WO2023080712A1 - 신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물 - Google Patents

신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물 Download PDF

Info

Publication number
WO2023080712A1
WO2023080712A1 PCT/KR2022/017240 KR2022017240W WO2023080712A1 WO 2023080712 A1 WO2023080712 A1 WO 2023080712A1 KR 2022017240 W KR2022017240 W KR 2022017240W WO 2023080712 A1 WO2023080712 A1 WO 2023080712A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
weight
sustained
release
precursor formulation
Prior art date
Application number
PCT/KR2022/017240
Other languages
English (en)
French (fr)
Inventor
박영준
전상원
최숙
Original Assignee
㈜아이엠디팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜아이엠디팜 filed Critical ㈜아이엠디팜
Publication of WO2023080712A1 publication Critical patent/WO2023080712A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions

Definitions

  • the present invention relates to a novel sustained-release lipid precursor formulation and a sustained-release pharmaceutical composition for injection in the form of a lipid solution containing the same.
  • pharmacologically active substances including low-molecular synthetic compounds as well as macromolecular biopharmaceuticals such as peptides, proteins, nucleic acids, and viruses, especially those with short biological retention times, can be used within a short period of time to maintain therapeutically effective concentrations.
  • the drug must be administered repeatedly. Such repeated administration may lead to a decrease in patient compliance, an increase in the maximum blood concentration due to repeated administration, an increase in side effects, and an inappropriate therapeutic effect.
  • various methods applicable to oral and parenteral dosage forms for continuous release of pharmacologically active substances have been studied. For example, sustained-release tablets using polymers and gastric retention tablets have been proposed as oral preparations.
  • transdermal patches which are long-acting preparations through the skin, subcutaneous implantation tablets, liposomes, and microspheres, which are injectable preparations, have been proposed. etc. have been suggested.
  • Sustained drug-release injections can maintain a therapeutically effective concentration of a drug for a long period of time and prevent side effects due to repeated administration by continuously releasing a physiologically active substance for several days to several weeks or several months with a single administration.
  • Most of the long-acting injections, in which drug release lasts for several days or more, are dosage forms designed to slowly release the drug into the systemic circulation by forming a drug reservoir (depot) in the body.
  • a formulation in which a pharmacologically active substance is encapsulated in microspheres made of PLGA, a biodegradable polymer, and the microspheres are gradually decomposed into lactic acid and glycolic acid in vivo to gradually release the active substance has been proposed.
  • a biodegradable polymer used in the manufacture of microspheres polycyanamide and the like are also used in addition to PLGA.
  • Sustained-release microsphere preparations made of biodegradable polymers can induce sustained release of drugs to maintain drug efficacy, but biodegradable polymer particles may cause inflammation at the injection site, and they are made into sterile preparations necessary for injection.
  • WO 2005/117830 discloses at least one neutral diacyllipid (eg diacyl glycerol such as glyceryl dioleate) and/or at least one tocopherol; at least one phospholipid; and a low viscosity organic solvent containing at least one biocompatible oxygen.
  • neutral diacyl lipids such as glyceryl dioleate
  • preparations containing neutral diacyl lipids, such as glyceryl dioleate have problems of low biodegradability, have limitations in biocompatibility because they are not bio-derived materials, and are highly likely to cause inflammation.
  • tocopherol since tocopherol has a high viscosity (about 1000 mPa.s or more, 25 ° C.), the formulation obtained using it also has a high viscosity, so that the injection pressure (injection force) can be increased.
  • injection pressure injection force
  • Korean Patent Registration No. 10-1494594 discloses sorbitan unsaturated fatty acid ester; phospholipids such as phosphatidylcholine; And a sustained-release lipid pre-concentrate comprising a liquid crystal enhancer having no carboxyl group or amine ionizing group and the hydrophobic part having a triacyl group having 15 to 40 carbon atoms or a carbon ring structure. there is.
  • Korean Patent Registration No. 10-1494594 discloses sorbitan unsaturated fatty acid ester; phospholipids such as phosphatidylcholine; And a sustained-release lipid pre-concentrate comprising a liquid crystal enhancer having no carboxyl group or amine ionizing group and the hydrophobic part having a triacyl group having 15 to 40 carbon atoms or a carbon ring structure. there is.
  • sorbitan unsaturated fatty acid ester phospholipids such as phosphatidylcholine
  • liquid crystal strengthening agents such as triglyceride and tocopherol acetate
  • sustained-release lipid pre-concentrate comprising an anionic fixative such as palmitic acid.
  • sorbitan monooleate has a high viscosity (about 1000 mPa.s, 25° C.)
  • formulations obtained using it also have a high viscosity, resulting in low injectability, and in vivo composition. Since it is not a component or derived substance, it may cause safety problems by causing an inflammatory reaction at the site of administration.
  • the inventors of the present invention in the sustained-release lipid precursor formulation, even if it does not contain diacyl glycerol, sorbitan unsaturated fatty acid ester, and tocopherol or tocopherol acetate, it has a low injection pressure within a specific composition ratio between components and has excellent injectability
  • the present invention has been completed by focusing on the possibility of forming a stable matrix property during intravitreal injection.
  • the present invention has been devised in consideration of the above problems, and the present inventors have conducted various studies to develop a sustained-release pharmaceutical composition for injection in the form of a lipid solution having excellent biodegradability, biocompatibility, and injectability.
  • diacyl glycerol sorbitan unsaturated fatty acid ester and / or tocopherol (tocopherol acetate)
  • unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20) that are present or derived in vivo and are effectively biodegradable are used with phospholipids.
  • a prodrug preparation i.e., pre-concentrate
  • an object of the present invention is to provide a sustained-release lipid precursor formulation in the form of a lipid solution containing an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and a phospholipid.
  • the present invention is a pharmacologically active substance; And it is an object to provide a sustained-release pharmaceutical composition for injection in the form of a lipid solution containing the prodrug.
  • the present invention provides (a) an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20); And (b) it provides a sustained-release lipid precursor formulation in the form of a lipid solution containing a phospholipid.
  • the prodrug may not contain diacyl glycerol, sorbitan unsaturated fatty acid ester, tocopherol or tocopherol acetate.
  • the phospholipid may be at least one selected from the group consisting of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, phosphatidylglycerin, and sphingomyelin.
  • the precursor formulation may include 30 to 70% by weight of an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and 30 to 70% by weight of a phospholipid, based on the total weight.
  • the precursor preparation may include 50 to 67% by weight of an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and 33 to 50% by weight of a phospholipid, based on the total weight.
  • the weight ratio of the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and the phospholipid may be 30:70 to 70:30, or 50:50 to 67:33.
  • the pro-formulation comprises (c) optionally a biocompatible solvent; or (d) optionally medium chain triglycerides, olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, palm oil, ethyl oleate and benzyl benzo. It may further include at least one selected from the group consisting of eth.
  • the biocompatible solvent may be at least one organic solvent selected from the group consisting of ethanol, propylene glycol, polyethylene glycol, N-methyl-2-pyrrolidone, and benzyl alcohol, or an aqueous solution of the organic solvent.
  • the precursor formulation may include 1 to 10% by weight of a biocompatible solvent based on the total weight.
  • the weight ratio of the weight sum of the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and the phospholipid and the biocompatible solvent may be 90:10 to 99:1.
  • an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20)
  • 40 to 45% by weight of a phospholipid 40 to 45% by weight of a phospholipid
  • 1 to 10% by weight of a biocompatible solvent may be included.
  • the precursor formulation contains medium chain triglycerides, olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, palm oil, ethyl oleate and It may contain 1 to 35% by weight of at least one selected from the group consisting of benzyl benzoate.
  • the precursor formulation contains 20 to 55% by weight of an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) based on the total weight; 40 to 50% by weight of phospholipid; and from the group consisting of medium chain triglycerides, olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, palm oil, ethyl oleate and benzyl benzoate. 1 to 35% by weight of one or more selected species; may include.
  • the precursor formulation may have a viscosity of less than 2,000 mPa.s at 25°C.
  • the prodrug formulation may have an injection pressure of 10 N or less.
  • the injection pressure may be measured under the condition that the injection needle has a 20 to 30 gauge.
  • the present invention pharmacologically active substances; It provides a sustained-release pharmaceutical composition for injection in the form of a lipid solution comprising; and a precursor preparation according to the present invention.
  • the pharmacologically active substance may be a small molecule compound, protein, peptide, or antibody.
  • the pharmacologically active substance may have a solubility of 0.1 mg/ml or more with respect to the prodrug.
  • Sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention Sustained-release injectable pharmaceutical composition in the form of a lipid solution containing the same has a low viscosity, and thus exhibits superior injectability compared to conventional prodrugs and sustained-release pharmaceutical compositions including the same.
  • sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention
  • a sustained-release injectable pharmaceutical composition in the form of a lipid solution containing the same, instead of diacyl glycerol and sorbitan unsaturated fatty acid ester, is present or derived in vivo and has 14 to 20 (C14 to C20) carbon atoms (C14 to C20) that are effectively biodegradable.
  • an unsaturated fatty acid it exhibits excellent biocompatibility and biodegradability, thereby fundamentally avoiding the possibility of an inflammatory reaction at the injection site, which is one of the disadvantages of sustained-release injections.
  • tocopherol tocopherol acetate
  • a prodrug preparation is prepared by combining the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) with a phospholipid in a specific composition ratio, it has a low injection pressure and has an injectable ability In addition to being excellent, stable matrix properties can be formed upon in vivo injection.
  • the present invention is a pharmaceutical composition in the form of a long-acting injection with guaranteed safety, and can provide a pharmaceutical composition capable of sustained release for at least 7 days or more.
  • the sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention can be easily subjected to various aseptic treatment processes including sterilization filtration.
  • FIG. 1 is an image of a table showing properties, matrix properties in the aqueous phase, liquid crystal structure in the aqueous phase, viscosity and injection pressure of the sustained-release lipid precursor formulations prepared in Examples 1 to 13 of the present invention.
  • Figure 2 is a graph showing the in vitro sustained-release pattern for sustained-release pharmaceutical compositions for injection in the form of lipid solutions prepared from Examples 40 and 41 of the present invention.
  • Figure 3 is a graph showing the sustained-release pattern in vitro for the sustained-release injectable pharmaceutical composition in the form of a lipid solution prepared from Example 42 of the present invention.
  • Figure 4 is a graph showing the sustained-release pattern of methylene blue (methylene blue) of the sustained-release lipid precursor formulations prepared from Examples 38 and 39.
  • phospholipids phosphatidylcholine derived from soybeans; soy PC
  • unsaturated fatty acids oleic acid; OA
  • water water
  • sustained-release lipid precursor formulation in the form of a lipid solution of the present invention; And a sustained-release injectable pharmaceutical composition comprising the same will be described in detail.
  • the present invention relates to (a) an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20); And (b) it provides a sustained-release lipid precursor formulation in the form of a lipid solution containing a phospholipid.
  • a pre-concentrate is in the form of a lipid solution, and when exposed to an excess of an aqueous medium (including water, biological fluid, etc.), inside 100 nm or less, Preferably, it refers to a preparation that forms a porous liquid crystal matrix having a large amount of pores in the range of 1 to 30 nm.
  • an aqueous medium including water, biological fluid, etc.
