WO2023082275A1 - 雾化装置 - Google Patents

雾化装置 Download PDF

Info

Publication number
WO2023082275A1
WO2023082275A1 PCT/CN2021/130733 CN2021130733W WO2023082275A1 WO 2023082275 A1 WO2023082275 A1 WO 2023082275A1 CN 2021130733 W CN2021130733 W CN 2021130733W WO 2023082275 A1 WO2023082275 A1 WO 2023082275A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
air outlet
outlet channel
source
aerosol
Prior art date
Application number
PCT/CN2021/130733
Other languages
English (en)
French (fr)
Inventor
薛墨
黄志勇
吴迪
潘容
王开元
罗帅
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/130733 priority Critical patent/WO2023082275A1/zh
Publication of WO2023082275A1 publication Critical patent/WO2023082275A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc

Definitions

  • the invention relates to the field of atomization, and more specifically, relates to an atomization device.
  • the method of making drugs into aerosol particles and then delivering them to the human respiratory tract has attracted more and more attention.
  • This method of aerosol administration has the following advantages: precise administration location for the respiratory tract or lungs; faster drug absorption in the lungs.
  • the deposition efficiency of aerosols in the respiratory tract is generally low. Aerosols with larger particle sizes (such as above 2.5 ⁇ m) are difficult to enter the alveoli due to gravity sedimentation and inertial impact; aerosols with smaller particle sizes (such as 2.5 ⁇ m or less) can enter the alveolar area, but it is difficult to deposit at the target position due to its good flow-following property, and a large amount is exhaled.
  • the technical problem to be solved by the present invention is to provide an improved atomizing device for the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is: to construct an atomizing device, comprising:
  • a first atomization source for atomizing a non-hygroscopic target substrate
  • the second atomization source is used to atomize the enhancer containing the water-absorbing agent
  • a first air outlet channel communicating with the first atomization source and the air outlet;
  • a second air outlet channel communicating with the second atomization source and the air outlet;
  • first air outlet channel and the second air outlet channel have intersections.
  • the first air outlet channel is a part of the second air outlet channel, or the second air outlet channel is a part of the first air outlet channel.
  • the first atomization source includes a first atomization chamber
  • the first air outlet channel communicates with the first atomization chamber and the air outlet
  • the junction is located at the first atomization chamber. chemical cavity.
  • the second atomization source includes a second atomization chamber
  • the second air outlet channel communicates with the second atomization chamber and the air outlet
  • the junction is located at the second atomization chamber. chemical cavity.
  • the first air outlet channel includes a first outlet channel that communicates with the first atomization source
  • the second air outlet channel includes a second outlet channel that communicates with the second atomization source.
  • channel, the first lead-out channel and the second lead-out channel are connected in parallel to the junction.
  • the first aerosol or the first vapor generated after the target substrate is atomized is mixed with the second aerosol or the second vapor generated after the enhancer is atomized at the junction.
  • the atomization method of the second atomization source is heating vaporization.
  • the heat-resistant temperature of the target substrate is greater than or equal to the vapor temperature of the vaporized reinforcing agent.
  • the heat-resistant temperature of the target substrate is above 100°C.
  • the atomization amount of the first atomization source is equivalent to the atomization amount of the second atomization source.
  • the particle size of the aerosol after mixing the first aerosol and the second aerosol is below 2.5 ⁇ m.
  • the water-absorbing agent includes soluble salt or glucose which is harmless to human body.
  • the atomization device further includes a first liquid storage chamber that is in fluid communication with the first atomization source for containing the target substance and communicates with the second atomization source in fluid communication. It is in the second liquid storage bin containing the enhancer.
  • the atomization device further includes a housing for accommodating the first atomization source, the second atomization source, the first liquid storage bin, and the second liquid storage bin.
  • the air outlet is formed on the housing, and the housing is also provided with an air inlet for outside air to enter.
  • the atomization device further includes a power supply and a control module disposed in the casing; the control module is connected to the power supply, the first atomization source, and the second atomization source respectively. electrical connection.
  • Implementing the present invention has at least the following beneficial effects: because the enhancer contains a water-absorbing agent, the generated mixed aerosol has water absorption; because the mixed aerosol has water absorption, it has water-absorbing growth performance and water-absorbing deposition effect, and then makes non-water-absorbing The overall deposition and absorption efficiency of the specific target matrix in the human respiratory tract has been significantly improved.
  • Fig. 1 is a schematic structural view of an atomizing device in a first embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of the control system of the atomization device shown in Fig. 1;
  • Fig. 3 is a graph showing the relationship between the quality and content of aerosols of different sizes generated after atomization by the atomization device shown in Fig. 1;
  • Figure 4 is a diagram of the deposition ratio of active ingredients in the human body after atomization by a single atomization source and the atomization device shown in Figure 1;
  • Fig. 5 is a schematic structural view of the atomization device in the second embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of an atomizing device in a third embodiment of the present invention.
  • Fig. 1 shows an atomization device 100 in the first embodiment of the present invention
  • the atomization device 100 includes a first atomization source 21, a second atomization source 22, an air outlet 11, communicating with the first atomization source 21 and The first air outlet channel 81 of the air outlet 11 and the second air outlet channel 82 communicating with the second atomization source 22 and the air outlet 11 .
  • the first atomization source 21 is used to atomize the target substrate 31 to generate a first mist, which may include a first atomization cavity 212 and a first atomization core 211 .
  • the first air outlet channel 81 communicates with the first atomization chamber 212 and the air outlet 11 .
  • the first atomizing core 211 can be at least partially accommodated in the first atomizing chamber 212 , which can atomize the target substance 31 after being powered on.
  • the target substrate 31 is non-water-absorbing, and the first aerosol generated after atomization is also non-water-absorbing.
  • the target matrix 31 may be the target drug to be atomized, such as medical cannabidiol (CBD), tetrahydrocannabinol (THC) and other non-water-soluble drugs. Drugs that are not water-soluble themselves are not water-absorbing, and are not compatible with water-absorbing substances.
