⁇ m.
  • the surface of the nano-sized particles or micro-sized particles can be neutrally charged, negatively charged or positively charged.
  • the shape of micro-nano particles is any common shape, including but not limited to spherical, ellipsoidal, barrel-shaped, polygonal , rod, sheet, wire, worm, square, triangle, butterfly or disc.
  • the preparation materials of nanoparticles and/or microparticles are organic synthetic polymer materials, natural polymer materials or inorganic materials.
  • the organic synthetic polymer material is a biocompatible or degradable polymer material, including but not limited to PLGA, PLA, PGA, Poloxamer, PEG, PCL, PEI, PVA, PVP, PTMC, polyanhydride, PDON, PPDO , PMMA, polyamino acids, synthetic peptides, synthetic lipids.
  • the natural polymer materials are biocompatible or degradable polymer materials, including but not limited to lecithin, cholesterol, starch, lipids, sugars, polypeptides, sodium alginate, albumin, collagen, gelatin, cell membrane components.
  • the inorganic material is a material without obvious biological toxicity, including but not limited to ferric oxide, ferric oxide, calcium carbonate, and calcium phosphate.
  • the vaccine system for the prevention or treatment of diseases based on one or more bacterial whole cell components of the present invention can deliver the loaded whole cell components to relevant immune cells, activate and enhance themselves through the immunogenicity of the loaded components The killing effect of the immune system on disease-causing bacteria. Therefore, the present invention also provides the application of the vaccine system for preventing or treating diseases based on one or more bacterial whole cell components in the preparation of vaccines for preventing and/or treating diseases.
  • the vaccine system of the whole cell component of the present invention can simultaneously use nanoparticles and/or microparticles loaded with only water-soluble components and nanoparticles and/or microparticles loaded with only water-insoluble components when preventing or treating diseases , using nanoparticles and/or microparticles loaded only with water-soluble components, using nanoparticles and/or microparticles loaded only with water-insoluble components, or using nanoparticles loaded with both water-soluble components and water-insoluble components and/or micron particles.
  • the present invention provides a delivery system for delivering water-soluble components and water-insoluble components of cells using nanoscale or micron-scale particles, as well as its application in the preparation of vaccines for the prevention and treatment of diseases. Because the whole cell components of the relevant bacterial cells are divided into two parts according to the solubility in pure water, the water-soluble part soluble in pure water and the insoluble part insoluble in pure water, and the water-soluble part and the non-water-soluble part The water-soluble part is loaded in nanoparticles or microparticles, so most of the antigenic substances in the cell components are loaded in nanoparticles or microparticles.
  • the water-soluble part and the water-insoluble part in the cell component include the components of the whole cell; the water-soluble part and the water-insoluble part in the cell component can also be dissolved by the aqueous solution containing the solubilizer at the same time. Immunogenic substances among them can activate the immune response. These immunogenic substances produced by disease mutations in the whole cell components can be used for the prevention or treatment of diseases.
  • the vaccine system of whole cell components of the present invention can prepare vaccines for preventing and/or treating diseases caused by bacteria.
  • the vaccine described in the present invention can activate the body's immune system before or after the occurrence of the disease, thereby preventing the occurrence of the disease, delaying the progression of the disease, or treating the disease Or prevent disease recurrence.
  • Fig. 1 is the preparation process of vaccine described in the present invention and schematic diagram of application field; a: water-soluble component and non-water-soluble component collect respectively and prepare the schematic diagram of nano-vaccine or micro-vaccine; b: adopt the solubilizing solution that contains solubilizer Schematic diagram of whole cell components and preparation of nanovaccine or microvaccine.
  • Figure 2 is a schematic diagram of the structure of the vaccine.
  • Figure 3 is a schematic diagram of the structure of the vaccine.
  • Figure 4 is a schematic diagram of the structure of the vaccine.
  • Figure 5 is a schematic diagram of the structure of the vaccine.
  • Figure 6 is a schematic diagram of the structure of the vaccine.
  • Figure 7 is a schematic diagram of the structure of the vaccine.
  • Figure 8 is a schematic diagram of the structure of the vaccine.
  • Figure 9 is a schematic diagram of the structure of the vaccine.
  • Figure 10 is a schematic diagram of the structure of the vaccine.
  • Figure 11 is a schematic diagram of the structure of the vaccine.
  • Figure 12 is a schematic diagram of the structure of the vaccine.
  • Figure 13 is a technical effect diagram of Embodiment 1.
  • Figure 14 is a technical effect diagram of Embodiment 2.
  • Figure 15 is a technical effect diagram of Embodiment 3.
  • Figure 16 is a technical effect diagram of Embodiment 4.
  • Figure 17 is a technical effect diagram of Embodiment 5.
  • Figure 18 is a technical effect diagram of Embodiment 6.
  • Figure 19 is a technical effect diagram of Embodiment 7.
  • Figure 20 is a technical effect diagram of Embodiment 8.
  • Fig. 21 is a technical effect diagram of Embodiment 9.
  • the invention discloses a nano-scale or micron-scale vaccine system loaded with one or more bacterial whole cell components and its application to prevent or treat diseases caused by bacteria, or cancer.
  • the present invention firstly obtains water-soluble components soluble in pure water or an aqueous solution without a solubilizing agent after the bacteria are lysed, and then uses a solubilizing aqueous solution containing a solubilizing agent to dissolve the water-insoluble components in the solubilizing agent. solution, so that all cell components are converted into components that can be dissolved in aqueous solution, and then loaded on the inside and outside of nanoparticles or microparticles to prepare nano-vaccine or micro-vaccine for diseases, such as cancer prevention and treat.
  • cells or tissues can also be directly lysed with a solubilizing solution containing a solubilizing agent, or the whole cell components can be directly dissolved with a solubilizing solution containing a solubilizing agent after the bacteria are lysed without collecting the water-soluble and water-insoluble components separately. subdividing, and using the whole cell components dissolved in the solubilizing solution containing the solubilizing agent to prepare the nano vaccine or the micro vaccine.
  • the present invention converts components insoluble in pure water or aqueous solutions without solubilizers in cells into soluble components in solubilizing solutions and can be used to prepare nanoparticles and microparticles by using an aqueous solution containing a solubilizing agent, thereby improving nano Comprehensiveness and immunogenicity of antigenic substances or components loaded on particles or microparticles.
  • the water-soluble part and the water-insoluble part of the cell components include the components and components of the whole cell.
  • the immunogenic components can activate the body's immune response against the corresponding bacteria. These immunogenic substances in the whole cell components can be used for the prevention and treatment of diseases.
  • the vaccine system of bacterial whole cell components disclosed in the present invention can be used to prepare vaccines for preventing and/or treating diseases, and its preparation process and application fields are shown in FIG. 1 .
  • the whole bacterial cell can be lysed, and then the water-soluble component and the water-insoluble component can be collected respectively to prepare nano-vaccine or micro-vaccine respectively; Cell components and preparation of nano-vaccine or micro-vaccine.
  • the whole cell components of the present invention can be inactivated or (and) denatured or (and) nucleic acid degradation treatment before or (and) after lysis to prepare nano-vaccine or micro-vaccine, or before cell lysis or ( and) direct preparation of nano-vaccine or micro-vaccine without any inactivation or (and) denaturation or (and) nucleic acid degradation treatment after lysis.
  • the cells have undergone inactivation or (and) denaturation or (and) nucleic acid degradation treatment before lysing, and inactivation or (and) denaturation or (and) can also be performed after cell lysis during actual use.
  • inactivation or (and) denaturation or (and) nucleic acid degradation treatment methods are ultraviolet radiation and high temperature heating, in the actual use process can also use radiation radiation, high pressure, freeze-drying, DNase, RNase, nuclease and formaldehyde to inactivate or Denaturing method.
  • the nano-vaccine or micro-vaccine of the present invention in the process of loading bacterial whole cell components, some embodiments have undergone freezing and siliconization treatment in the biomineralization treatment, and some embodiments have not been processed.
  • the surface of the vaccine system of the present invention may not be connected with a target head with active targeting function or may be connected with a target head with active targeting function.
  • the structural diagram of the vaccine system for preventing or treating diseases based on one or more bacterial whole cell components of the present invention is shown in the accompanying drawings.
  • only one nano-vaccine and/or micro-vaccine with a specific structure may be used, or two or more nano-vaccine and/or micro-vaccine with different structures may be used simultaneously.
  • Figures 2 to 5 are structural schematic diagrams of nano-sized particles or micron-sized particles loaded with water-soluble and water-insoluble cell components, in each picture 1: water-soluble components in bacterial cell components; 2, bacterial cell groups 3, immune adjuvant; 4, nanoparticles or microparticles; 5: the core part of nanoparticles; a: both the inside and surface of nanoparticles or microparticles are bacterial cell groups b: the water-insoluble components of the bacterial cell components contained inside and outside the nanoparticles or microparticles; c: the bacterial cell components contained inside the nanoparticles or microparticles The water-insoluble components in the bacterial cell components are loaded on the surface and the water-soluble components in the bacterial cell components; d: the water-soluble components in the bacterial cell components are contained in the nanoparticles or microparticles, and the bacteria are loaded on the surface Water-insoluble components in cell components; e: water-soluble components and water-insoluble components in bacterial cell components contained in nanoparticles
  • the surface and inside of the nanoparticles or microparticles contain immune adjuvants; in Fig. 3, the immune adjuvants are only distributed in the interior of the nanoparticles or microparticles; in Fig. 4, the nanoparticles or microparticles only contain immune adjuvants on the outer surface; In Fig. 5, there is no immune adjuvant in the inside and outside of the nanoparticles or microparticles; 2a-2i in Fig. 2, 6a-6i in Fig. 3, 10a-10i in Fig. 4 and 14a-14i in Fig.
  • the core part can be It is generated during the preparation process or formed by using polymers or inorganic salts; nanoparticles or microparticles in 4a-4i of Figure 2, 8a-8i of Figure 3, 12a-12i of Figure 4 and 16a-17i of Figure 5 When the water-soluble or non-water-soluble components in the loaded bacterial cell components are distributed inside the nanoparticles or microparticles, multiple core parts are formed.
  • the cores can be generated during the preparation process or by using polymers or inorganic salts, etc. Form; 5a ⁇ 5i of Fig.
  • the water-soluble component or non is located in the outer layer of the formed inner core when distributed inside the nanoparticle or microparticle.
  • FIGs 6-9 are schematic diagrams of the structures of nanoparticles or microparticles loaded with water-soluble and water-insoluble cell components that are actively targeted to the target.
  • the surface and interior of the nanoparticles or microparticles contain immune Adjuvant;
  • the immune adjuvant is only distributed in the interior of the nanoparticle or microparticle;
  • the nanoparticle or microparticle only contains the immune adjuvant on the outer surface; in Figure 9, there is no immune Adjuvant; in each figure 1: water-soluble components in bacterial cell components; 2: water-insoluble components in bacterial cell components; 3: immune adjuvant; 4: nanoparticles or microparticles; 5: nanoparticles
  • Nanoparticles or microparticles contain water-insoluble components in bacterial cell components and surface loads are water-soluble components in bacterial cell components; d: Nanoparticles or microparticles contain water-insoluble components The water-soluble components in the bacterial cell components are loaded on the surface, and the water-insoluble components in the bacterial cell components are loaded on the surface; e: the water-soluble components in the bacterial cell components that are simultaneously contained in the nanoparticles or microparticles and non-water-soluble components, while the surface of nanoparticles or microparticles is also loaded with water-soluble components and non-water-soluble components in bacterial cell components; f: water-soluble components in bacterial cell components simultaneously contained in nanoparticles or microparticles components and non-water-soluble components,
  • the water-soluble components or water-insoluble components in the bacterial cell components loaded by nanoparticles or microparticles are distributed in multiple core parts inside the nanoparticles or microparticles; 5.a-5.i in Fig. 6, Fig. 9.a-9.i in 7, 13.a-13.i in Figure 8 and 17.a-17.i in Figure 9 are the water-soluble components in the bacterial cell components contained in nanoparticles or microparticles or The water-insoluble component is distributed in the outer layer of the inner core formed inside the nanoparticle or microparticle.
  • Figure 10 Cell components and/or immune adjuvants are only distributed inside nanoparticles or microparticles; Figure 11 Cell components and/or immune adjuvants are only distributed outside nanoparticles or microparticles; Figure 12 Cell components and immune adjuvants The agent is distributed inside or outside the nanoparticles or microparticles, respectively.
  • the water-soluble components or water-insoluble components in the bacterial cell components loaded by the nanoparticles or microparticles in a, b and c do not form an obvious inner core when they are distributed inside the nanoparticles or microparticles;
  • the water-soluble or non-water-soluble components in the bacterial cell components loaded by nanoparticles or microparticles in d, e and f are distributed in a core part inside the nanoparticles or microparticles; g, h and i in nanoparticles or
  • the water-soluble components or non-water-soluble components in the bacterial cell components loaded by the microparticles are distributed in the multiple core parts inside the nanoparticles or microparticles; the bacterial cells contained in the nanoparticles or microparticles in j, k and l
  • the water-soluble components or non-water-soluble components in the components are distributed in the outer layer of the inner core formed inside the nanoparticles or microparticles; a, The nanoparticles or micro
  • the immune adjuvant is entrapped in the nanoparticle or microparticle and simultaneously loaded on the surface of the nanoparticle or microparticle.
  • the immune adjuvant can also be entrapped only in the nanoparticle or microparticle, or It is only loaded on the surface of nanoparticles or microparticles, or no immune adjuvant is added.
  • the water-soluble part or (and) water-insoluble part soluble in pure water in the cell component is firstly solubilized by a solubilizer, and then encapsulated in nanoparticles or microparticles, and at the same time Load the immune adjuvant; then, load the water-soluble part or (and) the water-insoluble part of the cell component on the surface of the nanoparticle, and simultaneously load the immune adjuvant. This maximizes the loading capacity of the water-soluble or water-insoluble components of the cells in the nanoparticles or microparticles.
  • solubilizing solution containing a solubilizing agent such as 8M urea aqueous solution or 6M guanidine hydrochloride aqueous solution
  • a solubilizing agent such as 8M urea aqueous solution or 6M guanidine hydrochloride aqueous solution
  • the specific operation method for preparing nano-vaccine and micro-vaccine described in the present invention is a common preparation method.
  • the preparation of nano-vaccine or micro-vaccine adopts the double emulsion method in the solvent evaporation method
  • the nanoparticle or microparticle preparation material used is an organic polymer polylactic acid-glycolic acid copolymer (PLGA) with a molecular weight of 24KDa -38KDa
  • the immune adjuvant used is poly(I:C), Bacillus Calmette-Guerin (BCG) or CpG.
  • PLGA organic polymer polylactic acid-glycolic acid copolymer
  • BCG Bacillus Calmette-Guerin
  • CpG CpG
  • the specific preparation method of the double-emulsion method used in the present invention is as follows: Step 1, adding a first predetermined volume of an aqueous phase solution containing a first predetermined concentration to a second predetermined volume of a medical solution containing a second predetermined concentration. In the organic phase of polymer materials.
  • the aqueous phase solution contains the components of a bacterial lysate; the components of the bacterial lysate are prepared separately as water-soluble components and/or dissolved in a solubilizing agent (8M urea) The original water-insoluble component in.
  • the concentration of protein and polypeptide is greater than 0.01 pg/mL, capable of loading enough antigen to activate the relevant immune response.
  • the aqueous phase solution contains a mixture of components in a variety of bacterial lysates; each component in the bacterial lysate is a water-soluble component mixture when prepared, or is dissolved in a solubilizer (8M urea ) in the original water-insoluble component mixture, or a mixture of water-soluble components and water-insoluble components.
  • the concentration of protein and polypeptide is greater than 0.01 pg/mL, capable of loading enough antigen to activate the relevant immune response.
  • the aqueous phase solution also contains the immune adjuvant poly(I:C) or CpG in addition to the above-mentioned bacterial lysate; the concentration of the immune adjuvant in the initial aqueous phase is greater than 0.01 pg/mL.
  • the medical polymer material is dissolved in an organic solvent to obtain a second predetermined volume of an organic phase containing a second predetermined concentration of the medical polymer material.
  • the medical polymer material is PLGA
  • the organic solvent is dichloromethane.
  • the second predetermined concentration of the medical polymer material ranges from 0.5 mg/mL to 5000 mg/mL, preferably 100 mg/mL.
  • the present invention selects PLGA or modified PLGA, which is a biodegradable material and has been approved by the FDA as a drug dressing. Studies have shown that PLGA has a certain immune regulation function, so it is suitable as an auxiliary material for vaccine preparation and is an existing product.
  • the second predetermined volume of the organic phase is set according to its ratio with the first predetermined volume of the aqueous phase solution, and in the present invention, the ratio of the first predetermined volume of the aqueous phase solution to the second predetermined volume of the organic phase
  • the range is 1:1.1-1:5000, preferably 1:10.
  • the first predetermined volume, the second predetermined volume, and the ratio of the first predetermined volume to the second predetermined volume can be adjusted as required to adjust the size of the prepared nanoparticles or microparticles, which is a prior art.
  • the concentration of protein and polypeptide is greater than 0.01 pg/mL, preferably 0.01 mg/mL ⁇ 100 mg/mL; when the aqueous phase solution is a lysate component/immune adjuvant solution, the concentration of protein and peptide is greater than 0.01 pg/mL, preferably 0.1 ng/mL ⁇ 100 mg/mL, the concentration of immune adjuvant is greater than 0.01 pg/mL, preferably 0.01 mg/mL ⁇ 20 mg/mL.
  • the solvent is DMSO, acetonitrile, ethanol, chloroform, methanol, DMF, isopropanol, dichloromethane, propanol, ethyl acetate, etc., preferably dichloromethane;
  • the concentration of the polymer material is 0.5 mg/mL ⁇ 5000 mg/mL, preferably 100 mg/mL.
  • the first emulsifier solution is preferably an aqueous solution of polyvinyl alcohol, with a concentration of 10 mg/mL-50 mg/mL, preferably 20 mg/mL.
  • the second emulsifier solution is preferably an aqueous polyvinyl alcohol solution with a concentration of 1 mg/mL ⁇ 20 mg/mL, preferably 5 mg/mL.
  • the dispersion liquid is PBS buffer solution or physiological saline or pure water.
  • Step 2 subjecting the mixed liquid obtained in step 1 to ultrasonic treatment for more than 2 seconds or stirring or homogenization treatment or microfluidic treatment for more than 1 minute.