  • the unsaturated fatty acid having 14 to 20 carbon atoms is one of the components present in the human body, together with phospholipids, in an aqueous medium in nanometer units (less than 100 nm, preferably serves to form a porous liquid crystal matrix having a large amount of pores (pores in the range of 1 to 30 nm).
  • Saturated fatty acids have low ability to form a liquid crystal matrix in an aqueous medium, and saturated fatty acids having 14 to 20 carbon atoms (C14 to C20) are solid at room temperature and exhibit high viscosity when prepared as precursors, resulting in low injection. indicates injectability.
  • unsaturated fatty acids having 14 to 20 carbon atoms are liquid at room temperature and exhibit high ability to form a liquid crystal matrix in an aqueous medium.
  • the unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20) are preferably oleic acid, linoleic acid, myristoleic acid, palmitoleic acid, 11-eicosenoic acid acid), or a mixture thereof, more preferably oleic acid, linoleic acid, or a mixture thereof, and still more preferably oleic acid.
  • the unsaturated fatty acid having 14 to 20 carbon atoms is an unsaturated fatty acid having one or two double bonds and is a bio-derived component widely present in animals and plants, and has excellent biocompatibility and biodegradability.
  • Unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20), including oleic acid, linoleic acid, myristoleic acid, palmitoleic acid, and 11-eicosenoic acid have excellent injectability by rapidly forming a low-viscosity lipid solution. can provide That is, the precursor formulation of the present invention can form a robust liquid crystal matrix within 1 hour, preferably within about 30 minutes, when contacted with an excessive amount of aqueous phase.
  • the precursor formulation of the present invention has a low viscosity (eg, 1500 mPa.s or less, preferably 1000 mPa.s or less) at room temperature (about 25 ° C.), so that it is easily administered through a 23 to 26 gauge syringe. It can be introduced into living organisms.
  • a low viscosity eg, 1500 mPa.s or less, preferably 1000 mPa.s or less
  • room temperature about 25 ° C.
  • the phospholipid together with an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20), serves to form a liquid crystal matrix having nanometer pores that can serve as a drug storage in an aqueous medium, , It also serves to help solubilize pharmacologically active substances.
  • the phospholipids include a polar head group and two nonpolar tail groups, and include various derived or synthesized phospholipids, including soybean or egg yolk-derived phospholipids. .
  • the phospholipid may be phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerin, sphingomyelin or synthetic derivatives thereof (eg, dipalmitoylphosphatidylcholine, distearylphosphatidylcholine, etc.), It includes mixtures of one or more of these.
  • the phospholipid may be egg yolk or soybean-derived phosphatidylcholine, phosphatidylethanolamine or phosphatidylserine. More preferably, the phospholipid may be egg yolk or soybean-derived postatidylcholine.
  • the precursor preparation may include 30 to 70% by weight of unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20) and 30 to 70% by weight of phospholipids, based on the total weight.
  • unsaturated fatty acids having 14 to 20 carbon atoms C14 to C20
  • phospholipids based on the total weight.
  • the ability to form liquid crystals i.e., matrix formation ability
  • the sustained release ability of the active ingredient is improved to show the ability to control release for more than one week.
  • viscosity improvement viscosity As the scanning pressure (injection force) is lowered by the reduction), there is an effect of remarkably improving the scanning performance.
  • the precursor formulation may include 50 to 67% by weight of unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20) and 33 to 50% by weight of phospholipids, based on the total weight.
  • unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20)
  • phospholipids based on the total weight.
  • the ability to form liquid crystals is excellent when the prodrug is injected into a living body, and the sustained release ability of the active ingredient is improved to show the ability to control release for more than one week.
  • the (injection power) is lowered, there is an effect of remarkably improving the scanning performance.
  • the ratio of forming hexagonal spheres is higher than that of lamellar spheres, the ability to control drug release is improved.
  • the weight ratio of the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and the phospholipid may be 30:70 to 70:30, or 50:50 to 67:33.
  • the ability to form liquid crystals is excellent when the precursor formulation is injected into the living body, and in particular, the injection pressure (injection force) is lowered by viscosity improvement (viscosity reduction), thereby significantly improving the injection ability. There is an effect.
  • the formulation optionally comprises: (c) a biocompatible solvent; and/or (d) optionally medium chain triglycerides, olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, palm oil, ethyl oleate and It may further include at least one selected from the group consisting of benzyl benzoate.
  • the biocompatible solvent includes a solvent that can be introduced into the human body in the form of an injection, for example, 1 selected from the group consisting of ethanol, propylene glycol, polyethylene glycol, N-methyl-2-pyrrolidone, and benzyl alcohol. It may be an organic solvent of one or more species or an aqueous solution of the organic solvent, but is not limited thereto. Preferably, the biocompatible solvent may be ethanol or an aqueous ethanol solution.
  • the biocompatible solvent acts as a viscosity modifier, and serves to improve the dissolution of the main component or injection ability. When a prodrug containing a biocompatible solvent is injected into a living body, liquid crystals in the form of sustained-release depots are diluted and removed by biological fluids in the process of being produced.
  • the precursor formulation may include 1 to 10% by weight, 3 to 8% by weight, or 4 to 6% by weight of a biocompatible solvent based on the total weight. Within the above weight range, the viscosity reduction effect of the precursor formulation can be maximized while using a minimal amount of biocompatible solvent.
  • the weight ratio of the weight sum of the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) and the phospholipid and the biocompatible solvent may be 90:10 to 99:1.
  • the viscosity reduction effect of the precursor formulation can be maximized while using the least amount of biocompatible solvent.
  • an unsaturated fatty acid having 14 to 20 carbon atoms C14 to C20
  • 40 to 45% by weight of a phospholipid and 1 to 10 biocompatible solvents based on the total weight of the precursor preparation % by weight.
  • the ability to form liquid crystals is excellent when the precursor formulation is injected into the living body, and in particular, the injection pressure (injection force) is lowered by viscosity improvement (viscosity reduction), so that the injection ability is remarkably improved.
  • the selected one or more serves as a liquid crystal forming aid to help maintain the internal structure of the liquid crystal and also serves as a viscosity modifier to further lower the viscosity of the precursor formulation and the pharmaceutical composition containing the same.
  • the medium chain triglyceride is composed of 3 molecules of 6 or 12 carbon atoms fatty acids and 1 molecule of glycerol, for example, tricaproin, tricaprylin, tricaprin, trilaurin (trilaurin), or mixtures thereof, but is not limited thereto.
  • the precursor formulation is medium chain triglyceride, olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, by weight, based on the total weight.
  • At least one selected from the group consisting of sesame oil, palm oil, ethyl oleate, and benzyl benzoate may be included in an amount of 1 to 35% by weight, 5 to 35% by weight, or 5.5 to 33% by weight.
  • tocopherol or tocopherol acetate which serves as a liquid crystal formation aid, is not included, there is an effect of improving the liquid crystal formation ability when the prodrug is injected into the body.
  • the precursor formulation contains 20 to 55% by weight of an unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) based on the total weight; 40 to 50% by weight of phospholipid; and medium chain triglycerides selected from the group consisting of olive oil, sesame oil, cottonseed oil, safflower oil, castor oil, soybean oil, sunflower oil, meadowfoam oil, corn oil, almond oil, rapeseed oil, palm oil, ethyl oleate and benzyl benzoate. 1 to 35% by weight of one or more species; may include.
  • the viscosity improving effect may show a tendency to improve. It was confirmed that matrix formation in the aqueous phase became difficult when exceeding . Accordingly, within the above weight range, matrix formation is excellent when the prodrug is injected into a living body, while viscosity is minimized and injection ability is improved.
  • the precursor formulation may not contain diacyl glycerol, sorbitan unsaturated fatty acid ester, tocopherol or tocopherol acetate, and may form liquid crystals in an aqueous medium.
  • diacyl glycerol examples include glyceryl dipalmitate, glyceryl phytanoate, glyceryl palmitoleate, glyceryl distearate, glyceryl diol These include glcyeryl dioleate, glceryl dielaidiate, glyceryl dilinoleate, and the like.
  • Examples of the sorbitan unsaturated fatty acid ester include sorbitan monooleate, sorbitan monolinoleate, sorbitan monopalmitoleate, sorbitan mono Myristoleate (sorbitan monomyristoleate), sorbitan sesquioleate, sorbitan sesquilinoleate, sorbitan sesquipalmitoleate, sorbitan sesquimyristoleate sesquimyristoleate), sorbitan dioleate, sorbitan dilinoleate, sorbitan dipalmitoleate, sorbitan dimyristoleate, and the like.
  • Examples of the tocopherol or tocopherol acetate include D- ⁇ tocopherol acetate, DL- ⁇ tocopherol acetate or mixtures thereof.
  • the precursor formulation of the present invention does not contain any of the aforementioned diacyl glycerol, sorbitan unsaturated fatty acid esters and tocopherols or tocopherol acetates.
  • the tocopherol or tocopherol acetate helps to stiffen the internal structure of the liquid crystal and can play a role in delaying the release rate of the pharmacologically active substance, but in the present invention, the tocopherol or tocopherol acetate
  • a precursor preparation is prepared by combining the unsaturated fatty acids having 14 to 20 carbon atoms (C14 to C20) with phospholipids in a specific composition ratio, and when formulated with pharmacologically active substances, low injection pressure It was confirmed that not only the injection performance was excellent, but also the stable matrix properties could be formed upon in vivo injection.
  • the precursor formulation may have a viscosity of less than 2,000 mPa.s, less than 1,000 mPa.s or less than 300 mPa.s at 25 °C.
  • the precursor formulation may have a viscosity of 100 to 2,000 mPa.s, 100 to 1,000 mPa.s, or 100 to 300 mPa.s at 25°C.
  • the precursor formulation may have an injection pressure of 10 N or less, 1 to 10 N, 4 to 10 N, or 6 to 10 N.
  • the injection pressure may be measured under the condition that the injection needle has a 20 to 30 gauge or a 23 to 26 gauge.
  • the prodrug formulation according to the present invention has low viscosity at room temperature (about 25° C.), thereby improving injectability, so that the drug can be easily introduced into the body through a 20 to 30 gauge or 23 to 26 gauge syringe. and can reduce the patient's pain.
  • the present invention is a pharmacologically active substance; And it provides a sustained-release pharmaceutical composition for injection in the form of a lipid comprising the sustained-release lipid precursor preparation according to the present invention.
  • the pharmaceutical composition comprises diacyl glycerol; sorbitan unsaturated fatty acid ester; and/or may not contain tocopherol or tocopherol acetate.
  • the pharmaceutical composition includes diacyl glycerol; sorbitan unsaturated fatty acid ester; And it may be one that does not contain tocopherol or tocopherol acetate.
  • the pharmacologically active substance may be a small molecule compound, protein, peptide, or antibody.
  • the pharmacologically active substance may be a drug having a solubility of 0.1 mg/ml or more with respect to the prodrug.
  • the pharmacologically active substance having a solubility of less than 0.1 mg/ml in the prodrug formulation is a sustained-release injection formulation, resulting in a large injection volume, resulting in high injection pain and difficulty in preparing the sustained-release formulation.
  • Examples of the pharmacologically active substance having a solubility of 0.1 mg/ml or more relative to the prodrug preparation include leuprolide or a pharmaceutically acceptable salt thereof (eg, leuprolide acetate); goserelin or a pharmaceutically acceptable salt thereof (eg, goserelin acetate); entecavir (including its monohydrate) or a pharmaceutically acceptable salt thereof; or somatostatin analogs (eg octreotide, lanreotide and pasireotide) or pharmaceutically acceptable salts thereof; glucagon-like peptide-1 (GLP-1) analogues (eg, exenatide, liraglutide, albiglutide, dulaglutide, ricisenatide and semaglutide) or pharmaceutically acceptable salts thereof; a glucose dependent insulinotropic polypeptide (GIP)/glucagon-like peptide-1 (GLP-1) analog (eg tyrzepatide) or a pharmaceutically acceptable
  • the pharmacologically active substance may be contained in the range of 0.1 to 20% by weight, 0.1 to 15% by weight or 1 to 10% by weight based on the total weight of the pharmaceutical composition.
  • Sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention can be subjected to a conventional aseptic treatment process, for example, a sterilization filtration process using a membrane filter, a high-pressure steam sterilization process, a gamma-ray sterilization process, and the like.