  • CBD cannabidiol
  • THC tetrahydrocannabinol
  • the second atomization source 22 is used to atomize the enhancer 32 to generate a second aerosol, which may include a second atomization cavity 222 and a second atomization core 221 .
  • the second air outlet channel 82 communicates with the second atomization chamber 222 and the air outlet 11 .
  • the second atomizing core 221 can be at least partly accommodated in the second atomizing chamber 222 , which can atomize the enhancer 32 after being electrified.
  • the enhancer 32 contains a water-absorbing agent, which is used to enhance the water-absorbing growth performance and water-absorbing deposition effect of the non-absorbable target matrix 31, thereby improving the deposition and absorption efficiency of the non-absorbable target matrix 31 in the human respiratory tract.
  • the water-absorbing agent includes, but is not limited to: soluble salts such as glycerin, propylene glycol, sodium chloride, and sodium sulfate, or soluble substances that are harmless to the human body such as glucose.
  • the atomization methods of the first atomizing core 211 and the second atomizing core 221 are not limited, such as resistance conduction heating, electromagnetic heating, infrared radiation heating, ultrasonic atomization, electrospray atomization, heating vaporization or mixed atomization, etc. way.
  • the first gas outlet channel 81 and the second gas outlet channel 82 have an intersection 80, the first gas mist and the second gas mist can be mixed at the junction 80 to generate a mixed aerosol, and the mixed aerosol is output through the gas outlet 11 To the user's mouth for the user to inhale.
  • the first aerosol and the second aerosol can be aerosols or vapors. Both the first aerosol and the second aerosol have multiple components.
  • the mixing of the first aerosol and the second aerosol is not limited to mutual inclusion or simple combined.
  • the mixing of the first aerosol and the second aerosol includes but is not limited to: (1) the aerosol generated by the target substrate 31 is mixed with the aerosol generated by the enhancer 32; (2) the aerosol generated by the target substrate 31 (3) the condensation growth combination of the aerosol generated by the enhancer 32 in the hot steam generated by the target substrate 31; (4) the heat generated by the target substrate 31
  • the steam is mixed with the hot steam generated by the enhancer 32 to form a mixed aerosol.
  • the second atomization source 22 can be heated and vaporized.
  • the second atomization source 22 heats and vaporizes the enhancer 32 to form steam, which will condense and wrap around the first atomization source 21 to atomize the target substrate. 31, the outer surface of the aerosol formed, thereby forming a mixed aerosol, so that the mixed aerosol has water absorption characteristics.
  • the target matrix 31 also needs to have heat resistance, for example, the heat resistance temperature is above 100° C., so as to avoid denaturation of the active pharmaceutical ingredient due to high temperature.
  • the heat-resistant temperature of the target substrate 31 can be adapted to the vapor temperature of the reinforcing agent 32 after vaporization, that is, the heat-resistant temperature of the target substrate 31 is greater than or equal to the vapor temperature of the reinforcing agent 32 .
  • the vapor temperature of VG vegetable glycerin
  • the heat-resistant temperature of the target substrate 31 can be above 240°C
  • the vapor temperature of propylene glycol is about 150°C, correspondingly, the heat-resistant temperature of the target substrate 31 It can be above 150°C.
  • the particle size of the mixed aerosol can be below 2.5 ⁇ m, which is convenient for entering the alveolar region.
  • the particle size of the aerosol can be regulated by controlling the atomization amount, the aerosol formation process and other parameters. Since the enhancer 32 contains a water-absorbing agent, the generated mixed aerosol has water-absorbing properties. Because the mixed aerosol has water absorption, it has better water absorption growth performance and water absorption deposition effect, and then the overall deposition and absorption efficiency of the target matrix in the human respiratory tract will be significantly improved. Specifically, due to the high humidity in the human respiratory tract and the large surface area of the alveolar region, the water vapor diffusion rate is very fast, which can significantly increase the particle size of the mixed aerosol to improve the deposition efficiency of the lungs.
  • the particle size When inhaled, the particle size is small and has good flow characteristics. It is easy to enter the alveolar area through the upper respiratory tract and bronchial area. When it reaches the alveolar area, it begins to absorb water and grow, and the particle size increases by 2 ⁇ 3 times, it becomes large particles of a few microns, and then all deposit in the alveolar area, which can effectively improve the deposition and absorption efficiency of active ingredients in the alveoli.
  • the atomization device 100 may further include a first liquid storage bin 41 for containing the target substrate 31, a second liquid storage bin 42 for containing the enhancer 32, and a
  • the casing 1 accommodates the first atomization source 21 , the second atomization source 22 , the first liquid storage bin 41 and the second liquid storage bin 42 .
  • the first liquid storage chamber 41 is in fluid communication with the first atomizing core 211 , so that the target substance 31 stored in the first liquid storage chamber 41 can flow to the first atomizing core 211 to be atomized by the first atomizing core 211 .
  • the target substance 31 stored in the first liquid storage bin 41 can be transported to the first atomizing core 211 by means of pumping or dripping, and/or, the first atomizing core 211 is provided with a porous structure to absorb the first liquid storage
  • the target matrix 31 is stored in the bin 41 .
  • the porous structure of the first atomizing core 211 includes but not limited to porous cotton or porous ceramics.
  • the second liquid storage chamber 42 is in fluid communication with the second atomizing core 221 , so that the enhancer 32 stored in the second liquid storage chamber 42 can flow to the second atomizing core 221 to be atomized by the second atomizing core 221 .
  • the enhancer 32 stored in the second liquid storage bin 42 can be transported to the second atomizing core 221 by means of pumping or dripping, and/or, the second atomizing core 221 is provided with a porous structure to absorb the second liquid storage The enhancer 32 is stored in the bin 42 .
  • the porous structure of the second atomizing core 221 includes but not limited to porous cotton or porous ceramics.
  • the shell 1 can be in the shape of a hollow cylinder, and the air outlet 11 can be formed on the side wall of the shell 1 .
  • the side wall of the casing 1 can also be formed with an air inlet 10 for the outside air to enter, and the casing 1 can also be formed with an air guide channel 20 communicating with the second atomization chamber 222 and the first atomization chamber 212 and connecting with the inlet.
  • the air port 10 is connected to the output channel 23 .