  • the stirring is mechanical stirring or magnetic stirring
  • the stirring speed is greater than 50 rpm
  • the stirring time is greater than 1 minute, for example, the stirring speed is 50 rpm to 1500 rpm, and the stirring time is 0.1 hour to 24 hours
  • the ultrasonic power is greater than 5W
  • the time is greater than 0.1 seconds, such as 2 to 200 seconds
  • use a high-pressure/ultra-high pressure homogenizer or a high-shear homogenizer for homogenization and the pressure is greater than 5 psi when using a high-pressure/ultra-high pressure homogenizer, such as 20psi ⁇ 100psi, when using a high shear homogenizer, the speed is greater than 100 rpm, such as 1000 rpm ⁇ 5000 rpm; use microfluidics to process flow rate greater than 0.01
  • Step 3 adding the mixture obtained after the treatment in step 2 into a third predetermined volume of an aqueous solution containing an emulsifier of a third predetermined concentration and performing ultrasonic treatment for more than 2 seconds or stirring for more than 1 minute or performing homogeneous treatment or microfluidic control deal with.
  • the mixture obtained in step 2 is added to the emulsifier aqueous solution to continue ultrasonication or stirring for nanometerization or micronization.
  • the length of ultrasonication time or the stirring speed and time can control the size of the prepared nanoparticles or microparticles to obtain suitable particles.
  • the ultrasonic time is greater than 0.1 second, such as 2-200 seconds
  • the stirring speed is greater than 50 rpm, such as 50 rpm-500 rpm
  • the stirring time is greater than 1 minute, such as 60-6000 seconds.
  • the stirring speed is greater than 50 rpm
  • the stirring time is greater than 1 minute, for example, the stirring speed is 50 rpm to 1500 rpm.
  • the stirring time is 0.5 hours to 5 hours; during ultrasonic treatment, the ultrasonic power is 50W to 500W, and the time is greater than 0.1 seconds, such as 2 to 200 seconds; Homogenizer, when using a high-pressure/ultrahigh-pressure homogenizer, the pressure is greater than 20psi, such as 20psi ⁇ 100psi, and when using a high-shear homogenizer, the speed is greater than 1000 rpm, such as 1000 rpm ⁇ 5000 rpm; use microfluidics to process flow rate greater than 0.01 mL/min, such as 0.1 mL/min-100 mL/min. Select parameters to get suitable particles.
  • the emulsifier aqueous solution is polyvinyl alcohol (PVA) aqueous solution
  • the third predetermined volume is adjusted according to its ratio to the second predetermined volume, for example, the third predetermined volume is 5 mL, and the third predetermined concentration is 20 mg/ mL.
  • the range between the second predetermined volume and the third predetermined volume is set at 1:1.1 ⁇ 1:1000, preferably 2:5.
  • the ratio of the second predetermined volume to the third predetermined volume can be adjusted to obtain nanoparticles or microparticles of required size.
  • the ultrasonic time or stirring time, volume and concentration of the emulsifier aqueous solution in this step are selected to obtain nanoparticles or microparticles of appropriate size.
  • Step 4 adding the liquid obtained after the treatment in Step 3 into a fourth predetermined volume of an emulsifier aqueous solution of a fourth predetermined concentration, and stirring until predetermined stirring conditions are met.
  • the emulsifier aqueous solution is PVA.
  • the fourth predetermined concentration may be 5 mg/mL, based on obtaining nanoparticles or microparticles of appropriate size.
  • the selection of the fourth predetermined volume is determined according to the ratio of the third predetermined volume to the fourth predetermined volume.
  • the ratio of the third predetermined volume to the third predetermined volume ranges from 1:1.5 to 1:2000, preferably 1:10.
  • the ratio between the third predetermined volume and the fourth predetermined volume can be adjusted.
  • the predetermined stirring condition of this step is until the volatilization of the organic solvent is completed, such as the volatilization of dichloromethane in step 1 is completed.
  • Step 5 after centrifuging the mixed solution that meets the predetermined stirring conditions in step 4 at a speed greater than 100 rpm, such as 100 rpm to 3000 rpm, for more than 1 minute, such as 1 minute to 1 hour, remove the supernatant, and put the remaining The pellet is resuspended in a fifth predetermined volume of an aqueous solution containing a lyoprotectant at a fifth predetermined concentration or in a sixth predetermined volume of PBS (or physiological saline).
  • PBS physiological saline
  • the precipitate obtained in step 5 is resuspended in the sixth predetermined volume of PBS (or physiological saline)
  • freeze-drying is not required, and subsequent nanoparticle or microparticle surface-bound or adsorbed bacterial cell lysis can be directly performed things.
  • the surface of nanoparticles or microparticles can be properly treated, such as adding or modifying cations on the surface, to increase the binding of nanoparticles or microparticles or The ability to adsorb bacterial lysates or increase the ability of nanovaccines or microvaccines to activate the immune system.
  • step 5 when the precipitate obtained in step 5 is resuspended in an aqueous solution containing a lyoprotectant, freeze-drying is required, and after freeze-drying, subsequent adsorption of bacterial lysates on the surface of nanoparticles or microparticles is carried out.
  • the lyoprotectant is selected from trehalose (Trehalose).
  • the fifth predetermined concentration of the lyoprotectant in this step is 4% by mass, which does not affect the lyophilization effect in the subsequent lyophilization.
  • step 6 the suspension containing the lyoprotectant obtained in step 5 is lyophilized, and the lyophilized substance is used for future use.
  • Step 7 resuspending the nanoparticle-containing suspension obtained in step 5 with the sixth predetermined volume in PBS (or normal saline) or using the sixth predetermined volume of PBS (or normal saline) to resuspend the suspension obtained in step 6
  • the freeze-dried lyophilized substance containing nanoparticles or microparticles and a lyoprotectant, with a seventh predetermined volume of the water-soluble component and/or the original water-insoluble component dissolved in a solubilizer (such as 8M urea) Nano-vaccine or micro-vaccine can be obtained after the parts are mixed.
  • the volume ratio of the sixth predetermined volume to the seventh predetermined volume is 1:10000-10000:1, the preferred volume ratio is 1:100-100:1, and the optimal volume ratio is 1:30-30:1 .
  • the volume containing the water-soluble components in the bacterial lysate or the original water-insoluble components dissolved in the solubilizer is 1 mL .
  • the volume and ratio of the two can be adjusted as required during actual use.
  • the particle size of the nano-vaccine or micro-vaccine is nanometer or micrometer, which can ensure that the vaccine is phagocytized by antigen-presenting cells, and in order to improve the phagocytosis efficiency, the particle size should be within an appropriate range.
  • the particle size of the nano vaccine is 1nm-1000nm, more preferably, the particle size is 30nm-1000nm, most preferably, the particle size is 100nm-600nm; the particle size of the micron vaccine is 1 ⁇ m-1000 ⁇ m, more preferably, The particle size is 1 ⁇ m-100 ⁇ m, more preferably, the particle size is 1 ⁇ m-10 ⁇ m, most preferably, the particle size is 1 ⁇ m-5 ⁇ m.
  • the particle size of the nanoparticle vaccine is 100nm-600nm
  • the particle size of the micron vaccine is 1 ⁇ m-5 ⁇ m.
  • solubilizers include but are not limited to urea, guanidine hydrochloride, sodium deoxycholate, SDS, alkaline solutions with pH greater than 7, acidic solutions with pH less than 7, albumin, lecithin, high-concentration inorganic salts, Triton , Tween, DMSO, Acetonitrile, Ethanol, Methanol, DMF, Isopropanol, Propanol, Acetic Acid, Cholesterol, Amino Acids, Glycosides, Choline, Bri-35, Octaethylene glycol monododecyl ether, CHAPS, Digitonin, lauryldimethylamine oxide, IGEPAL CA-630; or the above-mentioned solubilizing solution can be used to dissolve both water-soluble components and water-insoluble components.
  • Urea and guanidine hydrochloride are preferably used to solubilize the original water-insoluble components in the bacterial lysate, and any other solubilizing substances that can dissolve the original water-insoluble components in the bacterial lysate in an aqueous solution can also be used in actual use .
  • 8M urea and 6M guanidine hydrochloride aqueous solution are used to solubilize the original water-insoluble components in the bacterial lysates, and any other components that can make the original water-insoluble components in the bacterial lysates can also be used in actual use.
  • the preparation of nano-vaccine and micro-vaccine adopts the double emulsion method, but in practice any other commonly used method for preparing nanoparticles or micro-particles can also be used.
  • the preparation material of the nano-vaccine and the micro-vaccine is PLGA, and any other material capable of preparing nanoparticles or micro-particles can also be used in practice.
  • the water-soluble components in the bacterial lysate or the original water-insoluble components dissolved in 8M urea were respectively contained in the interior of the nanoparticles and adsorbed on the surface of the nanoparticles.
  • the water-soluble components and soluble components in the bacterial lysate can also be mixed and then entrapped inside the nanoparticles or adsorbed to the surface of the nanoparticles; or 8M urea can be used to dissolve the water-soluble components and insoluble components at the same time and then entrapped Inside the nanoparticles or microparticles and/or adsorbed on the surface of the nanoparticles or microparticles.
  • immune adjuvants include but are not limited to immune adjuvants derived from microorganisms, products of the human or animal immune system, innate immune stimulants, adaptive immune stimulants, chemically synthesized drugs, fungal polysaccharides, traditional Chinese medicines and other types
  • the immune adjuvant includes but is not limited to pattern recognition receptor agonist, BCG cell wall skeleton, BCG methanol extraction residue, BCG muramyl dipeptide, Mycobacterium phlei, polyantibody A, mineral Oil, virus-like particles, immune-enhanced reengineered influenza virions, cholera enterotoxin, saponins and their derivatives, Resiquimod, thymosin, neonatal bovine liver active peptide, imiquimod, polysaccharides, curcumin, immune adjuvant CpG , immune adjuvant poly(I:C), immune adjuvant poly ICLC, Corynebacterium pumilus vaccine, hemolytic streptococcus preparation,
  • the vaccines used in some embodiments are nano vaccines, and some embodiments use micro vaccines. Those skilled in the art can choose to use nano-vaccine and/or micro-vaccine according to the actual situation.
  • the methods used in the examples of the present invention are conventional methods; the materials and reagents used can be obtained from commercial sources.
  • the nano-sized particles or micron-sized particle structures, preparation methods, and use strategies for disease treatment mentioned in the embodiments of the present invention are only representative methods.
  • Other nano-sized particles or micron-sized particle structures, preparation methods, disease prevention or The use strategy during treatment and the combination strategy with other drugs can also adopt the method described in the present invention.
  • the examples only list the application of the present invention to diseases caused by some bacteria, but the present invention can also be used in other types of diseases caused by any bacteria.
  • Example 1 Bacterial whole cell components loaded inside and on the surface of nanoparticles for disease prevention: This example takes the preparation of nanovaccine loaded with lysate components of Escherichia coli strain CFT073 as an example to illustrate how to prepare loaded bacterial whole cells Components of nano-vaccine and application of the vaccine to prevent disease.
  • Escherichia coli was first freeze-thawed and lysed repeatedly in pure water to prepare the water-soluble components of the bacteria and the original water-insoluble components dissolved in 8M urea.
  • Poly(I:C) Polyinosinic-polycytidylic Acid
  • the nano-vaccine is used to prevent sepsis caused by bacterial infection.
  • Bacteria lysing and collection of components Escherichia coli strain CFT073 was repeatedly frozen and thawed 5 times with pure water, and the cells were lysed with conventional ultrasound. After the cells are lysed, centrifuge the lysate at a speed of 5000g for 5 minutes and take the supernatant, which is the water-soluble component soluble in pure water; The water-insoluble components of water were converted to be soluble in 8M aqueous urea solution.
  • the above-mentioned components are the source of raw materials for preparing the vaccine.
  • nano-vaccine Preparation of nano-vaccine:
  • the nano-vaccine and the blank nano-particles used as a control were prepared by the double emulsion method in the solvent evaporation method, and the molecular weight of the nano-particle preparation material PLGA used was 24KDa-38KDa.
  • the adjuvant is poly(I:C) And poly(I:C) is only distributed inside the nanoparticles.
  • the preparation method is as described above. During the preparation, the nano-vaccine loaded with the water-soluble component in the whole cell component and the nano-vaccine loaded with the water-insoluble component in the whole-cell component are prepared separately, and then they are mixed and used at the same time.
  • the average particle size of the nano-vaccine loaded with whole cell components is about 320nm, and the surface potential of the nano-vaccine is about-5mV; about 20 ⁇ g of bacterial protein or polypeptide components are loaded per 1 mg of PLGA nanoparticles, and the poly(I : C)
  • the immune adjuvant is about 0.02mg in total.
  • the average particle size of the blank nanoparticles is about 270nm, and the blank nanoparticles are prepared by using pure water or 8M urea containing the same amount of poly(I:C) to replace the corresponding water-soluble components and non-water-soluble components.
  • Nano-vaccine for the prevention of sepsis 6-8 weeks old female BALB/c was selected for vaccine immunization and bacterial pathogenic protection experiments.
  • Blank nanoparticles + free lysate control group Inoculate 100 ⁇ L of blank nanoparticles and the same amount as the vaccine loaded on the 35th day, 28th day, 21st day, 14th day and 7th day before inoculating the bacterial pathogenicity experiment free cell lysates; blank nanoparticles and free cell lysates were injected at different sites.
  • Inactivated vaccine control group 20 ⁇ g inactivated bacterial vaccines were inoculated on the 35th day, 28th day, 21st day, 14th day and 7th day before the bacterial pathogenicity experiment. On the 0th day, the pathogenic modeling experiment of Escherichia coli strain CFT073 was carried out.
  • mice were intraperitoneally injected with a high dose of live Escherichia coli of 3.6 ⁇ 10 8 CFU, and then observed continuously for 48 hours. When the mice showed signs of dying, the mice were euthanized for experimental animal ethics. Near-death symptoms were listlessness and inactivity for 15 minutes in response to external stimuli. The survival time of mice after bacterial injection was recorded.
  • the death rate of the mice in the PBS control group and the blank nanoparticle + free lysate control group was faster; the death rate of the mice in the inactivated vaccine group prepared by the fixation method and the inactivated vaccine group prepared by the heating method was relatively slow.
  • the survival of mice in the nanovaccine group was significantly prolonged, with 75% of mice still alive after 48 hours. It can be seen that the nano-vaccine loaded with water-soluble components and water-insoluble components in the bacterial whole cell lysate of the present invention has a preventive effect on diseases caused by bacteria.
  • Example 2 The whole cell components of Bifidobacterium breve are loaded inside and on the surface of nanoparticles for the treatment of melanoma.
  • This example uses mouse melanoma as a cancer model to illustrate how to prepare a nano-vaccine loaded with whole cell components of Bifidobacterium breve, and apply the vaccine to treat melanoma.
  • a cancer model was prepared with B16F10 mouse melanoma cells.
  • Bifidobacterium breve is first lysed to prepare the water-soluble and water-insoluble components of the bacteria.
  • the organic polymer material PLGA was used as the nanoparticle framework material
  • poly(I:C) was used as the immune adjuvant
  • the nanovaccine loaded with the water-soluble and water-insoluble components of Bifidobacterium breve was prepared by the solvent evaporation method. .
  • the nanovaccine was then used to treat melanoma.
  • the above-mentioned water-soluble components derived from cancer cell lysates and the original water-insoluble components dissolved in 8M urea are the raw material sources for preparing melanoma tumor tissue nano-vaccine.
  • nano-vaccine prepared by the double emulsion method in the solvent evaporation method, and the molecular weight of the nano-particle preparation material PLGA used was 24KDa-38KDa.
  • the adjuvant is poly(I:C) which is only distributed in the vaccine.
  • the preparation method is as described above.
  • a nanovaccine loaded with bacterial whole cell components and a nanovaccine loaded with tumor tissue whole cell components were prepared respectively, and the combined effect of the two was analyzed.
  • the nano-vaccine loaded with the water-soluble component in the whole cell component and the nano-vaccine loaded with the water-insoluble component in the whole cell component are prepared respectively, and then they are mixed and used at the same time.
  • the average particle size of the nano-vaccine loaded with whole cell components is 320 nm, the surface potential of nano vaccines is about -5mV; each 1 mg PLGA nanoparticle loads about 100 ⁇ g of protein or polypeptide components of bacteria or tumor tissue, and the poly(I:C) immune adjuvant used inside and outside each 1 mg PLGA nanoparticle A total of about 0.02mg.
  • the average particle size of the blank nanoparticles is about 270nm, and the blank nanoparticles are prepared by using pure water or 8M urea containing the same amount of poly(I:C) to replace the corresponding water-soluble components and non-water-soluble components. All particles were resuspended in PBS before use.
  • Nano-vaccine for the treatment of cancer The control groups in this study were the PBS group and the blank nano-particle + bacterial lysate group. Select 6-8-week-old female C57BL/6 as model mice to prepare melanoma-bearing mice. On day 0, 1.5 ⁇ 105 B16F10 cells were subcutaneously inoculated into the lower right lower back of each mouse. In the tumor nanovaccine group, 50 ⁇ L of 2 mg PLGA nanoparticles loaded with water-soluble components in tumor lysate and 50 ⁇ L of water-soluble components in tumor lysate and 50 Both the interior and the surface of ⁇ L were loaded with 2 mg PLGA nanoparticles dissolved in 8M urea, the original water-insoluble component.
  • the bacterial nanovaccine group 50 ⁇ L of 2 mg PLGA nanoparticles loaded with water-soluble components in bacterial lysate and 50 ⁇ L of water-soluble components in bacterial lysate and 50 Both the interior and the surface of ⁇ L were loaded with 2 mg PLGA nanoparticles dissolved in 8M urea, the original water-insoluble component.
  • 25 ⁇ L of 1 mg PLGA loaded with water-soluble components of bacterial lysates were injected intratumorally on the 4th day, 7th day, 10th day, 15th day and 20th day, respectively.
  • Nanoparticles 25 ⁇ L both inside and on the surface loaded with 1 mg PLGA nanoparticles dissolved in 8M urea in the original water-insoluble component of bacterial lysate, 25 ⁇ L loaded inside and on the surface of 1 mg PLGA nanoparticles in the water-soluble component of tumor lysate and 25 ⁇ L of both the inside and the surface were loaded with 1 mg of PLGA nanoparticles dissolved in 8 M urea in the original water-insoluble fraction of the tumor lysate.
  • 100 ⁇ L PBS was injected intratumorally on the 4th, 7th, 10th, 15th and 20th day, respectively.
  • Blank nanoparticles + lysate control group were intratumorally injected with 100 ⁇ L of 4 mg blank nanoparticles and the same amount of free lysate loaded with the vaccine on the 4th day, 7th day, 10th day, 15th day and 20th day.
  • v was the tumor volume
  • a was the tumor length
  • b was the tumor width.
  • the tumor growth rate of the mice in the tumor tissue vaccine group and the bacterial vaccine group was slowed down and the survival period was prolonged. Moreover, the combination of tumor tissue vaccine and bacterial vaccine was more effective than the two vaccines alone.
  • the nano-vaccine loaded with water-soluble components and non-water-soluble components of bacteria described in the present invention has a therapeutic effect on melanoma.