  • sustained-release lipid precursor formulations were prepared.
  • the contents of Tables 1 to 5 represent the weight percent of each component in the sustained-release lipid precursor formulation.
  • soybean-derived phospholipids phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine), 14 to 20 carbon atoms (C14 to C20) unsaturated fatty acids (oleic acid), medium chain triglycerides [Kollisolv TM MCT 70 (a mixture of tricaprylin and tricaprine, about 68:32 by weight), BASF] and/or a biocompatible solvent (ethanol, propylene glycol, polyethylene glycol (PEG400), benzyl alcohol or N-methyl-2-pyrroly Money) was added and mixed while stirring with a magnetic stirrer at room temperature.
  • a biocompatible solvent ethanol, propylene glycol, polyethylene glycol (PEG400), benzyl alcohol or N-methyl-2-pyrroly Money
  • the obtained mixture was homogenized at room temperature with a homogenizer (POLYTRON PT1200E, KINEMATICA) at about 5,000 rpm for about 5 minutes, and then left at room temperature for about 3 hours to prepare each sustained-release lipid precursor formulation.
  • the total batch size was prepared at 20 g per formulation.
  • Example One 2 3 4 5 6 7 8 9 10 11 12 13 oleic acid 90 80 70 67 65 62 60 55 50 40 30 20 10 phosphatidylcholine 10 20 30 33 35 38 40 45 50 60 70 80 90
  • Example 14 16 17 oleic acid 67 55 67 55 Phosphatidylserine 33 45 Phosphatidylethanolamine 33 45
  • Example 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 phosphatidyl choline 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 60 60 60 60 oleic acid 5.5 11 16.5 22 27.5 33 38.5 44 49.5 16 20 24 28 32 36 medium chain triglycerides 49.5 44 38.5 33 27.5 22 16.5 11 5.5 24 20 16 12 8 4
  • Example 33 34 35 36 37
  • Example 8 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 propylene glycol 5 PEG400 5 ethanol 5 benzyl alcohol 5 N-methyl-2-pyrrolidone 5
  • Example 38 39 oleic acid 27 45 phosphatidylcholine 63 45 ethanol 10 10
  • a sustained-release injectable pharmaceutical composition in the form of a lipid solution containing 80.0 to 99.9% by weight of the sustained-release lipid precursor formulation of Example 7 or Example 9 and 0.1 to 20.0% by weight of paliperidone was prepared.
  • the content in Table 6 below represents the weight% of each component in the sustained-release injectable pharmaceutical composition.
  • Example 7 After homogenizing the sustained-release lipid precursor formulation prepared in Example 7 or Example 9 at room temperature with a homogenizer (POLYTRON PT1200E, KINEMATICA) at about 5,000 rpm for about 5 minutes, paliperidone was added and then at room temperature After homogenization for about 20 minutes under the condition of about 3,000 rpm with a homogenizer, it was left at room temperature for about 3 hours to prepare a sustained-release pharmaceutical composition for injection in the form of a lipid solution.
  • a homogenizer POLYTRON PT1200E, KINEMATICA
  • Example 40 41 Example 7 90 Example 9 90 Paliperidone 10 10
  • Example 42 Preparation of sustained-release injectable pharmaceutical composition in the form of lipid solution containing dutasteride
  • a sustained-release pharmaceutical composition for injection in the form of a lipid solution containing 99% by weight of the sustained-release lipid precursor formulation of Example 37 and 1% by weight of dutasteride was prepared.
  • the contents of Table 7 below represent the weight% of each component in the pharmaceutical composition for sustained-release lipid injection.
  • a homogenizer POLYTRON PT1200E, KINEMATICA
  • dutasteride was added and homogenizer at room temperature After homogenization at about 3,000 rpm for about 20 minutes, the mixture was left at room temperature for about 3 hours to prepare a sustained-release pharmaceutical composition for injection in the form of a lipid solution.
  • Example 42 Example 37 99 dutasteride One
  • the matrix properties in the aqueous phase of the sustained-release lipid precursor formulation were confirmed when the sustained-release lipid precursor formulation was filled in a 1 ml syringe and injected into 10 ml of pH 7.4 phosphate buffer through a 26 gauge injection needle. And the results are shown in Figure 1.
  • all of the sustained-release lipid precursor formulations exhibited a fluid lipid liquid phase at room temperature before being exposed to the aqueous phase, and when injected into the aqueous phase, liquid crystal matrices were formed in Examples 4 to 9.
  • Examples 8 and 9 exhibited excellent matrix (liquid crystal) forming ability by forming an ideal spherical liquid crystal matrix.
  • the liquid crystal structure in the aqueous phase of the sustained-release lipid precursor formulation was obtained by taking 20 ⁇ l of the sustained-release lipid precursor formulation, thinly applying it on a slide glass, and then placing the slide glass in a Petri dish containing 20 ml of pH 7.4 phosphate buffer at room temperature. was left for about 3 hours.
  • the water on the slide glass was carefully removed, the cover glass was covered so that no bubbles were generated, and it was observed at 250 magnification using a polarizing microscope (S38, MIC). The results are shown in Figure 1. Referring to the liquid crystal structure image in the aqueous phase of FIG.
  • the sustained-release lipid precursor formulation prepared according to the present invention forms a hexagonal structure when exposed to the aqueous phase, and this structure is resistant to the external aqueous phase environment. It enables the sustained release of the encapsulated pharmacologically active substance to form a closed structure of the lipid bilayer.
  • the viscosity of the sustained-release lipid precursor formulation was measured using a flat-cone rotational viscometer (RM-100 touch, Ramy), and the injection pressure was measured under the following measurement conditions, and the results are shown in Table 8 below. Referring to Table 8 below, Examples 1 to 9 exhibited low viscosities of less than 300 mPa.s at 25° C., and showed very good injection performance with an injection pressure of less than 10. On the other hand, Example 10 exhibited a high viscosity exceeding 1000 mPa.s at 25 ° C., indicating a remarkably reduced injection ability with an injection pressure of 50 or more. On the other hand, there was no difference in viscosity and injection pressure of the sustained-release lipid precursor formulation according to the type of phospholipid (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine).
  • Test equipment Tensile compression tester (Stand: Lamy, TX-700, Load cell: 50N and 100N)
  • Example 1 Oleic Acid/Phosphatidylcholine (weight%) Example 1 (90/10) Example 2 (80/20) Example 3 (70/30) Example 4 (67/33) Example 5 (65/35) Example 6 (62/38) Example 7 (60/40) viscosity (mPa.s at 25°C) 48.5 52.7 136.5 105.7 108.3 148.9 179.9 injection pressure (N ; 26 gauge) 4.32 4.80 6.85 6.33 5.36 7.11 7.70 Injection pressure (N ; 23 gauge) 1.97 2.07 2.83 2.83 2.19 2.86 3.17 Oleic acid/phosphatidylcholine (% by weight) Example 8 (55/45) Example 9 (50/50) Example 10 (40/60) Example 11 (30/70) Example 12 (20/80) Example 13 (10/90) Viscosity (mPa.s at 25°C) 221.6 268.8 16922.8 - - - Injection pressure (N ; 26 gauge) 7.90 9.93 over 50 - - - In
  • Examples 21 to 32 in which the MCT content is 1 to 35% by weight form a matrix in the aqueous phase
  • Examples 18 to 20 in which the MCT content exceeds 35% by weight are in the aqueous phase I can confirm that my matrix is not formed.
  • Examples 21 to 26 in which the precursor formulation satisfies the weight range of 20 to 55% by weight of unsaturated fatty acid, 40 to 50% by weight of phospholipid, and 1 to 35% by weight of medium chain triglyceride, with respect to the total weight, matrix formation in the aqueous phase Not only is it easy, but it also shows a low viscosity of less than 300 mPa.s at 25°C, showing very good injectability, while Examples 27 to 32, which are out of the weight range of the three components, exceed 1000 mPa.s at 25°C. exhibited a high viscosity, and exhibited significantly reduced injectability.
  • Example 18 (45/5.5/49.5) Example 19 (45/11/44) Example 20 (45/16.5/38.5) Example 21 (45/22/33) Example 22 (42/27.5/27.5) appearance (prodrug preparation) Homogeneously mixed clear solution in the water Matrix formation or not (pH 7.4 phosphate buffer solution) matrix not formed (X) matrix not formed (X) matrix not formed (X) matrix formed (O) matrix formed (O) Viscosity (mPa.s at 25°C) 152.0 153.7 176.1 169.4 187.7 Phospholipid/oleic acid/MCT (% by weight) Example 23 (45/33/22) Example 24 (45/38.5/16.5) Example 25 (45/44/11) Example 26 (45/49.5/5.5) Example 27 (60/16/24) appearance (prodrug preparation) Homogeneously mixed clear solution in the water Matrix formation or not (pH 7.4 phosphate buffer solution) matrix formed (O) matrix formed (O) matrix formed (
  • Examples 33 to 37 are precursor formulations prepared by mixing a precursor formulation having the composition of Example 8 and a biocompatible solvent in a weight ratio of 95:5.
  • Example 8 the examples in which the biocompatible solvent was applied to Example 8 generally showed a viscosity improvement (viscosity reduction) effect, in particular, a viscosity improvement (viscosity reduction) effect when ethanol, which has the highest solubility in phospholipids, was added. It can be seen that is significantly superior.
  • Example 8/solvent 95 : 5 (weight ratio) 33 in implementation (Example 8 + propylene glycol)
  • Example 34 (Example 8 + PEG400)
  • Example 35 (Example 8 + ethanol)
  • Example 36 (Example 8 + benzyl alcohol)
  • Example 37 (Example 8 + N-methyl-2-pyrrolidone) Viscosity (mPa.s at 25°C) 201.4 188.0 169.0 205.4 232.4
  • a sample container capable of loading a pharmaceutical composition was prepared by attaching 16 mesh and 100 mesh sieves to both sides of an acrylic tube (inner diameter: 14 mm, height: 15 mm).
  • a test solution of 0.0825N hydrochloric acid aqueous solution containing 0.25% by weight of polysorbate 20 was prepared.
  • a sample container loaded with 400 mg of each sustained-release pharmaceutical composition for injection in the form of a lipid solution and the test solution were put into a 40 ml test container (outer diameter 25mm, height 100mm), and an underwater rotating device (BDSHWB-980R, Bandi Tech) mounted on.
  • the apparatus was sampled for 28 days at 37.5° C. while stirring at 25 rpm, and then analyzed by HPLC under the following conditions.
  • Wavelength 275 nm (ultraviolet absorbance photometer)
  • Example 42 In vitro release tests were performed on the pharmaceutical composition for sustained-release injection in the form of a lipid solution prepared in Example 42 to confirm the sustained-release effect, and the results are shown in FIG. 3 .
  • dutasteride was applied to the sustained-release lipid precursor formulation of Example 37.
  • a sample container capable of loading a pharmaceutical composition was prepared by attaching 16 mesh and 100 mesh sieves to both sides of an acrylic tube (inner diameter: 14 mm, height: 15 mm).
  • a pH 7.4 Tris test solution containing 0.1% by weight of sodium lauryl sulfate was prepared.
  • a sample container loaded with 500 mg of each sustained-release pharmaceutical composition for injection in the form of a lipid solution and the test solution were placed in a 40 ml test container (outer diameter 25 mm, height 100 mm), and an underwater rotary device (BDSHWB-980R, Bandi Tech) mounted on.
  • the apparatus was sampled for 28 days at 37.5° C. while stirring at 25 rpm, and then analyzed by HPLC under the following conditions.
  • Wavelength 210 nm (ultraviolet absorbance photometer)
  • the sustained-release injectable pharmaceutical composition in the form of a lipid solution of Example 42 exhibits an effective sustained-release release pattern for a long period of time.
  • the ratio of phospholipids in the prodrug increases, so the cumulative release (sustained release rate) is higher in Example 38 (hexagonal) than in Example 39 (hexagonal). lamellar) is faster. Through this, it can be confirmed that the internal structure of the precursor formulation can greatly affect the sustained-release pattern.
  • the ternary phase diagram of phospholipid (soybean-derived phosphatidylcholine; soy PC), unsaturated fatty acid (oleic acid; OA), and water is shown in FIG. 5.
  • the internal structure (internal phase) formed may vary depending on the composition ratio of unsaturated fatty acids and phospholipids, and in addition, properties such as gel strength and viscosity may vary, which is such as ⁇ -tocopherol or ⁇ -tocopherol acetate. This may mean that properties such as a release pattern of pharmacologically active substances can be adjusted according to the composition ratio without a liquid crystal enhancer.
  • the sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention As described above, the sustained-release lipid precursor formulation in the form of a lipid solution according to the present invention; And a sustained-release injectable pharmaceutical composition in the form of a lipid solution containing the same, instead of diacyl glycerol and sorbitan unsaturated fatty acid ester, is present or derived in vivo and has 14 to 20 (C14 to C20) carbon atoms (C14 to C20) that are effectively biodegradable.
  • an unsaturated fatty acid it is believed that the possibility of an inflammatory reaction occurring at the injection site, which is one of the disadvantages of sustained-release injections, can be fundamentally avoided by exhibiting excellent biocompatibility and biodegradability.
  • a precursor preparation is prepared by combining the unsaturated fatty acid having 14 to 20 carbon atoms (C14 to C20) with a phospholipid in a specific composition ratio, which has pharmacological activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 본 발명은 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산; 및 인지질을 포함하는 지질 용액 형태의 서방성 지질 전구 제제로서, 디아실 글리세롤, 솔비탄 불포화지방산 에스테르, 및 α-토코페롤 또는 α-토코페롤 아세테이트를 포함하지 않고; 수성 매질 중에서 액상 결정을 형성하는 전구 제제를 제공한다.