  • the second atomization source 22 and the first atomization source 21 are sequentially connected in series between the air inlet 10 and the output channel 23 .
  • the air entering through the air inlet 10 first flows to the second atomization chamber 222, and mixes with the second mist formed after the second atomization core 221 in the second atomization chamber 222 atomizes the enhancer 32 to form the second atomization chamber 222.
  • the aerosol then reaches the first atomization chamber 212 along the air guide channel 20 for the second atomization; the first atomization core 211 in the first atomization chamber 212 atomizes the target substrate 31 to form the first aerosol,
  • the first aerosol is mixed with the second aerosol reaching the first atomization chamber 212 to form a mixed aerosol, and the formed mixed aerosol is then output to the outside through the output channel 23 and the air outlet 11 for inhalation by the user.
  • the air guide channel 20, the first atomization chamber 212, and the output channel 23 form a second air outlet channel 82 that communicates with the second atomization chamber 222 and the air outlet 11, and the output channel 23 forms a second air outlet channel 82 that communicates with the first atomization chamber 212 and the outlet port 11.
  • the atomizing device 100 may further include a power supply 6 , a control module 5 and a control switch 7 . Both the power supply 6 and the control module 5 can be accommodated in the casing 1 .
  • the power supply 6 can be a battery, and is used to supply power to the control module 5, the first atomization source 21, the second atomization source 22, and the like.
  • the control module 5 is electrically connected to the power supply 6 , the first atomization source 21 and the second atomization source 22 respectively, and is used to control the power supply 6 to supply power to the first atomization source 21 and the second atomization source 22 .
  • the control switch 7 can be arranged on one side wall of the casing 1, and is used to receive the user's operation and control the work of the control module 5 according to the operation, for example, start or stop the control module 5 to control the power supply 6 to supply power to the first atomization source 21.
  • the second atomization source 22 can be arranged on one side wall of the casing 1, and is used to receive the user's operation and control the work of the control module 5 according to the operation, for example, start or stop the control module 5 to control the power supply 6 to supply power to the first atomization source 21.
  • the second atomization source 22 The second atomization source 22.
  • the atomization device 100 built based on the structure shown in Fig. 1 performs performance verification on dual-source atomization, wherein the target matrix 31 uses glyceryl stearate, and the first atomization core 211 uses a ceramic heating element.
  • the heating element includes porous ceramics and a resistance heating element arranged on the porous ceramics.
  • the heating power of the first atomizing core 211 is 6.5w; the enhancer 32 uses glycerin, and the second atomizing core 221 uses a ceramic heating element.
  • the heating power of the second atomizing core 221 is 6.5w; in actual control, the first mist generated by the first atomizing source 21 and the second atomizing source are kept 22
  • the amount of smoke generated by the second aerosol is comparable.
  • the mass of glyceryl stearate and glycerin in each particle size interval is relatively close, and the particle size of the overall mixed aerosol is between 1 and 2 ⁇ m.
  • the mass ratio of glycerin and glyceryl stearate in each particle size range is shown on the right coordinate axis of Figure 3, in which the mixed aerosol content is the largest in the 800-1600nm particle size range (the middle 4 data points), the two The ratio is close to 1:1, indicating that the combination of glycerol and glyceryl stearate is relatively uniform.
  • the ratio of the two is slightly less than 1, but within this particle size range, the quality of the aerosol itself is also very low, and the effective substances carried (glyceryl stearate as an example) ) concentration is low, even if the effect of binding and encapsulation is slightly weaker, the effect on the overall drug absorption effect is relatively small.
  • Fig. 5 shows the atomization device 100 in the second embodiment of the present invention
  • the main difference between it and the first embodiment is that in this embodiment, the first atomization source 21 and the second atomization source 22 are connected in series sequentially It communicates between the air inlet 10 and the output channel 23 .
  • the air entering through the air inlet 10 first flows to the first atomization chamber 212 and mixes with the first mist formed after the first atomization core 211 in the first atomization chamber 212 atomizes the target substrate 31 to form the first mist.
  • the gas mist then reaches the second atomization chamber 222 along the air guide channel 20 for the second atomization; the second atomization core 221 in the second atomization chamber 222 atomizes the enhancer 32 to form the second gas mist,
  • the second aerosol is mixed with the first aerosol reaching the second atomization chamber 222 to form a mixed aerosol, and the formed mixed aerosol is then output to the outside through the output channel 23 and the air outlet 11 for inhalation by the user.
  • the air guide channel 20, the second atomization chamber 222, and the output channel 23 form the first air outlet channel 81 that communicates with the first atomization chamber 212 and the air outlet 11, and the output channel 23 forms the first air outlet channel 81 that communicates with the second atomization chamber 222 and the outlet port 11.
  • Fig. 6 shows the atomization device 100 in the third embodiment of the present invention, which is mainly different from the first embodiment in that in this embodiment, the first atomization source 21 and the second atomization source 22 are connected in parallel Between the air inlet 10 and the output channel 23, a first lead-out channel 210 connecting the first atomization chamber 212 with the output channel 23 and a second atomization chamber 222 connected with the output channel 23 are also formed in the housing 1 through the second lead-out channel 220.
  • the air entering through the air inlet 10 flows to the first atomizing chamber 212 and the second atomizing chamber 222 respectively, and the first mist formed after the first atomizing core 211 atomizes the target substrate 31 and the second atomizing core 221 atomize
  • the second aerosol formed after adding the enhancer 32 flows to the output channel 23 through the first outlet channel 210 and the second outlet channel 220 for mixing to form a mixed aerosol, and the formed mixed aerosol is then output to the The outside world is for users to suck.
  • the first lead-out channel 210 and the output channel 23 form the first air outlet channel 81 that communicates with the first atomization chamber 212 and the air outlet 11
  • the second lead-out channel 220 and the output channel 23 form the first air outlet channel 81 that communicates with the second atomization chamber 222 and the outlet port 11.
  • the junction 80 of the first outlet channel 81 and the second outlet channel 82 is located at the junction of the first outlet channel 210 , the second outlet channel 220 and the output channel 23 .