  • Example 3 Nanovaccine loaded with whole cell components of Bifidobacterium breve and Bacillus Calmette-Guerin (BCG) inside and on the surface of nanoparticles for the treatment of liver cancer:
  • BCG Bacillus Calmette-Guerin
  • This example uses mouse liver cancer as a cancer model to illustrate how to prepare bifidobacterium breve-loaded Nano-vaccine of Mycobacterium and whole-cell components of BCG and application of the vaccine in the treatment of liver cancer.
  • the water-soluble and non-water-soluble components of Bifidobacterium breve and Bacillus Calmette-Guerin were firstly lysed, and mixed at a mass ratio of 3:1, respectively. Then, using PLGA as the nanoparticle framework material, the nanovaccine was prepared by the solvent evaporation method.
  • the preparation method, materials and methods of the nano-vaccine in this example are the same as above.
  • the water-soluble component of the prepared vaccine is a mixture of the water-soluble components of Bifidobacterium breve and BCG at a ratio of 3:1; the water-insoluble component of the prepared vaccine is the water-insoluble component of Bifidobacterium breve and BCG by 3:1 mix into the mixture.
  • the average particle size of the nano-vaccine loaded with whole cell components is 320nm, and the surface potential of the nano-vaccine is about -5mV; 80 ⁇ g of bacterial protein or polypeptide component is loaded per 1 mg of PLGA nano-particles.
  • the average particle size of the blank nanoparticles is 270nm, and the blank nanoparticles are prepared by using an equal amount of pure water or 8M urea to replace the corresponding water-soluble components and non-water-soluble components.
  • Nano-vaccine for the treatment of liver cancer select female C57BL/6 as model mice to prepare liver cancer tumor-bearing mice. On day 0, 2 ⁇ 10 6 Hepa1-6 liver cancer cells were subcutaneously inoculated into the lower right back of each mouse. In the vaccine group, 50 ⁇ L of 2 mg PLGA nanovaccine and 50 ⁇ L of water-soluble components in cancer cell lysates were injected into the tumor on the 4th day, 7th day, 10th day, 15th day and 20th day after tumor inoculation, respectively. Both the interior and the surface are loaded with 2 mg of PLGA nanovaccine dissolved in 8M urea, which is the original water-insoluble component.
  • Nanovaccine loaded with only water-soluble components or nanovaccine control group loaded with only water-soluble components intratumoral injection on the 4th day, 7th day, 10th day, 15th day and 20th day after tumor inoculation 100 ⁇ L Nanovaccine (4mg) loaded with only water-soluble components or nanovaccine (4mg) loaded with only water-insoluble components.
  • Blank nanoparticles + lysate control group were intratumorally injected with 100 ⁇ L of blank nanoparticles and the same amount of free lysate loaded with the vaccine on the 4th day, 7th day, 10th day, 15th day and 20th day after tumor inoculation. thing.
  • v was the tumor volume
  • a was the tumor length
  • b was the tumor width.
  • the tumor growth rate of the nano-vaccine administration group was significantly slower and the survival period of the mice was significantly prolonged.
  • simultaneous injection of water-soluble component nano-vaccine and water-insoluble component nano-vaccine is better than only injecting water-soluble component nano-vaccine or only injecting water-insoluble component nano-vaccine. It can be seen that the nano-vaccine loaded with the mixture of Bifidobacterium breve and BCG whole cell components of the present invention can be used to treat liver cancer.
  • Example 4 The water-soluble component of the whole cell fraction of Bifidobacterium breve and BCG is loaded inside and on the surface of microparticles for the treatment of melanoma: this example uses mouse melanoma as a cancer model to illustrate how to prepare only Bifidobacterium breve and the water-soluble part of the micro-vaccine of BCG components, and the application of the vaccine to treat melanoma.
  • Bifidobacterium breve and BCG were firstly lysed to prepare water-soluble components and water-insoluble components.
  • the organic polymer material PLGA was used as the micron particle skeleton material, and the divalent manganese ion (Mn 2+ ) was used as the immune adjuvant to prepare the micron vaccine loaded with the whole cell water-soluble component by the solvent evaporation method.
  • micron vaccines In this example, the preparation of micron vaccines and the blank micron particles used as a control adopt the double emulsion method in the solvent evaporation method, and the micron particle preparation material used is an organic polymer material PLGA with a molecular weight of 38KDa-54KDa , the immune adjuvant used is MnCl 2 and MnCl 2 is not only distributed inside the microparticles but also loaded on the surface of the microparticles.
  • the preparation method is as described above.
  • the particle size of micron vaccines loaded with bacterial components and manganese adjuvant inside and on the surface of the microparticles is about 1.80 ⁇ m, and each 1 mg of PLGA microparticles is loaded with 90 ⁇ g of protein or polypeptide components.
  • the dose is 0.2 mg and half inside and outside.
  • the particle size of micron vaccines that only carry bacterial components inside and on the surface of the microparticles is about 1.75 ⁇ m, and each 1 mg of PLGA microparticles is loaded with 90 ⁇ g of protein or polypeptide components.
  • the particle size of the blank microparticles is about 1.60 ⁇ m. When the blank microparticles are prepared, pure water containing an equal amount of manganese adjuvant is used to replace the corresponding water-soluble components.
  • the outer surface of the blank microparticles is loaded with the same amount of MnCl 2 as the nano-vaccine.
  • Micron vaccine for the treatment of cancer Select 6-8 weeks old female C57BL/6 to prepare melanoma tumor-bearing mice. On day 0, 1.5 ⁇ 105 B16F10 cells were subcutaneously inoculated into the lower right lower back of each mouse.
  • the scheme of the micron vaccine group was as follows: 100 ⁇ L of 4-intratumor-loaded water-soluble components of bacterial lysates were injected intratumorally on the 4th day, 7th day, 10th day, 15th day and 20th day after melanoma inoculation. mg PLGA nanoparticles.
  • the protocol of the PBS blank control group was as follows: 100 ⁇ L of PBS was injected into the tumor on the 4th day, 7th day, 10th day, 15th day and 20th day after melanoma inoculation.
  • Blank microparticles + cell lysate control group 100 ⁇ L of blank microparticles and the same amount of lysate as in the vaccine were injected intratumorally on the 4th day, 7th day, 10th day, 15th day and 20th day after melanoma inoculation thing.
  • the size of the mouse tumor volume was recorded every 3 days from the 3rd day.
  • the growth rate of the tumor volume of the mice in the micron vaccine administration group was significantly slower and the survival period of the mice was significantly prolonged.
  • the effect of microvaccine containing Mn 2+ adjuvant was better than that of microvaccine without adjuvant. It can be seen that the micro-vaccine loaded with Bifidobacterium breve and BCG water-soluble components of the present invention has a therapeutic effect on melanoma.
  • Example 5 Whole cell components of Lactococcus formatiformis and Lactobacillus gasseri loaded inside mannose modified target-modified nanoparticles for the treatment of pancreatic cancer:
  • This example uses mouse pancreatic cancer as a cancer model to illustrate how to prepare the load Nano-vaccine of whole-cell components of Lactococcus formatiformis and Lactobacillus gasseri and application of the vaccine in the treatment of pancreatic cancer.
  • Lactococcus and Lactobacillus were lysed to prepare water-soluble and water-insoluble components of the whole cell component and mixed in a mass ratio of 1:2.
  • a nanovaccine loaded with both water-soluble and water-insoluble components of Lactococcus and Lactobacillus gasseri was prepared by solvent evaporation.
  • the nanovaccine was then used to treat pancreatic cancer.
  • mannose targets are used to target dendritic cells.
  • researchers can adjust the targets used according to specific situations.
  • targets such as DEC205 antibodies, CD40 antibodies, CD32 antibodies, and CD103 antibodies can also be used. .
  • the water-soluble component is a mixture of the water-soluble components of Lactococcus gratuitans and the water-soluble components of Lactobacillus gasseri, which are only distributed inside the vaccine; the water-insoluble components are Lactococcus and Lactobacillus gasseri non-water-soluble Mixture of sexual components, distributed only inside the vaccine.
  • the particle size of the nano-vaccine with and without target modification is about 300nm, and the average surface potential of the nanoparticles is about -6mV.
  • Each 1 mg of PLGA nanoparticles is loaded with about 50 ⁇ g of protein or peptide components, and the CpG immune adjuvant used inside and outside of each 1 mg of PLGA nanoparticles is 0.02 mg, and the inside and outside are divided in half.
  • the particle size of the blank nanoparticles is about 250nm, and the blank nanoparticles are prepared by using pure water containing CpG or 8M urea to replace the corresponding water-soluble components and non-water-soluble components.
  • Nano-vaccine for the treatment of pancreatic cancer select 6-8 week old female C57BL/6 to prepare pancreatic cancer tumor-bearing mice. On day 0, 1 ⁇ 10 6 Pan 02 cells were subcutaneously inoculated into the lower right back of each mouse.
  • the nanovaccine group scheme was as follows: 100 ⁇ L intratumoral injection of 100 ⁇ L of water-soluble components of bacterial lysate loaded on the inside and outside of the tumor on the 4th day, 7th day, 10th day, 15th day and 20th day after inoculation of pancreatic cancer, respectively. mg PLGA nanovaccine.
  • the protocol of the PBS blank control group was as follows: intratumoral injection of 100 ⁇ L of PBS was performed on the 4th day, 7th day, 10th day, 15th day and 20th day after pancreatic cancer inoculation.
  • Blank nanoparticles + cell lysate control group intratumoral injection of 100 ⁇ L of blank nanoparticles and the same amount of lysate as in the vaccine were performed on the 4th day, 7th day, 10th day, 15th day and 20th day after pancreatic cancer inoculation. thing.
  • the size of the mouse tumor volume was recorded every 3 days from the 3rd day.
  • the tumor growth rate and the survival period of the mice in the vaccine treatment group were significantly different.
  • the target-modified vaccine group had a better protective effect on mice than the non-target-modified group. It can be seen that the nano-vaccine loaded with whole cell components of Lactococcus gratuitans and Lactobacillus gasseri of the present invention has a preventive effect on pancreatic cancer.
  • Example 6 6M guanidine hydrochloride dissolves Lactobacillus acidophilus and BCG components and loads them inside and on the surface of microparticles for the treatment of breast cancer.
  • This example uses mouse breast cancer as a cancer model to illustrate how to use 6M guanidine hydrochloride to dissolve bacteria whole cell components and preparation of micron vaccines loaded with bacterial whole cell components for the treatment of breast cancer.
  • 4T1 mouse triple-negative breast cancer was used as a cancer model.
  • Lactobacillus acidophilus and BCG were inactivated and denatured, and the bacteria were lysed with 6M guanidine hydrochloride to dissolve the whole cell components of the bacteria.
  • using PLGA as the micron particle skeleton material
  • the micron vaccine loaded with bacterial whole cell components was prepared by solvent evaporation method.
  • the microvaccine was then used to treat tumors in 4T1 breast cancer tumor-bearing mice.
  • Lysis of bacteria and collection of various components collect Lactobacillus acidophilus or BCG, then inactivate and denature them by ultraviolet light and high temperature heating, and then use 6M guanidine hydrochloride to lyse Lactobacillus acidophilus and BCG and separate The bacterial lysate is dissolved, and the Lactobacillus acidophilus lysate and the BCG lysate are mixed according to the mass ratio of 4:1, which is the raw material source for preparing the vaccine.
  • micron vaccines used PLGA with a molecular weight of 38KD-54KD, and the preparation method was as described above.
  • the average particle size of the prepared micron vaccine is about 2.5 ⁇ m, and the Zeta potential on the surface of the micron particle is -4mV.
  • 100 ⁇ g of protein and peptide components are loaded inside and outside of each 1 mg of PLGA micron particles.
  • the average particle size of the blank microparticles is about 2.2 ⁇ m.
  • Micron vaccine for the treatment of cancer Select 6-8 weeks old female BALB/c to prepare 4T1 tumor-bearing mice. On day 0, 4 ⁇ 105 4T1 cells were subcutaneously inoculated into the lower right lower back of each mouse.
  • the vaccine treatment group received intratumoral injections of 100 ⁇ L of 4 mg PLGA micron vaccine loaded with bacterial whole cell components both inside and on the surface on days 4, 7, 10, 15, and 20.
  • 100 ⁇ L PBS was injected intratumorally on the 4th, 7th, 10th, 15th and 20th day, respectively.
  • Blank microparticles+bacterial lysate control group were intratumorally injected with the same amount of bacterial lysate on the 4th day, 7th day, 10th day, 15th day and 20th day, and 4mg PLGA blank microparticles without loading any components .
  • mice whose tumor volume exceeded 2000 mm3 were considered dead and were euthanized.
  • the growth rate of the tumor in the micron vaccine administration group was significantly slower and the survival period of the mice was significantly prolonged. It can be seen that the micro-vaccine loaded with Lactobacillus acidophilus and BCG whole cell components of the present invention has a therapeutic effect on breast cancer.
  • Example 7 The non-water-soluble components in the whole cell fraction of Bifidobacterium breve and BCG are loaded inside and on the surface of microparticles for the treatment of melanoma: this example illustrates how to prepare components loaded only with Bifidobacterium breve and BCG The non-water-soluble part of the micron vaccine, and the use of the vaccine in the treatment of melanoma.
  • Bifidobacterium breve and BCG were firstly lysed to prepare water-soluble components and water-insoluble components.
  • the organic polymer material PLGA is used as the micron particle skeleton material, and the poly(I:C) is used as the immune adjuvant to prepare the micron vaccine loaded with the non-water-soluble component of the whole cell by solvent evaporation method.
  • micron vaccines In this example, the preparation of micron vaccines and the blank micron particles used as a control adopt the double emulsion method in the solvent evaporation method, and the micron particle preparation material used is an organic polymer material PLGA with a molecular weight of 38KDa-54KDa , no immune adjuvant was added.
  • the preparation method is as described above.
  • the particle size of micron vaccines loaded with bacterial components inside and on the surface of micron particles is about 1.90 ⁇ m. Each 1 mg of PLGA microparticles is loaded with 90 ⁇ g of protein or peptide components.
  • the particle size of the blank microparticles is about 1.80 ⁇ m.
  • an equal amount of 8M urea is used to replace the corresponding water-insoluble components.
  • Micron vaccine for the treatment of cancer Select 6-8 weeks old female C57BL/6 to prepare melanoma tumor-bearing mice. On day 0, 1.5 ⁇ 105 B16F10 cells were subcutaneously inoculated into the lower right lower back of each mouse.
  • the plan of nanovaccine group is as follows: 100 ⁇ L intratumoral injection of 100 ⁇ L of non-water-soluble components of bacterial lysate loaded on the inside and surface of the melanoma on the 4th day, 7th day, 10th day, 15th day and 20th day after inoculation of melanoma, respectively. 4 mg PLGA micron particles.
  • the protocol of the PBS blank control group was as follows: 100 ⁇ L of PBS was injected into the tumor on the 4th day, 7th day, 10th day, 15th day and 20th day after melanoma inoculation. Blank microparticles + free lysate control group: 100 ⁇ L of blank microparticles and the same amount of lysate as the vaccine were injected intratumorally on the 4th day, 7th day, 10th day, 15th day and 20th day after melanoma inoculation thing. In the experiment, the size of the mouse tumor volume was recorded every 3 days from the 3rd day.
  • the growth rate of the tumor volume of the mice in the micron vaccine administration group was significantly slower and the survival period of the mice was significantly prolonged. It can be seen that the micro-vaccine loaded with Bifidobacterium breve and non-water-soluble components of BCG in the present invention has a therapeutic effect on melanoma.
  • Example 8 Bacterial whole cell components loaded inside and on the surface of nanoparticles for disease prevention: This example prepares a nanovaccine loaded with lysate components of Escherichia coli strain CFT073, and uses the vaccine to improve the survival rate.
  • Escherichia coli was first freeze-thawed and lysed repeatedly in pure water to prepare the water-soluble components of the bacteria and the original water-insoluble components dissolved in 8M urea. Then, PLGA was used as the nanoparticle framework material, and Mn 2+ and thymosin 5 peptide were used as immune adjuvants to prepare nanovaccine, and the nanovaccine was used to prevent sepsis.
  • Bacteria lysis and collection of components Escherichia coli strain CFT073 was repeatedly frozen and thawed 5 times with pure water, accompanied by ultrasound to destroy the lysed cells. After the cells are lysed, centrifuge the lysate at a speed of 5000g for 5 minutes and take the supernatant, which is the water-soluble component soluble in pure water; The water-insoluble components of water were converted to be soluble in 8M aqueous urea solution.
  • the above-mentioned components are the source of raw materials for preparing the vaccine.
  • nano-vaccine Preparation of nano-vaccine:
  • the nano-vaccine and the blank nano-particles used as a control were prepared by the double emulsion method in the solvent evaporation method, and the molecular weight of the nano-particle preparation material PLGA used was 24KDa-38KDa.
  • the adjuvants are MnCl 2 and Thymosin 5, and MnCl 2 and Thymosin 5 are both distributed inside the nanoparticles and loaded on the surface of the nanoparticles.
  • the preparation method is as described above.
  • the nano-vaccine loaded with the water-soluble component in the whole cell component and the nano-vaccine loaded with the water-insoluble component in the whole-cell component are prepared separately, and then the two are mixed or used separately.
  • the average particle size of the nano-vaccine loaded with whole cell components is about 320nm, and the surface potential of the nano-vaccine is about -5mV; each 1mg of PLGA nanoparticles is loaded with about 20 ⁇ g of bacterial protein or polypeptide components, and each 1 mg of PLGA nanoparticles used inside and outside
  • the mass ratio of MnCl 2 and Thymosin 5 peptide immune adjuvant is 1:1, and each is about 0.1 mg.
  • the average particle size of blank nanoparticles is about 270nm. When preparing blank nanoparticles, pure water or 8M urea containing equal amounts of MnCl 2 and thymosin 5 peptide were used to replace the corresponding water-soluble components and non-water-soluble components.
  • Nano-vaccine for the prevention of sepsis 6-8 weeks old female BALB/c were selected for vaccine immunization and bacterial pathogenic protection experiments.
  • Nanovaccine group 50 ⁇ L of 1 mg PLGA nanovaccine of water-soluble components and 50 ⁇ L of internal and water-insoluble components were subcutaneously injected on the 35th, 28th, 21st, 14th and 7th days before the bacterial pathogenicity experiment 1 mg PLGA nanovaccine.
  • the protocol for the PBS blank control group was as follows: 100 ⁇ L of PBS was subcutaneously injected on the 35th day, 28th day, 21st day, 14th day and 7th day before inoculation of the bacterial pathogenicity experiment.