Description

신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물
본 발명은 신규한 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물에 관한 것이다.
저분자 합성 화합물을 비롯하여 펩타이드, 단백질, 핵산, 바이러스 등 거대분자의 바이오 의약품을 포함하는 많은 약리학적 활성물질, 특히 짧은 생체 유지시간을 갖는 약리학적 활성물질은 치료학적 유효 농도를 유지하기 위해서 짧은 시간 내에 약물을 반복적으로 투여해야 한다. 이러한 반복투여는 환자의 복약순응도 저하, 반복투여로 인한 최고 혈중농도 상승과 그에 따른 부작용 증가, 부적절한 치료 효과 등의 결과로 이어질 수 있다. 이러한 문제점의 개선을 위해 약리학적 활성물질의 지속적인 방출을 위한, 경구 및 비경구 투여형태로 적용가능한 다양한 방법들이 연구되어 왔다. 예를 들어 경구용 제제로는 고분자를 이용한 서방성 정제, 위체류 정제 등이 제안된 바 있으며, 비경구용 제제로는 피부를 통한 지속성 제제인 경피 패치제, 주사제형인 피하 이식정, 리포좀, 마이크로스피어 등이 제안되어 왔다.
지속적 약물 방출을 위한 주사제의 경우, 일반적으로 근육이나 피하로 투여 가능한 제제가 주로 연구되고 있다. 지속성 약물 방출 주사제는 단일 투여로 수일∼수주 또는 수개월 동안 생리활성 물질을 지속적으로 방출함으로써, 장기간 동안 약물의 치료학적 유효 농도를 유지시키고, 반복투여로 인한 부작용을 방지할 수 있다. 약물의 방출이 수일이상 지속되는 지속성 주사제들의 대부분은 체내에서 약물의 저장소(데포, depot)를 형성하여 약물을 서서히 전신 순환계로 방출하도록 설계된 제형이다. 대표적으로는, 생분해성 고분자인 PLGA로 제조된 마이크로스피어에 약리학적 활성물질을 봉입하고, 생체 내에서 마이크로스피어가 점진적으로 락트산과 글리콜산으로 분해되어 활성물질을 서서히 방출하는 제제가 제안된 바 있다. 마이크로스피어 제조에 사용되는 생분해성 고분자로는 PLGA 이외에도 폴리시안아미드 등도 사용되고 있다. 생분해성 고분자로 제조된 지속 방출형 마이크로스피어 제제는 약물의 지속적 방출을 유도하여 약효를 지속화할 수 있지만, 생분해된 고분자 입자 등에 의해 주사부위의 염증이 발생하기도 하며, 주사를 위해 필요한 무균제제로 만드는 과정에서 가장 산업적으로 간편하고 보편적으로 사용되는 무균 여과법을 사용하기 어렵고, 특별한 제조 장치와 무균처리를 위해 무균 밀폐공간에서 제조해야 하는 단점을 가지고 있다.
생분해성 고분자 기반 제제의 단점을 회피할 수 있는 제제로서, WO 2005/117830는 적어도 하나의 중성 디아실리피드(예를 들어, 글리세릴 디올레이트와 같은 디아실 글리세롤) 및/또는 적어도 하나의 토코페롤; 적어도 하나의 인지질; 및 적어도 하나의 생체적합성의 산소를 포함하는 저점도 유기용매를 포함하는 액상 데포 제제(liquid depot formulation)를 개시한 바 있다. 그러나, 글리세릴 디올레이트와 같은 중성 디아실 리피드를 함유하는 제제는 낮은 생분해성의 문제를 가지고 있으며, 생체 유래물질이 아니므로 생체친화성에 한계가 있고, 염증을 유발할 가능성이 높다. 더불어, 토코페롤은 높은 점도(약 1000 mPa.s 이상, 25℃)를 가지고 있으므로, 이를 사용하여 얻어진 제제 또한 높은 점도를 가지게 되어 주사압(주입력)이 높아질 수 있다. 생체 내 주사기를 이용한 약물 등의 주입시 주사바늘의 통과가 어려울 뿐만 아니라, 환자에게 통증을 유발시키는 문제가 발생한다. 또한, 토코페롤이 생체 내 과잉투여될 경우 비타민K의 혈액응고 작용을 방해할 가능성이 있는 문제점이 존재한다.
대한민국 특허등록 제10-1494594호는 솔비탄 불포화지방산 에스테르; 포스파티딜콜린 등의 포스포리피드; 및 카르복실기 또는 아민기의 이온화기를 가지지 않고 소수성 부분은 탄소수가 15개 내지 40개의 트리아실기를 가지거나 탄소링 구조를 가지는 액상결정 강화제를 포함하는 서방성 지질 초기 제제(pre-concentrate)를 개시한 바 있다. 또한, 대한민국 특허등록 제10-1586789호는 솔비탄 불포화지방산 에스테르; 포스파티딜콜린 등의 포스포리피드; 트리글리세라이드, 토코페롤 아세테이트 등의 액상결정 강화제; 및 팔미트산 등의 음이온성 정착제를 포함하는 서방성 지질 초기 제제(pre-concentrate)를 개시한 바 있다. 그러나, 솔비탄 모노올레이트는 높은 점도(약 1000 mPa.s, 25℃)를 가지고 있으므로, 이를 사용하여 얻어진 제제 또한 높은 점도를 가지게 되어 낮은 주사능(injectability)을 나타내는 문제가 있고, 생체 내 구성성분 또는 유래물질이 아니므로 투여부위에서 염증반응 등을 일으켜 안전성 문제를 야기할 수 있다.
따라서, 지속성 약물 주사 제제로서, 초기 약물방출 현상을 방지할 수 있고, 우수한 생분해성, 생체친화성 및 주사능을 갖는 서방성 주사용 약학 조성물을 개발할 필요성이 당업계에 존재한다
이에, 본 발명의 발명자들은 서방성 지질 전구 제제에 있어서, 디아실 글리세롤, 솔비탄 불포화지방산 에스테르, 및 토코페롤 또는 토코페롤 아세테이트를 포함하지 않더라도, 성분간 특정 조성비 내에서 낮은 주사압을 갖아 주사능이 우수할 뿐만 아니라, 생채 내 주입 시 안정적인 매트릭스 성상을 형성하는 할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
본 발명은 상기와 같은 문제점을 고려하여 안출된 것으로, 본 발명자들은 우수한 생분해성, 생체친화성 및 주사능을 갖는 지질 용액 형태의 서방성 주사용 약학 조성물을 개발하기 위하여 다양한 연구를 수행하였다. 그 결과, 디아실 글리세롤, 솔비탄 불포화지방산 에스테르 및/또는 토코페롤(토코페롤 아세테이트) 대신에, 생체 내에 존재 또는 유래하고, 효과적으로 생분해되는 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화 지방산을 인지질과 특정 조성비로 조합하여 전구 제제(즉, pre-concentrate)를 제조하고, 이를 약리학적 활성물질과 함께 제제화할 경우, 우수한 주사능, 생체친화성 및 생분해성을 갖는 지질 용액 형태의 서방성 주사용 약학 조성물을 얻을 수 있다는 것을 발견하였다.
따라서, 본 발명은 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산, 및 인지질을 포함하는, 지질 용액 형태의 서방성 지질 전구 제제를 제공하는 것을 목적으로 한다.
또한, 본 발명은 약리학적 활성물질; 및 상기 전구 제제를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물을 제공하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 목적을 달성하기 위하여, 본 발명은 (a) 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산; 및 (b) 인지질을 포함하는 지질 용액 형태의 서방성 지질 전구 제제를 제공한다.
상기 전구 제제는 디아실 글리세롤, 솔비탄 불포화지방산 에스테르, 토코페롤 또는 토코페롤 아세테이트를 포함하지 않는 것일 수 있다.
상기 인지질은 포스파티딜콜린, 포스파티딜세린, 포스파티딜에탄올아민, 포스파티딜이노시톨, 포스파티딘산, 포스파티디딜글리세린 및 스핑고미엘린으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 30 ∼ 70 중량%, 및 인지질 30 ~ 70 중량%를 포함할 수 있다.
상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 67 중량%, 및 인지질 33 ~ 50 중량%를 포함할 수 있다.
상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 및 인지질의 중량비는 30:70 내지 70:30, 또는 50:50 내지 67:33일 수 있다.
상기 전구 제제는 (c) 선택적으로 생체 적합성 용매; 또는 (d) 선택적으로 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함할 수 있다.
상기 생체 적합성 용매는 에탄올, 프로필렌글리콜, 폴리에틸렌글리콜, N-메틸-2-피롤리돈, 및 벤질알코올로 이루어진 군으로부터 선택된 1종 이상의 유기용매 또는 상기 유기용매의 수용액일 수 있다.
상기 전구 제제는 총 중량에 대하여 생체 적합성 용매를 1 내지 10 중량%로 포함할 수 있다.
상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산과 인지질의 중량합, 및 생체 적합성 용매의 중량비는 90 : 10 내지 99 : 1일 수 있다.
상기 전구 제제 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 55 중량%, 인지질 40 ~ 45 중량%, 및 생체 적합성 용매 1 내지 10 중량%를 포함할 수 있다.
상기 전구 제제는 총 중량에 대하여 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상을 1 내지 35 중량%로 포함할 수 있다.
상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 20 ∼ 55 중량%; 인지질 40 ~ 50 중량%; 및 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상 1 내지 35 중량%;를 포함할 수 있다.
상기 전구 제제는 25℃에서 2,000 mPa.s 미만의 점도를 갖는 것일 수 있다.
상기 전구 제제는 주사압이 10 N 이하인 것일 수 있다.
상기 주사압은 주사바늘이 20 내지 30 게이지를 갖는 조건에서 측정된 것일 수 있다.
또한, 본 발명은, 약리학적 활성물질; 및 본 발명에 따른 전구 제제;를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물을 제공한다.
상기 약리학적 활성물질은 저분자 화합물, 단백질, 펩타이드, 또는 항체일 수 있다.
상기 약리학적 활성물질이 상기 전구 제제에 대하여 0.1 mg/ml 이상의 용해도를 갖는 것일 수 있다.
본 발명에 따른 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물은 낮은 점도를 가짐으로써, 종래의 전구 제제 및 이를 포함한 서방성 약학 조성물에 비하여 우수한 주사능을 나타낸다. 특히, 본 발명에 따른 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물은, 디아실 글리세롤, 솔비탄 불포화지방산 에스테르 대신에, 생체 내에 존재 또는 유래하며 또한 효과적으로 생분해되는 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산을 포함함으로써, 우수한 생체친화성 및 생분해성을 나타내어 서방성 주사제의 단점 중에 하나인 주사부위에서 염증반응이 나타날 가능성을 근본적으로 회피할 수 있다. 더불어, 토코페롤(토코페롤 아세테이트)를 포함하는 대신에, 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화 지방산을 인지질과 특정 조성비로 조합하여 전구 제제를 제조할 경우, 낮은 주사압을 갖아 주사능이 우수할 뿐만 아니라, 생채 내 주입 시 안정적인 매트릭스 성상을 형성할 수 있다.
따라서, 본 발명은 안전성이 확보된 지속성 주사제의 형태의 약학 조성물로서, 최소한 7일 이상의 지속성 방출이 가능한 약학 조성물을 제공할 수 있다. 또한, 본 발명에 따른 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물은 멸균 여과 등을 포함한 다양한 무균 처리 공정을 손쉽게 수행할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 실시예 1 내지 13으로부터 제조된 서방성 지질 전구 제제의 성상, 수상 내 매트릭스 성상, 수상 내 액상 결정 구조, 점도 및 주사압을 나타낸 표의 이미지이다.
도 2는 본 발명의 실시예 40 및 41로부터 제조된 지질 용액 형태의 서방성 주사용 약학 조성물에 대한 시험관 내 서방출 패턴을 나타낸 그래프이다.
도 3은 본 발명의 실시예 42부터 제조된 지질 용액 형태의 서방성 주사용 약학 조성물에 대한 시험관 내 서방출 패턴을 나타낸 그래프이다.
도 4은 실시예 38 및 39로부터 제조된 서방성 지질 전구 제제의 메틸렌블루(methylene blue) 서방출 패턴을 나타낸 그래프이다.