Abstract

提供一种雾化装置(100),包括用于雾化非吸水性的目标基质(31)的第一雾化源(21)、用于雾化包含有吸水剂的增强剂(32)的第二雾化源(22)、用于输出混合气溶胶的出气口(11)、连通第一雾化源(21)和出气口(11)的第一出气通道(81)以及连通第二雾化源(22)和出气口(11)的第二出气通道(82)。第一出气通道(81)和第二出气通道(82)具有交汇处(80)。由于增强剂(32)包含有吸水剂,使得生成的混合气溶胶具有吸水性。由于混合气溶胶具有吸水性,从而具有吸水长大性能和吸水沉积效应,进而使得非吸水性的目标基质(31)在人体呼吸道的整体沉积吸收效率得到显著地提升。

Description

雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种雾化装置。
背景技术
目前,将药物制成气溶胶颗粒,之后输送到人体呼吸道的给药方式越来越受到关注。这种雾化给药的方式具有如下优点: 针对呼吸道或肺部的给药位置精准;药物在肺部吸收的速度更快。但是目前气溶胶在呼吸道内的沉积效率普遍偏低,粒径较大的气溶胶(例如2.5μm以上)由于重力沉降和惯性撞击作用使其很难进入肺泡;粒径较小的气溶胶(例如2.5μm以下)虽然可以进入肺泡区域,但由于随流性较好,很难在目标位置沉积,而大量被呼出。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的雾化装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种雾化装置,包括:
第一雾化源,用于雾化非吸水性的目标基质;
第二雾化源,用于雾化包含有吸水剂的增强剂;
出气口,用于输出混合气溶胶;
第一出气通道,连通所述第一雾化源和所述出气口;以及
第二出气通道,连通所述第二雾化源和所述出气口;
其中,所述第一出气通道和所述第二出气通道具有交汇处。
在一些实施例中,所述第一出气通道为所述第二出气通道的一部分,或者,所述第二出气通道为所述第一出气通道的一部分。
在一些实施例中,所述第一雾化源包括第一雾化腔,所述第一出气通道连通所述第一雾化腔与所述出气口,所述交汇处位于所述第一雾化腔。
在一些实施例中,所述第二雾化源包括第二雾化腔,所述第二出气通道连通所述第二雾化腔与所述出气口,所述交汇处位于所述第二雾化腔。
在一些实施例中,所述第一出气通道包括与所述第一雾化源相连通的第一导出通道,所述第二出气通道包括与所述第二雾化源相连通的第二导出通道,所述第一导出通道和所述第二导出通道并联连通于所述交汇处。
在一些实施例中,所述目标基质雾化后生成的第一气溶胶或第一蒸汽与所述增强剂雾化后生成的第二气溶胶或第二蒸汽在所述交汇处混合。
在一些实施例中,所述第二雾化源的雾化方式为加热汽化。
在一些实施例中,所述目标基质的耐热温度大于等于所述增强剂汽化后的蒸汽温度。
在一些实施例中,所述目标基质的耐热温度在100℃以上。
在一些实施例中,所述第一雾化源的雾化量与所述第二雾化源的雾化量相当。
在一些实施例中,所述第一气溶胶和所述第二气溶胶混合后的气溶胶的粒径在2.5μm以下。
在一些实施例中,所述吸水剂包括对人体无害的可溶性盐或葡萄糖。
在一些实施例中,所述雾化装置还包括与所述第一雾化源导液连通用于收容所述目标基质的第一储液仓以及与所述第二雾化源导液连通用于收容所述增强剂的第二储液仓。
在一些实施例中,所述雾化装置还包括用于收容所述第一雾化源、所述第二雾化源、所述第一储液仓和所述第二储液仓的外壳。
在一些实施例中,所述出气口形成于所述外壳上,所述外壳上还设有供外界空气进入的进气口。
在一些实施例中,所述雾化装置还包括设置于所述外壳中的电源和控制模块;所述控制模块分别与所述电源、所述第一雾化源、所述第二雾化源电连接。
有益效果
实施本发明至少具有以下有益效果:由于增强剂包含有吸水剂,使得生成的混合气溶胶具有吸水性;由于混合气溶胶具有吸水性,从而具有吸水长大性能和吸水沉积效应,进而使得非吸水性的目标基质在人体呼吸道的整体沉积吸收效率得到显著地提升。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例中雾化装置的结构示意图;
图2是图1所示雾化装置的控制系统的结构示意图;
图3是采用图1所示的雾化装置雾化后生成的不同尺寸气溶胶的质量与含量关系图;
图4是采用单雾化源与采用图1所示的雾化装置分别雾化后的有效成分在人体的沉积比例图;
图5是本发明第二实施例中雾化装置的结构示意图;
图6是本发明第三实施例中雾化装置的结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
图1示出了本发明第一实施例中的雾化装置100,该雾化装置100包括第一雾化源21、第二雾化源22、出气口11、连通第一雾化源21和出气口11的第一出气通道81以及连通第二雾化源22和出气口11的第二出气通道82。