  • Nanovaccine loaded only with water-soluble components or nanovaccine control group loaded only with non-water-soluble components 35th day, 28th day, 21st day, 14th day and 7th day before inoculation of bacterial pathogenicity experiment Inoculate 100 ⁇ L of nanovaccine loaded with only water-soluble components or nanovaccine loaded only with non-water-soluble components.
  • Inactivated vaccine control group 20 ⁇ g inactivated bacterial vaccines were inoculated on the 35th day, 28th day, 21st day, 14th day and 7th day before the bacterial pathogenicity experiment.
  • the pathogenic modeling experiment of Escherichia coli strain CFT073 was carried out.
  • mice were intraperitoneally injected with a lethal dose of 3.6 ⁇ 10 8 CFU live Escherichia coli, and then observed continuously for 48 hours.
  • the mice were euthanized in accordance with experimental animal ethics. Near-death symptoms were listlessness and inactivity for 15 minutes in response to external stimuli. The survival time of mice after bacterial injection was recorded.
  • the death rate of the mice in the PBS control group was the fastest; the survival period of the mice in the nanovaccine group loaded only with water-soluble components or only with non-water-soluble components was significantly prolonged. Moreover, the survival period of mice in the nanovaccine group using both water-soluble components and non-water-soluble components is the longest, which is better than that of nano-vaccine using water-soluble components alone or nano-vaccine using non-water-soluble components alone. It can be seen that the nano-vaccine loaded with bacterial whole cell components of the present invention has a good preventive effect on diseases caused by bacteria.
  • Example 9 Bacterial whole cell components loaded inside and on the surface of nanoparticles for disease prevention: This example takes the preparation of a nano-vaccine loaded with components of Escherichia coli strain CFT073 lysate as an example to illustrate how to load bacterial whole cell components appropriate processing in the process.
  • cationic substances are added after freezing siliconization in the biomineralization treatment, and other processing schemes such as chemical modification, ionization, solidification, and nucleic acid degradation can also be used in practical applications.
  • Escherichia coli was first freeze-thawed and lysed repeatedly in pure water to prepare the water-soluble components of the bacteria and the original water-insoluble components dissolved in 8M urea. Then, PLGA is used as the nanoparticle framework material, and CpG is used as an immune adjuvant to prepare a nano-vaccine, and the nano-vaccine is used to prevent sepsis.
  • Bacteria lysis and collection of components Escherichia coli strain CFT073 was repeatedly frozen and thawed 5 times with pure water, accompanied by ultrasound to destroy the lysed cells. After the cells are lysed, centrifuge the lysate at a speed of 5000g for 5 minutes and take the supernatant, which is the water-soluble component soluble in pure water; The water-insoluble components of water were converted to be soluble in 8M aqueous urea solution.
  • the above-mentioned components are the source of raw materials for preparing the vaccine. Water-soluble components and water-insoluble components are loaded on different nanoparticles respectively.
  • nano-vaccine Preparation of nano-vaccine:
  • the nano-vaccine and the blank nano-particles used as a control were prepared by the double emulsion method in the solvent evaporation method, and the molecular weight of the nano-particle preparation material PLGA used was 24KDa-38KDa.
  • the adjuvant is CpG and is distributed only inside the vaccine.
  • the nanovaccine loaded with water-soluble components and the nanovaccine loaded with water-insoluble components were prepared separately and then mixed for use.
  • the preparation method of the nano-vaccine without frozen siliconization treatment is as described above.
  • the cryosilicified nanovaccine was prepared as follows: after internal loading of the antigen (lysed component), 100 mg of nanoparticles were centrifuged at 10,000 g for 20 minutes, and then 7 mL of PBS was used to resuspend the nanoparticles and mixed with 3 mL containing cell lysate (40 mg /mL) and CpG (0.5mg/mL) in PBS, then centrifuged at 10000g for 20 minutes, and then 10mL silicate solution (containing 154 mM NaCl, 10 mM tetramethyl orthosilicate and 1.0 mM HCl, pH 3.0), and fixed at room temperature for 10 min, then fixed at -80oC for 24 h, centrifuged and washed with ultrapure water, and then used 3 mL of protamine (5 mg/mL) and polylysine (10 mg/mL) Resuspend in PBS and act for 10 min, then use 10 mL of ultrapure water containing
  • the average particle size of the nanovaccine loaded with whole cell components is about 320nm, and the surface potential of the nanovaccine is about -5mV; the unmineralized vaccine is loaded with about 20 ⁇ g of bacterial protein or polypeptide components per 1mg of PLGA nanoparticles, and each 1mg of PLGA nanoparticles
  • the CpG immune adjuvant used is about 0.01 mg; the mineralized vaccine is loaded with about 30 ⁇ g of bacterial protein or polypeptide components per 1 mg of PLGA nanoparticles, and the CpG immune adjuvant used per 1 mg of PLGA nanoparticles is about 0.01 mg.
  • the average particle size of the blank nanoparticles is about 270nm. When the blank nanoparticles are prepared, pure water or 8M urea containing the same amount of CpG is used to replace the corresponding water-soluble components and non-water-soluble components.
  • Nano-vaccine for the prevention of sepsis 6-8 weeks old female BALB/c were selected for vaccine immunization and bacterial pathogenic protection experiments.
  • Unmineralized vaccine group 50 ⁇ L of 1 mg PLGA nanovaccine loaded with water-soluble components and 50 ⁇ L of non 1 mg PLGA nanovaccine of water-soluble composition.
  • Mineralized treatment vaccine group 30 ⁇ L of 1 mg PLGA nano-vaccine loaded with water-soluble components and 30 ⁇ L of non- 1 mg PLGA nanovaccine of water-soluble composition.
  • the protocol for the PBS blank control group was as follows: 100 ⁇ L of PBS was subcutaneously injected on the 35th day, 28th day, 21st day, 14th day and 7th day before inoculation of the bacterial pathogenicity experiment.
  • Blank nanoparticles + free lysate control group Inoculate 100 ⁇ L blank nanoparticles and the same amount as the vaccine loaded on the 35th day, 28th day, 21st day, 14th day and 7th day before inoculating the bacterial pathogenicity experiment free cell lysates; blank nanoparticles and free cell lysates were injected at different sites.
  • Inactivated vaccine control group 20 ⁇ g of inactivated bacterial vaccine prepared by immobilization method were inoculated on the 35th day, 28th day, 21st day, 14th day and 7th day before the bacterial pathogenicity experiment.
  • the pathogenic modeling experiment of Escherichia coli strain CFT073 was carried out.
  • each mouse was intraperitoneally injected with a lethal dose of 3.6 ⁇ 10 8 CFU live Escherichia coli, and then observed continuously for 48 hours.
  • the mice were euthanized in accordance with experimental animal ethics. Near-death symptoms were listlessness and inactivity for 15 minutes in response to external stimuli. The survival time of mice after bacterial injection was recorded.
  • the death rate of the mice in the PBS control group and the blank nanoparticle + free lysate control group was faster; the survival period of the mice in the unmineralized and mineralized nanovaccine groups was significantly prolonged; and the mineralized The prolonged survival of mice treated with nanovaccine was better than that of unmineralized treated mice. It can be seen that the nano-vaccine loaded with water-soluble components and water-insoluble components in the bacterial whole cell lysate of the present invention has a preventive effect on diseases caused by bacteria.
  • Figures 13-21 are respectively the nano-vaccine or micro-vaccine prepared by one or more bacteria in the embodiment for the prevention or treatment of bacteria-induced diseases or cancer mouse experimental results; a, nano-vaccine or micro-vaccine prevention or treatment The experimental results of tumor growth rate in cancer (n ⁇ 8); b, the experimental results of mouse survival in nano-vaccine or micro-vaccine prevention or treatment of other cancers (n ⁇ 8), each data point is the mean ⁇ standard error (mean ⁇ SEM); the significant difference in the tumor growth inhibition experiment in figure a was analyzed by ANOVA method, and the significant difference in figure b was analyzed by Kaplan-Meier and log-rank test; * indicates that the vaccine group was compared with the PBS blank control group p ⁇ 0.05, there is a significant difference; # represents p ⁇ 0.05, a significant difference between the vaccine group and the blank nanoparticle + free lysate control group; ** represents p ⁇ 0.01, compared with the PBS blank control group, There is a significant difference; ## represents p ⁇ 0.01 between
  • the invention utilizes nanotechnology to recombine one or more lysed whole cell components of bacteria into a nano vaccine or a micro vaccine, which is a promising new preparation method for bacterial vaccines.