도 5는 인지질(대두 유래 포스파티딜콜린; soy PC), 불포화지방산(올레산; OA) 및 물에 대한 삼성분계 상평형도이다.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.
이하, 본 발명의 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 서방성 주사용 약학 조성물에 대하여 자세하게 설명한다.
본 발명은 (a) 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산; 및 (b) 인지질을 포함하는 지질 용액 형태의 서방성 지질 전구 제제를 제공한다.
본 명세서에서 전구 제제(pre-concentrate)라 함은 지질 용액(lipid solution) 형태를 가지며, 과량의 수성 매질(물, 생체액(biological fluid) 등을 포함)에 노출될 때 내부에 100 nm 이하, 바람직하게는 1 ∼ 30 nm 범위의 포어(pore)를 다량 갖고 있는 다공성 액상 결정 매트릭스를 형성하는 제제를 말한다.
본 발명의 전구 제제에 있어서, 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산은 인체에 존재하는 성분 중 하나로서, 인지질과 함께, 수성 매질에서 나노미터 단위(100 nm 이하, 바람직하게는 1 ∼ 30 nm 범위)의 포어(pore)를 다량 갖고 있는 다공성 액상 결정 매트릭스를 형성하는 역할을 한다. 포화지방산은 수성 매질 내에서 액상 결정 매트릭스 형성능이 낮고, 탄소수 14개 내지 20개 (C14 내지 C20)의 포화지방산은 실온에서 그 성상이 고체(solid)로 전구 제제로 제조 시 높은 점성을 나타내어 낮은 주사능(injectability)을 나타낸다. 그러나, 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산은 실온에서 그 성상이 액체(liquid)이며 수성 매질 내에서 높은 액상 결정 매트릭스 형성능을 나타낸다는 것이 본 발명에 의해 밝혀졌다. 우수한 생체친화성과 액상 결정 형성능의 측면에서, 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산은 바람직하게는 올레산, 리놀레산, 미리스톨레산, 팔미톨레산, 11-에이코센산(11-eicosenoic acid), 또는 이들의 혼합물일 수 있으며, 더욱 바람직하게는 올레산, 리놀레산, 또는 이들의 혼합물일 수 있고, 더더욱 바람직하게는 올레산일 수 있다. 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산은 이중결합을 1개, 2개를 갖는 불포화지방산으로 동 식물에 널리 존재는 생체 유래의 성분으로서, 우수한 생체친화성 및 생분해성을 갖는다. 올레산, 리놀레산, 미리스톨레산, 팔미톨레산, 11-에이코센산 등을 포함한 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산은 낮은 점도의 지질 용액을 신속히 형성함으로써 우수한 주사능(injectability)을 제공할 수 있다. 즉, 본 발명의 전구 제제는 과량의 수상과 접촉될 경우, 1시간 이내에, 바람직하게는 약 30분 이내에 강건한 액상결정 매트릭스를 형성할 수 있다. 또한, 본 발명의 전구 제제는 실온(약 25℃)에서 낮은 점도(예를 들어, 1500 mPa.s 이하, 바람직하게는 1000 mPa.s 이하)를 가짐으로써 23 내지 26 게이지의 주사기를 통해서 용이하게 생체 내로 도입될 수 있다.
상기 인지질은, 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산과 함께, 수성 매질에서 약물 저장소 역할을 할 수 있는 나노미터 단위의 포어(pore)를 갖는 액상 결정 매트릭스를 형성하는 역할을 하며, 또한 약리학적 활성물질의 가용화를 돕는 역할을 한다. 상기 인지질은 극성 머리기(polar head group)와 2개의 비극성 꼬리기(nonpolar tail group)를 포함하며, 대두(soybean) 또는 난황(egg yolk) 유래의 인지질을 비롯한 다양한 유래 또는 합성된 인지질을 포함한다. 상기 인지질은 포스파티딜콜린, 포스파티딜에탄올아민, 포스파티딜세린, 포스파티딘산, 포스파티딜이노시톨, 포스파티딜글리세린, 스핑고미엘린 혹은 이들의 합성 유도체(예를 들면, 디팔미토일포스파티딜콜린, 디스테아릴포스파티딜콜린 등)일 수 있으며, 이들의 1종 이상의 혼합물을 포함한다. 바람직하게는, 상기 인지질은 난황이나 대두 유래 포스타티딜콜린, 포스파티딜에탄올아민 또는 포스파티딜세린일 수 있다. 보다 바람직하게는 상기 인지질은 난황이나 대두 유래 포스타티딜콜린일 수 있다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 30 ∼ 70 중량%, 및 인지질 30 ~ 70 중량%를 포함할 수 있다. 상기 중량 범위 내에서는, 전구 제제를 생체 내에 주입 시 액상 결정의 형성능(즉, 매트릭스 형성능)이 우수하고, 활성성분의 지속 방출 능력이 향상되어 일주일 이상의 방출 제어 능력을 나타내며, 특히, 점도 개선(점도 감소)에 의해 주사압(주입력)이 낮아짐으로써 주사능이 현저히 향상되는 효과가 존재한다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 67 중량%, 및 인지질 33 ~ 50 중량%를 포함할 수 있다. 상기 중량 범위 내에서는, 전구 제제를 생체 내에 주입 시 액상 결정의 형성능이 우수하고, 활성성분의 지속 방출 능력이 향상되어 일주일 이상의 방출 제어 능력을 나타내며, 특히, 점도 개선(점도 감소)에 의해 주사압(주입력)이 낮아짐으로써 주사능이 현저히 향상되는 효과가 존재한다. 더불어, 라멜라(Lamellar) 형태의 구 보다 6방정계(Hexagonal) 형태의 구를 형성하는 비율이 높아지면서 약물의 방출 제어 능력이 향상되는 효과가 존재한다.
본 발명의 일 실시예에 따르면, 상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 및 인지질의 중량비는 30:70 내지 70:30, 또는 50:50 내지 67:33일 수 있다. 상기 중량비 범위 내에서는, 전구 제제를 생체 내에 주입 시 액상 결정의 형성능이 우수하고, 특히, 점도 개선(점도 감소)에 의해 주사압(주입력)이 낮아짐으로써 주사능이 현저히 향상되는 효과가 존재한다.
본 발명의 일 실시예에 따르면, 상기 제제는 필요에 따라, (c) 선택적으로 생체 적합성 용매; 및/또는 (d) 선택적으로 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로부터 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함할 수 있다.
상기 생체 적합성 용매는 주사제의 형태로 인체에 도입될 수 있는 용매를 포함하며, 예를 들어 에탄올, 프로필렌글리콜, 폴리에틸렌글리콜, N-메틸-2-피롤리돈, 및 벤질알코올로 이루어진 군으로부터 선택된 1종 이상의 유기용매 또는 상기 유기용매의 수용액일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는, 상기 생체적합성 용매는 에탄올 또는 에탄올 수용액일 수 있다. 생체적합성 용매는 점도 조절제 역할을 하여, 주성분의 용해나 주사능을 향상시키는 역할을 한다. 생체적합성 용매를 포함하는 전구 제제를 생체내에 주사할 경우, 지속방출 데포 형태의 액상 결정이 생성되는 과정에서 생체액에 의해 희석되어 제거되게 된다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 총 중량에 대하여 생체 적합성 용매를 1 내지 10 중량%, 3 내지 8 중량% 또는 4 내지 6 중량%로 포함할 수 있다. 상기 중량 범위 내에서는, 최소한의 생체 적합성 용매를 사용하면서도, 전구 제제의 점도 감소 효과가 최대화될 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산과 인지질의 중량합, 및 생체 적합성 용매의 중량비는 90 : 10 내지 99 : 1일 수 있다. 상기 중량비 내에서는, 최소한의 생체 적합성 용매를 사용하면서도, 전구 제제의 점도 감소 효과가 최대화될 수 있다.
본 발명의 일 실시예에 따르면, 상기 전구 제제 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 55 중량%, 인지질 40 ~ 45 중량%, 및 생체 적합성 용매 1 내지 10 중량%를 포함할 수 있다. 상기 중량 범위 내에서는, 전구 제제를 생체 내에 주입 시 액상 결정의 형성능이 우수하고, 특히, 점도 개선(점도 감소)에 의해 주사압(주입력)이 낮아짐으로써 주사능이 현저히 향상되는 효과가 존재한다.
상기 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상은 액상 결정의 내부 구조를 유지하는데 도움을 주는 액상 결정형성 보조제 역할을 하며 또한, 전구 제제 및 이를 포함하는 약학 조성물의 점도를 더욱 낮추는 점도 조절제의 역할을 한다. 상기 중쇄 트리글리세라이드는 탄소수 6개 또는 12개 지방산 3분자와 글리세롤 1분자로 구성되며, 예를 들어 트리카프로인(tricaproin), 트리카프릴린(tricaprylin), 트리카프린(tricaprin), 트리라우린(trilaurin), 또는 이들의 혼합물을 포함하나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 총 중량에 대하여 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상을 1 내지 35 중량%, 5 내지 35 중량% 또는 5.5 내지 33 중량%로 포함할 수 있다. 상기 중량 범위 내에서는, 액상결정 형성 보조제 역할을 하는 토코페롤 또는 토코페롤 아세테이트를 포함하지 않더라도 전구 제제의 생체 내 주입 시 액상 결정 형성능이 향상되는 효과가 존재한다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 20 ∼ 55 중량%; 인지질 40 ~ 50 중량%; 및 중쇄 트리글리세라이드 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상 1 내지 35 중량%;를 포함할 수 있다. 본 발명에 따른 전구 제제의 경우 인지질에 대한 용해성이 불포화지방산 대비 상대적으로 우수한 중쇄 트리글리세라이드의 비율이 높아질수록 점도 개선 효과가 향상되는 경향을 나타낼 수 있으나, 특이하게도 중쇄 트리글리세라이드의 비율이 35 중량%를 초과하는 경우 수상 내 매트릭스 형성이 어려워짐을 확인하였다. 이에 따라, 상기 중량 범위 내에서는, 전구 제제를 생체 내 주입 시 매트릭스 형성이 우수하면서도, 점도 최소화되면서 주사능이 향상되는 효과가 존재한다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 디아실 글리세롤, 솔비탄 불포화지방산 에스테르, 토코페롤 또는 토코페롤 아세테이트를 포함하지 않고, 수성 매질 중에서 액상 결정을 형성하는 것일 수 있다.
상기 디아실 글리세롤의 예는 글리세릴 디팔미테이트(glyceryl dipalmitate), 글리세릴 디피타노에이트(glyceryl phytanoate), 글리세릴 팔미톨레이트(glyceryl palmitoleate), 글리세릴 디스테아레이트(glyceryl distearate), 글리세릴 디올레이트(glcyeryl dioleate), 글리세릴 디엘라이디에이트(glceryl dielaidiate), 글리세릴 디리놀레이트(glyceryl dilinoleate) 등을 포함한다. 상기 솔비탄 불포화지방산 에스테르(sorbitan unsaturated fatty acid ester)의 예는 솔비탄 모노올레이트(sorbitan monooleate), 솔비탄 모노리놀레이트(sorbitan monolinoleate), 솔비탄 모노팔미톨레이트(sorbitan monopalmitoleate), 솔비탄 모노미리스톨레이트(sorbitan monomyristoleate), 솔비탄 세스퀴올레이트(sorbitan sesquioleate), 솔비탄 세스퀴리놀레이트(sorbitan sesquilinoleate), 솔비탄 세스퀴팔미톨레이트(sorbitan sesquipalmitoleate), 솔비탄 세스퀴미리스톨레이트(sorbitan sesquimyristoleate), 솔비탄 디올레이트(sorbitan dioleate), 솔비탄 디리놀레이트(sorbitan dilinoleate), 솔비탄 디팔미톨레이트(sorbitan dipalmitoleate), 솔비탄 디미리스톨레이트(sorbitan dimyristoleate) 등을 포함한다. 상기 토코페롤 또는 토코페롤 아세테이트의 예는 D-α 토코페롤 아세테이트, DL-α 토코페롤 아세테이트 또는 이들의 혼합물을 포함한다.