第一雾化源21用于雾化目标基质31以生成第一气雾,其可包括第一雾化腔212以及第一雾化芯211。第一出气通道81连通第一雾化腔212和出气口11。第一雾化芯211可至少部分收容于第一雾化腔212中,其可在通电后将目标基质31雾化。目标基质31具有非吸水性,其雾化后生成的第一气雾也具有非吸水性。在一些实施例中,目标基质31可以为待雾化的目标药物,如医用大麻二酚(CBD)、四氢大麻酚(THC)等不具有水溶性的药物。本身不具有水溶性的药物本身不具有吸水性,且与能吸水的物质不具有相溶性。
第二雾化源22用于雾化增强剂32以生成第二气雾,其可包括第二雾化腔222以及第二雾化芯221。第二出气通道82连通第二雾化腔222和出气口11。第二雾化芯221可至少部分收容于第二雾化腔222中,其可在通电后将增强剂32雾化。增强剂32包含有吸水剂,用于增强难吸水性目标基质31的吸水长大性能和吸水沉积效应,从而提高难吸水性目标基质31在人体呼吸道的沉积吸收效率。在一些实施例中,该吸水剂包括但不限于:甘油、丙二醇、氯化钠、硫酸钠等可溶性盐或葡萄糖等对人体无害的可溶性物质。
第一雾化芯211、第二雾化芯221的雾化方式不受限制,例如电阻传导加热、电磁加热、红外辐射加热、超声波雾化、电喷雾雾化、加热汽化或混合雾化等雾化方式。
该第一出气通道81和第二出气通道82具有交汇处80,该第一气雾和第二气雾可在该交汇处80混合以生成混合气溶胶,该混合气溶胶再经由出气口11输出至用户口中供用户吸食。第一气雾、第二气雾可以为气溶胶或蒸汽,第一气雾、第二气雾中均具有多种成分,第一气雾、第二气雾的混合不限于相互包括或简单的结合。在一些实施例中,第一气雾和第二气雾的混合包括但不限于:(1)目标基质31生成的气溶胶与增强剂32生成的气溶胶的混合;(2)目标基质31生成的气溶胶在增强剂32生成的热蒸汽中的冷凝生长结合;(3)增强剂32生成的气溶胶在目标基质31生成的热蒸汽中的冷凝生长结合;(4)目标基质31生成的热蒸汽与增强剂32生成的热蒸汽混合后共同形成混合气溶胶。
在一些实施例中,第二雾化源22可采用加热汽化的方式,第二雾化源22将增强剂32加热汽化形成蒸汽,该蒸汽会冷凝包裹在第一雾化源21雾化目标基质31后形成的气溶胶的外表面,从而形成混合气溶胶,使混合气溶胶具备吸水特性。优选地,目标基质31还需具有耐热性,例如,耐热温度在100℃以上,以避免由于高温而造成药物活性成分的变性。具体地,目标基质31的耐热温度可与增强剂32汽化后的蒸汽温度相适配,即目标基质31的耐热温度大于等于增强剂32的蒸汽温度。例如,VG(植物甘油)的蒸汽温度在240℃左右,相应地,目标基质31的耐热温度可在240℃以上;丙二醇的蒸汽温度在150℃左右,相应地,目标基质31的耐热温度可在150℃以上。
在一些实施例中,该混合气溶胶的粒径可在2.5μm以下,便于进入肺泡区域。可通过控制雾化量、气溶胶形成过程等参数对气溶胶的粒径大小进行调控。由于增强剂32包含有吸水剂,使得生成的混合气溶胶具有吸水性。由于混合气溶胶具有吸水性,从而具有较好的吸水长大性能和吸水沉积效应,进而使得目标基质在人体呼吸道的整体沉积吸收效率会有显著地提升。具体而言,由于人体呼吸道内的湿度很高,且肺泡区域具有巨大的表面积,水汽扩散速率很快,可以使混合气溶胶的粒径显著增大,以提高肺部的沉积效率。以粒径1~2μm的混合气溶胶为例,吸入时粒径较小,随流性好,很容易通过上呼吸道和支气管区域进入肺泡区域,到达肺泡区时开始吸水长大,粒径增长2~3倍,变为几微米的大颗粒,然后全部沉积在肺泡区域,可有效提高有效成分在肺泡的沉积吸收效率。
再如图1所示,在一些实施例中,该雾化装置100还可包括用于收容目标基质31的第一储液仓41、用于收容增强剂32的第二储液仓42以及用于收容第一雾化源21、第二雾化源22、第一储液仓41和第二储液仓42的外壳1。第一储液仓41与第一雾化芯211导液连通,以使第一储液仓41内存储的目标基质31能够流向第一雾化芯211从而被第一雾化芯211雾化。第一储液仓41内存储的目标基质31可通过泵送或滴落等方式输送至第一雾化芯211,和/或,第一雾化芯211设置有多孔结构来吸附第一储液仓41内存储的目标基质31。该第一雾化芯211的多孔结构包括但不限于多孔棉或多孔陶瓷。第二储液仓42与第二雾化芯221导液连通,以使第二储液仓42内存储的增强剂32能够流向第二雾化芯221从而被第二雾化芯221雾化。第二储液仓42内存储的增强剂32可通过泵送或滴落等方式输送至第二雾化芯221,和/或,第二雾化芯221设置有多孔结构来吸附第二储液仓42内存储的增强剂32。该第二雾化芯221的多孔结构包括但不限于多孔棉或多孔陶瓷。
外壳1可呈内部中空的筒状,出气口11可形成于外壳1的侧壁上。外壳1的侧壁上还可形成有用于供外界空气进入的进气口10,外壳1内还可形成有连通第二雾化腔222和第一雾化腔212的导气通道20以及与进气口10相连通的输出通道23。在本实施例中,第二雾化源22、第一雾化源21依次串联连通在进气口10和输出通道23之间。经进气口10进入的空气先流向第二雾化腔222,与第二雾化腔222中的第二雾化芯221雾化增强剂32后形成的第二气雾混合,形成的第二气雾再沿着导气通道20到达第一雾化腔212,进行第二次雾化;第一雾化腔212中的第一雾化芯211雾化目标基质31后形成第一气雾,该第一气雾与到达第一雾化腔212的第二气雾进行混合形成混合气溶胶,形成的混合气溶胶再依次经由输出通道23、出气口11输出至外界供用户吸食。