  • the prior art uses inactivation technology, attenuation technology or protein recombination technology to prepare for the prevention and treatment of bacteria-induced diseases.
  • Each of the above technologies has advantages and disadvantages.
  • the invention creatively reassembles the whole cell components obtained after lysing one or more bacteria into a nano-vaccine or a micro-vaccine suitable for antigen-presenting cell phagocytosis.
  • bacterial components can activate the body's immune response and can be used to treat or prevent cancer. Injecting bacterial components next to or within the tumor first activates the innate immune system and recruits immune cells to the tumor site.
  • free bacterial lysates are not easy to be phagocytized by immune cells, etc., but are easier to be phagocytized by immune cells after reorganization into nano-vaccine or micro-vaccine through nanoparticles, and phagocytosis of bacterial vaccines can be achieved when immune cells phagocytize tumor cell lysates. Play the role of co-activation, so as to better activate the body's anti-tumor immune response.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,具体为将细菌全细胞裂解后水溶性组分和/或非水溶性组分重新组装成预防或治疗疾病的疫苗系统,利用纳米级尺寸或微米级尺寸的粒子装载一种或多种细菌的全细胞组分的水溶性成分和非水溶性成分,用于制备预防和治疗疾病的疫苗,水溶性组分和非水溶性组分都被负载于纳米粒子或微米粒子中,即细菌组分都被负载于纳米疫苗或微米疫苗中,从而可用于疾病的预防和治疗。

Description

一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用 技术领域
本发明属于免疫预防和治疗领域,具体涉及一种将一种或多种细菌裂解后的全细胞组分重新组装成的纳米或微米疫苗,尤其是涉及一种基于一种或两种以上细菌的全细胞组分的疫苗及其在预防和治疗相应疾病中的应用。
背景技术
免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和清除人体内的异常物质如细菌和病毒等,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。通过调节机体免疫系统的平衡,我们可以影响机体感染细菌后所引发疾病的发生、发展和治疗。
疫苗是疾病免疫治疗和预防的重要方法之一。开发针对细菌引发的疾病的疫苗的基础是选择合适的抗原来激活人体免疫系统对细菌的识别,而细菌本身是最好的识别抗原的来源。科学家曾采用灭活技术、减毒活疫苗技术或抗原蛋白质体外表达重组技术等从制备相应的疫苗。这些技术在制备疫苗的实践中均表现出了一定的疗效,但是也存在一些弊端,比如循环效果不佳、预防或者治疗效果还需要改善等。
技术问题
有鉴于此,本发明的目的在于针对现有技术存在的问题,提供一种负载一种或多种细菌的全细胞组分的微米或纳米疫苗系统,用于预防或治疗由细菌引起的疾病或癌症的方法。本发明将一种或多种细菌全细胞组分分为可在纯水或不含增溶剂水溶液中溶解的水溶性部分和可用一定增溶剂溶解于水溶液中的非水溶性部分,并将水溶性部分和非水溶性部分包载于纳米粒子或微米粒子中和负载于其表面,从而保证了抗原物质都被负载于所制备的疫苗中。
技术解决方案
为实现本发明的目的,本发明采用如下技术方案:一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,包括纳米粒子和/或微米粒子、一种或多种细菌的全细胞组分;所述疫苗系统为纳米疫苗系统和/或微米疫苗系统;所述全细胞组分为水溶性组分和/或非水溶性组分。全细胞组分由一种或多种细菌的全细胞裂解得到,或者所述全细胞组分由一种或多种细菌的全细胞裂解后加工得到,或者所述全细胞组分由一种或多种细菌的全细胞加工后裂解得到,其中,一种细菌裂解得到的产物称为全细胞组分,两种或者以上细菌裂解得到的产物称为全细胞组分混合物。所述加工包括灭活、变性、核酸降解、辐射、固化、化学修饰、离子化、生物矿化处理,具体操作方法为常规技术。所述纳米粒子或微米粒子内部或表面可进行或者不进行生物矿化、核酸酶降解、化学修饰、固化、离子化处理,具体操作方法为常规技术。
本发明中,水溶性组分溶于纯水或不含增溶剂的水溶液;非水溶性组分在纯水中不溶,在含增溶剂的水溶液中或有机溶剂中可溶。具体的,全细胞组分为一种或多种细菌中全细胞的水溶性成分和/或非水溶性成分,水溶性成分为一种或多种细菌裂解的可溶于纯水或不含增溶剂的水溶液中的原水溶性部分;非水溶性成分为一种或多种细菌裂解的原非水溶性部分采用增溶方法由在纯水中不溶变为在含增溶剂的水溶液中或有机溶剂中可溶的部分。水溶性组分、非水溶性组分分别负载于不同粒子上,或者水溶性组分、非水溶性组分负载于同一粒子上。
本发明基于一种或多种细菌的疫苗系统为纳米或微米的疫苗系统,称为纳米疫苗或微米疫苗,可以预防或治疗细菌引起的疾病,由纳米级尺寸或微米级尺寸的粒子和所述粒子负载的全细胞组分或全细胞组分混合物组成,或者由纳米级尺寸或微米级尺寸的粒子和所述粒子负载的全细胞组分或全细胞组分混合物、免疫佐剂组成;所述全细胞组分为一种或多种细菌的全细胞的水溶性成分混合物和/或非水溶性成分或相应的混合物。混合物可为但不限于水溶性成分互相混合,或者非水溶性成分互相混合,或者全部和/或部分水溶性组分与全部和/或部分水溶性组分互相混合。
本发明所述基于一种或多种细菌的全细胞组分的预防或治疗疾病的疫苗系统的制备方法为,先使用超纯水或水溶液或含增溶剂的溶液将细菌裂解,收集细菌全细胞组分,然后将一种细菌或者多种细菌的全细胞组分负载于纳米粒子和/或微米粒子的内部和/或表面,得到所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统;或者将一种细菌或者多种细菌的全细胞组分、免疫佐剂负载于纳米粒子和/或微米粒子内部和/或表面,得到所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统。具体的,将一种或多种细菌的全细胞组分负载于纳米和/或微米粒子内部和/或表面,得到所述疫苗系统;或者将一种或多种细菌全细胞组分、免疫佐剂负载于纳米和/或微米粒子内部和/或表面,得到所述疫苗系统。具体的,本发明所述疫苗系统可以按照纳米尺寸粒子和微米尺寸粒子已开发的制备方法制备得到,包括但不仅限于常见的溶剂挥发法、透析法、挤出法、沉淀法、热熔法。在一些实施方案中,所述的疫苗系统采用溶剂挥发法中的复乳法制备得到。
本发明公开了上述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统在制备预防和/或治疗疾病的疫苗中的应用,该疫苗系统用于预防或治疗疾病及其复发;所述疾病为由细菌引起的疾病或癌症,比如,预防或治疗与细菌有关的疾病时,制备疫苗所使用的细菌中有一种与用于预防或治疗的引发疾病的细菌相同。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统的活性成分全细胞组分为全细胞的水溶性成分混合物和/或非水溶性成分或其混合物,由一种或多种细菌制备,多种指两种或者两种以上。此为本发明的创造性所在,将细菌全细胞组分重组为纳米疫苗或微米疫苗,本发明采用一种或一种以上细菌以上全细胞组分预防或治疗细菌引起的疾病或者癌症,取得了技术效果显著进步。
本发明所述基于一种或多种细菌全细胞组分全细胞组分的预防或治疗细菌所致疾病的疫苗系统中,所述负载方式为全细胞的水溶性成分和非水溶性成分分别或同时被包载于粒子内部,和/或分别或同时负载于粒子表面。具体的,所述负载方式为全细胞的水溶性成分和非水溶性成分分别或同时被包载于粒子内部,和/或分别或同时负载于粒子表面,包括但不仅限于水溶性成分同时装载于粒子中和负载于粒子表面,非水溶性成分同时装载于粒子中和负载于粒子表面,水溶性成分装载于粒子中而非水溶性成分负载于粒子表面,非水溶性成分装载于粒子中而水溶性成分负载于粒子表面,水溶性成分和非水溶性成分装载于粒子中而只有非水溶性成分负载于粒子表面,水溶性成分和非水溶性成分装载于粒子中而只有水溶性成分负载于粒子表面,水溶性成分装载于粒子中而水溶性成分和非水溶性成分同时负载于粒子表面,非水溶性成分装载于粒子中而水溶性成分和非水溶性成分同时负载于粒子表面,水溶性成分和非水溶性成分同时装载于粒子中而且水溶性成分和非水溶性成分同时负载于粒子表面。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统中,所述粒子内部和/或表面还包括免疫佐剂。所述免疫佐剂的添加方式包括装载于纳米粒子或微米粒子内,或者负载于纳米粒子或微米粒子表面,或者同时装载于纳米粒子或微米粒子内及负载于纳米粒子或微米粒子表面。
本发明中,基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统的表面不连接或者连接靶头,具体的,疫苗系统表面可以不连接具有主动靶向功能的靶头或者连接有主动靶向功能的靶头;所述靶头可带领疫苗系统靶向到特定细胞;所述特定细菌细胞为树突状细胞、巨噬细胞、B细胞、T细胞、NK细胞、NKT细胞、中性粒细胞、嗜酸性粒细胞、嗜碱性粒细胞、淋巴结、胸腺、脾脏、骨髓中的一种或两种以上。具体的,疫苗系统表面连接具有主动靶向功能的靶头时,所述靶头包括但不限于可与细胞膜表面配体特异性结合的抗体、糖类物资、脂类物质、多肽类物质、核酸类物质;或者所述靶头可以为甘露糖、CD32抗体、CD11c抗体、CD103抗体、CD44抗体、DEC205抗体、CD40抗体。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统中,所述全细胞组分按照在纯水或不含增溶剂的水溶液中的溶解性可分为两部分:水溶性成分和非水溶性成分。所述水溶性成分为可溶于纯水或不含增溶剂的水溶液的原水溶性部分,所述非水溶性成分为在纯水中不溶的原非水溶性部分,采用增溶方法由在纯水或不含增溶剂的水溶液中不溶变为在含增溶剂的水溶液中或有机溶剂中可溶的部分。所述全细胞组分中的水溶性部分和非水溶性部分都可以被含增溶剂的增溶水溶液或有机溶剂溶解。所述增溶剂为可以增加蛋白质或多肽在水溶液中溶解性的增溶剂中的至少一种;所述有机溶剂为可以溶解蛋白质或多肽的有机溶剂。本领域技术人员可以理解,所述非水溶性成分也可采用其他可使蛋白质和多肽片段增溶的方法由在纯水中不溶变为可溶。所述有机溶剂包括但不限于DMSO、乙腈、乙醇、甲醇、DMF、异丙醇、丙醇、二氯甲烷、乙酸乙酯。本领域技术人员可以理解,所述有机溶剂也可采用其他可使蛋白质和多肽片段增溶的含有机溶剂的方法。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统中,纳米粒子为纳米级尺寸的粒子,微米粒子为微米级尺寸的粒子。所述纳米疫苗和纳米级尺寸的粒子的粒径为1nm~1000nm,优选为50nm~800nm,进一步优选为100nm~600nm;所述微米疫苗和微米级尺寸的粒子的粒径为1μm~1000μm,优选为1μm~100μm,进一步优选为1μm~10μm,最优选为1μm~5μm。所述的纳米尺寸粒子或微米尺寸粒子表面可为电中性,带负电或者带正电。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统中,微纳粒子的形状为常见的任意形状,包括但不限于球形、椭球形、桶形、多角形、棒状、片状、线形、蠕虫形、方形、三角形、蝶形或圆盘形。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统中,纳米粒子和/或微米粒子的制备材料为有机合成高分子材料、天然高分子材料或者无机材料。其中所述有机合成高分子材料为生物相容或可降解的高分子材料,包括但不限于PLGA、PLA、PGA、Poloxamer、PEG、PCL、PEI、PVA、PVP、PTMC、聚酸酐、PDON、PPDO、PMMA、聚氨基酸、合成多肽、合成脂质。所述的天然高分子材料为生物相容或可降解的高分子材料,包括但不限于卵磷脂、胆固醇、淀粉、脂类、糖类、多肽、海藻酸钠、白蛋白、胶原蛋白、明胶、细胞膜成分。所述的无机材料为无明显生物毒性的材料,包括但不限于三氧化二铁、四氧化三铁、碳酸钙、磷酸钙。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统可将装载的全细胞组分递送给相关免疫细胞,通过所装载成分的免疫原性而激活和增强自身免疫系统对致病细菌的杀伤作用。因此本发明还提供了所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统在制备预防和/或治疗疾病的疫苗中的应用。
本发明所述全细胞组分的疫苗系统在预防或治疗疾病时可以同时使用只负载水溶性组分的纳米粒子和/或微米粒子和只负载非水溶性组分的纳米粒子和/或微米粒子、使用只负载水溶性组分的纳米粒子和/或微米粒子、使用只负载非水溶性组分的纳米粒子和/或微米粒子或者使用同时负载水溶性组分和非水溶性组分的纳米粒子和/或微米粒子。
有益效果
由上述技术方案可知本发明提供了一种利用纳米级尺寸或微米级尺寸的粒子递送细胞水溶性成分和非水溶性成分的输送系统,以及用于制备预防和治疗疾病的疫苗中的应用。因为相关细菌细胞的全细胞组分按照在纯水中的溶解性被分为两部分,可溶于纯水的水溶性部分和在纯水中不溶的非水溶性部分,并且水溶性部分和非水溶性部分都被负载于纳米粒子或微米粒子中,所以细胞组分中的抗原物质就大部分都被负载于纳米粒子或微米粒子中。细胞组分中水溶性部分和非水溶性部分囊括了整个细胞的成分;细胞组分中水溶性部分和非水溶性部分也可以同时被含有增溶剂的水溶液溶解。其中具有免疫原性的物质可激活免疫反应。利用全细胞组分中这些因为疾病突变而产生的具有免疫原性的物质即可用于疾病的预防或治疗。
本发明所述全细胞组分的疫苗系统可以制备预防和/或治疗细菌所致疾病的疫苗。在用作疾病疫苗以预防和治疗细菌所致疾病时,本发明所述的疫苗可以在疾病发生前或疾病发生后以激活机体免疫系统,从而预防疾病的发生、延缓疾病的进展、或治疗疾病或者预防疾病的复发。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明所述疫苗的制备过程及应用领域示意图;a:水溶性组分和非水溶性组分分别收集和制备纳米疫苗或微米疫苗的示意图;b:采用含有增溶剂的增溶液溶解全细胞组分和制备纳米疫苗或微米疫苗的示意图。
图2为疫苗结构示意图。
图3为疫苗结构示意图。
图4为疫苗结构示意图。
图5为疫苗结构示意图。
图6为疫苗结构示意图。
图7为疫苗结构示意图。
图8为疫苗结构示意图。
图9为疫苗结构示意图。
图10为疫苗结构示意图。
图11为疫苗结构示意图。
图12为疫苗结构示意图。
图13为实施例1技术效果图。
图14为实施例2技术效果图。
图15为实施例3技术效果图。
图16为实施例4技术效果图。
图17为实施例5技术效果图。
图18为实施例6技术效果图。
图19为实施例7技术效果图。
图20为实施例8技术效果图。
图21为实施例9技术效果图。
本发明的实施方式
本发明公开了一种纳米级或微米级的负载一种或一种以上细菌全细胞组分的疫苗系统及其应用预防或治疗细菌导致的疾病,或者癌症。本领域技术人员可以借鉴本发明内容,常规改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明保护范围内。本发明的方法及产品已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法进行改动或适当变更与组合,来实现和应用本发明技术方案。
作为具体的步骤,本发明将细菌裂解后首先获取在纯水或不含增溶剂的水溶液中可溶的水溶性组分,尔后采用含有增溶剂的增溶水溶液将水不溶性的组分溶解于增溶液中,从而将所有的细胞组分都转变为可在水溶液中溶解的组分,进而将其负载于纳米粒子或微米粒子内外以制备纳米疫苗或微米疫苗,用于疾病,比如癌症的预防和治疗。在实际应用中也可采用含有增溶剂的增溶液直接裂解细胞或者组织,或者将细菌裂解后直接采用含有增溶剂的增溶液溶解全细胞组分而不分别收集水溶性组分和非水溶性组分,并采用含有增溶剂的增溶液溶解后的全细胞组分制备纳米疫苗或微米疫苗。本发明通过采用含有增溶剂的水溶液将细胞中不溶于纯水或不含增溶剂水溶液的组分转化为在增溶溶液中可溶并可被用于制备纳米粒子和微米粒子,从而提高了纳米粒子或微米粒子所负载的抗原物质或成分的全面性和免疫原性。细胞组分中水溶性部分和非水溶性部分囊括了整个细胞的成分和组分。其中具有免疫原性的组分可激活机体针对相应细菌的免疫反应。利用全细胞组分中这些免疫原性的物质即可用于疾病的预防和治疗。
本发明公开的细菌全细胞组分的疫苗系统可用于制备预防和/或治疗疾病的疫苗,其制备过程及应用领域如图1所示。在制备时可裂解细菌全细胞后先分别收集水溶性组分和非水溶性组分并分别制备纳米疫苗或微米疫苗;或者也可以直接采用含有增溶剂的增溶液直接裂解细菌全细胞并溶解全细胞组分并制备纳米疫苗或微米疫苗。
本发明所述全细胞组分在裂解前或(和)裂解后既可经过灭活或(和)变性或(和)核酸降解处理后再制备纳米疫苗或微米疫苗,也可细胞裂解前或(和)裂解后不经过任何灭活或(和)变性或(和)核酸降解处理直接制备纳米疫苗或微米疫苗。本发明部分实施例中,细胞在裂解前经过了灭活或(和)变性或(和)核酸降解处理,在实际使用过程中也可以在细胞裂解后做灭活或(和)变性或(和)核酸降解处理,或者也可以细胞裂解前和裂解后均做灭活或(和)变性或(和)核酸降解处理;本发明部分实施例中细胞裂解前或(和)裂解后的灭活或(和)变性或(和)核酸降解处理方法为紫外照射和高温加热,在实际使用过程中也可以采用放射线辐照、高压、冷冻干燥、DNA酶、RNA酶、核酸酶和甲醛等灭活或变性处理方法。本发明的纳米疫苗或微米疫苗在负载细菌全细胞组分过程中部分实施例进行了生物矿化处理中的冷冻硅化处理,部分实施例没有进行加工处理,在实际应用时可根据情况决定是否对抗原组分或者纳米粒子或者微米粒子进行加工处理以及加工处理的方式。加工处理的方式包括但不限于化学修饰、固化、生物矿化、离子化。本领域技术人员可以理解,在实际应用过程中技术人员可根据具体情况进行适当调整。
本发明所述疫苗系统,表面可以不连接具有主动靶向功能的靶头或者连接有主动靶向功能的靶头。
本发明所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统的结构示意图如附图所示。在实际使用过程中可以为只使用其中的某一种特定结构的纳米疫苗和/或微米疫苗,或者是同时使用两种或两种以上的不同结构的纳米疫苗和/或微米疫苗。
图2~图5为载有水溶性和非水溶性细胞组分的纳米尺寸粒子或微米尺寸粒子的结构示意图,每幅图中1:细菌细胞组分中的水溶性成分;2,细菌细胞组分中的非水溶性成分;3,免疫佐剂;4,纳米粒子或微米粒子;5:纳米粒子中的内核部分;a:纳米粒子或微米粒子内部包载和表面负载的均为细菌细胞组分中的水溶性成分;b:纳米粒子或微米粒子内部包载和表面负载的均为细菌细胞组分中的非水溶性成分;c:纳米粒子或微米粒子内部包载的为细菌细胞组分中的非水溶性成分而表面负载的均为细菌细胞组分中的水溶性成分;d:纳米粒子或微米粒子内部包载的为细菌细胞组分中的水溶性成分而表面负载的均为细菌细胞组分中的非水溶性成分;e:纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面也同时负载细菌细胞组分中的水溶性成分和非水溶性成分;f: 纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面只负载细菌细胞组分中的水溶性成分;g: 纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面只负载细菌细胞组分中的非水溶性成分;h:纳米粒子或微米粒子内部只包载的细菌细胞组分中的非水溶性成分,而纳米粒子或微米粒子表面同时负载细菌细胞组分中的水溶性成分和非水溶性成分;i: 纳米粒子或微米粒子内部只包载的细菌细胞组分中的水溶性成分,而纳米粒子或微米粒子表面同时负载细菌细胞组分中的水溶性成分和非水溶性成分。图2中纳米粒子或微米粒子表面和内部均含有免疫佐剂;图3中免疫佐剂只分布于纳米粒子或微米粒子的内部;图4中纳米粒子或微米粒子只在外表面含有免疫佐剂;图5中纳米粒子或微米粒子内部和外表面均无免疫佐剂;图2的2a~2i,图3的6a~6i,图4的10a~10i和图5的14a~14i中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时未形成明显的内核;图2的3a~3i,图3的7a~7i,图4的11a~11i和图5的15a~15i中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时形成了一个内核部分,内核可为制备过程中生成或通过使用聚合物或无机盐等方式形成;图2的4a~4i,图3的8a~8i,图4的12a~12i和图5的16a~17i中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时形成了多个内核部分,内核可为制备过程中生成或通过使用聚合物或无机盐等方式形成;图2的5a~5i,图3的9a~9i,图4的13a~13i和图5的17a~17i中纳米粒子或微米粒子所包载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时位于所形成内核的外层。