본 발명의 전구 제제는 상기한 디아실 글리세롤, 솔비탄 불포화지방산 에스테르 및 토코페롤 또는 토코페롤 아세테이트의 어느 것도 포함하지 않는다. 특히, 상기 토코페롤 또는 토코페롤 아세테이트는 액상 결정의 내부 구조를 강건하게 유지(stiffening)하는데 도움을 주며, 약리학적 활성물질의 방출속도를 지연시키는 역할을 할 수 있는 것이나, 본 발명에서는 상기 토코페롤 또는 토코페롤 아세테이트를 포함하는 대신에, 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화 지방산을 인지질과 특정 조성비로 조합하여 전구 제제를 제조하고, 이를 약리학적 활성물질과 함께 제제화할 경우, 낮은 주사압을 갖아 주사능이 우수할 뿐만 아니라, 생채 내 주입 시 안정적인 매트릭스 성상을 형성할 수 있음을 확인하였다.
본 발명의 일 실시예에 따르면, 상기 전구 제제는 25℃에서 2,000 mPa.s 미만, 1,000 mPa.s 미만 또는 300 mPa.s 미만의 점도를 갖는 것일 수 있다. 또한, 상기 전구 제제는 25℃에서 100 내지 2,000 mPa.s, 100 내지 1,000 mPa.s 또는 100 내지 300 mPa.s의 점도를 갖는 것일 수 있다.
더불어, 상기 전구 제제는 주사압이 10 N 이하, 1 내지 10 N, 4 내지 10 N, 6 내지 10 N인 것일 수 있다. 상기 주사압은 주사바늘이 20 내지 30 게이지 또는 23 내지 26 게이지를 갖는 조건에서 측정된 것일 수 있다. 상기한 바와 같이, 본 발명에 따른 전구 제제는 실온(약 25℃)에서 낮은 점도 가짐으로써 주사능이 향상되어, 20 내지 30 게이지 또는 23 내지 26 게이지의 주사기를 통해서 약물이 용이하게 생체 내로 도입될 수 있으며, 환자의 통증을 감소시킬 수 있다.
또한, 본 발명은 약리학적 활성물질; 및 본 발명에 따른 서방성 지질 전구 제제를 포함하는 지질 형태의 서방성 주사용 약학 조성물을 제공한다. 상기 약학 조성물은 디아실 글리세롤; 솔비탄 불포화지방산 에스테르; 및/또는 토코페롤 또는 토코페롤 아세테이트를 포함하지 않는 것일 수 있다. 구체적으로, 상기 약학 조성물은 디아실 글리세롤; 솔비탄 불포화지방산 에스테르; 및 토코페롤 또는 토코페롤 아세테이트를 포함하지 않는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 약리학적 활성물질(active pharmaceutical ingredient)은 저분자 화합물, 단백질, 펩타이드, 또는 항체일 수 있다. 구체적으로, 상기 약리학적 활성물질은 상기 전구 제제에 대하여 0.1 mg/ml 이상의 용해도를 갖는 약물일 수 있다. 상기 전구 제제에 0.1 mg/ml 미만의 용해도를 갖는 약리학적 활성물질은 서방성 주사제형으로 주입 용량이 많아져서 주사 통증이 크고, 서방성 제제로 제조에 어려움이 있다. 전구 제제에 대하여 0.1 mg/ml 이상의 용해도를 갖는 약리학적 활성물질의 예는 루프로라이드 또는 이의 약학적으로 허용가능한 염(예를 들어, 루프로라이드 아세테이트); 고세렐린 또는 이의 약학적으로 허용가능한 염(예를 들어, 고세렐린 아세테이트); 엔테카비어(이의 일수화물을 포함) 또는 이의 약학적으로 허용가능한 염; 혹은 소마토스타틴 유사체(예를 들어, 옥트레오타이드, 란레오타이트 및 파시레오타이드) 또는 이의 약학적으로 허용가능한 염; 글루카곤-유사 펩타이드-1 (GLP-1) 유사체(예를 들어, 엑세나타이드, 리라글루타이드, 알비글루타이드, 둘라글루타이드, 리시세나타이드 및 세마글루타이드) 또는 이의 약학적으로 허용가능한 염; 포도당 의존성 인슐린 친화성 폴리펩타이드 (GIP)/글루카곤-유사 펩타이드-1 (GLP-1) 유사체(예를 들어, 티르제파타이드) 또는 이의 약학적으로 허용가능한 염; 트리암시놀론 아세토나이드 또는 이의 약학적으로 허용가능한 염; 두타스테리드 또는 이의 약학적으로 허용가능한 염; 도네패질 또는 이의 약학적으로 허용가능한 염; 아리피프라졸 또는 이의 약학적으로 허용가능한 염; 팔리페리돈 또는 이의 약학적으로 허용가능한 염; 또는 리스페리돈 또는 이의 약학적으로 허용가능한 염 등을 포함하나, 이에 제한되는 것은 아니다. 일 구현예에서, 상기 약리학적 활성물질은 팔리페리돈 또는 이의 약학적으로 허용가능한 염일 수 있다. 상기 약리학적 활성물질은 치료학적 유효량(therapeurically effective amount)으로 본 발명의 약학 조성물에 함유될 수 있다.
본 발명의 일 실시예에 따르면, 상기 약리학적 활성물질은 상기 약학 조성물 총 중량에 대하여 0.1 ∼ 20 중량%, 0.1 내지 15 중량% 또는 1 내지 10 중량%의 범위로 함유될 수 있다.
본 발명에 따른 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물은 통상의 무균 처리 공정, 예를 들어 멤브레인 필터를 사용한 멸균 여과 공정, 고압증기멸균 공정, 감마선 멸균 공정 등을 수행할 수 있다.
이상의 설명은 본 발명의 기술 사상을 일 구현예를 이용하여 설명한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에서 설명된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.
<실시예>
실시예 1 내지 39. 서방성 지질 전구 제제의 제조
하기 표 1 내지 표 5의 성분 및 함량에 따라, 서방성 지질 전구 제제을 제조하였다. 표 1 내지 표 5의 함량은 서방성 지질 전구 제제 중의 각 성분의 중량%를 나타낸다. 구체적으로, 유리 바이알에 대두(soybean) 유래의 인지질(포스파티딜콜린, 포스파티딜세린, 포스파티딜에탄올아민), 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산(올레산), 중쇄 트리글리세라이드[KollisolvTM MCT 70 (트리카프릴린 및 트리카프린의 혼합물, 중량비 약 68:32), BASF] 및/또는 생체적합성 용매(에탄올, 프로필렌글리콜, 폴리에틸렌글리콜(PEG400), 벤질알코올 또는 N-메틸-2-피롤리돈)를 첨가한 후, 실온에서 마그네틱 교반기로 교반하면서 혼합하였다. 얻어진 혼합물을 실온에서 호모게나이저(POLYTRON PT1200E, KINEMATICA)로 약 5,000 rpm 조건하에서 약 5분간 균질화한 뒤, 실온에서 약 3 시간 동안 방치하여 각각의 서방성 지질 전구 제제를 제조하였다. 총 뱃지 규모는 제제당 20g씩으로 제조하였다.
실시예
1 2 3 4 5 6 7 8 9 10 11 12 13
올레산 90 80 70 67 65 62 60 55 50 40 30 20 10
포스파티딜콜린 10 20 30 33 35 38 40 45 50 60 70 80 90
실시예
14 15 16 17
올레산 67 55 67 55
포스파티딜세린 33 45
포스파티딜에탄올아민 33 45
실시예
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
포스파티딜
콜린
45 45 45 45 45 45 45 45 45 60 60 60 60 60 60
올레산 5.5 11 16.5 22 27.5 33 38.5 44 49.5 16 20 24 28 32 36
중쇄 트리글리세라이드 49.5 44 38.5 33 27.5 22 16.5 11 5.5 24 20 16 12 8 4
실시예
33 34 35 36 37
실시예 8 95 95 95 95 95
프로필렌글리콜 5
PEG400 5
에탄올 5
벤질알코올 5
N-메틸-2-피롤리돈 5
실시예
38 39
올레산 27 45
포스파티딜콜린 63 45
에탄올 10 10
실시예 40 내지 41. 팔리페리돈을 함유하는 지질 용액 형태의 서방성 주사용 약학 조성물의 제조
상기 실시예 7 또는 실시예 9의 서방성 지질 전구 제제 80.0 ~ 99.9 중량%, 및 팔리페리돈(paliperidone) 0.1 ~ 20.0 중량%를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물을 제조하였다. 하기 표 6의 함량은 서방성 주사용 약학 조성물 중의 각 성분의 중량%를 나타낸다. 구체적으로, 상기 실시예 7 또는 실시예 9로부터 제조된 서방성 지질 전구 제제를 실온에서 호모게나이저(POLYTRON PT1200E, KINEMATICA)로 약 5,000 rpm으로 약 5분간 균질화한 뒤, 팔리페리돈을 첨가하고 실온에서 호모게나이저로 약 3,000 rpm 조건하에서 약 20분간 균질화한 뒤, 실온에서 약 3시간 동안 방치하여 지질 용액 형태의 서방성 주사용 약학 조성물을 제조하였다.
실시예
40 41
실시예 7 90
실시예 9 90
팔리페리돈 10 10
실시예 42. 두타스테리드를 함유하는 지질 용액 형태의 서방성 주사용 약학 조성물의 제조
상기 실시예 37의 서방성 지질 전구 제제 99 중량%, 및 두타스테리드(dutasteride) 1 중량%를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물을 제조하였다. 하기 표 7의 함량은 서방성 지질 주사용 약학 조성물 중의 각 성분의 중량%를 나타낸다. 구체적으로, 상기 실시예 37로부터 제조된 서방성 지질 전구 제제를 실온에서 호모게나이저(POLYTRON PT1200E, KINEMATICA)로 약 5,000 rpm으로 약 5분간 균질화한 뒤, 두타스테리드를 첨가하고 실온에서 호모게나이저로 약 3,000 rpm 조건하에서 약 20분간 균질화한 뒤, 실온에서 약 3시간 동안 방치하여 지질 용액 형태의 서방성 주사용 약학 조성물을 제조하였다.
실시예
42
실시예 37 99
두타스테리드 1
<실험예>
실험예 1. 불포화지방산과 인지질의 조성비에 따른 전구 제제의 특성 분석
상기 실시예 1 내지 13으로부터 제조된 서방성 지질 전구 제제의 성상, 수상 내 매트릭스 성상, 수상 내 액상 결정 구조(편광현미경, x100), 점도(mPa.s at 25℃) 및 주사압(23 및 26 게이지)을 비교하였으며, 그 결과를 도 1 및 하기 표 8에 나타내었다.
상기 서방성 지질 전구 제제의 수상 내 매트릭스 성상은 서방성 지질 전구 제제를 1 ml 주사기에 충진하고 26게이지(26 gauge)의 주사 바늘을 통하여 10 ml의 pH 7.4 인산염 완충액에 주입하였을 때의 성상을 확인하였으며, 그 결과를 도 1에 나타내었다. 도 1을 참조하면, 서방성 지질 전구 제제들은 모두 수상으로 노출되기 전 실온에서 유동성이 있는 지질 액상의 형상을 나타내었으며, 수상으로 주입하였을 때 실시예 4 내지 9에서 액상 결정 매트릭스를 형성하였다. 특히, 실시예 8 및 9는 이상적인 구형의 액상결정 매트릭스 형성함으로써, 우수한 매트릭스(액상결정) 형성능을 나타내었다.
상기 서방성 지질 전구 제제의 수상 내 액상 결정 구조는 서방성 지질 전구 제제 20 μl를 취하여 슬라이드 글라스에 얇게 도포한 뒤 20 ml의 pH 7.4 인산염 완충액이 담긴 페트리 접시(petri dish)에 슬라이드 글라스 채로 넣어 실온에서 약 3시간 방치하였다. 수상에 노출되어 형성된 액상결정 구조를 확인하기 위하여, 슬라이드 글라스 위 물기를 조심스럽게 제거하고 기포가 발생하지 않도록 커버 글라스를 덮은 뒤, 편광현미경(S38, MIC)을 이용하여 250 배율로 관찰하였으며, 그 결과는 도 1에 나타내었다. 도 1의 수상 내 액상 결정 구조 이미지를 참조하면, 본 발명에 따라 제조된 서방성 지질 전구 제제는 수상에 노출 시 6방정계(hexagonal) 구조를 형성함을 확인하였고, 이 구조는 외부 수상 환경에 대하여 지질 이중층(bilayer)의 닫힌(closed) 구조를 형성하기에 봉입된 약리활성 물질의 지속성 방출을 가능하게 한다.
상기 서방성 지질 전구 제제의 점도는 원추평판형 회전 점도계 (RM-100 touch, Ramy)를 사용하여 측정하였고, 주사압은 하기 측정 조건에서 측정하였으며, 그 결과를 하기 표 8에 나타내었다. 하기 표 8를 참조하면, 실시예 1 내지 9는 25℃에서 300 mPa.s 미만의 낮은 점도를 나타내어, 주사압이 10 미만으로 매우 우수한 주사능을 나타내었다. 반면, 실시예 10은 25℃에서 1000 mPa.s를 초과하는 높은 점도를 나타내어, 주사압이 50 이상으로 현저히 저하된 주사능을 나타내었다. 한편 인지질의 종류(포스파티딜콜린, 포스파티딜세린, 포스파티딜에탄올아민)에 따른 서방성 지질 전구 제제의 점도 및 주사압의 차이는 없었다.