于此,导气通道20、第一雾化腔212、输出通道23形成连通第二雾化腔222和出气口11的第二出气通道82,输出通道23形成连通第一雾化腔212和出气口11的第一出气通道81。即,第一出气通道81为第二出气通道82的一部分,第一出气通道81与第二出气通道82的交汇处80位于第一雾化腔212。
如图2所示,在一些实施例中,该雾化装置100还可包括电源6、控制模块5以及控制开关7。电源6、控制模块5均可收容于外壳1中。电源6可以为电池,用于向控制模块5、第一雾化源21、第二雾化源22等供电。控制模块5分别与电源6、第一雾化源21、第二雾化源22电连接,用于控制电源6供电给第一雾化源21、第二雾化源22。控制开关7可设置于外壳1的一侧侧壁上,用于接收用户的操作并根据该操作控制控制模块5的工作,例如,启动或停止控制模块5控制电源6供电给第一雾化源21、第二雾化源22。
应用案例:基于图1所示的结构搭建的雾化装置100对双源雾化进行性能验证,其中,目标基质31采用硬脂酸甘油酯,第一雾化芯211采用陶瓷发热体,该陶瓷发热体包括多孔陶瓷以及设置于多孔陶瓷上的电阻发热体,第一雾化芯211的加热功率为6.5w;增强剂32采用甘油,第二雾化芯221采用陶瓷发热体,该陶瓷发热体包括多孔陶瓷以及设置于多孔陶瓷上的电阻发热体,第二雾化芯221的加热功率为6.5w;实际控制上,保持第一雾化源21生成的第一气雾和第二雾化源22生成的第二气雾的烟雾量是相当的。抽吸10口,使用多级碰撞采样器收集不同大小的混合气溶胶,进行成分检测,如图3所示。硬脂酸甘油酯和甘油在每个粒径区间上的质量比较接近,且整体的混合气溶胶的粒径在1~2μm之间。每个粒径范围内甘油与硬脂酸甘油酯的质量比如图3的右侧坐标轴所示,其中混合气溶胶含量最多的800~1600nm粒径区间内(中间4个数据点),二者的比值接近1:1,表明甘油与硬脂酸甘油酯的结合比较均匀。在第1、2、7三个数据点上,二者比值略小于1,但在此粒径范围内,气溶胶本身的质量也很低,所携带的有效物质(硬脂酸甘油酯为例)浓度较低,即便结合包裹的效果稍弱,对整体的药物吸收效果影响也比较小。
进一步地,以人体吸入的过程进行模拟实验,使用剑桥滤片收集人肺部吸入3秒钟后的呼出气溶胶,利用气相色谱质谱联用仪对呼出气溶胶的有效成分进行检测,检测结果如图4所示,使用单雾化源直接雾化硬脂酸甘油酯,呼出有效成分的比例约为55%,即约45%的成分被人体呼吸道所截留。当使用甘油增强的双源雾化方案时,呼出有效成分的比例只有约10%,即约90%的成分被人体呼吸道所截留。从而可看出,针对不吸水药物的雾化吸入过程,通过双源雾化添加增强剂的方案,使人体对药物的吸收效果由45%显著提高到90%,提升了约100%。
图5示出了本发明第二实施例中的雾化装置100,其与第一实施例的主要区别在于,在本实施例中,第一雾化源21、第二雾化源22依次串联连通在进气口10和输出通道23之间。经进气口10进入的空气先流向第一雾化腔212,与第一雾化腔212中的第一雾化芯211雾化目标基质31后形成的第一气雾混合,形成的第一气雾再沿着导气通道20到达第二雾化腔222,进行第二次雾化;第二雾化腔222中的第二雾化芯221雾化增强剂32后形成第二气雾,该第二气雾与到达第二雾化腔222的第一气雾进行混合形成混合气溶胶,形成的混合气溶胶再依次经由输出通道23、出气口11输出至外界供用户吸食。
于此,导气通道20、第二雾化腔222、输出通道23形成连通第一雾化腔212和出气口11的第一出气通道81,输出通道23形成连通第二雾化腔222和出气口11的第二出气通道82。即,第二出气通道82为第一出气通道81的一部分,第一出气通道81与第二出气通道82的交汇处80位于第二雾化腔222。
图6示出了本发明第三实施例中的雾化装置100,其与第一实施例的主要区别在于,在本实施例中,第一雾化源21、第二雾化源22并联连通在进气口10和输出通道23之间,外壳1内还形成有将第一雾化腔212与输出通道23相连通的第一导出通道210以及将第二雾化腔222与输出通道23相连通的第二导出通道220。经进气口10进入的空气分别流向第一雾化腔212、第二雾化腔222,第一雾化芯211雾化目标基质31后形成的第一气雾以及第二雾化芯221雾化增强剂32后形成的第二气雾再分别经由第一导出通道210、第二导出通道220一起流向输出通道23进行混合,形成混合气溶胶,形成的混合气溶胶再经由出气口11输出至外界供用户吸食。
于此,第一导出通道210、输出通道23形成连通第一雾化腔212和出气口11的第一出气通道81,第二导出通道220、输出通道23形成连通第二雾化腔222和出气口11的第二出气通道82。第一出气通道81与第二出气通道82的交汇处80位于第一导出通道210、第二导出通道220与输出通道23的汇合处。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (16)