图6-图9所示为主动靶向靶头修饰的载有水溶性和非水溶性细胞组分的纳米粒子或微米粒子的结构示意图,图6中纳米粒子或微米粒子表面和内部均含有免疫佐剂;图7中免疫佐剂只分布于纳米粒子或微米粒子的内部;图8中纳米粒子或微米粒子只在外表面含有免疫佐剂;图9纳米粒子或微米粒子内部和外表面均无免疫佐剂;每幅图中1:细菌细胞组分中的水溶性成分;2:细菌细胞组分中的非水溶性成分;3:免疫佐剂;4:纳米粒子或微米粒子;5:纳米粒子中的内核部分;6:可以靶向特定细胞或者组织的靶头。a:纳米粒子或微米粒子内部包载和表面负载的均为细菌细胞组分中的水溶性成分;b:纳米粒子或微米粒子内部包载和表面负载的均为细菌细胞组分中的非水溶性成分;c:纳米粒子或微米粒子内部包载的为细菌细胞组分中的非水溶性成分而表面负载的均为细菌细胞组分中的水溶性成分;d:纳米粒子或微米粒子内部包载的为细菌细胞组分中的水溶性成分而表面负载的均为细菌细胞组分中的非水溶性成分;e:纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面也同时负载细菌细胞组分中的水溶性成分和非水溶性成分;f: 纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面只负载细菌细胞组分中的水溶性成分;g: 纳米粒子或微米粒子内部同时包载的细菌细胞组分中的水溶性成分和非水溶性成分,而纳米粒子或微米粒子表面只负载细菌细胞组分中的非水溶性成分;h:纳米粒子或微米粒子内部只包载的细菌细胞组分中的非水溶性成分,而纳米粒子或微米粒子表面同时负载细菌细胞组分中的水溶性成分和非水溶性成分;i: 纳米粒子或微米粒子内部只包载的细菌细胞组分中的水溶性成分,而纳米粒子或微米粒子表面同时负载细菌细胞组分中的水溶性成分和非水溶性成分。图6中2.a-2.i,图7中6.a-6.i,图8中10.a-10.i和图9中14.a-14.i纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时未形成明显的内核;图6中3.a-3.i,图7中7.a-7.i,图8中11.a-11.i和图9中15.a-15.i中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部的一个内核部分;图6中4.a-4.i,图7中8.a-8.i,图8中12.a-12.i和图9中16.a-16.i纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部的多个内核部分;图6中5.a-5.i,图7中9.a-9.i,图8中13.a-13.i和图9中17.a-17.i纳米粒子或微米粒子所包载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部所形成内核的外层。
图10细胞组分和/或免疫佐剂只分布于纳米粒子或微米粒子内部;图11细胞组分和/或免疫佐剂只分布于纳米粒子或微米粒子外部;图12细胞组分和免疫佐剂分别分布于纳米粒子或微米粒子内部或外部。在图10-12中,a, b和c中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部时未形成明显的内核;d, e和f中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部的一个内核部分;g,h和i中纳米粒子或微米粒子所负载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部的多个内核部分; j,k和l中纳米粒子或微米粒子所包载的细菌细胞组分中的水溶性成分或非水溶性成分分布于纳米粒子或微米粒子内部所形成内核的外层; a, d, g 和j中纳米粒子或微米粒子负载的均为细菌细胞组分中的水溶性成分;b,e,h和k中纳米粒子或微米粒子负载的均为细菌细胞组分中的非水溶性成分;c,f,i和l中纳米粒子或微米粒子同时负载细菌细胞组分中的水溶性成分和非水溶性成分。
在实施例中,免疫佐剂包载于纳米粒子或微米粒子内并同时负载于纳米粒子或微米粒子表面,在实际使用过程中免疫佐剂也可只包载于纳米粒子或微米粒子内,或者只负载于纳米粒子或微米粒子表面,或者不加入免疫佐剂。
在一些实施例中,本发明先将细胞组分中的可溶于纯水的水溶性部分或(和)非水溶性部分经增溶剂进行增溶后包载于纳米粒子或微米粒子内,同时负载免疫佐剂;然后,将细胞组分中的水溶性部分或(和)非水溶性部分负载于纳米粒子表面,同时负载有免疫佐剂。这样就使得纳米粒子或微米粒子中细胞的水溶性组分或非水溶性组分的负载能力可以达到最大。在实际应用中,也可以直接采用含有增溶剂的增溶液(如8M尿素水溶液或6M盐酸胍水溶液)直接裂解细菌并直接溶解全细胞组分,尔后以此制备纳米疫苗或微米疫苗。
本发明所述制备纳米疫苗及微米疫苗的具体操作方法为常用制备方法。在一些实施方案中,制备纳米疫苗或微米疫苗采用溶剂挥发法中的复乳法,所采用的纳米粒子或微米粒子制备材料为有机高分子聚乳酸-羟基乙酸共聚物(PLGA),分子量为24KDa-38KDa, 所采用的免疫佐剂为 poly(I:C)、卡介苗(BCG)或CpG。本领域技术人员可以理解,在实际应用过程中技术人员可根据具体情况对制备方法、制备过程、所采用的纳米粒子制备材料、免疫佐剂的种类和浓度等进行适当调整。
在一些实施方案中,本发明所采用的复乳法的具体制备方法如下:步骤1,将第一预定体积的含有第一预定浓度的水相溶液加入第二预定体积的含有第二预定浓度医用高分子材料的有机相中。
在一些实施例中,水相溶液含有一种细菌裂解物中的各组分;细菌裂解物中的各组分在制备时分别为水溶性组分和/或是溶于增溶剂(8M尿素)中的原非水溶性组分。水相溶液所含有的来自一种细菌的水溶性组分的浓度和/或是来自一种细菌的溶于增溶剂(8M尿素)中的原非水溶性组分的浓度,也即第一预定浓度要求蛋白质多肽浓度含量大于0.01 pg/mL,能负载足够抗原以激活相关免疫反应。
在一些实施例中,水相溶液含有多种细菌裂解物中的各组分混合物;细菌裂解物中的各组分在制备时分别为水溶性组分混合物,或者是溶于增溶剂(8M尿素)中的原非水溶性组分混合物,或者是水溶性组分和非水溶性组分的混合物。水相溶液所含有的来自多种细菌的水溶性组分的总浓度和/或来自多种细菌的溶于增溶剂(8M尿素)中的原非水溶性组分的浓度,也即第一预定浓度要求蛋白质多肽浓度含量大于0.01 pg/mL,能负载足够抗原以激活相关免疫反应。
在一些实施例中,水相溶液除了含有上述细菌裂解物之外,还含有免疫佐剂poly(I:C) 或CpG;免疫佐剂在初始水相中的浓度为大于0.01 pg/mL。
在本发明中,将医用高分子材料溶解于有机溶剂中,得到第二预定体积的含有第二预定浓度医用高分子材料的有机相。在一些实施例中,医用高分子材料为PLGA,有机溶剂选用二氯甲烷。另外,在一些实施例中,医用高分子材料的第二预定浓度的范围为0.5mg/mL-5000mg/mL,优选为100 mg/mL。
本发明选择PLGA或修饰的PLGA,为生物可降解材料且已被FDA批准用作药物敷料,研究表明PLGA具有一定的免疫调节功能,因而适合作为疫苗制备时的辅料,为现有产品。
实际中,有机相的第二预定体积根据其和水相溶液的第一预定体积的比例进行设定,在本发明中,水相溶液的第一预定体积和有机相的第二预定体积之比的范围为1:1.1-1:5000,优先地为1:10。在具体实施过程中可根据需要对第一预定体积、第二预定体积和第一预定体积与第二预定体积之比进行调整以调整制备的纳米粒或微米粒的尺寸大小,为现有技术。
优选的,水相溶液为裂解物组分溶液时,其中蛋白质和多肽的浓度大于0.01 pg/mL,优选0.01 mg/mL~100 mg/mL;水相溶液为裂解物组分/免疫佐剂溶液时,其中蛋白质和多肽的浓度大于0.01 pg/mL,优选0.1 ng/mL~100 mg/mL,免疫佐剂的浓度大于0.01 pg/mL,优选0.01 mg/mL~20 mg/mL。高分子材料有机相溶液中,溶剂为DMSO、乙腈、乙醇、氯仿、甲醇、DMF、异丙醇、二氯甲烷、丙醇、乙酸乙酯等,优选二氯甲烷;高分子材料的浓度为0.5 mg/mL~5000 mg/mL,优选为100 mg/mL。第一乳化剂溶液优选为聚乙烯醇水溶液,浓度为10 mg/mL~50 mg/mL,优选20 mg/mL。第二乳化剂溶液优选为聚乙烯醇水溶液,浓度为1 mg/mL~20 mg/mL,优选5 mg/mL。分散液为PBS缓冲液或生理盐水或纯水。
步骤2,将步骤1得到的混合液进行大于2秒的超声处理或大于1分钟的搅拌或均质处理或微流控处理。优选的,搅拌为机械搅拌或者磁力搅拌时,搅拌速度大于50 rpm,搅拌时间大于1分钟,比如搅拌速度为50 rpm~1500 rpm,搅拌时间为0.1小时~24小时;超声处理时,超声功率大于5W,时间大于0.1秒,比如2~200秒;均质处理时使用高压/超高压均质机或高剪切均质机,使用高压/超高压均质机时压力大于5 psi,比如20psi~100psi,使用高剪切均质机时转速大于100 rpm,比如1000 rpm~5000 rpm;使用微流控处理流速大于0.01 mL/min, 比如0.1 mL/min-100 mL/min。超声或者搅拌或者均质处理或者微流控处理进行纳米化和/或微米化,超声时间长短或搅拌速度或均质处理压力及时间能控制制备的微纳粒子大小。
步骤3,将步骤2处理后得到的混合物加入第三预定体积的含有第三预定浓度乳化剂的水溶液中并进行大于2秒的超声处理或大于1分钟的搅拌或进行均质处理或微流控处理。该步骤将步骤2得到的混合物加入到乳化剂水溶液中继续超声或搅拌纳米化或微米化,超声时间长短或搅拌速度及时间能控制制备的纳米粒子或微米粒子大小,得到合适的粒子。在本发明中,超声时间大于0.1秒,比如2~200秒,搅拌速度大于50rpm,比如50 rpm~500 rpm,搅拌时间大于1分钟,比如60~6000秒。优选的,搅拌为机械搅拌或者磁力搅拌时,搅拌速度大于50 rpm,搅拌时间大于1分钟,比如搅拌速度为50 rpm~1500 rpm,搅拌时间为0.5小时~5小时;超声处理时,超声功率为50W~500W,时间大于0.1秒,比如2~200秒;均质处理时使用高压/超高压均质机或高剪切均质机,使用高压/超高压均质机时压力大于20psi,比如20psi~100psi,使用高剪切均质机时转速大于1000 rpm,比如1000 rpm~5000 rpm;使用微流控处理流速大于0.01 mL/min, 比如0.1 mL/min-100 mL/min。选择参数得到合适的粒子。
在本发明中,乳化剂水溶液为聚乙烯醇(PVA)水溶液;第三预定体积根据其与第二预定体积的比例进行调整,比如第三预定体积为5 mL,第三预定浓度为20 mg/mL。在本发明中,第二预定体积与第三预定体积之的范围为1:1.1~1:1000进行设定,优选为2:5。在具体实施过程中可以对第二预定体积和第三预定体积之比进行调整,得到所需尺寸的纳米粒子或微米粒子。同样地,本步骤的超声时间或搅拌时间、乳化剂水溶液的体积以及浓度的选择,得到尺寸大小合适的纳米粒或微米粒。
步骤4,将步骤3处理后得到的液体加入第四预定体积的第四预定浓度的乳化剂水溶液中,并进行搅拌直至满足预定搅拌条件。
本步骤中,乳化剂水溶液为PVA。第四预定浓度可为5 mg/mL,以得到尺寸大小合适的纳米粒或微米粒为依据。第四预定体积的选择依据第三预定体积与第四预定体积之比决定。在本发明中,第三预定体积与第三预定体积之比为范围为1:1.5~1:2000,优先地为1:10。在具体实施过程中为了控制纳米粒子或微米粒子的尺寸可以对第三预定体积和第四预定体积之比进行调整。
本步骤的预定搅拌条件为直至有机溶剂挥发完成,比如步骤1中的二氯甲烷挥发完成。
步骤5,将步骤4处理满足预定搅拌条件的混合液在以大于100rpm,比如100rpm~3000rpm的转速进行大于1分钟,比如1分钟~1小时的离心后,去除上清液,并将剩下的沉淀物重新混悬于第五预定体积的第五预定浓度的含有冻干保护剂的水溶液中或者第六预定体积的PBS(或生理盐水)中。
在本发明一些实施方案中,步骤5所得沉淀重新混悬于第六预定体积的PBS(或生理盐水)中时不需要冻干,可直接进行后续纳米粒子或微米粒子表面结合或吸附细菌细胞裂解物。在冷冻干燥前或者纳米粒子或微米粒子表面结合或吸附细菌细胞裂解物前,可对纳米粒子或微米粒子表面进行适当的处理,如表面添加或修饰阳离子等,以增加纳米粒子或微米粒子结合或吸附细菌裂解物的能力或增加纳米疫苗或微米疫苗激活免疫系统的能力。
在本发明一些实施方案中,步骤5所得沉淀重新混悬于含有冻干保护剂的水溶液中时需进行冷冻干燥,再冷冻干燥以后再进行后续纳米粒子或微米粒子表面吸附细菌裂解物。
在本发明中,所述冻干保护剂选用海藻糖(Trehalose)。
优选的,该步骤的冻干保护剂的第五预定浓度为质量百分比4%,在后续进行冷冻干燥中不影响冻干效果。
步骤6,将步骤5得到的含有冻干保护剂的混悬液进行冷冻干燥处理后,将冻干物质备用。
步骤7,将第六预定体积的步骤5中得到的重悬于PBS(或生理盐水)中的含纳米粒的混悬液或者采用第六预定体积的PBS(或生理盐水)重悬步骤6得到的冷冻干燥后的含有纳米粒或微米粒和冻干保护剂的冻干物质,与第七预定体积的水溶性组分和/或溶于增溶剂(比如8M尿素)中的原非水溶性组分混合后即得纳米疫苗或微米疫苗。
在本发明中,第六预定体积与第七预定体积的体积比为1:10000~10000:1,优选体积比为1:100~100:1,最优体积比为1:30~30:1。
在一些实施例中,所述重悬的纳米粒子混悬液体积为10 mL时,含有细菌裂解物中的水溶性组分或者溶于增溶剂中的原非水溶性组分的体积为1 mL。在实际使用时可将二者体积和比例根据需要进行调整。
纳米疫苗或微米疫苗的粒径大小为纳米级或微米级,这样能保证疫苗被抗原提呈细胞吞噬,而为了提高吞噬效率,粒径大小要在适宜的范围内。纳米疫苗的粒径大小为1nm-1000nm,更优选地,粒径大小为30nm-1000nm,最优选地,粒径大小为100nm-600nm;微米疫苗的粒径大小为1μm-1000μm,更优选地,粒径大小为1μm-100μm,更优选地,粒径大小为1μm-10μm,最优选地,粒径大小为1μm-5μm。本实施例中,纳米粒疫苗粒径大小为100nm-600nm,微米疫苗粒径大小为1μm-5μm。
在本发明中,增溶剂包括但不限于尿素、盐酸胍、脱氧胆酸钠,SDS,pH大于7的碱性溶液,pH小于7的酸性溶液,白蛋白,卵磷脂、高浓度无机盐、Triton、吐温、DMSO、乙腈、乙醇、甲醇、DMF、异丙醇、丙醇、醋酸、胆固醇、氨基酸、糖苷、胆碱、Bri-35、Octaethylene glycol monododecyl ether、CHAPS、Digitonin、lauryldimethylamine oxide、IGEPAL CA-630;或者也可以使用上述增溶液同时溶解水溶性组分和非水溶性组分。优选采用尿素和盐酸胍来增溶细菌裂解物中的原非水溶性组分,在实际使用中亦可使用任何其他可使细菌裂解物中的原非水溶性组分溶解于水溶液的增溶物质。作为具体实施例,采用8M的尿素和6M的盐酸胍水溶液来增溶细菌裂解物中的原非水溶性组分,在实际使用中亦可使用任何其他可使细菌裂解物中的原非水溶性组分溶解于水溶液的尿素浓度或盐酸胍浓度;或者使用8M尿素水溶液同时溶解水溶性组分和非水溶性组分。
在本发明中,纳米疫苗和微米疫苗的制备采用复乳法,在实际中也可采用任何其他常用的纳米粒子或微米粒子制备方法。纳米疫苗和微米疫苗的制备材料为PLGA,在实际中亦可采用任何其他可以制备纳米粒子或微米粒子的材料。细菌裂解物中水溶性组分或者溶于8M尿素中的原非水溶性组分分别包载在纳米粒子内部和吸附在纳米粒子表面,在实际使用时,细菌裂解物中水溶性组分和溶于8M尿素中的原非水溶性组分亦可混合后再包载到纳米粒子内部或吸附到纳米粒子表面;或者也可以采用8M尿素同时溶解水溶性组分和非水溶性组分然后包载于纳米粒子或微米粒子内部和/或吸附于纳米粒子或微米粒子表面。
本发明中,免疫佐剂包括但不限于微生物来源的免疫佐剂、人或动物免疫系统的产物、固有免疫激动剂、适应性免疫激动剂、化学合成药物、真菌多糖类、中药及其他类中的至少一类;所述免疫佐剂包括但不限于模式识别受体激动剂、卡介苗细胞壁骨架、卡介苗甲醇提取残余物、卡介苗胞壁酰二肽、草分枝杆菌、多抗甲素、矿物油、病毒样颗粒、免疫增强的再造流感病毒小体、霍乱肠毒素、皂苷及其衍生物、Resiquimod、胸腺素、新生牛肝活性肽、米喹莫特、多糖、姜黄素、免疫佐剂CpG、免疫佐剂poly(I:C)、免疫佐剂poly ICLC、短小棒状杆菌苗、溶血性链球菌制剂、辅酶Q10、锰相关佐剂、左旋咪唑、聚胞苷酸、白细胞介素、干扰素、聚肌苷酸、聚腺苷酸、明矾、磷酸铝、羊毛脂、植物油、内毒素、脂质体佐剂、GM-CSF、MF59、双链RNA、双链DNA、铝相关佐剂、CAF01、人参、黄芪的有效成分中的至少一种。本领域技术人员可以理解,所述免疫佐剂也可采用其他可使免疫反应增强的物质,在实际中亦可不加入免疫佐剂。
本发明中,部分实施例中采用的疫苗为纳米疫苗,部分实施例采用的是微米疫苗。本领域技术人员在实际中可以根据实际情况选择采用纳米疫苗和/或微米疫苗。
为了进一步理解本发明,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例涉及的动物实验符合苏州大学动物实验要求。实施例中,负载裂解物的量是利用测试蛋白质浓度的方法确定,负载佐剂根据所在裂解物的包封率测定。
如无特殊说明,本发明实施例中所使用的方法均为常规方法;所使用的材料、试剂等均可从商业途径得到。本发明实施例中所涉及到的纳米尺寸粒子或微米尺寸粒子结构、制备方法、疾病治疗时的使用策略等仅为代表性方法,其他纳米尺寸粒子或微米尺寸粒子结构、制备方法、疾病预防或治疗时的使用策略、与其他药物的联用策略亦可采用本发明所述的方法。实施例中仅列出了本发明在部分细菌所致疾病中的应用,但是本发明亦可用在其他类型的任何细菌所致疾病。对于实施例中所用到的具体方法或材料,本领域技术人员可以在本发明技术思路的基础上,根据已有的技术进行常规的替换选择,而不仅限于本发明实施例的具体记载。在实际应用时具体给药时间、给药次数、给药方案、与其他药物联用情况可根据情况调整。
实施例 1 细菌全细胞组分负载于纳米粒子内部和表面用于疾病的预防:本实施例以制备负载有大肠杆菌菌株CFT073裂解物组分的纳米疫苗为例,来说明如何制备负载细菌全细胞组分的纳米疫苗并应用该疫苗预防疾病。本实施例中,首先将大肠杆菌在纯水中反复冻融裂解,以制备细菌的水溶性组分和溶于8M尿素中的原非水溶性组分。然后,以PLGA为纳米粒骨架材料,以Polyinosinic-polycytidylic acid (poly(I:C))为免疫佐剂制备纳米疫苗,并采用该纳米疫苗来预防细菌感染导致的败血症。
(1)细菌的裂解及各组分的收集:使用纯水将大肠杆菌菌株CFT073反复冻融5次,并辅以常规超声以裂解细胞。待细胞裂解后,将裂解物以5000g的转速离心5分钟并取上清液即为可溶于纯水的水溶性组分;在所得沉淀部分中加入8M尿素溶解沉淀部分即可将不溶于纯水的非水溶性组分转化为在8M尿素水溶液中可溶。上述组分即为制备疫苗的原料来源。
(2)纳米疫苗的制备:本实施例中纳米疫苗及作为对照的空白纳米粒采用溶剂挥发法中的复乳法制备,所采用的纳米粒子制备材料PLGA分子量为24KDa-38KDa,所采用的免疫佐剂为poly(I:C) 且poly(I:C)只分布于纳米粒子内部。制备方法如前所述。在制备时先分别制备负载全细胞组分中水溶性组分的纳米疫苗、负载全细胞组分中非水溶性组分的纳米疫苗,然后在使用时二者混合同时使用。负载全细胞组分的纳米疫苗平均粒径为320nm左右,纳米疫苗表面电位为-5mV左右;每1mg PLGA纳米粒子约负载 20μg细菌蛋白质或多肽组分,每1mgPLGA纳米粒内外所使用的poly(I:C)免疫佐剂共约为0.02mg。空白纳米粒平均粒径为270nm左右,空白纳米粒制备时分别采用含有等量poly(I:C)的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。
(3)细菌灭活疫苗制剂的制备:分别采用福尔马林固定法和加热法两种方法制备灭活的细菌疫苗。在使用福尔马林固定法制备灭活疫苗时,在1mg大肠杆菌菌株CFT073 细菌加入1 mL 5% 的福尔马林,并作用18个小时。尔后,将细菌在4000g离心,并用PBS洗涤两遍后即可得福尔马林固定法所制备的灭活疫苗。在使用加热法制备灭活疫苗时,在80ºC作用30分钟后收集细菌即得灭活疫苗。
(4)纳米疫苗用于败血症的预防:选取6-8周的雌性BALB/c进行疫苗免疫和细菌致病保护实验。