*주사압 측정 조건
(1) 시험장비: 인장압축시험기(스탠드: Lamy, TX-700, 로드셀: 50N 및 100N)
(2) Speed: 1 mm/sec
(3) Diplacement: 0-15 mm
(4) Temperature: 25℃
(5) Syringe: 1 mL luer slip syringe (Sungshim Medical Ltd.)
(6) Needle: 23G 1'' and 26G 1/2'', Thin wall (Koreavaccine Inc.)
올레산/포스파티딜콜린
(중량%)
실시예 1
(90/10)
실시예 2
(80/20)
실시예 3
(70/30)
실시예 4
(67/33)
실시예 5
(65/35)
실시예 6
(62/38)
실시예 7
(60/40)
점도
(mPa.s at 25℃)
48.5 52.7 136.5 105.7 108.3 148.9
179.9
주사압
(N ; 26 gauge)
4.32 4.80 6.85 6.33 5.36 7.11 7.70
주사압(N ; 23 gauge) 1.97 2.07 2.83
2.83
2.19
2.86
3.17
올레산/포스파티딜콜린(중량%) 실시예 8
(55/45)
실시예 9
(50/50)
실시예 10
(40/60)
실시예 11
(30/70)
실시예 12
(20/80)
실시예 13
(10/90)
점도(mPa.s at 25℃) 221.6 268.8 16922.8 - - -
주사압(N ; 26 gauge) 7.90 9.93 50 이상
- - -
주사압(N ; 23 gauge) 3.25 3.38
- - - -
올레산/포스파티딜세린(중량%) 실시예 14
(67/33)
실시예 15
(55/45)
올레산/포스파티딜에탄올아민
(중량%)
실시예 16
(67/33)
실시예 17
(55/45)
점도(mPa.s at 25℃) 104.2 235.2 점도
(mPa.s at 25℃)
121.1 215.9
주사압(N ; 26 gauge) 6.01 7.24 주사압
(N ; 26 gauge)
6.59 7.82
주사압(N ; 23 gauge) 2.80 3.12 주사압
(N ; 23 gauge)
2.77 3.05
실험예 2. 중쇄 트리글리세라이드(MCT) 첨가에 따른 특성 분석
상기 실시예 18 내지 32로부터 제조된 서방성 지질 전구 제제의 성상, 수상 내 매트릭스 성상 및 점도(mPa.s at 25℃)를 상기 실험예 1과 동일한 방법으로 분석하였으며, 그 결과를 하기 표 9에 나타내었다.
하기 표 9을 참조하면, MCT의 함량이 1 내지 35 중량%에 해당하는 실시예 21 내지 32는 수상 내 매트릭스가 형성되는 반면, MCT의 함량이 35 중량%를 초과하는 실시예 18 내지 20은 수상 내 매트릭스가 형성되지 않음을 확인할 수 있다.
더불어, 인지질(포스파티딜콜린)에 대한 용해성이 불포화지방산(올레산) 대비 상대적으로 우수한 MCT의 비율이 높아질수록 점도 개선(점도 저하) 효과가 있음을 확인할 수 있다. 특히, 전구 제제는 총 중량에 대하여 불포화지방산 20 ∼ 55 중량%, 인지질 40 ~ 50 중량%, 및 중쇄 트리글리세라이드 1 내지 35 중량%의 중량 범위를 만족하는 실시예 21 내지 26은 수상 내 매트릭스 형성이 용이할 뿐만 아니라, 25℃에서 300 mPa.s 미만의 낮은 점도를 나타내어, 매우 우수한 주사능을 나타내는 반면, 상기 3 성분의 중량 범위를 벗어나는 실시예 27 내지 32는 25℃에서 1000 mPa.s를 초과하는 높은 점도를 나타내어, 현저히 저하된 주사능을 나타내었다.
인지질/올레산/MCT
(중량%)
실시예 18
(45/5.5/49.5)
실시예 19
(45/11/44)
실시예 20
(45/16.5/38.5)
실시예 21
(45/22/33)
실시예 22
(42/27.5/27.5)
성상
(전구제제)
균질하게 혼합된 맑은 용액
수상 내
매트릭스 형성 여부
(pH 7.4 인산염완충액)
매트릭스
형성되지 않음
(X)
매트릭스
형성되지 않음
(X)
매트릭스
형성되지 않음
(X)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
점도(mPa.s at 25℃) 152.0 153.7 176.1 169.4 187.7
인지질/올레산/MCT (중량%) 실시예 23
(45/33/22)
실시예 24
(45/38.5/16.5)
실시예 25
(45/44/11)
실시예 26
(45/49.5/5.5)
실시예 27
(60/16/24)
성상
(전구제제)
균질하게 혼합된 맑은 용액
수상 내
매트릭스 형성 여부
(pH 7.4 인산염완충액)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
점도(mPa.s at 25℃) 189.8 222.6 225.0 231.9 2009.3
인지질/올레산/MCT (중량%) 실시예 28
(60/20/20)
실시예 29
(60/24/16)
실시예 30
(60/28/12)
실시예 31
(60/32/8)
실시예 32
(60/36/4)
성상
(전구제제)
균질하게 혼합된 맑은 용액
수상 내
매트릭스 형성 여부
(pH 7.4 인산염완충액)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
매트릭스
형성됨
(O)
점도(mPa.s at 25℃) 3432.1 4991.5 18182.7 21387.8 20148.8
실험예 3. 생체적합성 용매 첨가에 따른 특성 분석
상기 실시예 33 내지 37로부터 제조된 서방성 지질 전구 제제의 점도(mPa.s at 25℃)를 상기 실험예 1과 동일한 방법으로 분석하였으며, 그 결과를 하기 표 10에 나타내었다. 상기 실시예 33 내지 37은 상기 실시예 8의 조성을 갖는 전구 제제와, 생체적합성 용매를 95 : 5의 중량비로 혼합하여 제조된 전구 제제이다.
하기 표 10을 참조하면, 실시예 8에 생체적합성 용매가 적용된 실시예들은 대체로 점도 개선(점도 감소) 효과를 보였으며, 특히, 인지질에 대한 용해성이 가장 우수한 에탄올 첨가 시 점도 개선(점도 감소) 효과가 현저히 우수함을 확인할 수 있다.
실시예 8/용매
= 95 : 5 (중량비)
실시에 33
(실시예 8 +
프로필렌글리콜)
실시예 34
(실시예 8 + PEG400)
실시예 35
(실시예 8 +
에탄올)
실시예 36
(실시예 8 + 벤질알코올)
실시예 37
(실시예 8 +
N-메틸-2-피롤리돈)
점도(mPa.s at 25℃) 201.4 188.0 169.0 205.4 232.4
실험예 4. 팔리페리돈의 시험관 내 서방출 패턴 분석
상기 실시예 40 및 41로부터 제조된 지질 용액 형태의 서방성 주사용 약학 조성물에 대한 시험관 내 방출시험(invitro release tests)를 수행하여 서방성 효과를 확인하였으며, 그 결과를 도 2에 나타내었다. 상기 실시예 40 및 41은 각각 실시예 7 및 9의 서방성 지질 전구 제제에 팔리페리돈을 적용한 것이다.
구체적으로, 아크릴 관(내경 14mm, 높이 15mm)의 양쪽에 각각 16 mesh와 100 mesh의 체를 부착하여 약학 조성물을 로딩할 수 있는 검체 용기를 제작하였다. 또한, 0.25 중량% 폴리소르베이트20을 포함하는 0.0825N 염산수용액의 시험액을 조제하였다. 지질 용액 형태의 서방성 주사용 약학 조성물을 각각 400 mg 씩 로딩한 검체 용기 및 상기 시험액을, 40 ml 시험 용기(외경 25mm, 높이 100mm)에 넣고, 수중 회전형 장치(BDSHWB-980R, 반디테크)에 장착하였다. 상기 장치를 37.5℃에서 25 rpm으로 교반하면서 28일 동안 샘플링한 후, 하기 조건하에서 HPLC로 분석하였다.
<HPLC 조건>
컬럼: 100 x 4.6 mm, 3 ㎛ packing L1 컬럼
이동상: 28 mM 테트라뷰틸암모늄황산 완충액 : 메탄올 = 90 : 10 (v/v)
유속: 1.0 ml/분
온도: 40℃
주입량: 20 ㎕
파장: 275 nm(자외부흡광광도계)
도 2를 참조하면, 실시예 40(올레산-인지질=6:4) 및 실시예 41(올레산-인지질=5:5)의 지질 용액 형태의 서방성 주사용 약학 조성물은 장기간 동안 효과적인 서방성 방출 패턴을 나타냄을 확인할 수 있다.
실험예 5. 두타스테리드의 시험관 내 서방출 패턴 분석
상기 실시예 42로부터 제조된 지질 용액 형태의 서방성 주사용 약학 조성물에 대한 시험관 내 방출시험(invitro release tests)를 수행하여 서방성 효과를 확인하였으며, 그 결과를 도 3에 나타내었다. 상기 실시예 42는 실시예 37의 서방성 지질 전구 제제에 두타스테리드를 적용한 것이다.
구체적으로, 아크릴 관(내경 14mm, 높이 15mm)의 양쪽에 각각 16 mesh와 100 mesh의 체를 부착하여 약학 조성물을 로딩할 수 있는 검체 용기를 제작하였다. 또한, 0.1 중량% 소듐 라우릴 설페이트를 포함하는 pH 7.4 Tris 시험액을 조제하였다. 지질 용액 형태의 서방성 주사용 약학 조성물을 각각 500 mg씩 로딩한 검체 용기 및 상기 시험액을, 40 ml 시험 용기(외경 25mm, 높이 100mm)에 넣고, 수중 회전형 장치(BDSHWB-980R, 반디테크)에 장착하였다. 상기 장치를 37.5℃에서 25 rpm으로 교반하면서 28일 동안 샘플링한 후, 하기 조건하에서 HPLC로 분석하였다.
<HPLC 조건>
컬럼: 150 x 4.6 mm, 3 ㎛ packing L1 컬럼
이동상: 아세토니트릴 : 정제수 : 트리플루오로아세트산 = 52 : 48 : 0.025 (v/v/v)
유속: 1.0 ml/분
온도: 35℃
주입량: 20 ㎕
파장: 210 nm (자외부흡광광도계)
도 3를 참조하면, 실시예 42(올레산-인지질=5.5:4.5)의 지질 용액 형태의 서방성 주사용 약학 조성물은 장기간 동안 효과적인 서방성 방출 패턴을 나타냄을 확인할 수 있다.
실험예 6. 인지질 비율에 따른 전구제제의 시험관 내 서방출 패턴 분석
서방성 지질 전구제제 중 인지질의 비율에 따른 특성을 분석하기 위하여, 실시예 38 및 39로부터 제조된 서방성 지질 전구 제제에 메틸렌 블루(methylene blue)를 실시예 40과 동일한 방법으로 적용하여, 서방성 주사용 조성물을 제조한 후, 실험예 4와 동일한 방법으로 시험관 내 서방출 패턴 분석을 수행하였으며, 그 결과를 도 4에 나타내었다.
도 4을 참조하면, 전구제제 중 인지질의 비율이 증가함에 따라 상대적으로 열린(open) 구조인 lamellar 구조의 비율이 높아지기 때문에 cumulative release(서방출 속도)가 실시예 39(hexagonal)보다 실시예 38(lamellar)에서 더 빠른 것을 확인할 수 있다. 이를 통하여, 전구제제의 내부 구조는 서방출 패턴에 큰 영향을 줄 수 있음을 확인할 수 있다.
실험예 7. 인지질/불포화지방산/물에 대한 삼성분계 상평형도(ternary phase diagram) 분석
인지질(대두 유래 포스파티딜콜린; soy PC), 불포화지방산(올레산; OA) 및 물에 대한 삼성분계 상평형도를 도 5에 나타내었다.
도 5를 참조하면, 불포화지방산과 인지질의 조성비에 따라서 형성되는 내부 구조(internal phase)가 달라질 수 있으며, 이와 더불어 겔 강도 및 점도 등의 특성이 달라지는데, 이는 α-토코페롤 또는 α-토코페롤 아세테이트와 같은 액상결정 강화제 없이도 조성비에 따라 약리활성 물질의 방출 패턴 등의 특성 조절이 가능함을 의미할 수 있다.
위 살펴본 바와 같이, 본 발명에 따른 지질 용액 형태의 서방성 지질 전구 제제; 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물은, 디아실 글리세롤, 솔비탄 불포화지방산 에스테르 대신에, 생체 내에 존재 또는 유래하며 또한 효과적으로 생분해되는 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화지방산을 포함함으로써, 우수한 생체친화성 및 생분해성을 나타내어 서방성 주사제의 단점중에 하나인 주사부위에서 염증반응이 나타날 가능성을 근본적으로 회피할 수 있을 것으로 판단된다. 더불어, α-토코페롤(α-토코페롤 아세테이트)를 포함하는 대신에, 상기 탄소수 14개 내지 20개 (C14 내지 C20)의 불포화 지방산을 인지질과 특정 조성비로 조합하여 전구 제제를 제조하고, 이를 약리학적 활성물질과 함께 제제화함으로써, 낮은 주사압을 갖아 주사능이 우수할 뿐만 아니라, 생채 내 주입 시 안정적인 매트릭스 성상을 형성하는 할 수 있음을 확인하였다.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구 범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.