  1. 一种雾化装置,其特征在于,包括:
    第一雾化源(21),用于雾化非吸水性的目标基质(31);
    第二雾化源(22),用于雾化包含有吸水剂的增强剂(32);
    出气口(11),用于输出混合气溶胶;
    第一出气通道(81),连通所述第一雾化源(21)和所述出气口(11);以及
    第二出气通道(82),连通所述第二雾化源(22)和所述出气口(11);
    其中,所述第一出气通道(81)和所述第二出气通道(82)具有交汇处(80)。
  2. 根据权利要求1所述的雾化装置,其特征在于,所述第一出气通道(81)为所述第二出气通道(82)的一部分,或者,所述第二出气通道(82)为所述第一出气通道(81)的一部分。
  3. 根据权利要求1所述的雾化装置,其特征在于,所述第一雾化源(21)包括第一雾化腔(212),所述第一出气通道(81)连通所述第一雾化腔(212)与所述出气口(11),所述交汇处(80)位于所述第一雾化腔(212)。
  4. 根据权利要求1所述的雾化装置,其特征在于,所述第二雾化源(22)包括第二雾化腔(222),所述第二出气通道(82)连通所述第二雾化腔(222)与所述出气口(11),所述交汇处(80)位于所述第二雾化腔(222)。
  5. 根据权利要求1所述的雾化装置,其特征在于,所述第一出气通道(81)包括与所述第一雾化源(21)相连通的第一导出通道(210),所述第二出气通道包括与所述第二雾化源(22)相连通的第二导出通道(220),所述第一导出通道(210)和所述第二导出通道(220)并联连通于所述交汇处(80)。
  6. 根据权利要求1所述的雾化装置,其特征在于,所述目标基质(31)雾化后生成的第一气溶胶或第一蒸汽与所述增强剂(32)雾化后生成的第二气溶胶或第二蒸汽在所述交汇处(80)混合。
  7. 根据权利要求1所述的雾化装置,其特征在于,所述第二雾化源(22)的雾化方式为加热汽化。
  8. 根据权利要求7所述的雾化装置,其特征在于,所述目标基质(31)的耐热温度大于等于所述增强剂(32)汽化后的蒸汽温度。
  9. 根据权利要求7所述的雾化装置,其特征在于,所述目标基质(31)的耐热温度在100℃以上。
  10. 根据权利要求1所述的雾化装置,其特征在于,所述第一雾化源(21)的雾化量与所述第二雾化源(22)的雾化量相当。
  11. 根据权利要求6所述的雾化装置,其特征在于,所述第一气溶胶和所述第二气溶胶混合后的气溶胶的粒径在2.5μm以下。
  12. 根据权利要求1所述的雾化装置,其特征在于,所述吸水剂包括对人体无害的可溶性盐或葡萄糖。
  13. 根据权利要求1-12任一项所述的雾化装置,其特征在于,所述雾化装置还包括与所述第一雾化源(21)导液连通用于收容所述目标基质(31)的第一储液仓(41)以及与所述第二雾化源(22)导液连通用于收容所述增强剂(32)的第二储液仓(42)。
  14. 根据权利要求13所述的雾化装置,其特征在于,所述雾化装置还包括用于收容所述第一雾化源(21)、所述第二雾化源(22)、所述第一储液仓(41)和所述第二储液仓(42)的外壳(1)。
  15. 根据权利要求14所述的雾化装置,其特征在于,所述出气口(11)形成于所述外壳(1)上,所述外壳(1)上还设有供外界空气进入的进气口(10)。
  16. 根据权利要求14所述的雾化装置,其特征在于,所述雾化装置还包括设置于所述外壳(1)中的电源(6)和控制模块(5);所述控制模块(5)分别与所述电源(6)、所述第一雾化源(21)、所述第二雾化源(22)电连接。
PCT/CN2021/130733 2021-11-15 2021-11-15 雾化装置 WO2023082275A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130733 WO2023082275A1 (zh) 2021-11-15 2021-11-15 雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130733 WO2023082275A1 (zh) 2021-11-15 2021-11-15 雾化装置