在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射50μL内部和表面都负载癌细胞裂解物中水溶性成分的1mg PLGA纳米疫苗和50μL内部和表面都负载溶于8M尿素中原非水溶性成分的1 mg PLGA纳米疫苗。PBS空白对照组方案如下:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射100 μL PBS。空白纳米粒+游离裂解物对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种100μL空白纳米粒和与疫苗所负载的等量的游离细胞裂解物;空白纳米粒和游离细胞裂解物注射在不同部位。灭活疫苗对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种20 μg灭活细菌疫苗。在第0天进行大肠杆菌菌株CFT073活菌致病造模实验。造模实验时,每只小鼠腹腔注射3.6×10 8 CFU高剂量的大肠杆菌活菌,尔后连续观察48个小时。当小鼠出现濒死症状时,出于实验动物伦理学对小鼠进行安乐死处理。濒死症状为发蔫并在外界刺激时连续15分钟不活动。记录小鼠在细菌注射造模后的生存时间。
如图13所示,PBS对照组以及空白纳米粒+游离裂解物对照组小鼠死亡速度较快;固定法制备的灭活疫苗和加热法制备的灭活疫苗组小鼠死亡相对较慢。纳米疫苗组小鼠的生存期显著延长,在48小时后仍有75%小鼠存活。由此可见,本发明所述的负载细菌全细胞裂解物中水溶性组分和非水溶性组分的纳米疫苗对细菌所致疾病具有预防效果。
实施例2 短双歧杆菌全细胞组分负载于纳米粒子内部和表面用于黑色素瘤的治疗。
本实施例以小鼠黑色素瘤为癌症模型来说明如何制备负载有短双歧杆菌全细胞组分的纳米疫苗,并应用该疫苗治疗黑色素瘤。本实施例中,以B16F10小鼠黑色素瘤细胞制备癌症模型。首先裂解短双歧杆菌以制备该菌的水溶性组分和非水溶性组分。然后,以有机高分子材料PLGA为纳米粒骨架材料,以poly(I:C)为免疫佐剂采用溶剂挥发法制备负载有短双歧杆菌的水溶性组分和非水溶性组分的纳米疫苗。然后采用该纳米疫苗来治疗黑色素瘤。
(1)短双歧杆菌的裂解及各组分的收集:短双歧杆菌后使用纯水反复冻融5次,伴有超声以裂解细胞。待细胞裂解后,将裂解物以8000 g的转速离心5分钟并取上清液即为可溶于纯水的水溶性组分;在所得沉淀部分中加入8M尿素溶解沉淀部分即可将不溶于纯水的非水溶性组分转化为在8M尿素水溶液中可溶。上述组分即为制备疫苗的原料来源。
(2)黑色素瘤肿瘤组织的裂解及各组分的收集:在每只C57BL/6小鼠背部皮下接种1.5×10 5个B16-F10黑色素瘤细胞,在各只小鼠所接种肿瘤长到体积分别为约1000 mm 3时处死小鼠并摘取肿瘤组织。将肿瘤组织切块后研磨,通过细胞过滤网加入纯水并反复冻融5次,伴有超声以裂解细胞。待细胞裂解后,将裂解物以5000g的转速离心5分钟并取上清液即为可溶于纯水的水溶性组分;在所得沉淀部分中加入8M尿素溶解沉淀部分即可将不溶于纯水的非水溶性组分转化为在8M尿素水溶液中可溶。上述所得来源于癌细胞裂解物的水溶性组分和溶解于8M尿素中的原非水溶性组分即为制备黑色素瘤肿瘤组织纳米疫苗的原料来源。
(3)纳米疫苗的制备:本实施例中纳米疫苗及作为对照的空白纳米粒采用溶剂挥发法中的复乳法制备,所采用的纳米粒子制备材料PLGA分子量为24KDa-38KDa,所采用的免疫佐剂为poly(I:C)只分布于疫苗内。制备方法如前所述。在本实施例中,分别制备了负载细菌全细胞组分的纳米疫苗和负载肿瘤组织全细胞组分的纳米疫苗,并分析了两者联用的效果。在制备时先分别制备负载全细胞组分中水溶性组分的纳米疫苗和负载全细胞组分中非水溶性组分的纳米疫苗,然后在使用时二者混合同时使用。负载全细胞组分的纳米疫苗平均粒径均为320 nm左右,纳米疫苗表面电位均为-5mV左右;每1 mg PLGA纳米粒子负载约100 μg细菌或者肿瘤组织的蛋白质或多肽组分,每1mgPLGA纳米粒内外所使用的poly(I:C)免疫佐剂共约为0.02mg。空白纳米粒平均粒径为270nm左右,空白纳米粒制备时分别采用含有等量poly(I:C)的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。所有粒子在使用前重悬于PBS中。
(4)纳米疫苗用于癌症的治疗:本研究对照组分别是PBS组和空白纳米粒+细菌裂解物组。选取6-8周的雌性C57BL/6为模型小鼠制备黑色素瘤荷瘤小鼠。在第0天给每只小鼠背部右下方皮下接种1.5×10 5个B16F10细胞。肿瘤纳米疫苗组在第4天、第7天、第10天、第15天和第20天分别瘤内注射50 μL内部和表面都负载肿瘤裂解物中水溶性成分的2 mg PLGA纳米粒子和50 μL内部和表面都负载溶于8M尿素中原非水溶性成分的2 mg PLGA纳米粒子。细菌纳米疫苗组在第4天、第7天、第10天、第15天和第20天分别瘤内注射50 μL内部和表面都负载细菌裂解物中水溶性成分的2 mg PLGA纳米粒子和50 μL内部和表面都负载溶于8M尿素中原非水溶性成分的2 mg PLGA纳米粒子。细菌和肿瘤纳米疫苗联用组在第4天、第7天、第10天、第15天和第20天分别瘤内注射25 μL内部和表面都负载细菌裂解物中水溶性成分的1 mg PLGA纳米粒子、25 μL内部和表面都负载细菌裂解物中溶于8M尿素中原非水溶性成分的1 mg PLGA纳米粒子、25 μL内部和表面都负载肿瘤裂解物中水溶性成分的1 mg PLGA纳米粒子和25μL内部和表面都负载肿瘤裂解物中溶于8M尿素中原非水溶性成分的1 mg PLGA纳米粒子。PBS空白对照组在第4天、第7天、第10天、第15天和第20天分别瘤内注射100μL PBS。空白纳米粒+裂解物对照组在第4天、第7天、第10天、第15天和第20天分别瘤内注射100μL 4mg 空白纳米粒和与疫苗所负载的等量的游离裂解物。在实验中,从第3天起每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。出于动物实验伦理,在小鼠生存期试验中当小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图14所示,与PBS对照组和空白纳米粒对照组小鼠相比,肿瘤组织疫苗组和细菌疫苗组小鼠的肿瘤生长速度变慢生存期延长。而且,肿瘤组织疫苗和细菌疫苗联用时效果要好于两种疫苗单独使用。综上所述,本发明所述的负载细菌的水溶性组分和非水溶性组分的纳米疫苗对黑色素瘤具有治疗效果。
实施例3 短双歧杆菌和卡介苗(BCG)全细胞组分负载于纳米粒子内部和表面的纳米疫苗用于肝癌的治疗:本实施例以小鼠肝癌为癌症模型来说明如何制备负载有短双歧杆菌和卡介苗全细胞组分的纳米疫苗并应用该疫苗治疗肝癌。本实施例中,首先裂解短双歧杆菌和卡介苗的水溶性组分和非水溶性组分,分别按质量比3:1混合。然后,以PLGA为纳米粒子骨架材料,采用溶剂挥发法制备纳米疫苗。
(1)短双歧杆菌的裂解及各组分的收集:该实施例中短双歧杆菌的裂解及裂解物收集同实施例2。
(2)BCG的裂解及各组分的收集:该实施例中BCG的裂解及裂解物收集和增溶方法同短双歧杆菌的裂解方法。
(3)纳米疫苗的制备:本实施例中纳米疫苗的制备方法、所使用的材料以及方法等均同上。制备疫苗的水溶性组分为短双歧杆菌和卡介苗的水溶性组分按3:1混合成的混合物;制备疫苗的非水溶性组分为短双歧杆菌和卡介苗的非水溶性组分按3:1混合成的混合物。负载全细胞组分的纳米疫苗平均粒径为320nm,纳米疫苗表面电位为-5mV左右;每1mg PLGA纳米粒子负载80μg细菌蛋白质或多肽组分。空白纳米粒平均粒径为270nm,空白纳米粒制备时分别采用含有等量的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。
(4)纳米疫苗用于肝癌的治疗:选取雌性C57BL/6为模型小鼠制备肝癌荷瘤小鼠。在第0天给每只小鼠背部右下方皮下接种2×10 6个Hepa1-6肝癌细胞。疫苗组在肿瘤接种后第4天、第7天、第10天、第15天和第20天分别瘤内注射50μL内部和表面都负载癌细胞裂解物中水溶性成分的2mg PLGA纳米疫苗和50μL内部和表面都负载溶于8M尿素中原非水溶性成分的2mg PLGA纳米疫苗。PBS空白对照组在肿瘤接种后第4天、第7天、第10天、第15天和第20天分别瘤内注射 100 μL PBS。只负载水溶性组分的纳米疫苗或者只负载非水溶性组分的纳米疫苗对照组:在肿瘤接种后第4天、第7天、第10天、第15天和第20天分别瘤内注射 100 μL 只负载水溶性组分的纳米疫苗 (4mg)或者只负载非水溶性组分的纳米疫苗(4mg)。空白纳米粒+裂解物对照组在肿瘤接种后第4天、第7天、第10天、第15天和第20天分别瘤内注射 100μL 空白纳米粒和与疫苗所负载的等量的游离裂解物。在实验中,从第3天起每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。出于动物实验伦理,在小鼠生存期试验中当小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图15所示,与对照组相比,纳米疫苗给药组肿瘤生长速度明显变慢且小鼠生存期明显延长。而且,同时注射水溶性组分纳米疫苗和非水溶性组分纳米疫苗好于只注射水溶性组分纳米疫苗或者只注射非水溶性组分纳米疫苗。由此可见,本发明所述负载短双歧杆菌和卡介苗全细胞组分混合物的纳米疫苗可以用于治疗肝癌。
实施例4 短双歧杆菌和卡介苗全细胞组分中水溶性组分负载于微米粒子内部和表面用于黑色素瘤的治疗:本实施例以小鼠黑色素瘤为癌症模型来说明如何制备只负载有短双歧杆菌和卡介苗组分中水溶性部分的微米疫苗,并应用该疫苗治疗黑色素瘤。本实施例中,首先裂解短双歧杆菌和卡介苗以制备水溶性组分和非水溶性组分。然后,以有机高分子材料PLGA为微米粒子骨架材料,二价锰离子(Mn 2+)为免疫佐剂采用溶剂挥发法制备负载有全细胞的水溶性组分的微米疫苗。
(1)细菌的裂解及各组分的收集:收集短双歧杆菌或卡介苗,使用超纯水重悬后反复冻融3次,伴有超声以破坏裂解细胞。待细胞裂解后,将裂解物以3000g的转速离心6min取上清液即为可溶于纯水的水溶性组分。上述所得来源于两种细菌裂解物的水溶性组分按质量比1:1混合即为制备微米疫苗的抗原来源。
(2)微米疫苗的制备:本实施例中制备微米疫苗及作为对照的空白微米粒采用溶剂挥发法中的复乳法,所采用的微米粒子制备材料为有机高分子材料PLGA分子量为38KDa-54KDa,所采用的免疫佐剂为MnCl 2且MnCl 2既分布于微米粒子内部也负载于微米粒子表面。制备方法如前所述。在微米粒子内部和表面负载细菌组分和锰佐剂的微米疫苗粒径为1.80 μm 左右,每1 mg PLGA微米粒子负载90μg蛋白质或多肽组分,每1mgPLGA微米粒内外所使用的MnCl 2免疫佐剂为0.2 mg且内外各半。在微米粒子内部和表面只负载细菌组分的微米疫苗粒径为1.75 μm 左右,每1 mg PLGA微米粒子负载 90 μg蛋白质或多肽组分。空白微米粒粒径为1.60 μm左右,空白微米粒制备时分别采用含有等量锰佐剂的纯水代替相对应的水溶性组分,空白微米粒子外表面负载与纳米疫苗等量的MnCl 2
(3)微米疫苗用于癌症的治疗:选取6-8周的雌性C57BL/6制备黑色素瘤荷瘤小鼠。第0天给每只小鼠背部右下方皮下接种1.5×10 5个B16F10细胞。微米疫苗组方案如下:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL内部和表面都负载细菌裂解物中水溶性成分的4 mg PLGA纳米粒子。PBS空白对照组方案如下:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL PBS。空白微米粒+细胞裂解物对照组:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL空白微米粒子和与疫苗中等量的裂解物。在实验中,从第3天开始每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。由于动物实验伦理,在小鼠生存期试验中当小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图16所示,与PBS空白对照组相比,空白微米粒+裂解物对照组相比,微米疫苗给药组中小鼠肿瘤体积生长速度均明显变慢且小鼠生存期均明显延长。而且,包含Mn 2+佐剂的微米疫苗效果好于未包含佐剂的微米疫苗。由此可见,本发明所述的负载短双歧杆菌和卡介苗水溶性组分的微米疫苗对黑色素瘤具有治疗效果。
实施例5 格式乳球菌和加氏乳酸杆菌全细胞组分负载于甘露糖修靶头修饰的纳米粒子内部用于胰腺癌的治疗:本实施例以小鼠胰腺癌为癌症模型来说明如何制备负载有格式乳球菌和加氏乳酸杆菌全细胞组分的纳米疫苗并应用该疫苗治疗胰腺癌。首先裂解乳球菌和乳酸杆菌以制备全细胞组分的水溶性组分和非水溶性组分并按1:2的质量比例混合。然后,以PLGA为纳米粒子骨架材料,以CpG为免疫佐剂采用溶剂挥发法制备同时负载有乳球菌和加氏乳酸杆菌水溶性组分和非水溶性组分的纳米疫苗。然后采用该纳米疫苗来治疗胰腺癌。本实施例使用甘露糖靶头靶向树突状细胞,在实际应用中研究人员可根据具体情况调整所使用的靶头,如还可以使用DEC205抗体、CD40抗体、CD32抗体、CD103抗体等靶头。
(1)格式乳球菌和加氏乳酸杆菌的裂解及各组分的收集,方法同实施例3,更换细菌即可。
(2)纳米疫苗的制备:本实施例中制备纳米疫苗采用溶剂挥发法中的复乳法,所采用的纳米粒子制备材料PLGA分子量为24KDa-38KDa,所采用的甘露糖修饰的PLGA分子量为24KDa-38KDa。制备靶头修饰纳米疫苗时使用的未修饰PLGA与甘露糖修饰的PLGA的质量比为8:2,制备无靶头修饰纳米疫苗时全部使用未修饰PLGA。所采用的免疫佐剂为CpG且CpG只分布于纳米粒子内部。在制备疫苗时,水溶性组分为格式乳球菌水溶性组分和加氏乳酸杆菌水溶性组分的混合物,只分布于疫苗内部;非水溶性组分为乳球菌和加氏乳酸杆菌非水溶性组分的混合物,只分布于疫苗内部。靶头修饰和无靶头修饰的纳米疫苗粒径均为300nm左右,纳米粒子平均表面电位为-6mV左右。每1 mg PLGA纳米粒子约负载 50 μg蛋白质或多肽组分, 每1mgPLGA纳米粒内外所使用的CpG免疫佐剂为0.02mg且内外各半。空白纳米粒粒径为250nm左右,空白纳米粒制备时分别采用含有CpG的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。
(3)纳米疫苗用于胰腺癌的治疗:选取6-8周的雌性C57BL/6制备胰腺癌荷瘤小鼠。第0天给每只小鼠背部右下方皮下接种1×10 6个Pan 02细胞。纳米疫苗组方案如下:在接种胰腺癌之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL内部和表面都负载细菌裂解物中水溶性成分的4 mg PLGA纳米疫苗。PBS空白对照组方案如下:在接种胰腺癌之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL PBS。空白纳米粒+细胞裂解物对照组:在接种胰腺癌之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL空白纳米粒子和与疫苗中等量的裂解物。在实验中,从第3天开始每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。由于动物实验伦理,在小鼠生存期试验中当小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图17所示,与对照组相比,疫苗治疗组肿瘤生长速度和小鼠生存期都有显著性差异。此外,靶头修饰疫苗组对小鼠的保护效果好于无靶头修饰组小鼠。由此可见,本发明所述的负载格式乳球菌和加氏乳酸杆菌中全细胞组分的纳米疫苗对胰腺癌具有预防效果。
实施例 6 6M盐酸胍溶解嗜酸乳杆菌和卡介苗组分并负载于微米粒子内部和表面用于乳腺癌的治疗:本实施例以小鼠乳腺癌为癌症模型来说明如何采用6M盐酸胍溶解细菌全细胞组分并制备负载有细菌全细胞组分的微米疫苗以治疗乳腺癌。本实施例中,以4T1小鼠三阴性乳腺癌为癌症模型。首先对嗜酸乳杆菌和卡介苗进行灭活和变性处理并以6M盐酸胍裂解细菌后溶解细菌全细胞组分。然后,以PLGA为微米粒子骨架材料,采用溶剂挥发法制备负载有细菌全细胞组分的微米疫苗。然后采用该微米疫苗来治疗4T1乳腺癌荷瘤小鼠体内的肿瘤。
(1)细菌的裂解及各组分的收集:收集嗜酸乳杆菌或卡介苗,然后分别采用紫外线和高温加热对其进行灭活和变性处理,然后采用6M盐酸胍裂解嗜酸乳杆菌和卡介苗并溶解细菌裂解物,将嗜酸乳杆菌裂解物与卡介苗裂解物按照质量比4:1比例混合后即为制备疫苗的原料来源。
(2)微米疫苗的制备:本实施例中微米疫苗及空白微米粒子采用分子量为38KD-54KD的PLGA,的制备方法如前所述。所制备微米疫苗平均粒径为2.5μm左右,微米粒子表面Zeta电位为-4mV。每1mg PLGA微米粒子内外负载蛋白质和多肽组分为100μg。空白微米粒的平均粒径为2.2μm左右。
(3)微米疫苗用于癌症的治疗:选取6-8周的雌性BALB/c制备4T1荷瘤小鼠。在第0天给每只小鼠背部右下方皮下接种4×10 5个4T1细胞。疫苗治疗组在第4天、第7天、第10天、第15天和第20天瘤内注射100 μL内部和表面都负载细菌全细胞组分的4 mg PLGA微米疫苗。PBS空白对照组在第4天、第7天、第10天、第15天和第20天分别瘤内注射100μL PBS。空白微米粒+细菌裂解物对照组在第4天,第7天,第10天,第15天和第20天分别瘤内注射等量细菌裂解物,以及不负载任何成分的4mg PLGA空白微米粒。在实验中,从第3天开始每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。生存期实验中小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图18所示,与对照组相比,微米疫苗给药组肿瘤生长速度明显变慢且小鼠生存期明显延长。由此可见,本发明所述的负载嗜酸乳杆菌和卡介苗全细胞组分的微米疫苗对乳腺癌具有治疗效果。
实施例7 短双歧杆菌和卡介苗全细胞组分中非水溶性组分负载于微米粒子内部和表面用于黑色素瘤的治疗:本实施例说明如何制备只负载有短双歧杆菌和卡介苗组分中非水溶性部分的微米疫苗,并应用该疫苗治疗黑色素瘤。本实施例中,首先裂解短双歧杆菌和卡介苗以制备水溶性组分和非水溶性组分。然后,以有机高分子材料PLGA为微米粒子骨架材料,以poly(I:C)为免疫佐剂采用溶剂挥发法制备负载有全细胞的非水溶性组分的微米疫苗。
(1)癌细胞的裂解及各组分的收集:收集短双歧杆菌或卡介苗,使用超纯水重悬后反复冻融3次,伴有超声以破坏裂解细胞。待细胞裂解后,将裂解物以3000 g的转速离心5min取上清液即为可溶于纯水的水溶性组分,将沉淀部分的非水溶性组分采用8M尿素增溶后即得增溶后的原非水溶性组分。上述所得来源于两种细菌裂解物的原非水溶性组分增溶后按质量比1:1混合即为制备微米疫苗的抗原来源。
(2)微米疫苗的制备:本实施例中制备微米疫苗及作为对照的空白微米粒采用溶剂挥发法中的复乳法,所采用的微米粒子制备材料为有机高分子材料PLGA分子量为38KDa-54KDa,未加入免疫佐剂。制备方法如前所述。在微米粒子内部和表面负载细菌组分的微米疫苗粒径为1.90 μm 左右。每1 mg PLGA微米粒子负载90 μg蛋白质或多肽组分。空白微米粒粒径为1.80 μm左右,空白微米粒制备时分别采用等量的8M尿素代替相对应的非水溶性组分。
(3)微米疫苗用于癌症的治疗:选取6-8周的雌性C57BL/6制备黑色素瘤荷瘤小鼠。第0天给每只小鼠背部右下方皮下接种1.5×10 5个B16F10细胞。纳米疫苗组方案如下:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL内部和表面都负载细菌裂解物中非水溶性成分的4 mg PLGA微米粒子。PBS空白对照组方案如下:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL PBS。空白微米粒+游离裂解物对照组:在接种黑色素瘤之后第4天、第7天、第10天、第15天和第20天分别瘤内注射100 μL空白微米粒子和与疫苗中等量的裂解物。在实验中,从第3天开始每3天记录一次小鼠肿瘤体积的大小。肿瘤体积采用公式v=0.52×a×b 2计算,其中v为肿瘤体积,a为肿瘤长度,b为肿瘤宽度。由于动物实验伦理,在小鼠生存期试验中当小鼠肿瘤体积超过2000mm 3即视为小鼠死亡并将小鼠安乐死。
如图19所示,与PBS空白对照组相比,空白微米粒+游离裂解物对照组相比,微米疫苗给药组中小鼠肿瘤体积生长速度均明显变慢且小鼠生存期均明显延长。由此可见,本发明所述的负载短双歧杆菌和卡介苗非水溶性组分的微米疫苗对黑色素瘤具有治疗效果。
实施例 8 细菌全细胞组分负载于纳米粒子内部和表面用于疾病的预防:本实施例制备负载有大肠杆菌菌株CFT073裂解物组分的纳米疫苗,并应用该疫苗提高菌血症小鼠的存活率。本实施例中,首先将大肠杆菌在纯水中反复冻融裂解,以制备细菌的水溶性组分和溶于8M尿素中的原非水溶性组分。然后,以PLGA为纳米粒骨架材料,以Mn 2+和胸腺5肽为免疫佐剂制备纳米疫苗,并采用该纳米疫苗来预防败血症。
(1)细菌的裂解及各组分的收集:使用纯水将大肠杆菌菌株CFT073细菌反复冻融5次,并伴有超声以破坏裂解细胞。待细胞裂解后,将裂解物以5000g的转速离心5分钟并取上清液即为可溶于纯水的水溶性组分;在所得沉淀部分中加入8M尿素溶解沉淀部分即可将不溶于纯水的非水溶性组分转化为在8M尿素水溶液中可溶。上述组分即为制备疫苗的原料来源。