Claims (19)

  1. (a) 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산; 및
    (b) 인지질;을 포함하는 지질 용액 형태의 서방성 지질 전구 제제.
  2. 제1항에 있어서,
    상기 전구 제제는 디아실 글리세롤, 솔비탄 불포화지방산 에스테르, 토코페롤 또는 토코페롤 아세테이트를 포함하지 않는 것인, 전구 제제.
  3. 제1항에 있어서,
    상기 인지질은 포스파티딜콜린, 포스파티딜세린, 포스파티딜에탄올아민, 포스파티딜이노시톨, 포스파티딘산, 포스파티디딜글리세린 및 스핑고미엘린으로 이루어진 군으로부터 선택되는 1종 이상인, 전구 제제.
  4. 제1항에 있어서,
    상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 30 ∼ 70 중량% 및 인지질 30 ~ 70 중량%를 포함하는 것인, 전구 제제.
  5. 제4항에 있어서,
    상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 67 중량% 및 인지질 33 ~ 50 중량%를 포함하는 것인, 전구 제제.
  6. 제1항에 있어서,
    상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 및 인지질의 중량비는 30:70 내지 70:30, 또는 50:50 내지 67:33인, 전구 제제.
  7. 제1항에 있어서,
    상기 전구 제제는
    (c) 선택적으로 생체 적합성 용매; 또는
    (d) 선택적으로 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상을 추가로 포함하는 것인, 전구 제제.
  8. 제7항에 있어서,
    상기 생체 적합성 용매는 에탄올, 프로필렌글리콜, 폴리에틸렌글리콜, N-메틸-2-피롤리돈, 및 벤질알코올로 이루어진 군으로부터 선택된 1종 이상의 유기용매 또는 상기 유기용매의 수용액인, 전구 제제.
  9. 제7항에 있어서,
    상기 전구 제제는 총 중량에 대하여 생체 적합성 용매를 1 내지 10 중량%로 포함하는 것인, 전구 제제.
  10. 제7항에 있어서,
    상기 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산과 인지질의 중량합, 및 생체 적합성 용매의 중량비는 90 : 10 내지 99 : 1인, 전구 제제.
  11. 제7항에 있어서,
    상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 50 ∼ 55 중량%, 인지질 40 ~ 45 중량%, 및 생체 적합성 용매 1 내지 10 중량%를 포함하는 것인, 전구 제제.
  12. 제7항에 있어서,
    상기 전구 제제는 총 중량에 대하여 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상을 1 내지 35 중량%로 포함하는 것인, 전구 제제.
  13. 제7항에 있어서,
    상기 전구 제제는 총 중량에 대하여 탄소수 14개 내지 20개 (C14∼C20)의 불포화지방산 20 ∼ 55 중량%; 인지질 40 ~ 50 중량%; 및 중쇄 트리글리세라이드, 올리브유, 참깨유, 면실유, 홍화유, 피마자유, 대두유, 해바라기유, 메도우폼씨유, 옥수수유, 아몬드유, 유채씨유, 팜유, 에틸 올레이트 및 벤질 벤조에이트로 이루어진 군으로부터 선택되는 1종 이상 1 내지 35 중량%;를 포함하는 것인, 전구 제제.
  14. 제1항에 있어서,
    상기 전구 제제는 25℃에서 2,000 mPa.s 미만의 점도를 갖는 것인, 전구 제제.
  15. 제1항에 있어서,
    상기 전구 제제는 주사압이 10 N 이하인 것인, 전구 제제.
  16. 제15항에 있어서,
    상기 주사압은 주사바늘이 20 내지 30 게이지를 갖는 조건에서 측정된 것인, 전구 제제.
  17. 약리학적 활성물질; 및
    제1항 내지 제16항 중 어느 한 항에 따른 전구 제제를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물.
  18. 제17항에 있어서,
    상기 약리학적 활성물질은 저분자 화합물, 단백질, 펩타이드, 또는 항체인 것인, 약학 조성물.
  19. 제17항에 있어서,
    상기 약리학적 활성물질이 상기 전구 제제에 대하여 0.1 mg/ml 이상의 용해도를 갖는 것인, 약학 조성물.
PCT/KR2022/017240 2021-11-05 2022-11-04 신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물 WO2023080712A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0151153 2021-11-05
KR20210151153 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023080712A1 true WO2023080712A1 (ko) 2023-05-11

Family

ID=86241905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017240 WO2023080712A1 (ko) 2021-11-05 2022-11-04 신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물

Country Status (2)

Country Link
KR (1) KR20230065921A (ko)
WO (1) WO2023080712A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140086722A (ko) * 2012-12-28 2014-07-08 주식회사 종근당 양이온성 약리학적 활성물질의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
KR20160020405A (ko) * 2013-03-15 2016-02-23 리듬 파마슈티컬즈, 인코포레이티드 약학적 조성물
JP5981997B2 (ja) * 2011-08-30 2016-08-31 チョン クン ダン ファーマシューティカル コーポレーション 薬理学的活性物質の徐放性脂質初期製剤およびこれを含む薬学的組成物
KR20200100392A (ko) * 2019-02-18 2020-08-26 (주)아이엠디팜 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물
KR20210097153A (ko) * 2018-11-30 2021-08-06 에보니크 오퍼레이션즈 게엠베하 인지질 및 지방산 염의 분산액을 포함하는 제제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981997B2 (ja) * 2011-08-30 2016-08-31 チョン クン ダン ファーマシューティカル コーポレーション 薬理学的活性物質の徐放性脂質初期製剤およびこれを含む薬学的組成物
KR20140086722A (ko) * 2012-12-28 2014-07-08 주식회사 종근당 양이온성 약리학적 활성물질의 서방성 지질 초기제제 및 이를 포함하는 약제학적 조성물
KR20160020405A (ko) * 2013-03-15 2016-02-23 리듬 파마슈티컬즈, 인코포레이티드 약학적 조성물
KR20210097153A (ko) * 2018-11-30 2021-08-06 에보니크 오퍼레이션즈 게엠베하 인지질 및 지방산 염의 분산액을 포함하는 제제
KR20200100392A (ko) * 2019-02-18 2020-08-26 (주)아이엠디팜 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물

Also Published As

Publication number Publication date
KR20230065921A (ko) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2014104784A1 (en) Sustained-release lipid pre-concentrate of cationic pharmacologically active substance and pharmaceutical composition comprising the same
WO2020171491A1 (ko) 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물
US11135215B2 (en) Opioid formulations
JP6081479B2 (ja) 頑強な徐放性ペプチド製剤
US20130190341A1 (en) High bioavailability opioid formulations
WO2014104788A1 (en) Sustained-release lipid pre-concentrate of anionic pharmacologically active substances and pharmaceutical composition comprising the same
EP2750667A1 (en) Sustained-release lipid pre-concentrate of pharmacologically active substance and pharmaceutical composition comprising the same
KR20170099978A (ko) 조절-방출 제형
AU2017279657B2 (en) Opioid formulations
JP2024026333A (ja) 持続放出ペプチド製剤
WO2023080712A1 (ko) 신규한 서방성 지질 전구 제제 및 이를 포함하는 서방성 주사용 약학 조성물
KR102365844B1 (ko) 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물
WO2021045345A1 (ko) 테리파라타이드를 포함하는 경구용 약학 조성물 및 이의 제조방법
WO2017150803A1 (ko) 에소메프라졸을 포함하는 제제
WO2022005169A1 (ko) Gnrh 유도체를 포함하는 주사용 조성물
KR20220025769A (ko) 서방성 지질 전구 제제 및 이를 포함하는 지질 용액 형태의 서방성 주사용 약학 조성물
RU2805746C2 (ru) Липидная прекомпозиция с замедленным высвобождением и содержащая ее фармацевтическая композиция для инъекции с замедленным высвобождением в форме липидного раствора
WO2023095944A1 (en) Ultra long acting pharmaceutical composition comprising insulin
WO2023287117A1 (ko) Glp-1 유사체를 함유하는 경구 투여 제형 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890443

Country of ref document: EP

Kind code of ref document: A1