Publications (1)

Publication Number Publication Date
WO2023082275A1 true WO2023082275A1 (zh) 2023-05-19

Family

ID=86334961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130733 WO2023082275A1 (zh) 2021-11-15 2021-11-15 雾化装置

Country Status (1)

Country Link
WO (1) WO2023082275A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694765A (zh) * 2002-09-06 2005-11-09 克里萨里斯技术公司 气溶胶产生装置及其使用方法
CN105555347A (zh) * 2012-03-24 2016-05-04 莱诺凯尔有限公司 制备用于高温治疗的受控混合物的系统和方法
US20160331037A1 (en) * 2015-05-15 2016-11-17 Lunatech, Llc Hybrid vapor delivery system utilizing nebulized and non-nebulized elements
US20160361508A1 (en) * 2015-06-15 2016-12-15 Binyomin COHEN Rescue inhaler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694765A (zh) * 2002-09-06 2005-11-09 克里萨里斯技术公司 气溶胶产生装置及其使用方法
CN105555347A (zh) * 2012-03-24 2016-05-04 莱诺凯尔有限公司 制备用于高温治疗的受控混合物的系统和方法
US20160331037A1 (en) * 2015-05-15 2016-11-17 Lunatech, Llc Hybrid vapor delivery system utilizing nebulized and non-nebulized elements
US20160361508A1 (en) * 2015-06-15 2016-12-15 Binyomin COHEN Rescue inhaler

Similar Documents

Publication Publication Date Title
US20200016344A1 (en) Portable device for inhalation of at least one active composition
KR101969566B1 (ko) 전자 담배 흡입기능이 구비된 전기 가열형 담배 흡입장치
JP4387948B2 (ja) エアロゾルを発生させる方法
JP6404945B2 (ja) エアロゾル形成コンポーネント
CN200966824Y (zh) 吸入雾化装置
CN1630476A (zh) 吸入器
CN105962417A (zh) 用于电子吸烟装置的气雾生成部件、电子吸烟装置及用于生成吸入物的方法
WO2021103807A1 (zh) 一种雾化器及其陶瓷雾化芯和陶瓷雾化芯制备方法
CN103271447A (zh) 一种新型碳加热电子烟
JP3481236B2 (ja) 固体粒状薬剤及び固体粒状薬剤エーロゾル投薬装置
WO2021120965A1 (zh) 一种气溶胶成分稳定的雾化装置及其应用
US20080245363A1 (en) Device and Method For Administration of a Substance to a Mammal by Means of Inhalation
WO2023082275A1 (zh) 雾化装置
CN113633030A (zh) 一种口鼻协同使用的电子烟
WO2021018215A1 (zh) 雾化器及电子烟
CN105377345A (zh) 雾化器装置和吸入溶液面罩
CN116115864A (zh) 雾化装置
CN205794804U (zh) 间接加热型雾化器
TWI781968B (zh) 汽化物質的設備、汽化器系統、由汽化器系統執行的方法、以及氣體治療裝置
WO2024019313A1 (ko) 표면파 아토마이저에 사용하기 위한 액상형 흡입제형, 이를 포함하는 카트리지 및 에어로졸 생성장치
CN214047575U (zh) 一种利用高温气雾加热的气雾生成制品
CN209609865U (zh) 一种感官式mems射流雾化健康烟
WO2022236830A1 (zh) 雾化器、电子雾化装置及气溶胶的产生方法
CN209609866U (zh) 一种按压式mems射流雾化健康烟
CN110559527A (zh) 一种耳鼻咽喉科内使用的小型自动控制式超声波雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963721

Country of ref document: EP

Kind code of ref document: A1