(2)纳米疫苗的制备:本实施例中纳米疫苗及作为对照的空白纳米粒采用溶剂挥发法中的复乳法制备,所采用的纳米粒子制备材料PLGA分子量为24KDa-38KDa,所采用的免疫佐剂为MnCl 2和胸腺5肽,且MnCl 2和胸腺5肽既分布于纳米粒子内部也负载于纳米粒子表面。制备方法如前所述。在制备时先分别制备负载全细胞组分中水溶性组分的纳米疫苗和负载全细胞组分中非水溶性组分的纳米疫苗,然后二者混合使用或者分别单独使用。负载全细胞组分的纳米疫苗平均粒径为320nm左右,纳米疫苗表面电位为-5mV左右;每1mg PLGA纳米粒子约负载 20 μg细菌蛋白质或多肽组分,每1 mg PLGA纳米粒内外所使用的MnCl 2和胸腺5肽免疫佐剂质量比为1:1,各约为0.1mg。空白纳米粒平均粒径为270nm左右,空白纳米粒制备时分别采用含有等量MnCl 2和胸腺5肽的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。
(3)纳米疫苗用于败血症的预防:选取6-8周的雌性BALB/c进行疫苗免疫和细菌致病保护实验。
纳米疫苗组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射50μL水溶性成分的1mg PLGA纳米疫苗和50μL内部和非水溶性成分的1 mg PLGA纳米疫苗。PBS空白对照组方案如下:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射100 μL PBS。只负载水溶性组分的纳米疫苗或者只负载非水溶性组分的纳米疫苗对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种100μL只负载水溶性组分的纳米疫苗或者只负载非水溶性组分的纳米疫苗。灭活疫苗对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种20 μg灭活细菌疫苗。在第0天进行大肠杆菌菌株CFT073活菌致病造模实验。造模实验时,每只小鼠腹腔注射3.6×10 8 CFU致死剂量的大肠杆菌活菌,尔后连续观察48个小时。当小鼠出现濒死症状时,处于实验动物伦理学对小鼠进行安乐死处理。濒死症状为发蔫并在外界刺激时连续15分钟不活动。记录小鼠在细菌注射造模后的生存时间。
如图20所示,PBS对照组小鼠死亡速度最快;使用只负载水溶性组分或者只负载非水溶性组分的纳米疫苗组的小鼠生存期明显延长。而且,同时使用水溶性组分和非水溶性组分纳米疫苗组小鼠的生存期最长,比单独使用水溶性组分的纳米疫苗或者单独使用非水溶性组分的纳米疫苗要好。由此可见,本发明所述的负载细菌全细胞组分的纳米疫苗对细菌所致疾病具有良好的预防效果。
实施例 9 细菌全细胞组分负载于纳米粒子内部和表面用于疾病的预防:本实施例以制备负载有大肠杆菌菌株CFT073裂解物组分的纳米疫苗为例,说明如何负载细菌全细胞组分过程中进行适当的加工处理。在本实施例中采用的是生物矿化处理中的冷冻硅化处理后添加阳离子物质,在实际应用时也可以采用化学修饰、离子化、固化、核酸降解等其他加工处理方案。本实施例中,首先将大肠杆菌在纯水中反复冻融裂解,以制备细菌的水溶性组分和溶于8M尿素中的原非水溶性组分。然后,以PLGA为纳米粒骨架材料,以CpG为免疫佐剂制备纳米疫苗,并用该纳米疫苗来预防败血症。
(1)细菌的裂解及各组分的收集:使用纯水将大肠杆菌菌株CFT073细菌反复冻融5次,伴有超声以破坏裂解细胞。待细胞裂解后,将裂解物以5000g的转速离心5分钟并取上清液即为可溶于纯水的水溶性组分;在所得沉淀部分中加入8M尿素溶解沉淀部分即可将不溶于纯水的非水溶性组分转化为在8M尿素水溶液中可溶。上述组分即为制备疫苗的原料来源。水溶性组分、非水溶性组分分别负载于不同纳米粒上。
(2)纳米疫苗的制备:本实施例中纳米疫苗及作为对照的空白纳米粒采用溶剂挥发法中的复乳法制备,所采用的纳米粒子制备材料PLGA分子量为24KDa-38KDa,所采用的免疫佐剂为CpG且只分布于疫苗内部。在本实例中,负载水溶性组分的纳米疫苗和负载非水溶性组分的纳米疫苗分别制备后然后混合使用。未经冷冻硅化处理的纳米疫苗制备方法如前所述。经冷冻硅化处理的纳米疫苗制备方法如下:在内部负载抗原(裂解组分)后,将100mg纳米粒子在10000g离心20分钟,然后使用7mL PBS重悬纳米粒子并与3 mL含有细胞裂解物(40mg/mL)和CpG(0.5mg/mL)的PBS溶液混合,尔后在10000g离心20分钟,然后采用10mL 硅酸盐溶液 (含154 mM NaCl、10 mM 原硅酸四甲酯和1.0 mM HCl,pH 3.0), 并在室温固定10 min,尔后在-80ºC固定24 h,使用超纯水离心洗涤后使用 3 mL含鱼精蛋白(5 mg/mL)和聚赖氨酸(10 mg/mL)的PBS重悬并作用10 min, 然后使用10 mL含4%海藻糖的超纯水重悬后冷冻干燥48 h,将其用7 mL PBS 重悬然后加入3 mL细菌裂解液组分(蛋白质浓度40 mg/mL)并室温作用 10 min,得到内外都负载细菌裂解物的经冷冻硅化处理和添加阳离子物质的纳米疫苗。负载全细胞组分的纳米疫苗平均粒径为320nm左右,纳米疫苗表面电位为-5mV左右;未矿化处理疫苗每1mg PLGA纳米粒子约负载 20 μg细菌蛋白质或多肽组分,每1mg PLGA纳米粒所使用的CpG免疫佐剂约为0.01mg;矿化处理疫苗每1mg PLGA纳米粒子约负载 30 μg细菌蛋白质或多肽组分,每1mg PLGA纳米粒所使用的CpG免疫佐剂约为0.01mg。空白纳米粒平均粒径为270nm左右,空白纳米粒制备时分别采用含有等量CpG的纯水或8M尿素代替相对应的水溶性组分和非水溶性组分。
(3)纳米疫苗用于败血症的预防:选取6-8周的雌性BALB/c进行疫苗免疫和细菌致病保护实验。未矿化处理疫苗组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射50μL负载水溶性成分的1mg PLGA纳米疫苗和50μL负载非水溶性成分的1 mg PLGA纳米疫苗。矿化处理疫苗组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射30μL负载水溶性成分的1mg PLGA纳米疫苗和30 μL负载非水溶性成分的1 mg PLGA纳米疫苗。PBS空白对照组方案如下:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别皮下注射100 μL PBS。空白纳米粒+游离裂解物对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种100μL 空白纳米粒和与疫苗所负载的等量的游离细胞裂解物;空白纳米粒和游离细胞裂解物注射在不同部位。灭活疫苗对照组:在接种细菌致病实验之前第35天、第28天、第21天、第14天和第7天分别接种20 μg固定法制备的灭活细菌疫苗。在第0天进行大肠杆菌菌株CFT073活菌致病造模实验。造模实验时,每只小鼠腹腔注射3.6×10 8 CFU致死剂量的大肠杆菌活菌,尔后连续观察48个小时。当小鼠出现濒死症状时,处于实验动物伦理学对小鼠进行安乐死处理。濒死症状为发蔫并在外界刺激时连续15分钟不活动。记录小鼠在细菌注射造模后的生存时间。
如图21所示,PBS对照组以及空白纳米粒+游离裂解物对照组小鼠死亡速度较快;未矿化处理和矿化处理的纳米疫苗组小鼠的生存期均显著延长;而且矿化处理的纳米疫苗组小鼠的生存期延长效果好于未矿化处理组。由此可见,本发明所述的负载细菌全细胞裂解物中水溶性组分和非水溶性组分的纳米疫苗对细菌所致疾病具有预防效果。
图13-21分别为实施例中用一种或多种细菌制备的纳米疫苗或微米疫苗用于预防或治疗细菌所致疾病或者癌症时小鼠实验结果;a, 纳米疫苗或微米疫苗预防或治疗癌症时的肿瘤生长速度实验结果 (n≥8); b, 纳米疫苗或微米疫苗预防或治疗其他癌症时的小鼠生存期实验结果(n≥8),每个数据点为平均值±标准误差(mean±SEM);a图中肿瘤生长抑制实验的显著性差异采用ANOVA法分析,b图中显著性差异采用Kaplan-Meier和log-rank test 分析;*表示疫苗组与PBS空白对照组相比p<0.05,有显著性差异;#代表疫苗组与空白纳米粒+游离裂解物对照组相比p<0.05,有显著性差异; **表示疫苗组与PBS空白对照组相比p<0.01,有显著性差异;##代表疫苗组与空白纳米粒+游离裂解物对照组相比p<0.01,有显著性差异。 &与无佐剂疫苗组相比p<0.05,有显著性差异;$代表与福尔马林固定灭活疫苗组相比p<0.05,有显著性差异;θ表示与加热灭活疫苗组相比p<0.05,有显著性差异;δ 表示与无靶头修饰的疫苗组相比p<0.05,有显著性差异;§表示与细菌疫苗组相比p<0.05,有显著性差异;§§表示与细菌疫苗组相比p<0.01,有显著性差异;ε表示与肿瘤组织疫苗组相比p<0.05,有显著性差异;¥表示与肿瘤组织疫苗组相比p<0.05,有显著性差异;※表示与肿瘤组织疫苗组相比p<0.05,有显著性差异。
本发明利用纳米技术,将一种或多种细菌裂解后的全细胞组分重组为纳米疫苗或微米疫苗,是很有前景的一种新的细菌疫苗的制备方法。现有技术都是采用灭活技术、减毒技术或蛋白质重组技术制备用于细菌引发疾病的预防和治疗。上述技术各有利弊,本发明创造性的将一种或多种细菌裂解后得到的全细胞组分重新组装成适合抗原提呈细胞吞噬的纳米疫苗或微米疫苗。
细菌组分在进入机体后,会激活机体的免疫反应,可以用来治疗或预防癌症。在肿瘤旁边或者肿瘤内注射细菌组分,能够首先激活天然免疫系统并招募免疫细胞至肿瘤部位。但是,游离细菌裂解物不易被免疫细胞等吞噬,而通过纳米粒重组为纳米疫苗或微米疫苗后更容易被免疫细胞吞噬,而且在免疫细胞吞噬肿瘤细胞坏死后的裂解物的同时吞噬细菌疫苗可以起到共激活的作用,从而更好的激活机体的抗肿瘤免疫反应。

Claims (10)

  1. 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,包括纳米粒子和/或微米粒子、一种或多种细菌的全细胞组分;所述疫苗系统为纳米疫苗系统和/或微米疫苗系统;所述全细胞组分为水溶性组分和/或非水溶性组分。
  2. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述全细胞组分由一种或多种细菌的全细胞裂解得到,或者所述全细胞组分由一种或多种细菌的全细胞裂解后加工得到,或者所述全细胞组分由一种或多种细菌的全细胞加工后裂解得到;所述水溶性组分溶于纯水或不含增溶剂的水溶液;所述非水溶性组分在纯水中不溶,在含增溶剂的水溶液中或有机溶剂中可溶。
  3. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统的表面不连接或者连接靶头。
  4. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述全细胞组分被包载于纳米粒子和/或微米粒子内部和/或负载于纳米粒子和/或微米粒子表面;所述纳米粒子和/或微米粒子内部和/或表面还包括免疫佐剂。
  5. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述纳米粒子为纳米级尺寸的粒子,微米粒子为微米级尺寸的粒子;所述纳米粒子和/或微米粒子的制备材料为有机合成高分子材料、天然高分子材料或者无机材料;所述纳米粒子或微米粒子内部或表面可进行或者不进行化学修饰、固化、生物矿化或者离子化处理;所述纳米粒子和/或微米粒子的形状为球形、椭球形、桶形、多角形、棒状、片状、线形、蠕虫形、方形、三角形、蝶形或圆盘形。
  6. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述纳米疫苗的粒径为1nm~1000nm,纳米粒子的粒径为1nm~1000nm;所述微米疫苗的粒径为1μm~1000μm,微米粒子的粒径为1μm~1000μm;所述纳米疫苗和/或微米疫苗表面为电中性、带负电或者带正电。
  7. 根据权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统,其特征在于,所述疾病由所述一种或多种细菌引起,或者所述疾病与所述一种或多种细菌无关。
  8. 权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统的制备方法,其特征在于,先使用超纯水或水溶液或含增溶剂的溶液将细菌裂解,收集细菌组分,然后将一种细菌或者多种细菌的全细胞组分负载于纳米粒子和/或微米粒子的内部和/或表面,得到所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统;或者将一种细菌或者多种细菌的全细胞组分、免疫佐剂负载于纳米粒子和/或微米粒子内部和/或表面,得到所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统。
  9. 权利要求1所述基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统在制备预防和/或治疗疾病的疫苗中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述疾病为由细菌引起的疾病或癌症。
PCT/CN2021/144063 2021-11-15 2021-12-31 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用 WO2023082454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111350860.4A CN114028550A (zh) 2021-11-15 2021-11-15 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用
CN202111350860.4 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023082454A1 true WO2023082454A1 (zh) 2023-05-19

Family

ID=80137646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/144063 WO2023082454A1 (zh) 2021-11-15 2021-12-31 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114028550A (zh)
WO (1) WO2023082454A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225021A (zh) * 2022-01-28 2022-03-25 苏州尔生生物医药有限公司 基于一种或多种癌细胞和/或肿瘤组织全细胞组分或其混合物的预防或治疗癌症的疫苗系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028867A2 (en) * 2007-08-27 2009-03-05 Intron Biotechnology, Inc. Bacteria lysates prepared by bacteriolytic lysin enzyme, and vaccine composition for preventing animal disease comprising the same
CN110124019A (zh) * 2019-04-22 2019-08-16 海南医学院 细菌化肿瘤细胞疫苗及其制备方法
US20200085931A1 (en) * 2018-09-19 2020-03-19 The Regents Of The University Of California Protein nanoparticles and combination therapy for cancer immunotherapy
CN112245574A (zh) * 2020-10-23 2021-01-22 苏州大学 一种负载全细胞组分的靶向输送系统及其应用
CN113440605A (zh) * 2020-03-26 2021-09-28 苏州大学 一种全细胞组分的输送系统及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028867A2 (en) * 2007-08-27 2009-03-05 Intron Biotechnology, Inc. Bacteria lysates prepared by bacteriolytic lysin enzyme, and vaccine composition for preventing animal disease comprising the same
US20200085931A1 (en) * 2018-09-19 2020-03-19 The Regents Of The University Of California Protein nanoparticles and combination therapy for cancer immunotherapy
CN110124019A (zh) * 2019-04-22 2019-08-16 海南医学院 细菌化肿瘤细胞疫苗及其制备方法
CN113440605A (zh) * 2020-03-26 2021-09-28 苏州大学 一种全细胞组分的输送系统及其应用
CN112245574A (zh) * 2020-10-23 2021-01-22 苏州大学 一种负载全细胞组分的靶向输送系统及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA LIN, DIAO LU, PENG ZUOFU, JIA YUN, XIE HUIMIN, LI BAISONG, MA JIANTING, ZHANG MENG, CHENG LIFANG, DING DAWEI, ZHANG XUENONG, CH: "Immunotherapy and Prevention of Cancer by Nanovaccines Loaded with Whole‐Cell Components of Tumor Tissues or Cells", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 33, no. 43, 1 October 2021 (2021-10-01), DE , pages 2104849, XP093047673, ISSN: 0935-9648, DOI: 10.1002/adma.202104849 *

Also Published As

Publication number Publication date
CN114028550A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2022082869A1 (zh) 一种负载全细胞组分的靶向输送系统及其应用
WO2021189678A1 (zh) 一种全细胞组分的输送系统及其应用
WO2023087441A1 (zh) 一种预防或治疗癌症的疫苗系统及其应用
JP6434995B2 (ja) 界面活性剤を含まない水中油エマルジョン及びその用途
JP5851550B2 (ja) 非免疫原生の疎水性タンパク質ナノ粒子の形成方法、及びその利用
CN114288397B (zh) 基于多种癌细胞和/或肿瘤组织全细胞组分的预防或治疗癌症的疫苗系统及其制备与应用
WO2023115676A1 (zh) 一种树突状细胞癌症疫苗及其应用
WO2023142191A1 (zh) 基于一种或多种癌细胞和 / 或肿瘤组织全细胞组分或其混合物的预防或治疗癌症的疫苗系统
CN114288398B (zh) 基于全细胞组分的癌症疫苗系统在制备交叉预防或治疗异种癌症药物中的应用
WO2023082454A1 (zh) 一种基于一种或多种细菌全细胞组分的预防或治疗疾病的疫苗系统及其制备方法与应用
Candela et al. Recent patents on nasal vaccines containing nanoadjuvants
WO2024000724A1 (zh) 负载癌细胞全细胞组分和混合膜组分的疫苗的制备方法及其应用
WO2023236330A1 (zh) 一种基于抗原提呈细胞膜组分的癌症疫苗及其制备方法和应用
JP2023552034A (ja) 腫瘍特異的t細胞の検出方法
WO2023201787A1 (zh) 一种基于癌症特异性t细胞的细胞系统、淋巴细胞药物及其应用
CN114887049A (zh) 一种免疫佐剂组合物和基于该组合物的癌症疫苗及其应用
WO2023206684A1 (zh) 一种细胞系统及其应用、以及激活广谱癌细胞特异性t细胞的方法
WO2024016688A1 (zh) 基于激活的抗原提呈细胞的核酸递送粒子、核酸递送系统及制备方法
CN117618602A (zh) 一种负载癌细胞裂解物组分的癌症粒子疫苗的终端灭菌方法及其应用
CN116942802A (zh) 一种基于癌细胞和/或肿瘤组织裂解物组分和合成癌症抗原的癌症疫苗及制备方法
CN116850275A (zh) 一种体外激活的含有树突状细胞和b细胞的混合细胞癌症疫苗及其应用
CN116549620A (zh) 一种基于癌细胞或肿瘤组织中一部分组分的癌症疫苗及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963890

Country of ref document: EP

Kind code of ref document: A1